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ABSTRACT. — We study the structure of abelian subgroups of Galois groups of func-
tion fields of surfaces.
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Introduction

We fix two distinct primeg and/. Letk = [, be an algebraic closure of
the finite fieldF,. Let X be an algebraic variety defined oveandK = k(X)
its function field. LetG¢, be the abelianization of the pibguotientGy of the
absolute Galois group ak. Under our assumptions dn G¢ is a torsion-
freeZ,-module. LetGy; be its canonical central extension - the second lower
central series quotient @ . It determines the following structure: fan
Yk of distinguished (primitive) subgroups of. which are finite rankz,-
modules. A topologically noncyclic subgroupe Y iff

— o lifts to an abelian subgroup of;
— o is maximal: there are no abelian subgroups- G¢ which lift to an
abelian subgroup d@f, and contairv as a proper subgroup.

THEOREM1. — Let K and L be function fields over algebraic closures of
finite fields of characteristiez ¢. Assume thall = k(X)) is a function field
of a surfaceX/k and that there exists an isomorphism

‘I’:‘I’K,L t O =07
of abelian pro¢-groups inducing a bijection of sets
Yk = 2.

Then, for some € Z;, ¢V is induced by an isomo[phis@i of the perfect
closure of K" with the perfect closure df; the pair (¢, ¥) is unique up to

(e, ) = (p"c, (w — 2™ 0 T)).

We implement the program outlined in][and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (se#, [S],[5])-

Acknowledgments. Both authors were partially supported by the NSF. The
second author was employed by the Clay Mathematics Institute. We are grate-
ful to Laurent Lafforgue and Barry Mazur for their interest and the referee for
many useful remarks. Comments by Pierre Deligne were of tremendous help.
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2. Overview

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX' over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let G% be the proé-quotient of the abelianization

Gr/|Gk, Gkl,

of the absolute Galois groui; = Gal(K/K) of K, ¢ # char(k). By
Kummer theoryg$. determines the pré-completion/™ of the multiplicative
group K.

A Galois-theoretic characterization of the fididinvolves the recognition
of the subgroup™ /k* C K*, and of the canonical projective structure, the
projectivization of theadditivegroup K, considered as a vector space over
The necessary information is encodedip, the maximal pro~quotient of

Gk/[[Gk, Gk, Gk].

Our main Galois-theoretic object is a péfy., ¥ ), where thefan X is
the set of all maximal (by inclusion) topologically noncyclic subgroups whose
set-theoretic preimage @, is an abelian group.

Theorem1 states that if for two function field& = k(X),L = [(Y),
whereX/k is an algebraic surfac#;/! an algebraic variety; and/ are alge-
braic closures of finite fields of characteris#ic/, there is an isomorphism

U (G, Yk) — (97, 31)

thenk ~ [, Y is a surface an@ induces an isomorphism between perfect
closuresLP"/ and K"/ of L and K respectively, and this isomorphism is
unique up to natural transformations (Frobenius).

Thus the existence of an isomorphism between Galois data impliek that
isomorphic to a finite purely inseparable extensiokoind vice versa. Note
that the pain(G¢, ¥ x) has a conformal automorphisgn— cy with ¢ € Z;.
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At the same time, the perfect field**"/ has Frobenius automorphisifis
Krperf _,  perf
x — P
for n € Z. Our main theorem implies the existence of a canonical isomor-
phism
Aut((G%, Yk))/Z; ~ Aut(KPe 1) /(Fr).

Define a subfartdlV C Yx as the set of those maximal liftable subgroups
which have nontrivial intersection with at least one other subgroupn
Note that¥(24V) = X¢v, There is a geometric reason to distinguish.

Let K be the function field of a surfac¥ overk, D an irreducible divisor
on X andr = v the corresponding nonarchimedean divisorial valuation. Its
abelian decomposition group? C G4 is a (noncanonical) direct product of
the inertia subgrou@® ~ Z, and the grouy;. p, of the fieldk(D). Now a
subgroupr C D¢ of Z,-rank2 is liftable if and only if it containsZ¢. Thus
¥4V contains all liftable subgroups @f,-rank2 which are contained in groups
De.

The first important result says that¥ exactly coincides with the set of
all liftable subgroups oZ,-rank 2 contained in the group®?, for different
v = vp. This gives an purely group-theoretic description of the grabfis
the nontrivial intersection of two liftable groups¢’ is alwaysZ¢, for some
divisorial valuationv = vp, andD{ “centralizes”Z?, it consists of all those
elements irG§, which commute witlZ?, after lifting to G¢..

The proof is based on Kummer theory and the interpretatio@fofis a
space of special (logarithmicj,-valued maps on the infinite-dimensional
projective spac@®,(K) = K*/k* over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results far = F,(X) are contained in Sectidh
The case of arbitrary algebraically closed ground fi¢glastreated in £],[2].

At this stage we characterized all pal®s_,7; inside G, or, vaguely
speaking, we recovered “all curves” on all modélsof K. Moreover, we
know thatY” is also a surface over some fiéldnd thatl induces a canonical
isomorphism between the set of all “curves” on all mod€l®f K and the
set of all “curves” on all models af.
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Next we recover the “points” o), as inertia groupg? C g;g(D), using
various subgroupﬁgD, as follows: the image df;, under any homomorphism
of G to a finite group, which is trivial ord;} _, coincides with the image of
some divisorialZ;; , which depends on the homomorphism (see Sedti)n
Conversely, forany € Dy, /77 \ Z7, for some divisorial valuation oh(D)

(a point), there exists such a homomorphism with the property that the image
of v is not contained in the image of any inertia subgrdgg/.

Now we can recover the genus Of and distinguish the set of divisorial
valuations of K which on some model of{ are represented by curves of
genus> 0. Note that these valuations have 1-dimensional centees/ery
modelof K.

At this stage we conclude tha&tinduces a bijection between the sets of all
curves on all models ok and L respectively. This bijection preserves the
genus of the curves.

We switch our attention to the dual spaké of G¢ and the dual isomor-
phism¥* : L* — K*. Our goal is to show first tha#* induces a natural
isomorphism* : L*/I* ® Zy — K*/k* @ Zy.

Elements of<* can be thought of as infinite products of elemefiftsc K,
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modebf the field with
Z-adic coefficients which converge @an the ¢-adic topology. We introduce
the subgroupFS(K) C K* consisting of elements whose support contains
only finitely many nonrational divisors (characterized above). Given a model
X of K we can also consideFSx(K) c K* - the subgroup of elements
with finite support onX. This subgroup does not depend on the choic# of
and is very close td&*/k* ® Z,. We need to show thalt* induces canonical
isomorphisms:

- U*: FS(L) — FS(K) and

— U*: FSy(L) — FSx(K), (Y is amodel ofL and.X a model ofK).

We haveFS(K) = FSx(K) = K*/k* ® Zy, providedPic’(X) = 1 and
X contains only finite number of rational curves. In this case the claimed
isomorphisms follow easily from the previous step.

In general, in order to distinguis#Sx (K) Galois-theoretically we use
special properties of the elemefit, f € K*/k*,s € Z,. Namely, bothf*
and(f +a)/(f +b)*, fora,b € k*, have the property that the restriction of
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f* is equal tol on any component of the divisor ¢f + a)/(f + b)* and
vice versa. We can formalize this property usingadic analog of a symbol
(f,g) mod (" € Ky(K)/¢". Note that(f,g) = 0 mod ¢" foranyn € N,
if f, g belong to the same one-dimensional subfield<of In particular, for
any f* € K \ k there is an elementwhich is not a power of and such that
(f,g9) = 0 (we cantakg = f+1). Thisimposes a strong condition grsince
for a generic element if* the “commutator” off consists of/-adic pow-
ers of f only. We show that special elementsigf /(K*)* have the property
that their arbitrary lifts intaFS(K) ¢ K* with big “commutator” are au-
tomatically contained iFSx (K). These elements generate /(K *)* and
have a simple geometric characterization, which allows to obtain the claimed
isomorphisms.

The groupFSy (L) (FSx(K) respectively) is equal td*/I* ® Z, (resp.,
K*/k* ® Z;) modulo a subgroufi;(K) € K* consisting of elements with
trivial /-adic divisors. The group;(K) is dual to the connected component of
the Picard group and sinde* : T;(L) — T,(K) is a canonical isomorphism
we obtain the desired isomorphism:

U L@ L — Kk ® Zy.

The next step involves a normalizationdf. Inside K™* /k* ® Z, we cannot
Galois-theoretically distinguisty*(L* /I*) @ Z from ¢ - U*(L*/1*) @ Z),
for ¢ € Z;. However, this conformal invariance is the only freedom there is.
If we fix the values off € L*/I* ® Z, on one (arbitrary) irreducible divisor
on amodel” of L then the image of*/I* ® Z,) is naturally identified inside
K*/k* ® Zy. Thus, after multiplication by € Z;, we can assume that

cU* L*/l* ®Z(g) = K*/k}* ®Z(g).

Now we haveK™/k* andcW*(L* /1*) inside K* /k* @ Z(,). We also know that
subgroups generated by elemefits with pairwise trivial symbol f, g) = 0
correspond to one-dimensional subfieldsAn respectivelyl.. Most one-
dimensional subfields i are isomorphic tdc(z), for somex, and Ga-
lois data allow us to recognize these subfields. Hendgd) C K then
k‘(z)*/kz* ® Z(g) = C\I’*(l*(t)/l*) ® Z(g) C K*/k‘* ® Z(g), for somet € L.
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Next we show that the corresponding grougs)*/k* and cW*(I*(x)/1*)
intersect ink(x)*/(k*)" = c¥*(I*(x)/(1*)*) for some rationat, s. This prop-
erty implies that the intersectionl*(L*/1*) N K*/k* is isomorphic (as a
multiplicative group) toKy/k* = ¢U*(L;/l*), whereL/L, and K/ K, are
purely inseparable extensions.

Now we add the projective structure ovel, respectively. The sets of lines
{P(k @ kx)} and{P(l & It)} in K*/k* and L*/I*, over all z,t generating
closed subfields:(x) ¢ K andi(t) C L, are the same. It turns out that
the sets of these lines and their (multiplicative) translations are compatible
with a unique projective structure on the (multiplicative) groups/ k* and
Li/lI* - namely the one coming from the field structure. The multiplicative
isomorphismK; /k* ~ ¢U*(L;/l*) extends therefore to a unique additive
iIsomorphism and hence an isomorphism between fields : L, — K;.

This implies the canonical isomorphise¥* : LPe/ — K*e/ and finishes
the proof of the main theorem.

3. Basic algebra and geometry of fields

NOTATIONS 3.1 — Throughoutk is an algebraic closure of the finite field
F,. andK = k(X) the function field of an algebraic variefy/k overk (its
mode). Its set ofk-rational points is denoted h¥ (&), the Picard group by
Pic(X') and Neron-Severi group biXS(X).

In this paper we use the fact that two-dimensional function fiéldsave
“nice” models: smooth projective surfac&soverk with K = k(X), whose
geometric properties play an important role in the recognition procedure. In
this section we collect some technical results about function fields of curves
and surfaces and their models.

LEMMA 3.2 — LetC/k be a smooth curve an@d C C(k) a finite set. Then
there exists amg € N such that for every degree zero divisorwith support
in @ the divisorng D is principal.

Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisoRic’(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite §etC C'(k) is finitely
generated. O
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LEMMA 3.3 — Let K/8 be a purely inseparable extension. Then

- RDEK;
— K/R s afinite extension;
— R = k(X’) for some algebraic varietyX”.

DEFINITION 3.4 — We writeE" ¢ K for the normal closure of a subfield
E C K (elements ink’ which are algebraic oveF). We say that: € K \ k
is generatingf k(x)K = k(x).

REMARK 3.5, — If E C K is 1-dimensional then for alf € E \ k one has
k(:c)K — E" (afinite extension off).

LEMMA 3.6. — For any subfield® C K there is a sequence
X 5o e,
where

— mg is rational dominant with irreducible generic fiber;
— g Is quasi-finite and dominant;
— k(C") = E" andk(C) = E.

