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Introduction

We fix two distinct primesp and`. Let k = F̄p be an algebraic closure of
the finite fieldFp. LetX be an algebraic variety defined overk andK = k(X)
its function field. LetGaK be the abelianization of the pro-`-quotientGK of the
absolute Galois group ofK. Under our assumptions onk, GaK is a torsion-
freeZ`-module. LetGcK be its canonical central extension - the second lower
central series quotient ofGK . It determines the following structure: afan
ΣK of distinguished (primitive) subgroups ofGaK which are finite rankZ`-
modules. A topologically noncyclic subgroupσ ∈ ΣK iff

– σ lifts to an abelian subgroup ofGcK ;
– σ is maximal: there are no abelian subgroupsσ′ ⊂ GaK which lift to an

abelian subgroup ofGcK and containσ as a proper subgroup.

THEOREM 1. — LetK andL be function fields over algebraic closures of
finite fields of characteristic6= `. Assume thatK = k(X) is a function field
of a surfaceX/k and that there exists an isomorphism

Ψ = ΨK,L : GaK ' GaL
of abelian pro-̀-groups inducing a bijection of sets

ΣK = ΣL.

Then, for somec ∈ Z∗` , cΨ is induced by an isomorphism̄Ψ of the perfect
closure ofK with the perfect closure ofL; the pair (c, Ψ̄) is unique up to

(c, Ψ̄) 7→ (pnc, (x 7→ xp
n ◦ Ψ̄)).

We implement the program outlined in [1] and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (see [9], [8],[5]).

Acknowledgments. Both authors were partially supported by the NSF. The
second author was employed by the Clay Mathematics Institute. We are grate-
ful to Laurent Lafforgue and Barry Mazur for their interest and the referee for
many useful remarks. Comments by Pierre Deligne were of tremendous help.
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2. Overview

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let GaK be the pro-̀-quotient of the abelianization

GK/[GK ,GK ],

of the absolute Galois groupGK = Gal(K̄/K) of K, ` 6= char(k). By
Kummer theory,GaK determines the pro-`-completionK̂∗ of the multiplicative
groupK∗.

A Galois-theoretic characterization of the fieldK involves the recognition
of the subgroupK∗/k∗ ⊂ K̂∗, and of the canonical projective structure, the
projectivization of theadditivegroupK, considered as a vector space overk.
The necessary information is encoded inGcK , the maximal pro-̀-quotient of

GK/[[GK ,GK ],GK ].

Our main Galois-theoretic object is a pair(GaK ,ΣK), where thefan ΣK is
the set of all maximal (by inclusion) topologically noncyclic subgroups whose
set-theoretic preimage inGcK is an abelian group.

Theorem1 states that if for two function fieldsK = k(X), L = l(Y ),
whereX/k is an algebraic surface,Y/l an algebraic variety,k andl are alge-
braic closures of finite fields of characteristic6= `, there is an isomorphism

Ψ : (GaK ,ΣK) → (GaL,ΣL)

thenk ' l, Y is a surface andΨ induces an isomorphism between perfect
closuresLperf andKperf of L andK respectively, and this isomorphism is
unique up to natural transformations (Frobenius).

Thus the existence of an isomorphism between Galois data implies thatL is
isomorphic to a finite purely inseparable extension ofK and vice versa. Note
that the pair(GaK ,ΣK) has a conformal automorphismγ 7→ cγ with c ∈ Z∗` .
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At the same time, the perfect fieldKperf has Frobenius automorphismsFr

Kperf → Kperf

x 7→ xp
n
,

for n ∈ Z. Our main theorem implies the existence of a canonical isomor-
phism

Aut((GaK ,ΣK))/Z∗` ' Aut(Kperf )/〈Fr〉.

Define a subfanΣdiv
K ⊂ ΣK as the set of those maximal liftable subgroups

which have nontrivial intersection with at least one other subgroup inΣK .
Note thatΨ(Σdiv

K ) = Σdiv
L . There is a geometric reason to distinguishΣdiv

K .
Let K be the function field of a surfaceX over k, D an irreducible divisor
onX andν = νD the corresponding nonarchimedean divisorial valuation. Its
abelian decomposition groupDa

ν ⊂ GaK is a (noncanonical) direct product of
the inertia subgroupIaν ' Z` and the groupGak(D) of the fieldk(D). Now a
subgroupσ ⊂ Da

ν of Z`-rank2 is liftable if and only if it containsIaν . Thus
Σdiv
K contains all liftable subgroups ofZ`-rank2 which are contained in groups

Da
ν .

The first important result says thatΣdiv
K exactly coincides with the set of

all liftable subgroups ofZ`-rank2 contained in the groupsDa
ν , for different

ν = νD. This gives an purely group-theoretic description of the groupsDa
ν :

the nontrivial intersection of two liftable groupsσ, σ′ is alwaysIaν , for some
divisorial valuationν = νD, andDa

ν “centralizes”Iaν , it consists of all those
elements inGaK which commute withIaν , after lifting toGcK .

The proof is based on Kummer theory and the interpretation ofGaK as a
space of special (logarithmic)Z`-valued maps on the infinite-dimensional
projective spacePk(K) = K∗/k∗ over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results forK = F̄q(X) are contained in Section5.
The case of arbitrary algebraically closed ground fieldsk is treated in [3],[2].

At this stage we characterized all pairsDa
νD
, IaνD insideGaK , or, vaguely

speaking, we recovered “all curves” on all modelsX of K. Moreover, we
know thatY is also a surface over some fieldl and thatΨ induces a canonical
isomorphism between the set of all “curves” on all modelsX of K and the
set of all “curves” on all models ofL.
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Next we recover the “points” onD, as inertia groupsIaw ⊂ Gak(D), using
various subgroupsIaνD′ as follows: the image ofIaw under any homomorphism
of GaK to a finite group, which is trivial onIaνD , coincides with the image of
some divisorialIaνD′ , which depends on the homomorphism (see Section10).
Conversely, for anyγ ∈ Da

νD
/IaνD \I

a
w, for some divisorial valuation onk(D)

(a point), there exists such a homomorphism with the property that the image
of γ is not contained in the image of any inertia subgroupIaνD′ .

Now we can recover the genus ofD and distinguish the set of divisorial
valuations ofK which on some model ofK are represented by curves of
genus> 0. Note that these valuations have 1-dimensional centers onevery
modelof K.

