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ABSTRACT. — We study the distribution of rational points of bounded height on certain
equivariant compactifications of anisotropic inner forms of semi-simple groups.
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1. Introduction

Let x ∈ Pn(Q) be aQ-rational point in the projective space of dimensionn with
coordinatesx = (x0 : x1 : · · · : xn), such that

(x0, x1, . . . , xn) ∈ Zn+1
prim,

that is, the set of primitive(n+ 1)-tuples of integers. Define a height function

H(x) := max
j

(|xj|).

Of course, we could replace this norm by any other norm onR
n+1, for example√

x2
0 + · · ·+ x2

n. Generally, for any number fieldF andx ∈ Pn(F ) we can define

H(x) :=
∏

v∈Val(F )

max
j

(|xj|v),
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where the product is over all valuations ofF . By the product formula, this does
not depend on a particular choice of homogeneous coordinates forx. Clearly, the
number

N(Pn, B) := #{x ∈ Pn(F ) | H(x) ≤ B}
is finite, for anyB > 0. In 1964 Schanuel computed its asymptotic behavior, as
B →∞,

N(Pn, B) = c(n, F,H) ·Bn+1(1 + o(1)),

wherec(n, F,H) is an explicit constant (see [34]).

LetX be an algebraic variety over aF andµ : X −→ P
n a projective embedding.

ThenH ◦ µ defines a height function on the set ofF -rational pointsX(F ) (more
conceptually, the height is defined by means of anadelic metrizationL = (L, ‖·‖A)
of the line bundleL := µ∗(O(1))). We obtain an induced counting function

N(X,L, B) := #{x ∈ X(F ) | H ◦ µ(x) ≤ B}.
One of the main themes of modern arithmetic geometry and number theory is the

study of distribution properties of rational points on algebraic varieties. In particu-
lar, one is interested in understanding the asymptotic distribution of rational points
of bounded height.

All theoretical and numerical evidence available so far indicates that one should
expect an asymptotic expression of the form

N(X,L, B) = c ·Ba log(B)b−1(1 + o(1)),

for somea ∈ Q, b ∈ 1
2
Z and a positive realc. In 1987 Manin had initiated a program

aimed at interpreting the constantsa, b andc in terms of intrinsic algebro-geometric
and arithmetic invariants ofX. The main observation was thata and b should
depend only on the class of the embedding line bundleL in the Picard groupPic(X)
of the varietyX, more precisely its position with respect to the anticanonical class
[−KX ] and the cone of effective divisorsΛeff(X) ⊂ Pic(X)R. The constantc,
on the other hand, should reflect the dependence of the asymptotic expression on
finer structures (like the choice of a norm in the definition of the height andp-adic
densities).

Of course, it may happen thatX has no rational points at all, or thatX(F ) is
entirely contained in a proper Zariski closed subset. In these cases, it is hopeless to
try to read off the geometry ofX from the asymptotics of rational points. We will
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therefore assume thatX(F ) is Zariski dense. In general, it is not so easy to produce
examples of interesting varieties with a Zariski dense set of rational points (unless,
of course,X admits an action of an algebraic group with a Zariski dense orbit).
For example,X could be a flag variety or an abelian variety. It is expected that the
density of points (at least after a finite extension of the groundfield) holds forFano
varieties (that is, varieties with ample anticanonical class[−KX ]). This question is
still open even in dimension 3 (see [20]). Here is a version of Manin’s conjecture:

CONJECTURE1.1. — Let X be an algebraic variety over a number fieldF such
that its anticanonical class[−KX ] is ample andX(F ) is Zariski dense. Then there
exists a Zariski open subsetU ⊂ X such that

N(U,−KX , B) = c(KX) ·B(logB)b(X)−1(1 + o(1))

forB →∞, where−KX is a (metrized) anticanonical line bundle,b(X) is the rank
of the Picard groupPic(X) andc(KX) a non-zero constant.

REMARK 1.2. — The restriction to Zariski open subsets is necessary sinceX
may containaccumulatingsubvarieties (the asymptotics of rational points on these
subvarieties will dominate the asymptotics of the complement). The constantc(KX)
has an interpretation as a Tamagawa number (defined by Peyre in [32]). Finally,
there is a similar description for arbitrary ample line bundles, proposed in [3], resp.
[8]).

Conjecture1.1and its refinements have been proved for the following classes of
varieties:

– smooth complete intersections of small degree inP
n (circle method);

– generalized flag varieties [17];
– toric varieties [5], [6];
– horospherical varieties [39];
– equivariant compactifications ofGn

a [11];
– bi-equivariant compactifications of unipotent groups [37], [38].