For generating: € K we write
T X — C

for the morphism from Lemma.6, with £(C') = k(z). Fory € K \ k(x)
definedeg, (y) (the degree of on the generic fiber of,,) as the degree of the
corresponding surjective map from the generic fiber ofinderr,.

LEMMA 3.7. — Let K = k(X) be the function field of a surface andy €
K\ k be such that

deg,(y) = min_(deg,(f))

FEK\k(z)
and k:(y)K = k(y') for somey’ € K*. Theny is generating:k(y) = k(y)K.

Proof. — If y is not generating thep = z(y') for somey’ € K and some
functionz € k(y')* of degree> 2. This implies thatleg,(y) > 2deg,(v'),
contradicting minimality. O
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LEMMA 3.8 — Let X be a model ofX’ containing a rational curvek and
x € K* afunction such that its restrictiomy to R is defined and such that
— K

k(R) = k(xzg). Thenz is generating:k(z) = k(z).

Proof. — The restriction map extends kIQx)K and hence is an isomorphism
betweerk(zg) andk(x) = k(m)K. O

The next proposition characterizes multiplicative groups of fiflds K
such thatK'/f is a purely inseparable extension. Notice that for a one-
dimensional fieldk(C) such subfields are always of the foriC)?", for
somen € N. Thus for any one-dimensional subfieldd C K there is an
r(E) € N such that the intersection & with £* consists exactly of (E)-
powers of the elements df*. Below we show that this property of intersec-

tion with subfields of the special form(z) = k(:c)K already characterizes
multiplicative groups of suck® among multiplicative subgroups &f*.

DEFINITION 3.9, — Let&* C K* be a (multiplicative) subgroup such that

for any subfieldE = k(z) = k;(x)K C K there exists am = r(E) with
the property thatR* N E* = (E*)" (r-powers of elements d@*). For every
t € E*\ k* we define(t) = r(E).

REMARK 3.10 — Note thatr(t) is not defined for € K* \ k* iff k(1) is
the function field of a curve of genus 1.

DEFINITION 3.11 — We will say thaty € K* is a powerif there exist an
x € K* and an integer > 2 such thaty = 2.

PROPOSITION3.12 — Let K = k(X)) be the function field of a surface and
K* C K* a subset such that

(1) &* is a multiplicative subgroup aok™;
(2) for everyE = k(z) = k(:zc)K C K there exists am = r(FE) € N with
(3) there exists @ € K \ k withr(y) = 1.

Theng := R* U0 is a field, whose multiplicative group 8" and K /R is a
purely inseparable finite extension.
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Proof. — Once we know thaf is a field we can conclude that everye K*,
or some power of, is in £*. Of course, it can only be a power pfso that
K /R is a purely inseparable extension, of finite degree (by Lerarfa

By (3), £ C K. To conclude thaR is a field, it suffices to show that for
everyx € R one hast + 1 € R (and then use multiplicativity). For every
z € R\ kwith r(z) = 1 we haveR* N k(z)* = k(z)* and

r+keR, forallk € k.

In particular, this holds foy.
Considerr € & with r(z) > 1 or not defined. We claim that for some

Kk €k

z = TrYTH € R andr(z) = 1.
y+r—1

This implies that

z2—1=(x+1)/(y+r—1) € & andz +1 € &,
(by multiplicativity). We can assume that/k(C)(y), wherek(C') = k(g:)K,
IS a finite separable extension. (Otherwise, we cailé&e a minimal proper
subfield in®’ C K containingk(C')(y) and such that{/&’ is purely insepa-
rable and use the intersection®fwvith &’ instead ofR.)
To prove the claim, choose a mode€lof K such that both maps
—K

T X — C, k(C)=k(z)
T X — Pl=(y:1)
are proper morphisms (as in Lemrfigh). Sincex andy are algebraically
independenti((x) > 1), only finitely many components of the fibersofare
contained in the fibers of, and there exists a € k such that both fibers
7, ' (—k) andm, ' (1 — k)

are transversal to the fibersof, since we assume that/k(C)(y) is separa-
ble. Note that

divo(y + k — 1) ¢ div(z + y + k),
sincey + k = —1 ondivy(y + k — 1) andx is nonconstant on these fibers
(wheredivy is the divisor of zeroes). It follows in the first case thath

t:=wW+k)/r and z := (v +y+r)/(y+r—1)
are not powers.
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Note thatt, z are generating elements. Indeed, if we blow up the smooth
point ¢ of transversal intersectiofy + x = 0} N {z = 0} thent restricts
nontrivially to IP; and similarly

zi=@+y+r)/y+r-—1)=z+1/(y+r—-1)+1
restricts nontrivially taP},, whereq' = {z = -1} N {y = 1 — x}.
Note thatt C K and since it is not a powet(t) = 1 and
(1/t)y+1=(z+y+r)/(y+kK) €R
To show that: € K observe that both, y + x € K so thatt € K. Therefore,
t+l=(r+y+r)/zer
and, by (1) +y+«x € R Finally, since(y + k — 1) € Awe getz € & [

REMARK 3.13 — If assumption (3) is not satisfied then we can take
(ﬁ*)l/T(y) ﬂ K*,

which satisfies all the conditions of the lemma. Thus in general without the
assumption (3) we have = (R)", where K/&’ is purely inseparable and
r e N.

In our analysis of Galois groups we need to keep track of rational curves
on a surface.

LEMMA 3.14 — Let X be a surface ovek. There three mutually disjoint
possibilities:
(1) Pic’(X) = 0;
(2) Pic’(X) # 0 and X contains finitely many rational curves;
(3) Pic’(X) # 0 and, after a finite purely inseparable extension of the
function fieldk(.X), the corresponding surface admits a fibration over a
curveC of genugg(C) > 1 with generic fiber a rational curve.

Proof. — Follows from the classification of surfaces. IndeedYifs smooth
andPic’(X) # 0 then there is a nontrivial map into the Albanese variety of
X, and all rational curves lie in fibers. The generic fiber of this map is either
rational or there are only finitely many rational curvesXn ]
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Let X be a surface ovdrandAlb(X) its Albanese variety. In our terminol-
ogy, Alb(X) is a principal homogeneous space for an abelian vadégy ),
with dim A°(X) = dim Alb(X). In particular, there is a natural canonical
mapX — Alb(X).

LEMMA 3.15 — LetD := {D,};c, be a finite set of irreducible divisors
on X. Assume that there is ah € k(X)* whose divisor is supported iP.
Let B C A%(X) be the smallest abelian subvariety such that the image;of
under the magpy : Alb(X) — A := Alb(X)/Bis a point, for allj € J.

Assume thaB # A°(X). Then the image ok in A is a curveC and A is
isomorphic to the Jacobiafac(C') of degree 1 zero-cycles @n

Proof. — First of all, dim a(X) > 1: the surfaceX is connected and(X)
generatesi. Further,o(X) is not a surface: otherwise X' — «(X) is the
normalization, then there is a map: X — X’ and the image of D, } ¢, is
a finite set of points orX’. The intersection matrix of the set of irreducible
components in the divisorial support pf!(z’), for anyz’ € X, is negative
definite, contradicting the assumption that there is a function supported in
LetC' := o(X) C A, we havek(C) C K. LetC’ be a curve with function
field k(C") = k(O) " C K. The mapC” — C is finite. The mapy : X — A
factors through the Jacobidac(C"): we have

X —< Jac(C")
A

The image of{D,};c; underac: is a finite set of points iNac(C’). We
have surjectiondac(C’) — Jac(C') — A and a canonical maplb(X) —
Jac(C"). ThenB = Ker(ae) andC’ = C. O

REMARK 3.16 — Let X’ be a model of a purely inseparable extension of
K = k(X) and assume thaX’ admits a dominant map onto a curgeof
genus> 1. Then X also admits a dominant map onfo. In particular,
Lemma3.15describes all such maps.
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4. Projective structures

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition if.[

DEFINITION 4.1 — A projective structuras a pair (S, £) where S is a
(nonempty) set (of points) argl a collection of subsets C S (lines) such
that

P1 there exist as € S and anl € £ such thats ¢ [;
P2 for everyl € £ there exist at least three distingts’, s” € [;
P3 for every pair of distinck, s’ € S there exists exactly one
[=1(s,s") e L
such thats, s’ € [;
P4 for every quadruple of pairwise distingts’, ¢, ¢’ € S one has
[(s,s)NIE ) A0 = (s, t) NI t) # 0.
Fors € S andS’ C S define thgoin
sV S :={s"€S|s" €l(s,s) forsomes’ € S'}.
For any finite set of points,, ..., s, define
(S1y...8n) :=81 V($2 V-V sy

(this does not depend on the order of the points). W(ite for the join of
afinite setS’ C S. Afinite setS’ C S of pairwise distinct points is called
independenif for all s € S’ one has

s ¢ (S"\{s'}).
A set of pointsS” C S spansa set of pointd” C S'if

— (S") C T for every finite sets” C 5';
— for everyt € T there exists a finite set of points c S’ such that
t € (S).
A setT C S spanned by an independent $éof points of cardinality> 1 is
called a projectivsubspacef dimensionS’| — 1.
The axioms imply that projective subspaces of a given projective space
form a lattice and that the dimension function is well defined, i.e.,

dim(TUT") 4+ dim(TNT") = dim(7T) + dim(7")
for all pairs of projective subspac&s7T’ C S. Here we putlim () := —1.
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DEFINITION 4.2 — A projective structurés, £) satisfiedPappus’ axionif

PA for all 2-dimensional subspaces and every configuration of six points
and lines in these subspaces as below

the intersections are collinear.
The main theorem of abstract projective geometry is:

THEOREM4.3 — Let (S, £) be a projective structure of dimensian> 2
which satisfies Pappus’ axiom. Then there exists a vector dpaxer a field
L and an isomorphism

o . IP)L(V) ; S.

Moreover, for any two such tripled/, L, o) and (V', L', ¢’) there is an iso-
morphism

V/L = V'L
compatible withr, ¢’ and unique up to homothety— v, A € L*.
Proof. — See [/], Chapter 6. O

DEFINITION 4.4 — A morphism of projective structures
p: (S, £)— (5,8
is an injection of setp : S — S’ such thafp(l) € £ forall [ € £.

EXAMPLE 4.5. — Letk be a field and} the usual projective space over
of dimensiom: > 2. ThenP} carries a projective structure: the set of lines is
the set of usual projective linds C P7.
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Let K /k be an extension of fields (not necessarily finite). Then the set
= Pyp(K) = (K'\0)/k

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the grou* /k* preserves this structure.

THEOREM4.6. — LetK/L andK’/L' be field extensions of degree3 and
¢: S=PLK)—PL(K)=5
a bijection of sets which is an isomorphism of abelian groups and of projective

structures. Then
L~L and K ~ K'.

Proof. — Considerl := K as a vector space ovér By Theoremd.3 to S
there are canonically attached thealgebraEnd (V') andGL(V') C End(V),

as the set of elements preserving the collineations of the projective Space
(because the action of homothetiestamd (V') is trivial). This allows to re-
cover the fieldK as the subfield of thé-algebraknd (V') given by

{0} U{z € GL(V) € End(V) |  induces a group-translation af}.
[

DEFINITION 4.7. — Let K/k be the function field of an algebraic variely

of dimension> 2 and S = P(K) the associated projective structure from
Exampled.5. The lines passing throughand a generating element &f (see
Definition3.4) and their multiplicative translations by elementgiri /&* will

be calledprimary.

LEMMA 4.8 — LetK = k(X) be the function field of a surface. For every
line [ = (1, x) there exists &? C P, (K) such that all other lines in thig?
are primary.

Proof. — Choose a smooth mod&l of K and two pointsy, ¢ € X such
thatz(q;) = 0,2(q2) = 1. Blow up ¢, ¢ and letP; be the corresponding
exceptional curves. Lef € K* be an element restricting to a generator of
k(P}). The restriction map extends to the normal closti®) C K. Hence
the normal closuré(y) C K coincides withk(y).

