RATIONAL POINTS AND AUTOMORPHIC FORMS
by

J. Shalika, R. Takloo-Bighash, and Yu. Tschinkel

ABSTRACT. — We study the distribution of rational points of bounded height on certain
equivariant compactifications of anisotropic inner forms of semi-simple groups.
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1. Introduction

Letx € P*(Q) be aQ-rational point in the projective space of dimensiowith
coordinatesx = (zg : 1 : -+ : x,), such that

(To,T1,...,2n) € Zg;;il,
that is, the set of primitivén + 1)-tuples of integers. Define a height function
H(x) := max(|]).
Of course, we could replace this norm by any other norniR6h!, for example
Va3 + -+ 22. Generally, for any number field andx € P"(F) we can define

) = [ max(la)

vEVal(F)
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where the product is over all valuations Bf By the product formula, this does
not depend on a particular choice of homogeneous coordinates fGlearly, the
number

N(P",B) := #{x e P*(F) | H(x) < B}
Is finite, for anyB > 0. In 1964 Schanuel computed its asymptotic behavior, as
B — oo,

N(P",B) =c(n, F,H) - B"™(1 4 o(1)),
wherec(n, F, H) is an explicit constant (se€f)).

Let X be an algebraic variety overfaandy : X — P" a projective embedding.
Then H o i defines a height function on the setBfrational pointsX (F') (more
conceptually, the height is defined by means ohdelic metrizationC = (L, || - ||4)
of the line bundlel := p*(O(1))). We obtain an induced counting function

N(X.L,B) = #{x € X(F) | Ho u(x) < B}.

One of the main themes of modern arithmetic geometry and number theory is the
study of distribution properties of rational points on algebraic varieties. In particu-
lar, one is interested in understanding the asymptotic distribution of rational points
of bounded height.

All theoretical and numerical evidence available so far indicates that one should
expect an asymptotic expression of the form

N(X,L,B) =c-B*log(B)*"!(1+0(1)),

forsomea € Q,b € %Z and a positive real. In 1987 Manin had initiated a program
aimed at interpreting the constaat® andc in terms of intrinsic algebro-geometric

and arithmetic invariants oK. The main observation was thatand b should
depend only on the class of the embedding line buhdtethe Picard groupic(X)

of the variety X', more precisely its position with respect to the anticanonical class
[—Kx] and the cone of effective divisors.;(X) C Pic(X)z. The constant,

on the other hand, should reflect the dependence of the asymptotic expression on
finer structures (like the choice of a norm in the definition of the heightzaadic
densities).

Of course, it may happen thaf has no rational points at all, or thaf(F’) is
entirely contained in a proper Zariski closed subset. In these cases, it is hopeless to
try to read off the geometry ok from the asymptotics of rational points. We will
therefore assume that(F') is Zariski dense. In general, it is not so easy to produce
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examples of interesting varieties with a Zariski dense set of rational points (unless,
of course, X admits an action of an algebraic group with a Zariski dense orbit).
For example X could be a flag variety or an abelian variety. It is expected that the
density of points (at least after a finite extension of the groundfield) hold<aioo
varieties (that is, varieties with ample anticanonical c[as& x|). This question is

still open even in dimension 3 (se&]). Here is a version of Manin’s conjecture:

CONJECTUREL.L — Let X be an algebraic variety over a number fiéldsuch
that its anticanonical clags-K x| is ample andX (F') is Zariski dense. Then there
exists a Zariski open subsEtC X such that

N(U,—Kx, B) = ¢(Kx) - B(log B)*®)~1(1 + 0(1))

for B — oo, where—K is a (metrized) anticanonical line bundtg X)) is the rank
of the Picard grou@ic(X) andc(Kx) a non-zero constant.

REMARK 1.2 — The restriction to Zariski open subsets is necessary stnogy
containaccumulatingsubvarieties (the asymptotics of rational points on these sub-
varieties will dominate the asymptotics of the complement). The constéit)
has an interpretation as a Tamagawa number (defined by Peyzé]jn Finally,
there is a similar description for arbitrary ample line bundles, proposeid,iresp.

[ED.