At this stage we conclude thatΨ induces a bijection between the sets of all
curves on all models ofK andL respectively. This bijection preserves the
genus of the curves.

We switch our attention to the dual spaceK̂∗ of GaK and the dual isomor-
phismΨ∗ : L̂∗ → K̂∗. Our goal is to show first thatΨ∗ induces a natural
isomorphismΨ∗ : L∗/l∗ ⊗ Z` → K∗/k∗ ⊗ Z`.

Elements ofK̂∗ can be thought of as infinite products of elementsf `
i

i ∈ K∗,
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modelX of the field with
Z`-adic coefficients which converge to0 in the`-adic topology. We introduce
the subgroupFS(K) ⊂ K̂∗ consisting of elements whose support contains
only finitely many nonrational divisors (characterized above). Given a model
X of K we can also considerFSX(K) ⊂ K̂∗ - the subgroup of elements
with finite support onX. This subgroup does not depend on the choice ofX
and is very close toK∗/k∗ ⊗ Z`. We need to show thatΨ∗ induces canonical
isomorphisms:

– Ψ∗ : FS(L) → FS(K) and
– Ψ∗ : FSY (L) → FSX(K), (Y is a model ofL andX a model ofK).

We haveFS(K) = FSX(K) = K∗/k∗ ⊗ Z`, providedPic0(X) = 1 and
X contains only finite number of rational curves. In this case the claimed
isomorphisms follow easily from the previous step.

In general, in order to distinguishFSX(K) Galois-theoretically we use
special properties of the elementf s, f ∈ K∗/k∗, s ∈ Z`. Namely, bothf s

and(f + a)/(f + b)s
′
, for a, b ∈ k∗, have the property that the restriction of
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f s is equal to1 on any component of the divisor of(f + a)/(f + b)s
′

and
vice versa. We can formalize this property using an`-adic analog of a symbol
(f, g) mod `n ∈ K2(K)/`n. Note that(f, g) = 0 mod `n for anyn ∈ N,
if f, g belong to the same one-dimensional subfield ofK. In particular, for
anyf s ∈ K \ k there is an elementg which is not a power off and such that
(f, g) = 0 (we can takeg = f+1). This imposes a strong condition onf since
for a generic element in̂K∗ the “commutator” off consists of̀ -adic pow-
ers off only. We show that special elements ofK∗/(K∗)` have the property
that their arbitrary lifts intoFS(K) ⊂ K̂∗ with big “commutator” are au-
tomatically contained inFSX(K). These elements generateK∗/(K∗)` and
have a simple geometric characterization, which allows to obtain the claimed
isomorphisms.

The groupFSY (L) (FSX(K) respectively) is equal toL∗/l∗ ⊗ Z` (resp.,
K∗/k∗ ⊗ Z`) modulo a subgroupT`(K) ∈ K̂∗ consisting of elements with
trivial `-adic divisors. The groupT`(K) is dual to the connected component of
the Picard group and sinceΨ∗ : T`(L) → T`(K) is a canonical isomorphism
we obtain the desired isomorphism:

Ψ∗ : L∗/l∗ ⊗ Z` → K∗/k∗ ⊗ Z`.

The next step involves a normalization ofΨ∗. InsideK∗/k∗⊗Z` we cannot
Galois-theoretically distinguishΨ∗(L∗/l∗) ⊗ Z(`) from c · Ψ∗(L∗/l∗) ⊗ Z(`),
for c ∈ Z∗` . However, this conformal invariance is the only freedom there is.
If we fix the values off ∈ L∗/l∗ ⊗ Z` on one (arbitrary) irreducible divisor
on a modelY of L then the image ofL∗/l∗⊗Z(`) is naturally identified inside
K∗/k∗ ⊗ Z`. Thus, after multiplication byc ∈ Z∗` , we can assume that

cΨ∗ : L∗/l∗ ⊗ Z(`)
∼−→ K∗/k∗ ⊗ Z(`).

Now we haveK∗/k∗ andcΨ∗(L∗/l∗) insideK∗/k∗⊗Z(`). We also know that
subgroups generated by elementsf, g with pairwise trivial symbol(f, g) = 0
correspond to one-dimensional subfields inK, respectivelyL. Most one-
dimensional subfields inK are isomorphic tok(x), for somex, and Ga-
lois data allow us to recognize these subfields. Hence ifk(x) ⊂ K then
k(x)∗/k∗ ⊗ Z(`) = cΨ∗(l∗(t)/l∗)⊗ Z(`) ⊂ K∗/k∗ ⊗ Z(`), for somet ∈ L.
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Next we show that the corresponding groupsk(x)∗/k∗ andcΨ∗(l∗(x)/l∗)
intersect ink(x)∗/(k∗)r = cΨ∗(l∗(x)/(l∗)s) for some rationalr, s. This prop-
erty implies that the intersectioncΨ∗(L∗/l∗) ∩ K∗/k∗ is isomorphic (as a
multiplicative group) toK∗1/k

∗ = cΨ∗(L∗1/l
∗), whereL/L1 andK/K1 are

purely inseparable extensions.

Now we add the projective structure overk, l, respectively. The sets of lines
{P(k ⊕ kx)} and{P(l ⊕ lt)} in K∗/k∗ andL∗/l∗, over allx, t generating
closed subfieldsk(x) ⊂ K and l(t) ⊂ L, are the same. It turns out that
the sets of these lines and their (multiplicative) translations are compatible
with a unique projective structure on the (multiplicative) groupsK∗1/k

∗ and
L∗1/l

∗ - namely the one coming from the field structure. The multiplicative
isomorphismK∗1/k

∗ ' cΨ∗(L∗1/l
∗) extends therefore to a unique additive

isomorphism and hence an isomorphism between fieldscΨ∗ : L1 → K1.
This implies the canonical isomorphismcΨ∗ : Lperf → Kperf and finishes
the proof of the main theorem.

3. Basic algebra and geometry of fields

NOTATIONS 3.1. — Throughout,k is an algebraic closure of the finite field
Fp. andK = k(X) the function field of an algebraic varietyX/k overk (its
model). Its set ofk-rational points is denoted byX(k), the Picard group by
Pic(X) and Ńeron-Severi group byNS(X).

In this paper we use the fact that two-dimensional function fieldsK have
“nice” models: smooth projective surfacesX overk with K = k(X), whose
geometric properties play an important role in the recognition procedure. In
this section we collect some technical results about function fields of curves
and surfaces and their models.