To prove that every ling # [(1,2) C P? = P(k ® kz & ky) is primary
we need to show thaty + a + bx)/(y + ¢ + dz) is generating, provided
(a,b) # (¢, d). If a # cthen the restriction ofy +a+bx)/(y +c+dx) 0P},
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is equal ta(y +a)/(y+¢) and hence is a generatorigf?, ). By the argument
of the previous lemmédy +a+bz)/(y+c+dx) is generating. 1t = ¢, b # d
then(y +a + bx)/(y 4 ¢ + dx) onP,, coincides with(y + a +b)/(y + ¢+ d)
and is also generating sinaet b # c + d, by assumption. O

LEMMA 4.9 — Assume that a sef has two projective structuress, £,)
and (S, £,), both of dimensio> 2, and that for som@? (in the first projec-
tive structure) every ling, € (£, N P%), except possibly one line, is also a
line in the second structure. Then thetP? is a projective plane in the second
structure(S, £-), projectively isomorphic t&#? € (S, £;).

Proof. — LetP? be the set of all lines i®? andP? \ I the set of lines which
remain projective lines i®2. Let [y, [y, [3 be three lines fronﬁ”f \ [ which

don’t have a common intersection point. Then,, I3 lie in the same plane

P2. Since every other liné e P2\ [intersectd, [, s then!’  P2. Thus all

lines fromP? \ I are inP2 which contains all the points @.

They are isomorphic since it is an isomorphism between lines and every

point, except possibly one point, is an intersection of two Iiné%fih[. Since

P2 coincides withP? outside of one point they coincide. O

COROLLARY 4.10 — Let K/k and K'/K' be function fields of algebraic
surfaces

QE S = Pk(K) - S/ = Pk/(K/>
an isomorphism of (multiplicative) abelian groups inducing a bijection on the

set of primary lines in the corresponding projective structures. Thenan
isomorphism of projective structures and

kE~Fk and K~ K'.

Proof. — By Lemma4.8and Lemmat.9 ¢ induces an isomorphism of pro-
jective structures. It remains to apply Theorér. O

5. Flag maps

NOTATIONS 5.1 — We fix two distinct prime numbersandp. Let

— F =T, be afinite field withgy = p™ andF* its multiplicative group;
— Vecty - the set of finite-dimension&l-vector spaces;
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— A a vector space ovef andP(A) = Pr(A) = (A \ 0)/F* its projec-
tivization;

— M(A) the set of maps froml \ {0} to Zy;

— for p € M(A) andB C A anF-linear subspace; the restriction of:
to B\ {0}.

DEFINITION 5.2 — A mapu € M(A) will be calledF*-invariant if for all
a € A\ {0} and allx € F* one has

plk - a) = pla).
DEFINITION 5.3 — Amapu on A\{0}, for a (possibly infinite-dimensional)
vector spaced, will be called anF-flag map, if
— pis F*-invariant;
— every finite-dimensiondl-vector spacé3 C A has a flag of-subspaces
B=ByD>B1D...0B;=0

such thatu is constant orB,, \ B, 41, foralln =0,...,d — 1.

The value ofu on B = B, \ B is called thegenericvalue ofy on B; we
denote it by#"(B). The set off-flag maps will be denoted biyr(A).

EXAMPLE 5.4 — Let K = k(X) be a function field. We can consider it
as a vector space overor over any of the finite subfield8 C k. Letv be

a nonarchimedean valuation éhandy : I', — Z, a homomorphism from
the value group of (see Sectioim). Theny o v € O, (K).

DEFINITION 5.5, — Let A be anF-algebra (without zero-divisors). A map
€ M(A) will be called logarithmic if

pla-a') = pla) + p(d), forall a,a" € A\ 0.
The set of such maps will be denotedy A).

SinceF is torsion, a logarithmic map 4, is F*-invariant.

DEFINITION 5.6. — Let A be anF-vector space. Two maps i/ € M(A)
will be called ac-pair (commuting pair) if for all two-dimensiond@l-subspaces
B C A there exist constants, \', \" € Z, (depending orB) with (A, \') #
(0,0) such that for allb € B\ 0 one has

Mg (D) + N pp(b) = X
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THEOREMS5.7. — LetF C k be a finite field with#F > 11, andu, i/ €
Lr(K) nonproportional maps forming a-pair. Then there exists a pair
(A, N) € Z2\ (0,0) such that\u + V' € Pp(K).

Proof. — This is a special case of the main theoremfhere it is proved
over general ground fields However, the case when= T, is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

— characterization of flag maps by their restriction to 2-dimensidhal
linear subspaces, fg¢F > 11 (see Lemm&.16);

— reduction to linear spaces over prime fields, rdsp.see Lemm&.18
if u ¢ &p(A), for afinite fieldF’, andy is F*-invariant with respect to a
large finite extensioff /' then there is a subgroup ~ Ff, C A, (resp.
%), so thatuc ¢ g, (C).

— reduction to dimension 3: if the rank tw&y-moduleo := (u, /) does
not contain a flag map then there is a subgréip~ F> C A (resp.
[F%), such that for any nontrivigl” € o there is a proper subspace=
Cu C B whereug. ¢ ®g, (C) (this step uses the logarithmic property);

— geometry of collineations of* = Py(B) over prime fieldsF = F,
(resp.FFy): such subgroup® cannot exist. This shows the existence of
the desired flag map oA.

]

LEMMA 5.8 — If A € Vecty andpu € $r(A) then there exists a canonical
F-flag (A;,)n=o....a Such that

pE (Ap) # P8 (Ans),
foralln=0,...,d—1.

.....

Proof. — PutA, = A and letA, ., be the additive subgroup of,, spanned
by a with p(a) # p&(A,). Sincep is F*-invariant, A, is anF-vector
space. Indeed, far,a’ € A, .1 andk, k' € F* write

a:Zbi, a/:Zb;

iel jeJ
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with finite 7, J. Since
pu(bi) # M (Ay), (V) # P (An),

foralli € 1,5 € J, we have

ulrcbi) = u(bi) # i (An) and (b)) = (b)) # i (A,)
so thatka + <'a’ € A, 1. O

REMARK 5.9. — Since a flag map is F*-invariant, it defines a unique map
on (A \ {0})/F* = Pr(A). Conversely, a map on Pr(A) gives rise to an
F*-invariant maps o \ {0}. An F-flag map onA € Vectr defines a flag by
projective subspaces @ (A). We denote bygenericelements ofPr(A) the
image of generic elements frorh

NOTATIONS 5.10 — We denote byP(A) = Px(A) the set of codimension
one projectiveF-subspaces df(A).

DEFINITION 5.11 — Assume thatl € Vectr, and for all codimension one
F-subspace®? C A one hasup € ®r(B). Definej by

P(A) — Z,
B — A(P(B)) = s (B).

LEMMA 5.12 — If A € Vecty andp € ®g(A) then eitherj is constant on

A~

P(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flagl,,),—o. . 4. If codim(A4;) > 2 then
for everyP(B) € P(A) one hag:£"(B) = u£(A) and/i is constant. Other-
wise, 8" (B) = us"(A), on anyB # A; (and differs af?(A4;) € P(A)). O

LEMMA 5.13 — LetF = [, be a finite field withy > 11 andP™ = Py,

m > 2 a projective space ovedf. For any four projective hyperplanes and
any ten projective subspaces of codimension at least two (all definedpver
there exists a line (ovefr) not contained in any of the above hyperplanes and
not intersecting any of the ten codimension two subspaces.
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Proof. — One has
#Gr(2,m)(F) < #Gr(2,m + 1)(F)/¢>.

The number off-lines intersecting a subspace of codimension twBjinis
bounded by#Gr(2, m + 1)(F)/q¢?. Our claim holds foi > 11. O

LEMMA 5.14 — LetF = [, be a finite field withy > 11, A € Vecty
and € M(A) anF*-invariant map. Assume that there exissubspaces
B; C A, codim(B;) = 1,fori =1,...,4 such that

(1) either#{u*"(B;)} > 3 or

(2) pE(By) = pE(By) # ps(Bs) = e (By).
Then there exists df-subspac€’ C A, dimp(C) = 2 such thapc ¢ Pp(C).

Proof. — By Lemma5.13 there exists &' = P(C) € P(A) such that its
intersection points witfP(B;) are pairwise distinct and generic in the corre-
spondingP(B;) (the nongeneric points @(B;) are contained in 4 subspaces
in codimy > 2, the intersections oB; give rise to 6 more subspaces). Then
eithery takes at least three distinct valuesi®(t') or has distinct values in at
least two pairs of points. In both casest ¢r(C). O

COROLLARY 5.15 — Assume that.z € ®x(B) for all P(B) € P(A) (and
#F > 11). Thenj is constant outside of one point.

Proof. — The mapyu takes two different values dﬁ(B). By Lemmab5.14
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplanés, i; € P(A),
whereji(hy) = ji(hy) # ji(hs) then for any otheh € P(A) we haveji(h) =
f(hy1) and is constant outside dfs. O

LEMMA 5.16 — Let A € Vecty, with #F > 11, andp € M(A) be an
F*-invariant map such that for every two-dimensioffatubspaceB C A,
uB € (I)]F(B) Thenﬂ € (I)F(A)

Proof. — Assume the statement holdsdifm(A) < n — 1. Theng is de-
fined and, by Corollanp.15 either;i is constant ofiP(A) or constant on the
complement to one point.

If /1 is constant, then thB-linear envelope of points€ A such thaj(b) #
{1 has codimension at least two. Indeed, if there is a codimension one subspace
B C A generated by sudhthen by assumption € ®r(B) andus™(B) # i,



FUNCTION FIELDS 21

contradicting the assumption thais constant. Otherwise, put := A;. By
induction,u € ®p(B) and is constant oA \ B. Henceu € ®p(A).

Assume thaf: is nonconstant and Ig8 C A be the unique codimension
one subspace with differings*(B). Choose ar¥-basisb,,...,b, 1 in B
such thatu(b;) = p&*(B). Assume that there is a pointe A\ B such
that 1(a) # the generic value ofi and let B’ be the codimension ong-
subspace spannéd, . .. b, o,a. Thenus"(B’) # the generic value ofi,
contradicting the uniqueness Bt It follows thaty is constant o \ B. [

REMARK 5.17. — LetF/F’ be a finite extensiond € Vecty, considered as
anF’-vector space, and € & (A). If p is F*-invariant, thenu € $p(A).
Indeed, by the proof of Lemnta8, the canonical’-flag is a flag off-vector
spaces. We use this observation to reduce our problem to prime fields (resp.
Fy).

LEMMA 5.18 — LetF/F’ be a quadratic extension, witfF’ > 2. Let
A be anFF-vector space of dimension 2, considered asamector space of
dimension 4. Lel € M(A) be anF*-invariant map such that for every
F’-subspace&” C A, dimp (C') = 2, one haguc € ¢ (C). Thenu € Pp(A).

Proof. — First assume that takes only two values onl \ {0}, sayO0, 1,
and thaty ¢ ®r(A). SincePr(A) = P there exist elements;, as, az, ay €
A\ {0} such that the orbit8* - ¢; do not intersect and

0= plar) = plaz) # plas) = plas) = 1.

ThenF* - a; = A; \ {0}, whereA; is a linear subspace ovEf. TheF'-span
A1, of two nonzero vectors; € Ay, zo, € Ay hasus(A1z) = 0. HenceA,
contains at most on&-subspaceb) of ’-dimensionl with generic valud.
The union of the space,,, for different choices of, x5, coversA and

#{b € Por(A) | u(b) = 1} < (¢ + 1),

where#F = ¢. Similarly, there are at most; + 1)? such nongeneric
Pr (A) with p(c) = 0. Since#P3(F') = ¢* + ¢* +q+ 1 > 2(¢*> + 2¢ + 1),
for ¢ > 2, we get a contradiction.

Assume now that takes at least 3 distinct values an\ {0}, say0, 1, 2,
and that there are two vectais, a; C A such that the orbit&™* - a,,F* - a
don'tintersect an® = u(a1) = p(aq). Such a configuration must exist (take
two [F’'-spaces of’-dimension two spanned W -orbits; theF’ span of two
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generic vectors in these spaces contains elements whuakie coincides
with the value ofu on one of the two orbits). The modified map, given by

ia) = { 0 if ula)=0

1 otherwise

satisfies the conditions of the Lemma, and by the above argyineriy(A).