Conjecturel.land its refinements have been proved for the following classes of
varieties:

— smooth complete intersections of small degre®ir{circle method);
— generalized flag varieties 1];

— toric varieties f], [6];

— horospherical varieties![];

— equivariant compactifications & [11];

— bi-equivariant compactifications of unipotent groups][ [39].

We expect that Manin’s conjecture (and its refinements) should hold for equivari-
ant compactifications @l linear algebraic groups and their homogeneous spaces
G/H. We provide further evidence for this expectation by outlining a proof of the
above conjecture for certain smooth equivariant compactificatio@sarfisotropic
semi-simpleQ-groups of adjoint type (for complete proofs sé€]).

This work focuses on the interplay between arithmetic geometry and automorphic
forms. Though the main problem is inspired by Manin’s conjecture in arithmetic
geometry, our tools and techniques, which are naturally suited to the current context,
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are from the theory of automorphic forms and representatiopsadic groups. Our
approach is inspired by the work of Batyrev and Tschinkel on compactifications
of anisotropic tori {f] and the work of Godement and Jacquet on central simple
algebras 9. We are currently working on a generalization of our results to higher
rank, where the presence of the Eisenstein series makes the problem even more
interesting from the analytic point of view.

Finally, we would like to mention related work of Duke, Rudnick and Sarnak
[14], Eskin, McMullen [L5], Eskin, Mozes and Shah §] on asymptotics ointegral
points of bounded height on homogeneous varieties. Their theorems neither imply
our results nor follow from them.

Acknowledgements.We have greatly benefited from conversations with Arthur
and Sarnak. The second author wishes to thank the Clay Mathematics Institute for
partial support of this project. The third author was partially supported by the NSA,
NSF and the Clay Mathematics Institute.

2. Methods and results

Let F' be a number field anD a central simple algebra of ramk over F'. Let A
be a lattice inD. Denote byVal(F') the set of all valuations and by, the subset
of archimedean valuations &f. For eachv € Val(F'), we putD, = D ®r F, and,
forv ¢ Se, Ay = A ®p, O,. For almost allu, A, is a maximal order iD,. We
proceed to define a family of nornjis ||», onD,, one for each place of F.

— non-archimedean: Choose a basi&?, ..., ¢/} for A,. Forg € D,, write
g=>_.¢(g)& and set

gl = llg]

.....

It is easy to see that this norm is independent of the choice of basis.
— archimedearw: Fix a Banach space norh- ||, = || - ||p, on the finite-
dimensional real (or complex) vector spdeg= D ®p F,,.

Clearly, forc € F, andg € D,,, we have

legllo = lefo - llgllo-
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Consequently, for € F* andg € D, we have

(2.1) IT leglo="TI ligll..

veVal(F) vEVal(F)

by the product formula. For an adelic poipt= (g,), € D(A) define theglobal
height function

H(g):= [] Hoo)= [ lgl

veVal(F) veVal(F)

By the product formula/ is well-defined on the projective group(F')*/F*.
Moreover,H is invariant under the right and left action of a compact open subgroup

KO = H KO,U C G(Aﬁn)
V€S0

(if we fix an integral model foG thenK,, = G(O, ), for almost allv). It will be
convenient to assume that the Haar meadyris such thatol(Ky) = 1.

From now on, we letz be anF-anisotropic inner form of a split semi-simple
groupG of adjoint type over a number fielfl. Let

or : G — D*

be anF-group morphism fron(G to the multiplicative group of a central simple
algebra over' of rankm. Extending scalars to a finite Galois extensionFr' over
which bothG andD are split, we obtain a homomorphism

or : G(E) — GL,(E).
This homomorphism is obtained from an algebraic representation
0 : G — GL,,,
defined overr'.

REMARK 2.1 — Conversely, from any algebraic representationG — GL,,
over F’ we obtain a group homomorphism

op : G(E) — CL,(F),
which induces a map

o ZHGal(E/F), G(E)) — ZY(Gal(E/F), PGLy(E)).
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Letc € Z'(Gal(E/F),G(E)) be the cocycle that defines the inner fofin Then
05 (c) defines a central simple algeldpac Mat,,(E). Itis easy to verify thabg
descends to a morphism éFgroups

or : G— D*.