LEMMA 3.2. — LetC/k be a smooth curve andQ ⊂ C(k) a finite set. Then
there exists annQ ∈ N such that for every degree zero divisorD with support
in Q the divisornQD is principal.

Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisorsPic0(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite setQ ⊂ C(k) is finitely
generated.
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LEMMA 3.3. — LetK/K be a purely inseparable extension. Then

– K ⊃ k;
– K/K is a finite extension;
– K = k(X ′) for some algebraic varietyX ′.

DEFINITION 3.4. — We writeE
K ⊂ K for the normal closure of a subfield

E ⊂ K (elements inK which are algebraic overE). We say thatx ∈ K \ k
is generatingif k(x)

K
= k(x).

REMARK 3.5. — If E ⊂ K is 1-dimensional then for allx ∈ E \ k one has

k(x)
K

= E
K

(a finite extension ofE).

LEMMA 3.6. — For any subfieldE ⊂ K there is a sequence

X
πE−→ C ′

ιE−→ C,

where

– πE is rational dominant with irreducible generic fiber;
– ιE is quasi-finite and dominant;
– k(C ′) = E

K
andk(C) = E.

For generatingx ∈ K we write

πx : X → C

for the morphism from Lemma3.6, with k(C) = k(x). For y ∈ K \ k(x)
definedegx(y) (the degree ofy on the generic fiber ofπx) as the degree of the
corresponding surjective map from the generic fiber ofπx underπy.

LEMMA 3.7. — LetK = k(X) be the function field of a surface andx, y ∈
K \ k be such that

degx(y) = min
f∈K\k(x)K

(degx(f))

andk(y)
K

= k(y′) for somey′ ∈ K∗. Theny is generating:k(y) = k(y)
K

.

Proof. — If y is not generating theny = z(y′) for somey′ ∈ K and some
functionz ∈ k(y′)∗ of degree≥ 2. This implies thatdegx(y) ≥ 2 degx(y

′),
contradicting minimality.
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LEMMA 3.8. — LetX be a model ofK containing a rational curveR and
x ∈ K∗ a function such that its restrictionxR to R is defined and such that

k(R) = k(xR). Thenx is generating:k(x)
K

= k(x).

Proof. — The restriction map extends tok(x)
K

and hence is an isomorphism

betweenk(xR) andk(x) = k(x)
K

.

The next proposition characterizes multiplicative groups of fieldsK ⊂ K
such thatK/K is a purely inseparable extension. Notice that for a one-
dimensional fieldk(C) such subfields are always of the formk(C)p

n
, for

somen ∈ N. Thus for any one-dimensional subfieldE ⊂ K there is an
r(E) ∈ N such that the intersection ofK∗ with E∗ consists exactly ofr(E)-
powers of the elements ofE∗. Below we show that this property of intersec-

tion with subfields of the special formk(x) = k(x)
K

already characterizes
multiplicative groups of suchK among multiplicative subgroups ofK∗.

DEFINITION 3.9. — Let K∗ ⊂ K∗ be a (multiplicative) subgroup such that

for any subfieldE = k(x) = k(x)
K
⊂ K there exists anr = r(E) with

the property thatK∗ ∩ E∗ = (E∗)r (r-powers of elements ofE∗). For every
t ∈ E∗ \ k∗ we definer(t) = r(E).

REMARK 3.10. — Note thatr(t) is not defined fort ∈ K∗ \ k∗ iff k(t)
K

is
the function field of a curve of genus≥ 1.

DEFINITION 3.11. — We will say thaty ∈ K∗ is a power if there exist an
x ∈ K∗ and an integern ≥ 2 such thaty = xn.

PROPOSITION3.12. — LetK = k(X) be the function field of a surface and
K∗ ⊂ K∗ a subset such that

(1) K∗ is a multiplicative subgroup ofK∗;

(2) for everyE = k(x) = k(x)
K
⊂ K there exists anr = r(E) ∈ N with

K∗ ∩ E∗ = (E∗)r;

(3) there exists ay ∈ K \ k with r(y) = 1.

ThenK := K∗ ∪ 0 is a field, whose multiplicative group isK∗ andK/K is a
purely inseparable finite extension.
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Proof. — Once we know thatK is a field we can conclude that everyx ∈ K∗,
or some power ofx, is in K∗. Of course, it can only be a power ofp so that
K/K is a purely inseparable extension, of finite degree (by Lemma3.3).

By (3), k ⊂ K. To conclude thatK is a field, it suffices to show that for
everyx ∈ K one hasx + 1 ∈ K (and then use multiplicativity). For every
x ∈ K \ k with r(x) = 1 we haveK∗ ∩ k(x)∗ = k(x)∗ and

x+ κ ∈ K∗, for all κ ∈ k.
In particular, this holds fory.

Considerx ∈ K∗ with r(x) > 1 or not defined. We claim that for some
κ ∈ k

z :=
x+ y + κ

y + κ− 1
∈ K andr(z) = 1.

This implies that

z − 1 = (x+ 1)/(y + κ− 1) ∈ K∗ andx+ 1 ∈ K∗,

(by multiplicativity). We can assume thatK/k(C)(y), wherek(C) = k(x)
K

,
is a finite separable extension. (Otherwise, we can letK be a minimal proper
subfield inK′ ⊂ K containingk(C)(y) and such thatK/K′ is purely insepa-
rable and use the intersection ofK with K′ instead ofK.)

To prove the claim, choose a modelX of K such that both maps

πx : X → C, k(C) = k(x)
K

πy : X → P1 = (y : 1)

are proper morphisms (as in Lemma3.6). Sincex andy are algebraically
independent (r(x) > 1), only finitely many components of the fibers ofπx are
contained in the fibers ofπy and there exists aκ ∈ k such that both fibers

π−1
y (−κ) andπ−1

y (1− κ)

are transversal to the fibers ofπx, since we assume thatK/k(C)(y) is separa-
ble. Note that

div0(y + κ− 1) 6⊂ div(x+ y + κ),

sincey + κ = −1 on div0(y + κ − 1) andx is nonconstant on these fibers
(wherediv0 is the divisor of zeroes). It follows in the first case thatboth

t := (y + κ)/x and z := (x+ y + κ)/(y + κ− 1)

are not powers.
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Note thatt, z are generating elements. Indeed, if we blow up the smooth
point q of transversal intersection{y + κ = 0} ∩ {x = 0} then t restricts
nontrivially toP1

q and similarly

z := (x+ y + κ)/(y + κ− 1) = x+ 1/(y + κ− 1) + 1

restricts nontrivially toP1
q′, whereq′ = {x = −1} ∩ {y = 1− κ}.