In particular,ii = 0 outside oné™-orbit on A\ {0}. Sincey is F*-invariant it

follows thatu takes two values, and not three as we assumed. Contradiction.
O

LEMMA 5.19 — LetF’ =, (resp.F,), andF/F’ be an extension of degree
divisible by 4. ConsiderX’ = k(X) as anF-vector space and let, 1/ €
Lr(K) be ac-pair such that the linear spam = (i, i/, 1)z, does not contain
an ®p-map. Then there exist dni-subspace3 C K with dimp/ (B) = 3, two
distinctF’-subspace¢’, ¢’ C B of dimension 2 and mags i’ € o such that
— fic ¢ P (C) andicr is constant;
— jigy ¢ Pp(C) and fi, is constant;
In particular, for every (nonzero) map” € o there exists arf’-subspace
C" C B, dimp C" = 2 with the property that./., ¢ ®p (C").

Proof. — We consider as anF-vector space as well as @rvector space.
Let ;1 be anF*-invariant map onk'. If © were anF’-flag map on every two-
dimensionalF’-subspace of< then, by Lemm&.18 p would be anF-flag
map on everyF-subspaces C K of dimp B = 2. Since#F > 11 we could
apply Lemméb.16and conclude that € ®p(K).

Thus, sinceu ¢ Pr(K), there is arf’-subspace’ C K, dimp (C) = 2
such thatue ¢ o (C). If pl, is constant, put/ := u. Otherwise, using the
c-pair property orC' we find constantd, d.., d¢., with d;, # 0, such that

de: — dop

d
Thenji. = 0. Since the linear combinatigil is not a flag map, there exists
aC’, dimp (C") = 2, wheref’ ¢ Op/(C'). If uer is constant, pufi == p.
Otherwise, using the-pair property onC’ we find constantsic., di.,, d.,,
with d;,, # 0, such that

dep + depie = de and puti’ =y —

dr, — i

dorp + denpier = din and puti = p — y
C/
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Thenjicr = 0 andjic ¢ P (C) (sincefi is constant). Now put
B:=C+=<.C,
C

for some nonzere € C' andd € C’. Thendimg (B) = 3, the mapgiz, iy
are linearly independent, and they satisfy the required conditionss a0,
we havesji + s'fi’ ¢ ®(C). Otherwisesfi + s'ii’ ¢ ®p (5 - C'). Note that

the logarithmic property of the maps is used to reduce to dimension 3.]

A detailed analysis af-pairs on projective planes as above shows that such
planes cannot exist. This will complete the proof of the main theorem.

LEMMA 5.20 (Lemma 4.3.2ind)). — LetV C Z? be such that for any two
pairs of distinct points the affine line through one pair and the affine line
through the other have a common point and that this point of intersection is
contained inV. ThenV is contained in a line union one point.

Proof. — Otherwise,V’ contains four points in general position. Emt&d
into P?(Qy), choose coordinates for these four points

(1:0:0),(0:1:0),(0:0:1)and(1:1:1)
and closé/ for the operation

r,y, 2z, t = x,y) N I(z,t), when z#y,z#t,(z,y) # (21).

The closureV of V satisfies the axioms of a projective plane (see Defini-
tion 4.1). For example, to verify that any “line” i’ contains at least three
points it suffices to pick one of the four initial points not on this line and to
draw lines through this point and the remaining three points in the initial set.

By the fundamental theorem of projective geometfy= P?(Q). On the
other handP?(Q) is dense iP?(Q,). In particular, it cannot be contained in
Z?. Contradiction. O

COROLLARY 5.21 — LetB = F?* andu, // € M(B) be ac-pair of F*-
invariant maps. Then the image®fB) under the map
o+ P(B) —  A*Z)
b= (u(b), (b))
is contained in a union of an affine line and (possibly) one more point.
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Proof. — Thec-pair condition foru, 1/ implies that the image of evel c
P(B) is contained in an affine line iA;. Next, for any two pairs of distinct
points (a, b), (a’,b") in p(P(B)) the affine lined = [((a,b),l' = I'(d’,b') in
A% = 72 through these pairs of points must intersect. (Chaosed’, v’ in
the preimages of, b, a’, V/; the projective lined, I ¢ P(B) = P? through
these points intersect in someand, by the first observatiop(x) must lie on
both[ and[’). Now it suffices to apply Lemma.2Q O

ASSUMPTIONS.22 — We may now assume that
- F=1F,orly
— u, 1’ € Ly(A)is ac-pair of linearly independent maps as in Lemmas,
— Bisasin Lemm&.19 for every two-dimensional” C B there exists
au” € (u, ') such thatul, ¢ ®r(C").
We can exclude the following degenerate cases, which contradict our as-
sumption that no linear combination pf 1/’ is a flag map onB:

(1) ¢(P(B)) is contained in a line; this means that ' are linearly depen-
dent (modulo constants);

(2) (1) is a point, for somé C P(B); this implies thaty(l) € ¢(I'), for all
[ C P(B) andp(P(B)) is contained in a line, contradiction to (1);

(3) ¢ is constant outside one line; here the affine i@dp— Z, projecting
©(I) to one point gives a nontrivial flag map in the spanof:’.

LEMMA 5.23 — Let[, ' C P? be distinct lines. Let € P? be a point such
that p(x) ¢ (o(I) U ¢(l')). Then there is a natural projective isomorphism
v - | — [ respecting the level sets of Namely, for every paiy;, y, € |
with ¢(y1) = ¢(y2) one has

(e, (y1)) = (e (y2))
(and vice versa). In particular, ib(I) C o(I') thengp(l) = ¢(l').
Proof. — The imagesy(l(x,y1)) andp(I(z,y2)) span the same affine line
L,. We havey(l') ¢ L,. Definer,y(y;) = l(z,y;) NI'. By Corol-

lary 5.21, ¢(m,¢(y;)) are contained in the intersection ofl') and L,, so
thato(me, v (y1)) = (T (y2))- O
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COROLLARY 5.24 — Ifthere exist a lind C P? and a pointz € [ such that
¢ is constant orl \ x then there is a nontrivial flag map in the span.of./’.

Proof. — By Assumption5.22, ¢ is nonconstant on every line. Assume that
there exists a point € o (P?) such thatp~!(a) consists exactly of. Then
for all ', 1” not containingr one hasp(l') = ¢(I”) andy is constant on the
complement ta: on every line through:. Then a linear combination of, ./
is constant of®? \ z, thus a flag map, contradicting the assumption.

Let 2/ be a point inP? \ [ with p(2') = ¢(z). The linesl and((z, z’) are
not equivalentyp(l) # (). For any linel” # [(x,z’) throughz’ we have
e(IN ") # ¢(x). Using a point ory € [ with p(y) # ¢(z) and applying
Lemma5.23we find thatp(I”) = ¢(I). For anyy ¢ ([ U ') consider the line
[(«',y). It follows thaty(y) equals the value af on [\ z, thusy is constant
on the complement t6, contradicting Assumptiof.243). O

COROLLARY 5.256 — Letz,y € P2 be distinct points so that(z), p(y) &
(p(H) Ue(l') and the linel(z, y) throughz, y passes through the intersection
qo := [N 1. Then the composition

1

Ty O, [ [— 1

induces a nontrivial translation of) with fixed pointy,, preserving the level
sets ofp. (By symmetry we have a similar translation lai

In particular, if F = F, (the prime field) then the group generated by this
translation is transitive ori\ (IN ') andy is constant on this complement. If
F = F, then the complemeit (I N [') is a union of two (two point) orbits of
this translation andp is constant on each orbit.

Proof of Theorend.7. — We keep the Assumptioris22

For every pointz € P? and every linel throughz there exist lineq’, I
throughz such thatp(I) = ¢(I') andg(I') # (I”). Indeed, consider a line
with () ¢ ¢(1). If on all such linesy takes more than two values, then all
these lines are equivalent apds constant on the complement.imn every
line throughz, contradiction to Corollanb.24 Otherwise, each value dn
will be taken at least twice, hence the claim.

Corollary 5.25gives a translation oh\ = preserving the level sets af.
Over the prime field,, p > 2, ¢ restricted td is constant on the complement
to z and we can apply Corollary.24
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OverF,, ¢ is either constant oh\ x, contradicting Corollary.24 or the
level sets ofp on [\ z fall into two orbits of cardinality two. Since we can pick
x on [ arbitrarily, ¢ must be constant oy contradicting Assumptiof.242).

O

6. Galois groups

Let £ be an algebraic closure of a finite field of characterigti¢, K the
function field of an algebraic variety( overk, G% the abelianization of the
pro-/-quotientG of the Galois groufds i of a separable closure &f,

G = Gi/[[9k, Gk, Gx] — G
its canonical central extension apdthe natural projection.
DEFINITION 6.1 — We say thaty,y' € G} form acommuting pairf for
some (and therefore any) of their preimages§’ in G5, one hag?y,3'] = 0. A

subgroupH of G* is calledliftable if any two elements i form a commuting
pair.

DEFINITION 6.2 — ThefanXx = {¢} onGY. is the set of all topologically
noncyclic liftable subgroups C G4 which are not properly contained in any
other liftable subgroup of/¢..

REMARK 6.3 — For function fieldsK /k of surfaces all groups € >, are
iIsomorphic to torsion-free primitivé,-submodules of rank 2, see Sectioh

NOTATIONS 6.4 — Let
pn = { [\/T}
and
We often identifyZ, andZ,(1) (sincek is algebraically closed). Write
K* := lim K*/(K*)"
for the multiplicative group of (formal) rational functions oa

THEOREM6.5 (Kummer theory)— The groupK*/k* is a freeZ-module.
One has

- K*/(K*)" = (K*/k*) /0", foralln € N;
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— the discrete groups™/(K*)*" and the compact profinite groug /"
are Pontryagin dual to each other, forg,.-duality;

— for K*/k* — 7', one hask*/(K*)"" — (Z/¢")" and

G /0" — (Z/0" (1)),

hence the duality betweeli* = @* and G} is modeled on that
between

{ functions! — 7Z, tending to0 at oo} and Z;.
LEMMA 6.6. — Let E/k be the function field of a curve. Théh; = ().

Proof. — By a result of Grothendieck, the p¥cfundamental grougr, ), of
a curve punctured in finitely many points is free. We have

Gy =limZ], Gg =limA*(Z)),

JCI JCI
with the commutation map equal ra This implies that a liftable subgroup
of G¢, is topologically cyclic. H

7. Valuations

In this section we recall basic results concerning valuations and valued
fields (we follow [/]). Most of this material is an adaptation of well-known
facts to our context.

NOTATIONS 7.1 — A value groupdenoted by, is a totally ordered (torsion-
free) abelian group. We use the additive notatierf for the group law and
> for the order. We have

F=Ttul", "N~ ={0} and v >+ iff y—+ €T*.
Thenl', = I' U {cc} is a totally ordered monoid, by the conventions
y< o0, y+oo=00+00=00, Vyel.

DEFINITION 7.2 — A (nonarchimedeanyaluationon a field K is a pair
v = (v,T',) consisting of a value group, and a map
v: K—-T,»
such that
—v : K* — T, is a surjective homomorphism;
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—v(k + r') > min(v(k),v(x')) forall k, <" € K;
— v(0) = oo.

REMARK 7.3, — In particular, sincd’, is nontorsiony(¢) = 0 for every
element( of finite order inK™.

A valuation is calledrivial if I' = {0}. If K = k(X) is a function field
over an algebraic closufeof a finite field then every valuation df restricts
to a trivial valuation ork (every element it* is torsion).

LEMMA 7.4 — Let K = k(X) andv be a nonarchimedean valuation on
k(X). ThenHom(T',, Z,) is a finitely generated,-module.

Proof. — Note that theQ-rank ofv is bounded bylim(X) (see [L1]). O

NOTATIONS 7.5, — We denote by, 0,, m, and K, the completion of
with respect ta/, the ring ofv-integers ink’, the maximal ideal o, and the
residue field

K,:=o0,/m,.
If X (over k) is a model forK then thecenterc(v) of a valuation is the
irreducible subvariety defined by the prime ideal N k[X]| (providedv is
nonnegative ork[X]).