We expect that Manin’s conjecture (and its refinements) should hold for equivari-
ant compactifications ofall linear algebraic groupsG and their homogeneous spaces
G/H. We provide further evidence for this expectation by outlining a proof of the
above conjecture for certain smooth equivariant compactifications ofQ-anisotropic
semi-simpleQ-groups of adjoint type.
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This work focuses on the interplay between arithmetic geometry and automorphic
forms. Though the main problem is inspired by Manin’s conjecture in arithmetic
geometry, our tools and techniques, which are naturally suited to the current context,
are from the theory of automorphic forms and representations ofp-adic groups. Our
approach is inspired by the work of Batyrev and Tschinkel on compactifications
of anisotropic tori [4] and the work of Godement and Jacquet on central simple
algebras [19]. We are currently working on a generalization of our results to higher
rank, where the presence of the Eisenstein series makes the problem even more
interesting from the analytic point of view.

Finally, we would like to mention related work of Duke, Rudnick and Sarnak
[14], Eskin, McMullen [15], Eskin, Mozes and Shah [16] on asymptotics ofintegral
points of bounded height on homogeneous varieties. Their theorems neither imply
our results nor follow from them.

Acknowledgements.We have greatly benefited from conversations with Arthur
and Sarnak. The second author wishes to thank the Clay Mathematics Institute for
partial support of this project. The third author was partially supported by the NSA,
NSF and the Clay Mathematics Institute.

2. Methods and results

Let F be a number field andD a central simple algebra of rankm overF . Let Λ
be an arbitrary lattice inD. Denote byVal(F ) the set of all valuations and byS∞ the
subset of archimedean valuations ofF . For eachv ∈ Val(F ), we putDv = D⊗F Fv
and, forv /∈ S∞, Λv = Λ ⊗OF Ov. For almost allv, Λv is a maximal order inDv.
We proceed to define a family of norms‖ · ‖Λv on Dv, one for each placev of F .

– nonarchimedeanv: Choose a basis{ξv1 , . . . , ξvk} for Λv. For g ∈ Dv, write
g =

∑
i ci(g)ξvi and set

‖g‖v = ‖g‖Λv := max
i=1,...,k

{|ci(g)|v}.

It is easy to see that this norm is independent of the choice of basis.
– archimedeanv: Fix a Banach space norm‖ · ‖v = ‖ · ‖Dv on the finite-

dimensional real (or complex) vector spaceDv = D⊗F Fv.
Clearly, forc ∈ Fv andg ∈ Dv, we have
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‖cg‖v = |c|v · ‖g‖v.

Consequently, forc ∈ F× andg ∈ D, we have

∏
v∈Val(F )

‖cg‖v =
∏

v∈Val(F )

‖g‖v,(2.1)

by the product formula. For an adelic pointg = (gv)v ∈ D(A) define theglobal
height function:

H(g) :=
∏

v∈Val(F )

Hv(g) =
∏

v∈Val(F )

‖gv‖v.

By the product formula,H is well-defined on the projective groupD(F )×/F×.
Moreover,H is invariant under the right and left action of a compact open subgroup

K0 =
∏
v/∈S∞

K0,v ⊂ G(Afin)

(if we fix an integral model forG thenK0,v = G(Ov), for almost allv). It will be
convenient to assume that the Haar measuredg is such thatvol(K0) = 1.

From now on, we letG be anF -anisotropic inner form of a split semi-simple
groupG̃ of adjoint type over a number fieldF . Let

%F : G −→ D×

be anF -group morphism fromG to the multiplicative group of a central simple
algebra overF of rankm. Extending scalars to a finite Galois extensionE/F over
which bothG andD are split, we obtain a homomorphism

%E : G̃(E) −→ GLm(E).

This homomorphism is obtained from an algebraic representation

% : G̃ −→ GLm,

defined overF .

REMARK 2.1. — Conversely, from any algebraic representation% : G̃ −→ GLm
overF we obtain a group homomorphism

%E : G̃(E) −→ GLm(E),
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which induces a map

%∗E : Z1(Gal(E/F ), G̃(E)) −→ Z1(Gal(E/F ),PGLm(E)).

Let c ∈ Z1(Gal(E/F ), G̃(E)) be the cocycle that defines the inner formG. Then
%∗E(c) defines a central simple algebraD ⊂ Matm(E). It is easy to verify that%E
descends to a morphism ofF -groups

%F : G→ D×.