Note thatt ⊂ K∗ and since it is not a powerr(t) = 1 and

(1/t) + 1 = (x+ y + κ)/(y + κ) ∈ K.

To show thatz ∈ K observe that bothx, y + κ ∈ K so thatt ∈ K. Therefore,

t+ 1 = (x+ y + κ)/x ∈ K

and, by (1),x+ y+ κ ∈ K. Finally, since(y+ κ− 1) ∈ K we getz ∈ K.

REMARK 3.13. — If assumption (3) is not satisfied then we can take

(K∗)1/r(y)
⋂

K∗,

which satisfies all the conditions of the lemma. Thus in general without the
assumption (3) we haveK = (K′)r, whereK/K′ is purely inseparable and
r ∈ N.

In our analysis of Galois groups we need to keep track of rational curves
on a surface.

LEMMA 3.14. — LetX be a surface overk. There three mutually disjoint
possibilities:

(1) Pic0(X) = 0;
(2) Pic0(X) 6= 0 andX contains finitely many rational curves;
(3) Pic0(X) 6= 0 and, after a finite purely inseparable extension of the

function fieldk(X), the corresponding surface admits a fibration over a
curveC of genusg(C) ≥ 1 with generic fiber a rational curve.

Proof. — Follows from the classification of surfaces. Indeed, ifX is smooth
andPic0(X) 6= 0 then there is a nontrivial map into the Albanese variety of
X, and all rational curves lie in fibers. The generic fiber of this map is either
rational or there are only finitely many rational curves onX.
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LetX be a surface overk andAlb(X) its Albanese variety. In our terminol-
ogy,Alb(X) is a principal homogeneous space for an abelian varietyA0(X),
with dimA0(X) = dim Alb(X). In particular, there is a natural canonical
mapX → Alb(X).

LEMMA 3.15. — LetD := {Dj}j∈J be a finite set of irreducible divisors
onX. Assume that there is anf ∈ k(X)∗ whose divisor is supported inD.
LetB ⊂ A0(X) be the smallest abelian subvariety such that the image ofDj

under the mapα : Alb(X) → A := Alb(X)/B is a point, for allj ∈ J .
Assume thatB 6= A0(X). Then the image ofX in A is a curveC andA is

isomorphic to the JacobianJac(C) of degree 1 zero-cycles onC.

Proof. — First of all,dimα(X) ≥ 1: the surfaceX is connected andα(X)
generatesA. Further,α(X) is not a surface: otherwise ifX ′ → α(X) is the
normalization, then there is a mapµ : X → X ′ and the image of{Dj}j∈J is
a finite set of points onX ′. The intersection matrix of the set of irreducible
components in the divisorial support ofµ−1(x′), for anyx′ ∈ X ′, is negative
definite, contradicting the assumption that there is a function supported inD.

LetC := α(X) ⊂ A, we havek(C) ⊂ K. LetC ′ be a curve with function

field k(C ′) = k(C)
K
⊂ K. The mapC ′ → C is finite. The mapα : X → A

factors through the JacobianJac(C ′): we have

X
αC′ // Jac(C ′)

��
A

The image of{Dj}j∈J underαC′ is a finite set of points inJac(C ′). We
have surjectionsJac(C ′) → Jac(C) → A and a canonical mapAlb(X) →
Jac(C ′). ThenB = Ker(αC′) andC ′ = C.

REMARK 3.16. — Let X ′ be a model of a purely inseparable extension of
K = k(X) and assume thatX ′ admits a dominant map onto a curveC of
genus≥ 1. ThenX also admits a dominant map ontoC. In particular,
Lemma3.15describes all such maps.
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4. Projective structures

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition in [7].

DEFINITION 4.1. — A projective structureis a pair (S,L) whereS is a
(nonempty) set (of points) andL a collection of subsetsl ⊂ S (lines) such
that

P1 there exist ans ∈ S and anl ∈ L such thats /∈ l;
P2 for everyl ∈ L there exist at least three distincts, s′, s′′ ∈ l;
P3 for every pair of distincts, s′ ∈ S there exists exactly one

l = l(s, s′) ∈ L

such thats, s′ ∈ l;
P4 for every quadruple of pairwise distincts, s′, t, t′ ∈ S one has

l(s, s′) ∩ l(t, t′) 6= ∅ ⇒ l(s, t) ∩ l(s′, t′) 6= ∅.

For s ∈ S andS ′ ⊂ S define thejoin

s ∨ S ′ := {s′′ ∈ S | s′′ ∈ l(s, s′) for somes′ ∈ S ′}.
For any finite set of pointss1, . . . , sn define

〈s1, . . . sn〉 := s1 ∨ 〈s2 ∨ · · · ∨ sn〉
(this does not depend on the order of the points). Write〈S ′〉 for the join of
a finite setS ′ ⊂ S. A finite setS ′ ⊂ S of pairwise distinct points is called
independentif for all s′ ∈ S ′ one has

s′ /∈ 〈S ′ \ {s′}〉.
A set of pointsS ′ ⊂ S spansa set of pointsT ⊂ S if

– 〈S ′′〉 ⊂ T for every finite setS ′′ ⊂ S ′;
– for every t ∈ T there exists a finite set of pointsSt ⊂ S ′ such that
t ∈ 〈St〉.

A setT ⊂ S spanned by an independent setS ′ of points of cardinality≥ 1 is
called a projectivesubspaceof dimension|S ′| − 1.

The axioms imply that projective subspaces of a given projective spaceS
form a lattice and that the dimension function is well defined, i.e.,

dim(T ∪ T ′) + dim(T ∩ T ′) = dim(T ) + dim(T ′)

for all pairs of projective subspacesT, T ′ ⊂ S. Here we putdim(∅) := −1.
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DEFINITION 4.2. — A projective structure(S,L) satisfiesPappus’ axiomif

PA for all 2-dimensional subspaces and every configuration of six points
and lines in these subspaces as below

the intersections are collinear.