It is useful to keep in mind the following exact sequences:

(7.1) l—-o0o - K —-I,—1
and
(7.2) l1-(14+m,) —o, - K, — 1.

NOTATIONS 7.6. — Write Z C D¢ C Gy for the images of the inertia and
the decomposition group of the valuatiomn G¢.

NOTATIONS 7.7. — If x : ', — Z,(1) is a homomorphism then
xov : K*— Z(1)

defines an element @y, called an inertia element of the valuation The
group of such elements & C Gy..

NOTATIONS 7.8 — The decomposition group? is by definition equal to
the image oG in Gf.
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LEMMA 7.9, — There is a natural embedding;, — G% and a (canonical)
iIsomorphism

Dy /T, ~ Gy .
Proof. — See Theorem 19.6 irs], for example. [

DEFINITION 7.10 — Let K = k(X)) be a function field. Its valuation is

— positive-dimensionaf trdeg, K, > 1,
— divisorialif trdeg, K, = dim(X) — 1.

NOTATIONS 7.11 — We letV be the set of all nontrivial (nonarchimedean)
valuations of K andDVx the subset of divisorial valuations. f € DVy is
realized by a divisoD on a modelX of K (see Exampl&.13 we sometimes
write Z¢,, resp.D$,, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12 — Let E = k(C) be the function field of a smooth curve.
Every pointq € C(k) defines a nontrivial valuation, on £ (the order of a
function f € E* atg). Conversely, every nontrivial valuationon E defines
a pointg := ¢(v) onC.

EXAMPLE 7.13 — Let K = k(X) be the function field of a surface.

— Every positive-dimensional valuation is divisorial.

— Every (irreducible) curveD C X defines a valuatiowp, on K with
value groupZ. Conversely, every valuation ol with value groupZ
and algebraically nonclosed residue field defines a ciirnven some
model X of K.

— Everyflag(D, q), (curve, point on its normalization), defines a valuation
vp,, On K with value groupZ?.

— There exist valuations of” with value groupQ and center supported in
a point (on every model).

LEMMA 7.14 — Let K = k(X) be the function field of a surface. T /Z¢
IS nontrivial thenv is divisorial.

Proof. — The only 1-dimensional valuations on function fields of surfaces
are divisorial valuations. For other valuations, the residue fi€§|d= k is
algebraically closed andy,  trivial. O



30 FEDOR BOGOMOLOQV and YURI TSCHINKEL

8. A dictionary

Lrx = Lg(K) = {homomorphismsK* — Z,(1)}
O = Dp(K) = {flagmaps K — Z,(1)}

PROPOSITION8.L — One has the following identifications:

gk = Lk,
D¢ = {p€ Lk |p trivial on (14 m,)},
Z¢ = {p€ Lk|p trivial on o}}.

If two nonproportionaly, i/ € G% form a commuting pair then the corre-
sponding mapsg, i/ € Lx form ac-pair (in the sense of Definitioh.6).

Proof. — The first identification is a consequence of Kummer the®fy
The second identification can be checked on one-dimensional subfiglds of
where it is evident. For this and the third identification we usé)(@and (7.2).
For the last statement, assume that’ € £ don’t form ac-pair. Then there
isanz € K such that the restrictions of 1/ € L to the subgrougl, =) are
linearly independent. Thereforg, i/ € GJ- define a rank 2 liftable subgroup
in g;;(m). Such subgroups don't exist sin€g,) is a free proé-group (see

[10D. O

EXAMPLE 8.2 — If € D2 anda € Z¢ thenu, o form a commuting pair.

PrROPOSITION8.3. — Let K be afield andv € & N Lx. Then there exists
a unique valuationv = (v,,I',,) (up to equivalence) and a homomorphism
pr : 'y, — Z,(1) such that

a(f) = pr(va(f))

forall f € K*. In particular, « € Z¢ (under the identification of Proposi-
tion 8.1).

Proof. — Let I be a finite subfield of: and assume thai(f) # «(f’) for
somef, f' € K and consider the lin@' = P(Ff + Ff’). Sincec is a flag
map, it is constant outside one point on thisso that eitherv(f + f) = a(f)
or = «a(f’). This defines a relationf’ >, f (in the first case) and >, f’
(otherwise). Ifa(f) = a(f’) and there exists aft’ such thaiv(f) # a(f”)
andf >, f” >, f' then we putf >, f’. Otherwise, we puf =, f’.



FUNCTION FIELDS 31

It was proved in §], Section 2.4, that the above definitions are correct and
that >, is indeed an order which defines a filtration on the additive gisup
by subgroup$ K, ).cr such that

- K = U,erK, and
- mryer‘Kry - @1
wherel is the set of equivalence classes with respecetto Sincea € Ly

this order is compatible with multiplication iR, so that the mag — T is
a valuation and: factors ask* — T' — Z, ~ Z,(1). By (7.1),« € 2. [

COROLLARY 8.4 — Every (topologically) noncyclic liftable subgroup of
G¢. contains an inertia element of some valuation.

Proof. — By Theoremb5.7, every such liftable subgroup contains@&map,
which by Propositior8.3 belongs to some inertia group. O

9. Flag maps and valuations

In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.

LEMMA 9.1 — Leta € & N Lg, v = v, be the associated valuation and
€ L. Assume that, ;. form a c-pair. Then

p(1+m,) = (1) = 0.
In particular, the restriction of. to o, is induced fromi,,.

Proof. — Firstof all, 4(1) = 0, sincey is logarithmic. We have
(1) a(k) =0forallk € 0, \ m,;
(2) a(k+m) = a(k) forall k € 0, \ m, andm € m, as above;
(3) m, is additively generated by: € o, such thaty(m) # 0.

If m € m, is such thatx(m) # 0 andx € o, \ m, thena is nonconstant on
the subgroupd := (x, m). Then

plk+m) = p(k).

Indeed, ifu is nonconstant ol the restrictionu 4 is proportional ton 4 (by
the c-pair property) andv satisfies (2). In particular, for such we have
p(l+m) = pu(1) = 0.
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Assume thaty(m) = 0. Then there exists an’ € m,, such thain > m’ >
1 anda(m’) # a(1) = 0. Using the first step witlk = 1 and observing that
a(m+m') # 0we haveu(1+m+m') = u(1) = 0. On the other hand, putting
rk = 1+m and using that(m’) # 0 we see that(1+m+m') = u(1+m).

Thus0 = u(1) = (1 + m) as claimed. O
COROLLARY 9.2 — Inertia elementsy € Z¢ commute only with elements
e Dy.

PROPOSITION9.3 — Let K = k(X) be the function field of a surface.

Everyo € Xk hasrky, o = 2. Moreover, it defines a unique valuation= v,
of K so that either every element @fis inertial for v, or v is divisorial and
there is an element € ¢ which is not inertial forv, buty € D.

If distincto, o’ € X have a nonzero intersection then there exists a divi-
sorial valuation” such that

— 0,0 € DYy,

—onNao =14,.
Conversely, itr € Xk is not contained in &¢, for any divisorial valuation
V" thenforallo’ € Yk, 0’ # o, 0ne hasr N o’ = 0.

Proof. — We saw that € X contains an inertia elemeatfor somevalu-
ationv. Sinceo is topologically noncyclic there is a € o, Z,~independent
on«, and commuting withv. If 4 is notinertial, that isy ¢ @y, thenu gives

a nontrivial element in the (abelianized) Galois group of the residue Keld
of v. Thusv is divisorial, K, is 1-dimensional and every liftable subgroup in
G%, hasZ,-rank equal to one. Hena&y, o = 2 in this case and, by Corol-
lary 9.2, 1 € D2. Such a valuatiow is unique, sinc€? NZ¢% = 0 for distinct
divisorial v, v/'.

If o containsonly inertia elements, then there exists a unique valuation
v such thatr € 7¢. Indeed, eithem, + m,, = K or we may assume that
m, C m, (ando, D 0,/). The first case is impossible since the corresponding
inertia groups don't intersect. In the second cdgg,C 79, as claimed.
Moreover, it follows thatk;, o = 2, since theQ-rank of any valuation on a
surface (oveff,) is at most two. This gives af = v, in this case.

If distinct o, o’ have a nontrivial intersection, then the subgrdupC G
generated by, ¢’ is not the inertia group of any valuation (the rank of those is
< 2, as we have seen above). If e o’ contains a nontrivial inertia element
a thenD is contained in the decomposition group of this element (all elements
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of D commute witha)) and the corresponding valuation is divisorial.ulfe
oMo’ is not an inertia element then there exist inertia elemertsr anda’ €
o’ corresponding to distindivisorial valuationsv, v’. The decomposition
groups of distinct divisorial valuations don't intersect. O

Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groups’ € Yk with a
nontrivial intersection defines a divisorial valuatieywhose inertia group

It =o0Nd.
The corresponding decomposition subgroup is

a
DV = UUDI‘;U-

10. Galois groups of curves

Here we give a Galois-theoretic characterization of subgreups >k
which are inertia subgroups of rank two valuationsiofarising from a flag
(C,q), whereC' is a smooth irreducible curve (on some modelrf and
q € C(k) is a point (see Examplé.13. We show that Galois-theoretic data
determine the genus ¢f and all “points” onC', as special liftable subgroups
of rank two insidegy .

Throughout,El = k(C) is the function field of a smooth curve of gerngis
We have an exact sequence
0 — E*/k* — Div(C) — Pic(C) — 0

(whereDiv(C') can be identified with the free abelian group generated by
points inC'(k)). This gives a dual sequence

(10.1) 0 — Zy =5 M(C(K),Zy) — G — 728 — 0,

with the identifications
— Hom(Pic(C), Z,) = A(Zy) (sincePic’(C) is torsion);
- M(C(k),Zs) = Hom(Div(C), Z,) is theZ,-linear space of maps from
— 7.7¢ = Ext!(Pic’(0), Zy).
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Using this model and the results in Secti@nn particular the identification
G% = Hom(E*/k*, Zy),

we can interpret

(10.2) Gy € M(C(k),Qy)/constant maps

as theZ,-linear subspace of all maps : C(k) — Q, (modulo constant
maps) such that

lw, f] € Z, forall fe E*/k".
Here[-, -] is the pairing:

M(C(k),Qp) x E*/k* — Q

(10.3) (1, f) = s f] =2 @) o

wherediv(f) = >_, fyq.

In detail, lety € G¢ be an element of the Galois group. By Kummer theory,
~ is a homomorphisnk™ /k* — Z,(1) ~ Z,. Choose a point, € C(k). For
every pointc € C(k), there is ann. € N such that the divisom.(c — ¢) is
principal (see Lemma.?2). Define a map

oy C(k> - Qfa
c = y(melc—co))/me.
Changingey we get maps differing by a constant map.

In this interpretation, an element of an inertia subgr@gpc G, corre-
sponds to a “delta’-map (constant outside the p@int EachZ? has a canon-
ical (topological) generata¥,,, given byd,(f) = v, (f), forall f € E*/k*.
The (diagonal) map\ € M(C(k), Q,) from (10.1) is then given by

A= "6u= > 0,

weVE qu,GC(k)

DEFINITION 10.1 — We say that the support of a subgraipc G% is < s
and write
supp(Z)| < s

if there exist valuations, ..., w, € Vg such that
Ic(Zy,. Ty )z, CGg-

w1 ?

Otherwise, we writégsupp(Z)| > s.
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LEMMA 10.2 — LetE = k(z) and letZ C G¢% be a topologically cyclic
subgroup which is not equal t6? for some divisorial valuation (point) on
E (P'(k)). Then for any nonzero € 7 there exist a finite group” and a
homomorphisny : G% — V such that for alkv € Vg one has)(v) ¢ (Z9).

Proof. — By the assumption off, the element € 7 corresponds to &,-
map p, on P!(k) which is not a delta-map of a point (modulo addition of
constants). Ifu, takes at least three distinct values there are three distinct
q,q,q3 € P(k) andn € N so that the valueg,(g;) mod (" are pair-
wise distinct fori = 1,2,3. Consider a map : G% — (Z/(")? defined
by elements ofE = k(z) with divisors (g1 — ¢2),(¢1 — ¢3). Note that
Y(Z4) =0, qu € P'(k) unlessg, = q1, ¢z, g3 andy(v) ¢ (Z5),i=1,2,3,
as claimed.