Thus we can user to pull back the height function from* to G. We are
interested in the asymptotics of

N(o, B) := #{y € G(F) | H(er(y)) < B},

asB — oo. To put this in geometric perspective, the pdir, o) defines an equiv-
ariant compactificatiolX of G and aG-linearized ample line bundle oXi (and vice
versa). Thus we are counting rational points on a Zariski open sGbsefX, with
respect to some adelically metrized line bundle (depending)omelow we will
see that for appropriate choices ®the asymptotic formula folV (o, B) matches
precisely Manin’s prediction.

Our main technical assumption (used in the computaadg))(is the following:
ASSUMPTION2.2 — The representationy is absolutely irreducible.

In order to state our theorem we need to introduce some notation. Fix a Borel
subgroupB with maximal split torusT in G and denote byX*(T) the character
group of T. Let ® be the root system diG, T), andA = {a,...,a,} the set of
simple roots. Also le2pg = > 4+ . SinceG is of adjoint type it is immediate
that there are one-parameter subgro{tps . . ., &, } of T such that

< étj,Oéi >= _51']'-
Let o = p, be the irreducible algebraic representatioaissociated with a domi-

nant weight\. Let x,, be the character of associated with\. SinceX is dominant
andG is of adjoint type, there exist non-negative integar®), . . ., k(o) such that

xa(t) = H o ()12,

The numberg; (o), 1 < i < r, are all non-zero if the representatiois non-trivial.
Set then

1- < aj,2pg >
G=1,..,r k:j(g)

— < qay,2pg >

1
) andb@ = #{] | k‘(g) - aQ}‘
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REMARK 2.3. — The anticanonical embedding of tk@nderfulcompactification
X of G of de Concini-Procesi is associated with the weight 2p¢ + >"7_, ;. In
particular,X is Fano (seell3],[9] for more details).

It is not hard to see that if = o, thena, = 1 andb, = r. We set

coi=lim(s —1)" [ H(er(g))"*dg,
s G()

(wheredyg is a suitably normalized Haar measure @fA)). By (2.5), the limit
exists and is a positive real number. Our main theorem is the following:

THEOREM2.4 — We have

N(ox, B) =

= B(log B)"'(1 4 o(1)),

asB — oo.

We note that this theorem implies Manin’s conjecture and its refinement due to
Peyre for the wonderful compactification @Gfas above. We have also proved anal-
ogous results for arbitrary irreducible representatioi® other words, for height
functions associated with arbitrary ample line bundles on the wonderful compacti-
fication of G).

We will now sketch the proof (in the cage= p.). Using Tauberian theorems
one deduces the asymptotic properties\d, B) from the analytic properties of
theheight zeta function

Z(s,0)= Y Hlor(7))™"
YEG(F)
Actually, we will use the function
Z(s,0,9)= Y Hlor(19)™"
YEG(F)

ForR(s) > 0, the right side converges (uniformly on compacts) to a function which
is holomorphic ins and continuous iy on C x G(A). SinceG is F-anisotropic,
G(F)\G(A) is compact, and

Z € L(G(F)\G(A))™
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(recall thatH is bi-invariant undei,). Again sinceG is anisotropic, we have
(2.2) L*(G(F)\G(A)) = (DH-) PED C
™ X

as a direct sum of irreducible subspaces. Here the first direct sum is over infinite-
dimensional representations G{ A) and the second direct sum is a sum over all
automorphic characters 6f(A). Consequently,

(2.3) L2(GF\G(A)S = (PH) DEDC,)

a sum over representations containing@fixed vector (in particular, the sum over
characters iginite). For each infinite-dimensional occurring in ¢.3) we choose
an orthonormal basi§, = {¢"}, for HXo. We have next the “Poisson formula™:

2.4) Z(s,09) =Y > (Z(s,09).¢ +Z (s.0,9), x(9))x(9)-

T pEBR

Here the series on the right converges normallys'(@, g) for R(s) > 0. We will
establish a meromorphic continuation of the right sideZof)( leading to a proof
of the main theorem.