The main theorem of abstract projective geometry is:

THEOREM 4.3. — Let (S,L) be a projective structure of dimensionn ≥ 2
which satisfies Pappus’ axiom. Then there exists a vector spaceV over a field
L and an isomorphism

σ : PL(V )
∼−→ S.

Moreover, for any two such triples(V, L, σ) and (V ′, L′, σ′) there is an iso-
morphism

V/L
∼−→ V ′/L′

compatible withσ, σ′ and unique up to homothetyv 7→ λv, λ ∈ L∗.

Proof. — See [7], Chapter 6.

DEFINITION 4.4. — A morphism of projective structures

ρ : (S,L) → (S ′,L′)

is an injection of setsρ : S ↪→ S ′ such thatρ(l) ∈ L′ for all l ∈ L.

EXAMPLE 4.5. — Let k be a field andPnk the usual projective space overk
of dimensionn ≥ 2. ThenPnk carries a projective structure: the set of lines is
the set of usual projective linesP1

k ⊂ Pnk .
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LetK/k be an extension of fields (not necessarily finite). Then the set

S := Pk(K) = (K \ 0)/k∗

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the groupK∗/k∗ preserves this structure.

THEOREM 4.6. — LetK/L andK ′/L′ be field extensions of degree≥ 3 and

φ̄ : S = PL(K) → PL′(K ′) = S ′

a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then

L ' L′ and K ' K ′.

Proof. — ConsiderV := K as a vector space overL. By Theorem4.3, toS
there are canonically attached theL-algebraEnd(V ) andGL(V ) ⊂ End(V ),
as the set of elements preserving the collineations of the projective spaceS
(because the action of homotheties onEnd(V ) is trivial). This allows to re-
cover the fieldK as the subfield of theL-algebraEnd(V ) given by

{0} ∪ {x ∈ GL(V ) ⊂ End(V ) |x induces a group-translation onS}.

DEFINITION 4.7. — LetK/k be the function field of an algebraic varietyX
of dimension≥ 2 andS = Pk(K) the associated projective structure from
Example4.5. The lines passing through1 and a generating element ofK (see
Definition3.4) and their multiplicative translations by elements inK∗/k∗ will
be calledprimary.

LEMMA 4.8. — LetK = k(X) be the function field of a surface. For every
line l = l(1, x) there exists aP2 ⊂ Pk(K) such that all other lines in thisP2

are primary.

Proof. — Choose a smooth modelX of K and two pointsq1, q2 ∈ X such
thatx(q1) = 0, x(q2) = 1. Blow up q1, q2 and letP1

i be the corresponding
exceptional curves. Lety ∈ K∗ be an element restricting to a generator of
k(P1

i ). The restriction map extends to the normal closurek(y) ⊂ K. Hence
the normal closurek(y) ⊂ K coincides withk(y).

To prove that every linel 6= l(1, x) ⊂ P2 = Pk(k ⊕ kx ⊕ ky) is primary
we need to show that(y + a + bx)/(y + c + dx) is generating, provided
(a, b) 6= (c, d). If a 6= c then the restriction of(y+a+bx)/(y+c+dx) to P1

q1
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is equal to(y+a)/(y+c) and hence is a generator ofk(P1
q1

). By the argument
of the previous lemma,(y+a+bx)/(y+c+dx) is generating. Ifa = c, b 6= d
then(y+ a+ bx)/(y+ c+ dx) onP1

q2
coincides with(y+ a+ b)/(y+ c+ d)

and is also generating sincea+ b 6= c+ d, by assumption.

LEMMA 4.9. — Assume that a setS has two projective structures(S,L1)
and(S,L2), both of dimension≥ 2, and that for someP2

1 (in the first projec-
tive structure) every linel1 ∈ (L1 ∩ P2

1), except possibly one line, is also a
line in the second structure. Then thesetP2

1 is a projective plane in the second
structure(S,L2), projectively isomorphic toP2

1 ∈ (S,L1).

Proof. — Let P̂2
1 be the set of all lines inP2

1 andP̂2
1 \ l the set of lines which

remain projective lines inP2
2. Let l1, l2, l3 be three lines from̂P2

1 \ l which
don’t have a common intersection point. Thenl1, l2, l3 lie in the same plane
P2

2. Since every other linel′ ∈ P̂2
1 \ l intersectsl1, l2, l3 thenl′ ⊂ P2

2. Thus all
lines fromP̂2

1 \ l are inP2
2 which contains all the points ofP2

1.
They are isomorphic since it is an isomorphism between lines and every

point, except possibly one point, is an intersection of two lines inP̂2
1 \ l. Since

P̂2
2 coincides withP̂2

1 outside of one point they coincide.

COROLLARY 4.10. — Let K/k andK ′/k′ be function fields of algebraic
surfaces

φ̄ : S = Pk(K) → S ′ = Pk′(K ′)
an isomorphism of (multiplicative) abelian groups inducing a bijection on the
set of primary lines in the corresponding projective structures. Thenφ̄ is an
isomorphism of projective structures and

k ' k′ and K ' K ′.

Proof. — By Lemma4.8and Lemma4.9 φ̄ induces an isomorphism of pro-
jective structures. It remains to apply Theorem4.6.

5. Flag maps

NOTATIONS 5.1. — We fix two distinct prime numbers̀andp. Let

– F = Fq be a finite field withq = pn andF∗ its multiplicative group;
– VectF - the set of finite-dimensionalF-vector spaces;
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– A a vector space overF andP(A) = PF(A) = (A \ 0)/F∗ its projec-
tivization;

– M(A) the set of maps fromA \ {0} to Z`;
– for µ ∈M(A) andB ⊂ A anF-linear subspace,µB the restriction ofµ

toB \ {0}.

DEFINITION 5.2. — A mapµ ∈ M(A) will be calledF∗-invariant if for all
a ∈ A \ {0} and allκ ∈ F∗ one has

µ(κ · a) = µ(a).

DEFINITION 5.3. — A mapµ onA\{0}, for a (possibly infinite-dimensional)
vector spaceA, will be called anF-flag map, if

– µ is F∗-invariant;
– every finite-dimensionalF-vector spaceB ⊂ A has a flag ofF-subspaces

B = B0 ⊃ B1 ⊃ . . . ⊃ Bd = 0

such thatµB is constant onBn \Bn+1, for all n = 0, . . . , d− 1.

The value ofµ onB = B0 \ B1 is called thegenericvalue ofµ onB; we
denote it byµgen(B). The set ofF-flag maps will be denoted byΦF(A).