Similarly, if y, takes two values o' (k) there are pointg;,i = 1,...,4
andn € N so that

(@) = p(q2) # 1.(gs) = p.(qs) mod (™.
Theny : G& — (Z/¢")3, given by elements o with divisors
(Q1 - Q2)7 (Q1 - QB)> (QS - Q4),

satisfies the claim. H

The next step is amtrinsic definition of inertia subgroups

I, C Dy /17 = Gic)-
We have a projection
Tt Ok — Gi/T)
and an inclusion
Ok, =D)Ly — Gk /I,

PROPOSITION10.3 — Letr be a divisorial valuation of{. A topologically
cyclic subgroup
ZcCDy1s
is the inertia subgroup of a divisorial valuation 6{C') = K, iff for every
homomorphism
v GR/I =V
onto a finite abelian group” there exists a divisorial valuation, such that

V() =y om(Ly).
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Proof. — Let C be the smooth model fak', = k(C),

I=1I!CDi 1
the inertia subgroup of a divisorial valuation/afC') corresponding to a point
q¢=qy € C(k)and

v GR/TE =V
a homomorphism onto a finite abelian group. Siggeis a pro#-group, we
may assume that

V = @e 2/,
for somen; € N. Letn = max;(n;). By Kummer theory,

Hom(G%, Z/0") = K*/(K*)""

so thaty) determines elements

fi e K* /(K"
(for all j € J). Choose functiong; projecting tof;. They define a finite

set of divisorsD;; on X, the irreducible components of the divisors ff
Moreover, f; are not simultaneously constant 6h(otherwise (G )) =

w(I,j(C))). Changing the modeK — X, if necessary, we can ensure that
the full preimage of a finite set of divisors becomes a divisor with normal
crossings. In particular, we may assume that

— C'is smooth (and irreducible);
— there exists exactly one irreducible compongrin the full preimage of
UD;; which intersect€’ in g. Moreover, this intersection is transversal.

Then the image af}, undery is equal to the image of?.

Conversely, we need to show thatZif# Z¢ (for somew € DVk, ), then
there exists a homomorphism
Y GRJIE =V
onto a finite abelian grou such that for alt’ € DV one has
O(I) # ¢ om(L}).
Letz € Z be any nonzero element. Its lifto G¢ is not a flag map ok’*. By
Lemmab5.16there exists &' = P!(k) C P,(K) such that the restriction of

. to P! is is not a flag map. By the logarithmic property.ofve can assume
thatP! is the projectivization of thé-span ofl, x, for somex € K*. This
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defines a birational surjective map : X — P! and a corresponding map
of Galois groupst? : G — g,g(x). Under this map, the image @f is zero
(otherwise (' lies in a fiber ofr, and the whole groug  is mapped to the
valuation group ofr,(C) C P!, contradicting the assumption that the image
of . is not a flag map oi®! = Py(k @ k - z) = P(k)).

This gives a homomorphism, : D;/Z — G}, so thatn,(z) is not a
flag map onk(z). Lety, : Gj, — V be any homomorphism such that
V. (1) & Y(Zy) for everyT; C Gg , asin Lemmal0.2 The composition
Y := 1, on, has the required properties. O

LEMMA 10.4 — Let £ = k(C) be the function field of a curve. Then
g(C) > 1iff there exists a nonzero homomorphism fi@frto a finite (abelian)
group which maps all inertia elements(o

Proof. — Indeed, every curve of genas1 over a finite field of characteristic

p has unramified coverings of degréel hese coverings define maps of Galois
groups, which are trivial on all inertia elements. dfis rational thenG,,

and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequ&cg) ( O

REMARK 10.5 — Combining this with Propositioi0.3we can decide in
purely Galois-theoretic terms which divisorial valuationgotorrespond to
nonrational (irreducible) curve§' on some modelX of K. We call such
valuationsnonrational

11. Valuations on surfaces

Next we are lead to the following problem: How to characterize subgroups

—k

kE(C) C K*? We recall a geometric argument (from algebraic K-theory)
characterizing pairg, g € K* which are contained ik(C)* C K*, for some
curveC (such curves correspond to projectiokis— C).

Let v be a divisorial valuation o and
v: K*—7Z
the valuation map. We have the residue map
res, : Ker(v) — K
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and a bilinear (with respect to multiplication) symbol
K*x K* =25 K
g (=1 ) f o)
On a smooth modeX of K, wherev = vp for a divisorD C X, we define
(11.2) oo=0p: K*xXK"— K
as follows:

— 0,(f,g9) = 1ifboth f, g are invertible onD;
- o.(f,9) = f}if fisinvertible (fy is the restriction taD) andg has
multiplicity m alongD;
- o.(f,9) = (f™/g™)p in the general case, wheflg have multiplici-
tiesmy, m,, respectively.
The definition does not depend on the choice of the model.

(11.1)

The following is a standard result in K-theory. We include a proof since we
will need its/-adic version.

LEMMA 11.1 — For f,g € K*
0.(f,g) =1 Yve€DVg « f,gc E =k(C) C K for some curve.

Proof. — (<) On an appropriate modet we haver = vp for a divisor
D C X andw : X — C'isregular and flat with irreducible generic fiber (and
f,g € k(C)*). By definition, o, (f,g) = 1if D is notin a fiber ofr. If D is
in a fiber then there isae k(C)*, vp(t) # 0 such that bottyt™s, gt™s are
regular and constant ab (for somem, m, € N) so thato,(f, g) = 1.

(=) Assume thab,(f,g) = 1 for everyr € DVg. Every nonconstant
function f defines a unique map (with irreducible generic fiber)

7Tf:X—>Cf

which corresponds to the algebraic closure:0f) in K (we will say thatf
is induced fromC'). We claim thatr; = .
Sincef is induced from”';, we have

div(f) = Z a,D,,
qeQ

whereQ C Cy(k) is finite andD, = 7~ '(¢). ThenD? = 0 and D, is either
a multiple of a fiber ofr, or it has an irreducible componeft C D, which
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dominatesC, (underm,). In the second case, the restrictiongofo D, is a
nonconstant element i(D,). Thenvp(f) # 0, while vp(g) = 0. Hence

op(f,g) # 1 since it coincides witty,}”D(f) =# 1, a contradiction. Therefore,
all D, are contained in the finitely many fibefsof =,. That meansliv(f)
does not intersect the fibefs, t € C,,t ¢ S which implies thatf is constant
on suchk,. Hencef belongs to the normal closure bfC,) in K, and in fact
f € k(C,) sincek(C,) is algebraically closed i, by construction. Thug
is induced fromC, and henc&’'y = C; andr; = m,. O

12. /-adic analysis: generalities

Let X be a smooth model oK. An elementf € K*/kx gives rise to a
divisor D = D, onX and conversely, such/a uniquely determineg. Recall

that the Galois groug determinesk’*, a group substantially bigger than
K*/E*. In this section we introducé-adic versions of standard geometric
notions in algebraic geometry (divisors, Picard group etc.).

For any smooth algebraic variefy over k£ with function field K’ = k(X)
we have an exact sequence

(12.1) 0 — K*/k* 25 Div(X) -5 Pic(X) — 0,
whereDiv(X) is the group of (Weil or Cartier) divisors of. Write

Div(X), := Div(X) ® Z; and Pic(X), := Pic(X) ® Z,
for the group offinite /-adic divisors, resp/-adic Picard group. We have an
exact sequence:
(12.2) 0 — K* @ Z¢ 225 Div(X), 25 Pic(X), — 0

Let
Div(X):={D =Y awDu}, resp. Divy(X) C Div(X),
meM

be the group of divisors (resp. nonrational divisors) vd#treasing coeffi-
cients

— M is a countable set;
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— forall » € Z the set
{m||amle < r}
is finite; -
— for D € Div,,(X), all D,,, are nonrational.
Clearly,Div(X), C ]5?/(X). Every element
feK*=lim K*/(K*)"
has a representation

f: (fn)nEN or f = fOfle 2€2 )
with f,, € K*. We have homomorphisms
px 1 K* — Ei\V(X),
[o= div(f) =2, ey 0" - div(fn) = D2, GmDm,

pxmr : K* — Div(X) 25 Divi(X),
whereD,, C X are irreducible divisors,
=Y Qnl" € Ly,
neN
with a,,,,, € Z, and

div(f,) = Z o Do, -

Herediv(f,) is the Cartier divisor off,, and)  a,.,D., is its image in the
group of Weil divisors.

LEMMA 12.1 — Let X/k be a smooth projective surfack/ afinite set and
D= anDy € Div(X)s, am € Z
meM

a divisor such thatp,(D) = 0. Then there exist a finite sét functions
fi € K* and numbers; € Z,, linearly independent ove£, such that for all
iel

suppx (fi) C suppx (D)
and

D= Z a;div(f;).
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Proof. — It suffices to consider equatioiZ.?) and to observe that ar,-
lattice of principal divisors with support in a finite set of divisors contains a
generatingZ-lattice of principal divisors. O

The mapyx has a kernel
Ty(X) :=lim Tory (Z /", Pic(X)[¢]),
wherePic(X)[(] C Pic(X) is the ¢-power torsion subgroup. In particular

Ty(X) = 728, whereg is the dimension oPic’(X). We now collect several
facts aboufl; which will be used later on.

LEMMA 12.2 — For varieties ovelk we have
(1) a morphism¢ : X — Y induces a homomorphisgy : 7,(Y) —
Tu(X);

(2) the canonical morphismlb : X — Alb(X) to the Albanese variety
induces a canonical isomorphisstb; : 7;(Alb(X)) — Ty(X);
3)if ¢ : X' — X is a birational isomorphism between smooth varieties
theng; : T,(X) — T,(X') is an isomorphism;
(4) an exact sequence of abelian varieties
1A —-A-A"—>1
induces an exact sequence
1— Tg(A”) — Tg(A) — Tg(Al)

Proof. — The follows from the corresponding properties of the funétaf
for smooth algebraic varieties over O

We have a diagram
(12.3)
0 — K'®Z 2% Div(X), 2% Pic(X), — 0
| A | A |
0 — T,(X) — K+ 25 Div(X) & Pi(X) — 0,
where
Pic(X) := lim Pic(X) ® Z/0" = NS(X) ® Z.
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Everyv € DVy gives rise to a homomorphism
v K — 7,
and a homomorphism
rés, : Ker(0) — K,
and a symbol .
o, K*xK"— K,
On a smooth modeX, wherer = v, for a divisorD c X, o(f) is the/-adic

A

coefficient atD of div(f), while g, is the naturalZ,-bilinear generalization
of (11.7).

LEMMA 12.3 — Let X be a smooth surface or a smooth curve okvend
K = k(X). Then
ﬂ(X) = OZ,GDVKKer(ﬁ).

Proof. — Follows from the definition. ]
In particular, we have the mags, : T,(K) = T,(X) — K.
LEMMA 12.4 — Forall v € DV, we have
rés, (T3(K)) C T,(K,).

Proof. — Let X be a model ofK” such thatr = vp, whereD is a smooth
curve. We may assume (after blowing up) thkatontains a diviso)’ inter-
sectingD in exactly one point. Consider the diagram

0 — Ker(v) ——= Div(X \ D) — Pic(X) —=0

0 K Div(D) Pic(D) — 0

whereDiv(X \ D) is theZ-module spanned by divisors different frath By
the choice ofX, the restriction) induces a surjectioNS(X) — NS(D).

Tensoring allZ-modules withZ /¢ and passing to the projective limit we
obtain a map

T (K) — Ty(K,),
and the claim. ]
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13. /-adic analysis: finite support

Our goal is to characterize thieadic space<* /k* @ Z, C K*. The Galois
datum(G¢, ¥ ) allows us to distinguish between rational and nonrational ir-
reducible divisors onX (via the corresponding valuations) and to describe
intrinsically a subspac&S(K) C K* (of divisors with finite nonrational
support, seé.3.2and13.3. In this section we further shrinkS(K), giv-
ing an intrinsic characterization of those elements which have finite divisorial
support on every smooth modl.