Thus we can use%F to pull back the height function fromD× to G. We are
interested in the asymptotics of

N(%,B) := #{γ ∈ G(F ) | H(%F (γ)) ≤ B},

asB →∞. To put this in geometric perspective, the pair(G, %F ) defines an equiv-
ariant compactificationX of G and aG-linearized ample line bundle onX (and vice
versa). Thus we are counting rational points on a Zariski open subsetG ⊂ X, with
respect to some adelically metrized line bundle (depending on%). Below we will
see that for appropriate choices of% the asymptotic formula forN(%,B) matches
precisely Manin’s prediction.

Our main technical assumption is the following:

ASSUMPTION2.2. — The representation%F is absolutely irreducible.

In order to state our theorem we need to introduce some notation. Fix a Borel
subgroupB with maximal split torusT in G̃ and denote byX∗(T) the character
group ofT. Let Φ be the root system of(G̃,T), and∆ = {α1, . . . , αr} the set of
simple roots. Also let2ρG =

∑
α∈Φ+ α. SinceG̃ is of adjoint type it is immediate

that there are one-parameter subgroups{α̂1, . . . , α̂r} of T such that

< α̂j, αi >= −δij.

Let % = %λ be the irreducible algebraic representation ofG̃ associated with a domi-
nant weightλ. Letχλ be the character ofT associated withλ. Sinceλ is dominant
andG̃ is of adjoint type, there exist non-negative integersk1(%), . . . , kr(%) such that

χλ(t) =
r∏
i=1

αi(t)
ki(%).
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The numberski(%), 1 ≤ i ≤ r, are all non-zero if the representation% is non-trivial.
Set then

a% := max
j=1,...,r

1− < α̂j, 2ρG >

kj(%)
, andb% := #{j | 1− < α̂j, 2ρG >

kj(%)
= a%}.

Also set

c% := lim
s→a%

(s− a%)
b%

∫
G(A)

H(%F (g))−s dg,

(wheredg is a suitably normalized Haar measure onG(A)).

REMARK 2.3. — The anticanonical embedding of thewonderfulcompactification
of G of de Concini-Procesi is associated with the weightκ = 2ρG +

∑r
i=1 αi (see

[13],[9]).

It is not hard to see that if% = %κ, thena% = 1 andb% = r. Our main theorem is
the following:

THEOREM 2.4. — For % = %κ we have

N(%,B) =
c%

(r − 1)!
·B(logB)r−1(1 + o(1)),

asB →∞.

We note that this theorem implies Manin’s conjecture for the wonderful com-
pactification ofG as above. We have also proved analogous results for arbitrary
irreducible representations% (in other words, for height functions associated with
arbitrary ample line bundles on the wonderful compactification ofG).

We will now sketch the proof (in the case% = %κ). Using Tauberian theorems
one deduces the asymptotic properties ofN(%,B) from the analytic properties of
theheight zeta function

Z(s, %) =
∑

γ∈G(F )

H(%F (γ))−s.

Actually, we will use the function

Z(s, %, g) =
∑

γ∈G(F )

H(%F (γg))−s.
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For<(s) � 0, the right hand side converges (uniformly on compacts) to a func-
tion which is holomorphic ins and continuous ing on C × G(A). SinceG is
F -anisotropic,G(F )\G(A) is compact, and

Z ∈ L2(G(F )\G(A))K0

(recall thatH is bi-invariant underK0). Again sinceG is anisotropic, we have

L2(G(F )\G(A)) = (
⊕̂
π

Hπ)
⊕

(
⊕
χ

Cχ),(2.2)

as a direct sum of irreducible subspaces. Here the first direct sum is over infinite-
dimensional representations ofG(A) and the second direct sum is a sum over all
automorphic characters ofG(A). Consequently,

L2(G(F )\G(A))K0 = (
⊕̂
π

HK0
π )
⊕

(
⊕
χ

Cχ),(2.3)

a sum over representations containing aK0-fixed vector (in particular, the sum over
characters isfinite). For each infinite-dimensionalπ occurring in (2.3) we choose
an orthonormal basisBπ = {φπα}α forHK0

π . We have next the “Poisson formula”:

Z(s, %, g) =
∑
π

∑
φ∈Bπ

〈Z(s, %, g), φ(g)〉φ(g) +
∑
χ

〈Z(s, %, g), χ(g)〉χ(g).(2.4)

Here the series on the right is seen to converge normally toZ(%, g) for <(s) � 0.
We will establish a meromorphic continuation of the right hand side of (2.4), leading
to a proof of the main theorem.