EXAMPLE 5.4. — Let K = k(X) be a function field. We can consider it
as a vector space overk or over any of the finite subfieldsF ⊂ k. Let ν be
a nonarchimedean valuation onK andχ : Γν → Z` a homomorphism from
the value group ofν (see Section7). Thenχ ◦ ν ∈ Φk(K).

DEFINITION 5.5. — LetA be anF-algebra (without zero-divisors). A map
µ ∈M(A) will be called logarithmic if

µ(a · a′) = µ(a) + µ(a′), for all a, a′ ∈ A \ 0.

The set of such maps will be denoted byLF(A).

SinceF is torsion, a logarithmic map toZ` is F∗-invariant.

DEFINITION 5.6. — LetA be anF-vector space. Two mapsµ, µ′ ∈ M(A)
will be called ac-pair (commuting pair) if for all two-dimensionalF-subspaces
B ⊂ A there exist constantsλ, λ′, λ′′ ∈ Z` (depending onB) with (λ, λ′) 6=
(0, 0) such that for allb ∈ B \ 0 one has

λµB(b) + λ′µ′B(b) = λ′′.
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THEOREM 5.7. — Let F ⊂ k be a finite field with#F ≥ 11, andµ, µ′ ∈
LF(K) nonproportional maps forming ac-pair. Then there exists a pair
(λ, λ′) ∈ Z2

` \ (0, 0) such thatλµ+ λ′µ′ ∈ ΦF(K).

Proof. — This is a special case of the main theorem of [3], where it is proved
over general ground fieldsk. However, the case whenk = F̄q is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

– characterization of flag maps by their restriction to 2-dimensionalF-
linear subspaces, for#F ≥ 11 (see Lemma5.16);

– reduction to linear spaces over prime fields, resp.F4, see Lemma5.18:
if µ /∈ ΦF′(A), for a finite fieldF′, andµ is F∗-invariant with respect to a
large finite extensionF/F′ then there is a subgroupC ' F2

p ⊂ A, (resp.
F2

4), so thatµC /∈ ΦFp(C).
– reduction to dimension 3: if the rank twoZ`-moduleσ := 〈µ, µ′〉 does

not contain a flag map then there is a subgroupB ' F3
p ⊂ A (resp.

F3
4), such that for any nontrivialµ′′ ∈ σ there is a proper subspaceC =
Cµ′′ ( B whereµ′′C /∈ ΦFp(C) (this step uses the logarithmic property);

– geometry of collineations onP2 = PF(B) over prime fieldsF = Fp
(resp.F4): such subgroupsB cannot exist. This shows the existence of
the desired flag map onA.

LEMMA 5.8. — If A ∈ VectF andµ ∈ ΦF(A) then there exists a canonical
F-flag (An)n=0,...,d such that

µgen(An) 6= µgen(An+1),

for all n = 0, . . . , d− 1.

Proof. — PutA0 = A and letAn+1 be the additive subgroup ofAn spanned
by a with µ(a) 6= µgen(An). Sinceµ is F∗-invariant,An+1 is anF-vector
space. Indeed, fora, a′ ∈ An+1 andκ, κ′ ∈ F∗ write

a =
∑
i∈I

bi, a′ =
∑
j∈J

b′j
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with finite I, J . Since

µ(bi) 6= µgen(An), µ(b′j) 6= µgen(An),

for all i ∈ I, j ∈ J , we have

µ(κbi) = µ(bi) 6= µgen(An) and µ(κ′b′j) = µ(b′j) 6= µgen(An)

so thatκa+ κ′a′ ∈ An+1.

REMARK 5.9. — Since a flag mapµ is F∗-invariant, it defines a unique map
on (A \ {0})/F∗ = PF(A). Conversely, a mapµ on PF(A) gives rise to an
F∗-invariant maps onA \ {0}. An F-flag map onA ∈ VectF defines a flag by
projective subspaces onPF(A). We denote bygenericelements ofPF(A) the
image of generic elements fromA.

NOTATIONS 5.10. — We denote bŷP(A) = P̂F(A) the set of codimension
one projectiveF-subspaces ofP(A).

DEFINITION 5.11. — Assume thatA ∈ VectF, and for all codimension one
F-subspacesB ⊂ A one hasµB ∈ ΦF(B). Defineµ̂ by

P̂(A) → Z`

B 7→ µ̂(P(B)) := µgen(B).

LEMMA 5.12. — If A ∈ VectF andµ ∈ ΦF(A) then either̂µ is constant on
P̂(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flag(An)n=0,...,d. If codim(A1) ≥ 2 then
for everyP(B) ∈ P̂(A) one hasµgen(B) = µgen(A) andµ̂ is constant. Other-
wise,µgen(B) = µgen(A), on anyB 6= A1 (and differs atP(A1) ∈ P̂(A)).

LEMMA 5.13. — Let F = Fq be a finite field withq ≥ 11 and Pm = PmF ,
m ≥ 2 a projective space overF. For any four projective hyperplanes and
any ten projective subspaces of codimension at least two (all defined overF)
there exists a line (overF) not contained in any of the above hyperplanes and
not intersecting any of the ten codimension two subspaces.
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Proof. — One has

#Gr(2,m)(F) ≤ #Gr(2,m+ 1)(F)/q2.

The number ofF-lines intersecting a subspace of codimension two inPmF is
bounded by#Gr(2,m+ 1)(F)/q2. Our claim holds forq ≥ 11.

LEMMA 5.14. — Let F = Fq be a finite field withq ≥ 11, A ∈ VectF
andµ ∈ M(A) an F∗-invariant map. Assume that there existF-subspaces
Bi ⊂ A, codim(Bi) = 1, for i = 1, . . . , 4 such that

(1) either#{µgen(Bi)} ≥ 3 or
(2) µgen(B1) = µgen(B2) 6= µgen(B3) = µgen(B4).

Then there exists anF-subspaceC ⊂ A, dimF(C) = 2 such thatµC /∈ ΦF(C).

Proof. — By Lemma5.13, there exists aP1 = P(C) ∈ P(A) such that its
intersection points withP(Bi) are pairwise distinct and generic in the corre-
spondingP(Bi) (the nongeneric points ofP(Bi) are contained in 4 subspaces
in codimF ≥ 2, the intersections ofBi give rise to 6 more subspaces). Then
eitherµ takes at least three distinct values onP(C) or has distinct values in at
least two pairs of points. In both casesµ /∈ ΦF(C).