By Lemma3.14 if T,(K) # 0 then eitherX contains only finitely many
rational curves, ofX, modulo purely inseparable covers, is a rational pencil
over a curve”' of genusg(C) > 1.

DEFINITION 13.1 — We say thatf, j € K* commuteif §,(f,§) = 1, for
all divisorial ». We say that they hawdisjoint supportf for all divisorial
valuationsv € DVg

o(f)-v(g) = 0.
We say thatf € K* has nontrivial commutators if there exigte K with
disjoint support (fromf) which commute witlf.

NOTATIONS 13.2 — We put

~

suppg (f) ={ v €DVk | f nontrivial on Z¢ };

suppx(f) ={ Dn CX | Gn#0}.

DEFINITION 13.3 — We say thaff hasfinite nonrational suppoif the set

A

of nonrationalr € suppy(f) is finite (see Lemma0.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K) c K*
be the subgroup of such elements.

Note that forf € FS(K), its nonrational componefit .. (f) is indepen-
dent of the modelX. More precisely, for any birational morphisAY — X

we can identifyDiv,, (X’) = Div,,(X). Under this identification
pX’,nr(f) = pX,nr(f)'
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DEFINITION 13.4 — We say thatf hasfinite supporton the modelX if

~

suppy (f) is finite. Put
FSx(K) ={f e K* | px(f) € Div(X),}.

LEMMA 13.5 — The definition ofFSx (K') does not depend on the choice
of a smooth modeX .

Proof. — For any two smooth model&”’, X" we can find a smooth model
X dominating both. The difference between the sets of irreducible divisors
Div(X’), resp.Div(X"), andDiv(X) is finite and consists of rational curves.

O

Equation (2.3 implies the exact sequence
(13.1) 0—TyX)— FSx(K) — K*/k* ® Zy — 0.
Indeed, iff € FSx(K) thendiv(f) € Div(X), and its image irPic(X), is
zero. Thus there is an elemefie K*/k* ® Z, with the samé-adic divisor.
By definition f/ f € Ty(X).

We proceed to give a Galois-theoretic characterizatiaR8f (K).

Case I.Let K be the function field of a surfacE containing only finitely many
rational curves. Then

FS(K) = FSx(K).

Case Il. Assume that, after a purely inseparable extensiomdmits a fibration
over a curve of genus 1, with generic fiber a rational curve.
Let FS'(K) C K* be the group generated by dlsuch that
e f has nontrivial nonrational support;
° f has nontrivial commutators.
Then, for every modek of K, we have

FS'(K) = FSx(K).
Indeed, an infinite rational tail irf in this case consists of an infinite

number of fibers. Same holds fgr Thus the divisor off (resp. §)
intersects all but finitely many fibers in the infinite rational taij¢fesp.
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f) with intersection multiplicity some power of = char(k). Consider
v corresponding to rational curves in the divisorintersecting the
divisor of f as above. Then

o,(f.9) # 1,

contradiction.
Case Ill. By Lemma3.14 we can now assume thBtc’(X) = 0.

Let Fx(K) be the set of alf € K(X)*/k* such that
(1) pxu(f) # 0 and
(2) for every rational curvé C X with v = vp, eitherD € suppy(f)
orres,(f) #0 mod ¢in K /k*.
Geometrically, condition (2) means that if a rational cufvés not a
component of the divisor of then there is a point i N div(f) whose
multiplicity is prime to/.

LEMMA 13.6 — Letz € K* and letk(y) := k(z) be its normal
closure inK. Letm, : IP’; — P! be the corresponding morphism.
Assume that
(1) k(y)/k(x) is a separable extension of degreel;
(2) the preimage under, " of the divisor0 + co € Div(IP}) contains
at least 4 points with multiplicities prime
Then the image of in K*/k* is in Fx(K).

Proof. — Let X be a smooth model ok and
O - X—>Pi,, By : X—>IP’;

regular maps with3, = m, o 3,. Let R be an irredicible curve in\
which surjects geometrically onf®.. We can assume that the mép :
R — P! is separable (after a Frobenius twist of the function field®pf
Assume that the multiplicities of all poles and zeroes of the function
y on R are divisible by/ (this does not change after a Frobenius twist).
Thus the mags, : R — P! has ramifications ovet-points divisible by
¢. By the Hurwitz formulag(R) > 0.
In particular, for any rational curv& C X eitherg,(R) is constant,
so thatR is contained in the fiber of,, or the intersection of? with
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some component dbiv(x) contains points with multiplicity prime té.
Thus, the image af in K*/k* is in Fx(K).
O

COROLLARY 13.7. — The setFx(K) generates*/k*.

Proof. — The multiplicative group of every closed subfiditk) C K
is generated by elemenjsatisfying the lemma. Indeed, fogavhich is
not generating:(z) and which is not ari — th power all elements of the
form y(z — a)/(z — b), wherea, b run throughk minusDiv(y) C P.,
satisfy the lemma. By assumptioRijc’(X) = 0 so that every closed
one-dimensional subfield df is isomorphic tat(z) for somez. O

LEMMA 13.8 — For every pair of nonzero commuting elemefitg €
FS(K) with nontrivial nonrational support and disjoint support such
that there exists arf € Fx(K) with

f=f mod/ in K*
one hasf € FSx(K)andj € FSx(K).
Proof. — Write

~

px(f) = YierniDi+ 3272, 0,0y,
px(9) = Ziel/nfiD;—l—éZj:ln;’C]/’a

wherel, I’ are finite sets and the second sum is an infinite series over
distinct rational curves’;, C; C X. By assumption, the setdD; }iers
{Cj}jens { D} }iers {C) }jen are disjoint.

By assumptiong,(f,§) = 1, for all v. Forv = vp, whereD &
suppy(¢g), this symbol equals the residue pfon D, which equals the
corresponding residue gf mod ¢. For rational curves in the support
of g itis nonzero by (2). Since the generic fiberfos nonrational, there
are only a finite number of rational curves ahwhich are mapped to
points by f. It follows that every divisor insuppy(g) is nonrational,
unless itis in the fiber of, and thatj € FSx(K).

SinceT;(X) = 0, we can writediv(g) = >, s @mDm, WhereM
is a finite set, somé,, C X are nonrational divisors and,, € Z,, or
§=1Lc;n g7, with I" afinite setg; € K*/k* andb; € Z.
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The restriction ofy; to every irreducible component of the divisor of
f isidentically zero. This means that under the map

Ty + X — C

all components ofupp () map to points (note that’ = P!, since
Pic’(X) = 0). Since some components of the divisorgaf for some

i, are nonrational, the generic fiber of, is also nonrational. Thus
suppy (f) contains only a finite number of rational divisors, so that

EXAMPLE 13.9 — Let K = k(x,y) be the function field of??. Let
D,, D, be the divisors of functions, y so thata, D, + a,D, = a.D,
with nonzeroa,,a,,a, € Z,, for a principal divisorD, c P?, iff
a;/a, € Q. Indeed, the function = xb=y%, for b,,b, € Z. Then
a,D, + a,D, = a,(b,D, + b,D,) anda, = a,b,, a, = a.b,. Thus
ag/a, = b, /b, € Q.

Generalizing this example, we have:

LEMMA 13.10 — Letz,y € FSx(K) be noncommuting elements.
Assume that the three elementg, zy have nontrivial commutators in
FSx(K). Then there exists a uniquec Z,, moduloZ ), such that

x,y, 2y € a- K*/k* C FSx(K)

Proof. — Let P,, P, and P,, be minimalZ-sublattices ofFSx (K)
suchthatt € P, ® Z, y € P, ® Z; andzy € P,, ® Z,;. We have

P$y®ZECPx®Z€€BPy®Z€

Note thatP, N P, = 0, andP, N P,, = 0, resp.P,N P,, = 0, since there

are noZ-relations - the elements d@t,, resp. P,, resp. P,,,, belong to

the same pencil and nontrivial elements of different pencils are distinct.
The latticeP,, ® Z, surjects onto botl¥, ® Z, and P, ® Z,. If one of the
projections had a kernel, there would be an elemeft.ibelonging to

the pencil?,,, and similarly forP,, but there are no common elements.
We conclude that both projections are isomorphism& gflattices, as
claimed.
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COROLLARY 13.11 — LetK C FS(K) be alattice such that
e every element iiC has a nontrivial commutator and
e K surjects ontak ™ /.

Then then there ig € Z; such thats - K C K* ® Z).

Proof. — Since K is generated by the preimages of the reduction of
Fx(K) modulo? (only such elements have nontrivial commutators, by
Lemmal3.8), the latticekC is contained inFSx(K). Then we apply
Lemmal3.1Q O

In particular, any such lattice is containeddn' - K* @ Z, with
the same property. It follows that there is a unique maximal lattice
for any triple of elements;, y, zy with nontrivial commutators so that
pu(z,y) # 0 mod ¢ for somer € DVx. It equalsa - K* ® Zy, for
somea € Z;.

14. /-adic analysis: curves

In this section we begin the process of recognition of the lafticét* C

K*. We solve an analogous problem for the function field of a rational curve.
This result will play an essential role in the analysis of surfaces.

PROPOSITION14.1 — Letjf be the algebraic closure of a finite field, with
char(k) # ¢, C a curve ovelk of genusgg with function field® = £(C') and

an isomorphism of Galois groups inducing an isomorphism on inertia groups
of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let

W*@HEA*

be the dual isomorphism. Then = k(P') and there is a constant € Z;
such that¥* (k(P)*/k*) = a - E* /k*.

Proof. — Recalling the exact sequenc&0(1), we have a commuting dia-
gram
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0 — Ze(Bop) — M(C(k)) G Z 0

|

0 — Z(Ap1 () —>= M(PL(k)) — Y5 =0

SinceV is an isomorphism on inertia grou@§, for eachw, thesetsC'(k)
andP! (k) coincide and we getaniqueisomorphism ofZ,-modules (of maps
to Zg) ~ ~

M(C(F)) = M(P'(K)).
In particular, we find thag = 0 andE' = k(P!). Further, we have an induced

isomorphism
Zo( Y 60) =Zu( > Our)
weVE wlevk(]pl)
so that
(Z dw) = af( Z Our)
weVE w’evk(ﬂﬂ)

for somea € Zj;. This implies that),, = ad,s, for all w € Vg and the
correspondingy’ € Vp1. For the dual groups we obtain

E*/i{* _ (K*/k*)a,
wherea € Z;. O

15. /-adic analysis: surfaces
We will need arv-adic version of Lemmal.1.
PROPOSITION15.1 — Let f,§j € FSx(K) be elements with nontrivial
support such that
— o.(f,g) = 1foreveryv € DVk;

~

— suppg (f) Nsuppg(g) = 0,
that is, f has nontrivial commutators. Then there is a 1-dimensional field
E =k(C) C K suchthatf, g € E*.

Proof. — By Lemmal2.],
f: tr- f, where f := Hfiai’ resp.g =t,- g, where g := Hg;?j’

il jeJ
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where

—tp,lg € T€<X);

— I, J are finite sets;

— fi,g; € K* forall 7, j;

— a; € Zy (resp.b; € Zy) are linearly independent ové.
Fix a valuationv = vp, whereD is in the support off on a (smooth) model
X. By assumption

rés, (tp- [[ /) =1€ K,
i€l

By Lemmal2.4 rés,(t) € T,(K,) so thatt, has trivial support orD. We
claim that for alli € I, res,(f;) =1 € K /k*. The divisor of the restriction
of fyto Dis ), g, Whereg;, are points orD andr;;; € Z. This gives a

relation

Z ai(z wqﬁ) = 0.

el i
However,a; were linearly independent ov&rwhich implies that;;; = 0, for
all 7,7'. In particular,res, (f;) € k*. The same argument fgrshows thay
and f commute and that all pair§, g; commute as well. By Lemmal.1, all
fi,g; € E=k(C) C K for some curve’.

