Exercises 7 (November 7, 2005)

1. Show that \(\zeta(0) = -1/2 \) and \(\zeta'(0) = -\frac{\ln(2\pi)}{2} \).

2. Show that for \(s \in \mathbb{R}, \zeta(s) = 0 \) if and only if \(s = -2k \), with \(k \in \mathbb{N}, k \geq 1 \).

3. Find all solutions of \(x^2 + y^2 = 2z^2 \) in \(\mathbb{Q} \).

4. Let \(f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i x_i^m \), with \(a_i \in \mathbb{Z}_p, a_i \neq 0 \). Put
 \[r := \nu_p(m), \quad s := \max_i (\nu_p(a_i)) \quad \text{and} \quad N := 2(r + s) + 1. \]
 Show that \(f(x_1, \ldots, x_n) \) has a nontrivial zero in \(\mathbb{Q}_p \) if and only if the congruence \(f(x_1, \ldots, x_n) = 0 \mod p^N \) has a solution \((x_0^1, \ldots, x_0^n)\) such that \(x_0^j \neq 0 \mod p \) for at least one \(j \).

5. Check that \(B_{2k} \neq 0 \mod 17 \) for \(k = 1, \ldots, 7 \), and that there exists a \(k \in [1, \ldots, 17] \) such that \(B_{2k} = 0 \mod 37 \).