COROLLARY 5.15. — Assume thatµB ∈ ΦF(B) for all P(B) ∈ P̂(A) (and
#F ≥ 11). Thenµ̂ is constant outside of one point.

Proof. — The mapµ̂ takes two different values on̂P(B). By Lemma5.14,
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplanesh1, h2, h3 ∈ P̂(A),
whereµ̂(h1) = µ̂(h2) 6= µ̂(h3) then for any otherh ∈ P̂(A) we haveµ̂(h) =
µ̂(h1) andµ̂ is constant outside ofh3.

LEMMA 5.16. — Let A ∈ VectF, with #F ≥ 11, andµ ∈ M(A) be an
F∗-invariant map such that for every two-dimensionalF-subspaceB ⊂ A,
µB ∈ ΦF(B). Thenµ ∈ ΦF(A).

Proof. — Assume the statement holds ifdim(A) ≤ n − 1. Then µ̂ is de-
fined and, by Corollary5.15, eitherµ̂ is constant on̂P(A) or constant on the
complement to one point.

If µ̂ is constant, then theF-linear envelope of pointsb ∈ A such thatµ(b) 6=
µ̂ has codimension at least two. Indeed, if there is a codimension one subspace
B ⊂ A generated by suchb then by assumptionµ ∈ ΦF(B) andµgen(B) 6= µ̂,
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contradicting the assumption thatµ̂ is constant. Otherwise, putB := A1. By
induction,µ ∈ ΦF(B) and is constant onA \B. Henceµ ∈ ΦF(A).

Assume that̂µ is nonconstant and letB ⊂ A be the unique codimension
one subspace with differingµgen(B). Choose anF-basisb1, . . . , bn−1 in B
such thatµ(bi) = µgen(B). Assume that there is a pointa ∈ A \ B such
that µ(a) 6= the generic value of̂µ and letB′ be the codimension oneF-
subspace spannedb1, . . . , bn−2, a. Thenµgen(B′) 6= the generic value of̂µ,
contradicting the uniqueness ofB. It follows thatµ is constant onA \B.

REMARK 5.17. — Let F/F′ be a finite extension,A ∈ VectF, considered as
an F′-vector space, andµ ∈ ΦF′(A). If µ is F∗-invariant, thenµ ∈ ΦF(A).
Indeed, by the proof of Lemma5.8, the canonicalF′-flag is a flag ofF-vector
spaces. We use this observation to reduce our problem to prime fields (resp.
F4).

LEMMA 5.18. — Let F/F′ be a quadratic extension, with#F′ > 2. Let
A be anF-vector space of dimension 2, considered as anF′-vector space of
dimension 4. Letµ ∈ M(A) be anF∗-invariant map such that for every
F′-subspaceC ⊂ A, dimF′(C) = 2, one hasµC ∈ ΦF′(C). Thenµ ∈ ΦF(A).

Proof. — First assume thatµ takes only two values onA \ {0}, say0, 1,
and thatµ /∈ ΦF(A). SincePF(A) = P1

F there exist elementsa1, a2, a3, a4 ∈
A \ {0} such that the orbitsF∗ · ai do not intersect and

0 = µ(a1) = µ(a2) 6= µ(a3) = µ(a4) = 1.

ThenF∗ · ai = Λi \ {0}, whereΛi is a linear subspace overF′. TheF′-span
Λ12 of two nonzero vectorsx1 ∈ Λ1, x2,∈ Λ2 hasµgen(Λ12) = 0. HenceΛ12

contains at most oneF′-subspace〈b〉 of F′-dimension1 with generic value1.
The union of the spacesΛ12, for different choices ofx1, x2, coversA and

#{b ∈ PF′(A) |µ(b) = 1} ≤ (q + 1)2,

where#F′ = q. Similarly, there are at most(q + 1)2 such nongenericc ∈
PF′(A) with µ(c) = 0. Since#P3(F′) = q3 + q2 + q + 1 > 2(q2 + 2q + 1),
for q > 2, we get a contradiction.

Assume now thatµ takes at least 3 distinct values onA \ {0}, say0, 1, 2,
and that there are two vectorsa1, a2 ⊂ A such that the orbitsF∗ · a1,F∗ · a2

don’t intersect and0 = µ(a1) = µ(a2). Such a configuration must exist (take
two F′-spaces ofF′-dimension two spanned byF∗-orbits; theF′ span of two
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generic vectors in these spaces contains elements whoseµ-value coincides
with the value ofµ on one of the two orbits). The modified map, given by

µ̃(a) :=

{
0 if µ(a) = 0
1 otherwise

,

satisfies the conditions of the Lemma, and by the above argumentµ̃ ∈ ΦF(A).
In particular,µ̃ = 0 outside oneF∗-orbit onA \ {0}. Sinceµ is F∗-invariant it
follows thatµ takes two values, and not three as we assumed. Contradiction.

LEMMA 5.19. — LetF′ = Fp (resp.F4), andF/F′ be an extension of degree
divisible by 4. ConsiderK = k(X) as anF-vector space and letµ, µ′ ∈
LF(K) be ac-pair such that the linear spanσ = 〈µ, µ′, 1〉Z` does not contain
anΦF-map. Then there exist anF′-subspaceB ⊂ K with dimF′(B) = 3, two
distinctF′-subspacesC,C ′ ⊂ B of dimension 2 and maps̃µ, µ̃′ ∈ σ such that

– µ̃C /∈ ΦF′(C) andµ̃C′ is constant;
– µ̃′C′ /∈ ΦF′(C

′) andµ̃′C is constant;

In particular, for every (nonzero) mapµ′′ ∈ σ there exists anF′-subspace
C ′′ ⊂ B, dimF′ C

′′ = 2 with the property thatµ′′C′′ /∈ ΦF′(C
′′).

Proof. — We considerK as anF-vector space as well as anF′-vector space.
Let µ be anF∗-invariant map onK. If µ were anF′-flag map on every two-
dimensionalF′-subspace ofK then, by Lemma5.18, µ would be anF-flag
map on everyF-subspaceB ⊂ K of dimFB = 2. Since#F ≥ 11 we could
apply Lemma5.16and conclude thatµ ∈ ΦF(K).