We now have a diagram:

0—= Ty(E) o Div(C) — Pic(C) —= 0

o

0 — Ty(K) — K* — Div(X) — Pic(X) —= 0

We need to show thai; (resp.t,) is in the image offy(£). Let D be an
irreducible component in the divisor gf(resp. f). Changing the model, we
may assume thdb is smooth. We have a diagram

D X

A

Jac(D) —— Alb(X) —= A = Alb(X)/B

wherex is a surjection with connected fibers aBd= B isasin Lemm&.15
it is the minimal abelian subvariety of’(X) so that the image oD in
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Alb(X)/B is a point,ap (note thatD is irreducible). We have
t(Jac(D)) = a *(ap) ~ B.
Applying Lemmal2.2(4) we conclude that the induced sequence

Ty(A) 5 Ty(AIB(X)) L Ty(B)

of free finite rankZ,-modules is exact in the middle term. We have shown
thatres,(f;) = 1, for all i € 1. It follows thatrés, (t;) = 1 € K, where
v = vp is the corresponding valuation. In particular,

t;=1¢€ T,(B) — Ty(K,) = Ty(D).

It follows that there is am € Ty(A) such thato)(a) = t;. We apply this
argument to every componeh; of the divisor ofg and find that ; is induced
from quotientsAlb(X)/B;, whereB; := Bp,, for j € J. Let B be the
abelian subvariety ofi’( X)) generated by3;. By Lemma3.15 Alb(A)/B ~
Jac(C'), andX maps toC' with connected fibers. We have the diagrams

X — Alb(X) X) <~ Ty(AIb(X))

llTT

C ——=Jac(C) T,(C)<—T,(Jac(C))
It follows thatt, and similarlyt,, is in7;(C) = Ti(E). O

REMARK 15.2 — For everyf € K* the elemeny = (f +a)(f + b) where
a # bandab # 0, satisfies the conditions of Propositihh. 1

Proposition15.1 characterizes Galois-theoretically subgroups ¢ K*
corresponding to 1-dimensional subfields’of We now have:

PROPOSITION15.3 — The groupK*/k* @ Z, C FSx(K) is generated
by subgroups* N FSx(K) with £ = k(C') so that thatT,(FE) is trivial.
Moreover,

(K*/k* @ Zo) NTy(X) = 1.

Proof. — First of all, 7,(C') — T,(X), for every 1-dimensional subfield
k(C) C K. It suffices to note that multiplicative grougs’ /k+ of normally
closed subfield® = k(x), with T,(F) trivial, generate*/k*. O
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COROLLARY 15.4 — We have a canonical isomorphism
U L7 — K* K ®Zy.
PROPOSITION15.5 — Let9* C K*/k*®Z, be a subset with the following
properties:
(1) 9~ is closed under multiplication;
(2) M*NE* = ag- E*/k* for every 1-dimensional normally closed subfield
E =k(z) C K,withag € Zj;
(3) there exists &, € DVy such that
{I60. /11 feM} =2
for a topological generatob, of Z¢ . (Here[-, -] is the value off on the
element of the Galois grouf, see Theorerfi.5.)
Then
M C K*/l{?* ®Z(g) and M ® Z(g) = K*/k* ®Z(g).

Proof. — Forz € K\ k let E = k(z) be the corresponding 1-dimensional
field, assumed to be normally closed i By assumption, there exists an
ap € Z; such that

M N E* = ap - B /K",
If some (any) topological generatég of 7 is not identically zero one*
then there exists a (smooth) mod€| wherey is realized by a divisoD,,
together with a morphism
X — P =P},
such thatD, dominategP!. It follows that
ap < QQZZ = Z(g).
It remains to observe that everye K* can be written as a product
T = ﬂf/ . l'//

such that, is nontrivial on both normally closefl’ = k(z') andE” = k(z").

Finally, every groupk(z)*/k* ® Z( is generated oveZ ) by elements
from 9. O
COROLLARY 15.6 — There exists a constante Z; such that

U el 1" ® Ly — K k" ® L.

is an isomorphism.
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Proof. — Note thatW*(L*/l*) satisfies all conditions of Propositidkb.5
except possibly (3). Multiplication of the lattice(L*/I*) by a constant €
Z; gives (3). O

COROLLARY 15.7. — After a choice of, for every 1-dimensiondll C K
and everyf € E*/k* ® Z(, we can Galois-theoretically distinguish its poles
from its zeroes.

16. Projective structure

In Section15we have proved that
U (L*)I") C K* /K" ® Zy D K*/k*
for somec € Z;. LetO* := cW*(L*/I*) N (K*/k*) be the intersection. Then
M* C K*/k* and (c¥*)~1(9M*) C L*/I* satisfy all conditions of Propo-
sition 15.5 Moreover, the full preimages of these groupsifo, resp. L*,
satisfy the conditions of Propositioch12 Therefore, there exist subfields
K, C KandL; C L so thatK/K, andL/L, are finite purely inseparable
extensions and
U (Ly/17) =M = K7 /K.

The sets:¥*(L,/I*) and K /k* carry canonical projective structures com-
ing from field structures of.; and K. A priori, this induces two projective
structures oMt*. The last essential step is to show that these structures on
M* coincide. It suffices to show that primary lines in both structures are the
same oJt* (see Definitior3.4 and Definition4.7).

LEMMA 16.1 — Letx € K* be a generating elementy := k(z) and
r = r(z) € N the smallest positive integer such thét modulok* is in 9t*.
Then
— r = p™ for somem € N (with p = char(k));
— (B /k*) 90 = (BP") /K
— (pointwise)p™-th powers of primary lines i2* /k* coincide with pri-
mary lines in(E?™)* /k*.

Proof. — The first property follows sinc&’/ K is a finite purely inseparable
extension, by Propositiorid12and15.5 Next, we claim that a generating
elementy € K, (see3.4) is ap™-th power of a generating element &f (for
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somem depending ony). Indeed,F := k:(y)K C K is a finite and purely
inseparable extension éfy), £ := k(z) (for somexr € K). Thus

y = (ax?" +b)/(ca?” +d) = ((dz +b)/(dx+d))P"
for somem € Z, a,b, c,d € k and theirp™-th rootsa’, b, ¢, d" € k (sincek
is algebraically closed).
In particular, a generating elementc K, is in E*/k* N O (and is the
minimal positive power of a generator it contained inE* /k* N Mt*). This

implies the third property: the generating element&df arep™-th powers
of generators of. O

LEMMA 16.2 — The isomorphism¥* : L;/I* — K} /k* induces isomor-
phisms of multiplicative groups

U ()1 — k(x)" /K,
wherel(t), resp.k(x) are algebraically closed 1-dimensional subfieldd.in

resp. K, inducing a bijection on (the images of) generating elements of the
corresponding fields.

Proof. — Forelements of(t)*/l*, resp.k(z)*/k*, we have a Galois-theoretic
notion of divisorial “support”. This characterizes elements of minimal, by in-
clusion, divisorial support. These elements have also minimal suppdt} on
and hence their support @ consists of two points. Thus they are powers
of the images of generating elements:in:). Among all elements with fixed
minimal divisorial support we distinguished the primitive elements (with re-
spect to multiplication). These primitive elements are generating elements
of L,, resp. K, andc¥* establishes a bijection on (imagesii/I*, resp.

K /k*, of) generating elements. ]

COROLLARY 16.3 — The isomorphismaV* : Li/l* — K7 /k* identifies
primary lines of the corresponding projective structures.

Proof. — By Corollary 15.7we can Galois-theoretically distinguish zeroes
and poles of elements ih}/I* and K} /k*. By Lemmal6.2 if [(¢), resp.
k(x), is a normally closed 1-dimensional subfield/i, resp. K, then the
restriction

U ()1 — k(x)" K
induces a bijection on (the images of) generating elements which have the
same poles. The set of elementd @}, resp. k(z), with the same pole is a
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primary line inP,(L, ), resp.Px(K7). In particularc¥* identifies the primary
lines in the projective structures ovit*. ]

17. Proof
In this section we prove our main theorem: if
(k. Ek) = (91, 1),

whereL is a function field over an algebraic closure of a finite field of char-
acteristic#£ /, thenK is a purely inseparable extension lof Moreover, for
somec € Z, ¢¥ is induced by an isomorphism of the perfect closure ok’
with the perfect closure of and the pairc, ) is unique up to

(e, U) = (p"c, (x> 2" o W).

Step 1.We have a nhondegenerate pairing
Gi x K* — Zy(1).
This induces the dual isomorphism

Step 2.In Sectionsd-9 we characterize intrinsically the inertia and decom-
position groups of divisorial valuations:

1, C D) CGy:

every liftable subgroup € ¢V C Y contains an inertia element of a divi-
sorial valuation (which is also contained in at least one otter X ). The
corresponding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).

By assumption, the isomorphistnof Galois groups induces a bijection on
the sets of maximal topologically noncyclic liftable subgroups. This gives a
bijection of sets of divisorial valuations of the corresponding fields

v o DVK — DVL,
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and induces a canonical isomorphism of Galois groups of the residue fields
\Ijl/ : DIC/L/IZC/L - gg{u - g-%’\l'(u)’
forall v € DVyg.

Step 3.For everyr € DVy the isomorphisml,, defines a canonical iso-
morphism of inertia subgroups

\IJV : gg{u g%\ll(u)

\Iju,w : Ig) _— I\(Il,y(w)

of divisorial valuations of the corresponding residue fields: points on smooth
models - curves - of these fields (see Proposifiér. In practical terms,

this establishes a bijection on the sets of all curves, and all points on these
curves, on all models ok, resp. L. This bijection does not change whén

is multiplied by a constant € Z; and under purely inseparable extensions of
KorlL.

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemmal0.4and Remark0.5.

Step 5.For f € K* we have two notions of supporstuppK(f‘) (intrinsic)
andsupr(f) (depending on a modé{) and two notions of finitenesg‘:: is
nontrivial on at most finitely many nonrational divisorial valuatiensesp. f

has finite divisorial support on a model. We defifed(K) ¢ K* as the sub-
group of elements satisfying the first notion of finiteness, &g (K) C K*

as the subgroup of elements satisfying the second notion (this subgroup does
not depend on the choice of a modélof K). By Step 4, the characterization

of FS(K) is Galois-theoretic and we obtain an isomorphisms
U . FS(L) — FS(K).

Step 6.1f some (any) model of K contains only finitely many rational
curves therF S(K) = FSx(K). In general, it may happen that thé-image
of someg € L*/I* has an “infinite rational tail” on some (every) modelof
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px (U (9)) = prcae(*(9)) + D ;€
j>1
where C; are irreducible rational curves aki. In Lemmal3.6 we show
that U*-images of many elements éf /I* C FS(L) have finite support on
every modelX of K, and vice versa. In particular, we obtain a canonical
iIsomorphism
v . fSy(L) — fSX(K>,

whereY is a model ofL and.X a model of K. Combining the exact sequence
(13.1) with Lemmal2.3we obtain a canonical isomorphism

U LR T — Kk ® 7.

Step 7.For every pair of elementg, j € FSx(K) satisfying

~

— suppg (f) Nsuppg () = 0;
—o,(f,9) =1forallv € DV

there exists a subfiel# = k(C) c K such thatf,j € E* (Proposi-

tion 15.1). This gives canonical isomorphisms between completions of mul-
tiplicative groups of normally closed 1-dimensional subfield&iandL, in-
sideK*/k* ® Z,. This isomorphism preserves the genus of the corresponding
curves.

Step 8 Propositionl4.lidentifiesE* /k* inside £*, up to conformal equiv-
alence with respect to multiplication by elementZin More precisely, there
existanc € Z;,anz € K*\ k*and ay € L* \ [* such that

c WE L () 1 — k() K

Is an isomorphism of multiplicative groups of subfieldsfofresp. L.

Step 9LetM* = cV*(L*/I*)NK*/k*. By Propositior8.12, we have finite
purely inseparable extensiohs/ K, and L/ L, such thatht* = K} /k* and
M* = cU*(L3/1*), as a multiplicative group. ThuSit* carries two structures
of an abstract projective space compatible with the multiplicative structure
(see Examplé.5), induced from the additive structure éfi, resp.L;.
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Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure oft* consisting of primary lines (see Lemmas8 and
Lemma4.9).

Step 11.Corollary 16.3 shows that the mapVy* identifies primary lines
of these two structures. This defines a unique projective structufBign
compatible with multiplication. It follows that¥* induces an isomorphism
of fields

LDl ~K CK,
and of perfect closures df and K. This concludes the proof of Theorein
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