A key result is the computation of the individual inner produds ¢). After the
usual unfolding it turns out that each of these is an Euler product with an explicit
regularization. In particular, the pole of highest ordeg£d§, o, ¢) (or the main term
in the asymptotic expression 8f(p, B)) is contributed by the trivial representation:

/ H(or(9)dg= ]] H,(0r(90))*dgy.
veval(F) Y GU)

Local integrals of such type can be computed explicitly at almost all places (see
[11]). They are reminiscent of Igusa’s local zeta functions and their modern gen-
eralizations: “motivic” integrals of Batyrev, Kontsevich and Denef-Loeser (3ge [
[17]). In our case, we have

(2.5) / Hor(9))dg = [[ ¢rlksst < 6.2 >) - hi(s. o).

j=1
(wherehp(s, o) is a holomorphic function fo(s) > 1 — ¢ and some: > 0 and
hF(17 Q) S R>0)'
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Next we prove that each remaining term is holomorphic arogfid = 1. In
general, we have

(Z,0) =/ Z(s,0,9)9(9) dg
G(P)\G(A)

= o H(or(g)) *é(g) dg

= | Hor(9))™ | o(kg)dkdg

G(A) Ko
Next we follow an argument by Godement and Jacquefl iij. [ Without loss of
generality we can assume that

Ko = [ [ Ko x K§,
vgS
for a finite set of places. Here forv ¢ S, K, is a maximal special open compact
subgroup inG(F,). After enlargingS to contain all the places whefgis not split,
we can assume thét, = G(O,). In particular, forv ¢ S the local representations
m, are spherical. Thus we have a normalized local spherical fungti@ssociated
to 7. We have assumed that eaghs right K-invariant. In conclusion,

.0 =] /G . eo8)Hulor(0) da

vgS
x / . Hlor(n(as)) /K olbnlgs) d dgs

(Heren : G(As) — G(A) is the natural inclusion map.) The second factor is
relatively easy to deal with. Our main concern here is with the first factor. To
proceed we need to invoke some fairly deep results from the representation theory
of reductive groups to find non-trivial bounds on spherical functions. Depending on
the semi-simple rank df, there are two cases to consider:

Case 1: semi-simple rark In this situationG is an inner form ofPGL, - that is,

the projective group of a quaternion algebra. By the Jacquet-Langlands correspon-
dence P7], there is an irreducible cuspidal automorphic representaticaA @, 7,

of PGL, such that forv ¢ S, we haver, = 7. In particular, in order to obtain
non-trivial bounds on spherical functions of infinite dimensional representations,
we need to examine local components of cuspidal representati@is,ofith triv-

lal central character. Here the estimate we need follows from a classical result of
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Gelbart and Jacquet who established the symmetric square liftingGionto GL;

[1€], combined with a result of Jacquet and Shalika (se$)[ We also note the re-

cent beautiful results of Kim and Shahidi towards sharper bounds in the Ramanujan-
Petersson conjecturé4.

Case 2: semi-simple rank 1. First we use a strong approximation argument
to show that forv ¢ S, the representation, is not one-dimensional, unless
itself is one-dimensional (a similar argument appears in the work of Clozel and
Ulimo [1(]). Then we apply a recent result of OhZ giving bounds for all non-
trivial spherical matrix coefficients of the unitary dual of semi-simple groups of
rank at leas®, which can be considered as a quantitative version of property (T) for
these groups. Moreover, the bounds andormover all primesp, which is crucial

in our applications. Let us mention that a (weaker) form of Oh’s results can be
deduced from{1] for Sp,,,(Q,) and forGL,,(Q,) from the known classification of

the unitary dual (seel[l]).

Putting everything together, we obtain that there exists an 0 such that for
all non-trivial representations and allthe inner productZ, ¢) is holomorphicfor
R(s) >1—e.

Finally, to prove the convergence of the right side (for appropkipt@e integrate
by parts (with respect to the Laplaciax on the compact Riemannian manifold
associated withG(A) and K,), and combind_>-estimates forA-eigenfunctions
with standard facts about spectral zeta functions of compact manifolds.

REMARK 2.5. — Similar arguments lead to a proof efjuidistributionof ratio-
nal points of bounded anticanonical height with respect to the Tamagawa measure
associated with the metrization ofK x.
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