A key result is the computation of the individual inner products〈Z, φ〉. After the
usual unfolding it turns out that each of these is an Euler product with an explicit
regularization. In particular, the pole of highest order ofZ(s, %, g) (or the main term
in the asymptotic expression ofN(%,B)) is contributed by the trivial representation:∫

G(A)

H(%F (g))−sdg =
∏

v∈Val(F )

∫
G(Fv)

Hv(%F (gv))
−sdgv.

Local integrals of such type can be computed explicitly at almost all places (see
[11]). They are reminiscent of Igusa’s local zeta functions and their modern gen-
eralizations: “motivic” integrals of Batyrev, Kontsevich and Denef-Loeser (see [2],
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[12]). In our case, we have∫
G(A)

H(%F (g))−sdg =
r∏
j=1

ζF (kjs+ < α̂j, 2ρG >) · h(s, %),

(whereh(s, %) is a holomorphic function for<(s) > 1− ε and someε > 0).

Next we prove that each remaining term is holomorphic around<(s) = 1. In
general, we have

〈Z, φ〉 =

∫
G(F )\G(A)

Z(s, %, g)φ(g) dg

=

∫
G(A)

H(%F (g))−sφ(g) dg

=

∫
G(A)

H(%F (g))−s
∫

K0

φ(kg) dk dg

Next we follow an argument by Godement and Jacquet in [19]. Without loss of
generality we can assume that

K0 =
∏
v/∈S

Kv ×KS
0 ,

for a finite set of placesS. Here forv /∈ S, Kv is a maximal special open compact
subgroup inG(Fv). After enlargingS to contain all the places whereG is not split,
we can assume thatKv = G(Ov). In particular, forv /∈ S the local representations
πv are spherical. Thus we have a normalized local spherical functionϕv associated
to πv. We have assumed that eachφ is right K0-invariant. In conclusion,

〈Z, φ〉 =
∏
v/∈S

∫
G(Fv)

ϕv(gv)Hv(%F (gv))
−s dgv

×
∫

G(AS)

H(%F (η(gS)))−s
∫

KS0

φ(kη(gS)) dk dgS.

(Here η : G(AS) → G(A) is the natural inclusion map.) The second factor is
relatively easy to deal with. Our main concern here is with the first factor. To
proceed we need to invoke some fairly deep results from the representation theory
of reductive groups to find non-trivial bounds on spherical functions. Depending on
the semi-simple rank ofG, there are two cases to consider:
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Case 1: semi-simple rank1. In this situation,G is an inner form ofPGL2 - that is,
the projective group of a quaternion algebra. By the Jacquet-Langlands correspon-
dence [21], there is an irreducible cuspidal automorphic representationπ′ = ⊗vπ′v
of PGL2 such that forv /∈ S, we haveπv = π′v. In particular, in order to obtain
non-trivial bounds on spherical functions of infinite dimensional representations,
we need to examine local components of cuspidal representations ofGL2 with triv-
ial central character. Here the estimate we need follows from a classical result of
Gelbart and Jacquet who established the symmetric square lifting fromGL2 to GL3

[18], combined with a result of Jacquet and Shalika (see [22]). We also note the re-
cent beautiful results of Kim and Shahidi towards sharper bounds in the Ramanujan-
Petersson conjecture [23].

Case 2: semi-simple rank> 1. First we use a strong approximation argument to
show that forv /∈ S, the representationπv is not one-dimensional, unlessπ itself is
one-dimensional (a similar argument appears in the work of Clozel and Ullmo [10]).
Then we apply a recent result of Oh [31] which says that in the local situation, the
one-dimensional representations are isolated in the the unitary dual of any semi-
simple group of semi-simple rank greater than two, giving non-trivial bounds for
spherical functions.

Putting everything together, we obtain that, for non-trivial representations, the
inner product〈Z, φ〉 is holomorphicfor <(s) > 1− ε, (for someε > 0).

Finally, to prove the convergence of the right hand side (for appropriates), we in-
tegrate by parts (with respect to the Laplacian∆ on the compact Riemannian mani-
fold associated withG(A) andK0), and combineL∞-estimates for∆-eigenfunctions
with standard facts about spectral zeta functions of compact manifolds.

REMARK 2.5. — Similar arguments lead to a proof ofequidistributionof ratio-
nal points of bounded anticanonical height with respect to the Tamagawa measure
associated with the metrization of−KX .
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