Thus, sinceµ /∈ ΦF(K), there is anF′-subspaceC ⊂ K, dimF′(C) = 2
such thatµC /∈ ΦF′(C). If µ′C is constant, put̃µ′ := µ. Otherwise, using the
c-pair property onC we find constantsdC , d′C , d

′′
C , with d′C 6= 0, such that

dCµ+ d′Cµ
′
C = d′′C and putµ̃′ = µ′ − d′′C − dCµ

d′C
.

Thenµ̃′C = 0. Since the linear combinatioñµ′ is not a flag map, there exists
a C ′, dimF′(C

′) = 2, whereµ̃′ /∈ ΦF′(C
′). If µC′ is constant, put̃µ := µ.

Otherwise, using thec-pair property onC ′ we find constantsdC′ , d′C′ , d
′′
C′,

with d′C′ 6= 0, such that

dC′µ+ d′C′µ
′
C′ = d′′C′ and putµ̃ = µ− d′′C′ − d′C′µ̃

′

dC′
.
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Thenµ̃C′ = 0 andµ̃C /∈ ΦF′(C) (sinceµ̃′C is constant). Now put

B := C +
c

c′
· C ′,

for some nonzeroc ∈ C andc′ ∈ C ′. ThendimF′(B) = 3, the maps̃µB, µ̃′B
are linearly independent, and they satisfy the required conditions. Fors 6= 0,
we havesµ̃ + s′µ̃′ /∈ ΦF′(C). Otherwise,sµ̃ + s′µ̃′ /∈ ΦF′(

c
c′
· C ′). Note that

the logarithmic property of the maps is used to reduce to dimension 3.

A detailed analysis ofc-pairs on projective planes as above shows that such
planes cannot exist. This will complete the proof of the main theorem.

LEMMA 5.20 (Lemma 4.3.2 in [3]). — LetV ⊂ Z2
` be such that for any two

pairs of distinct points the affine line through one pair and the affine line
through the other have a common point and that this point of intersection is
contained inV . ThenV is contained in a line union one point.

Proof. — Otherwise,V contains four points in general position. EmbedZ2
`

into P2(Q`), choose coordinates for these four points

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and(1 : 1 : 1)

and closeV for the operation

x, y, z, t 7→ l(x, y) ∩ l(z, t), when x 6= y, z 6= t, l(x, y) 6= l(z, t).

The closureV̄ of V satisfies the axioms of a projective plane (see Defini-
tion 4.1). For example, to verify that any “line” in̄V contains at least three
points it suffices to pick one of the four initial points not on this line and to
draw lines through this point and the remaining three points in the initial set.

By the fundamental theorem of projective geometry,V̄ = P2(Q). On the
other hand,P2(Q) is dense inP2(Q`). In particular, it cannot be contained in
Z2
` . Contradiction.

COROLLARY 5.21. — LetB = F3 andµ, µ′ ∈ M(B) be ac-pair of F∗-
invariant maps. Then the image ofP(B) under the map

ϕ : P(B) → A2(Z`)
b 7→ (µ(b), µ′(b))

is contained in a union of an affine line and (possibly) one more point.
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Proof. — Thec-pair condition forµ, µ′ implies that the image of everyP1 ⊂
P(B) is contained in an affine line inZ2

` . Next, for any two pairs of distinct
points(a, b), (a′, b′) in ϕ(P(B)) the affine linesl = l(a, b), l′ = l′(a′, b′) in
A2 = Z2

` through these pairs of points must intersect. (Chooseã, b̃, ã′, b̃′ in
the preimages ofa, b, a′, b′; the projective lines̃l, l̃′ ⊂ P(B) = P2 through
these points intersect in somex and, by the first observation,ϕ(x) must lie on
bothl andl′). Now it suffices to apply Lemma5.20.

ASSUMPTION5.22. — We may now assume that

– F = Fp or F4;
– µ, µ′ ∈ LF(A) is ac-pair of linearly independent maps as in Lemma5.19,
– B is as in Lemma5.19: for every two-dimensionalC ′′ ⊂ B there exists

a µ′′ ∈ 〈µ, µ′〉 such thatµ′′C′′ /∈ ΦF(C
′′).

We can exclude the following degenerate cases, which contradict our as-
sumption that no linear combination ofµ, µ′ is a flag map onB:

(1) ϕ(P(B)) is contained in a line; this means thatµ, µ′ are linearly depen-
dent (modulo constants);

(2) ϕ(l) is a point, for somel ⊂ P(B); this implies thatϕ(l) ∈ ϕ(l′), for all
l′ ⊂ P(B) andϕ(P(B)) is contained in a line, contradiction to (1);

(3) ϕ is constant outside one line; here the affine mapZ2
` → Z` projecting

ϕ(l) to one point gives a nontrivial flag map in the span ofµ, µ′.

LEMMA 5.23. — Let l, l′ ⊂ P2 be distinct lines. Letx ∈ P2 be a point such
that ϕ(x) /∈ (ϕ(l) ∪ ϕ(l′)). Then there is a natural projective isomorphism
πx,l′ : l → l′ respecting the level sets ofϕ. Namely, for every pairy1, y2 ∈ l
with ϕ(y1) = ϕ(y2) one has

ϕ(πx,l′(y1)) = ϕ(πx,l′(y2))

(and vice versa). In particular, ifϕ(l) ⊂ ϕ(l′) thenϕ(l) = ϕ(l′).

Proof. — The imagesϕ(l(x, y1)) andϕ(l(x, y2)) span the same affine line
Lx. We haveϕ(l′) 6⊂ Lx. Define πx,l′(yi) := l(x, yi) ∩ l′. By Corol-
lary 5.21, ϕ(πx,l′(yi)) are contained in the intersection ofϕ(l′) andLx, so
thatϕ(πx,l′(y1)) = ϕ(πx,l′(y2)).
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COROLLARY 5.24. — If there exist a linel ⊂ P2 and a pointx ∈ l such that
ϕ is constant onl \ x then there is a nontrivial flag map in the span ofµ, µ′.

Proof. — By Assumption5.22, ϕ is nonconstant on every line. Assume that
there exists a pointa ∈ ϕ(P2) such thatϕ−1(a) consists exactly ofx. Then
for all l′, l′′ not containingx one hasϕ(l′) = ϕ(l′′) andϕ is constant on the
complement tox on every line throughx. Then a linear combination ofµ, µ′

is constant onP2 \ x, thus a flag map, contradicting the assumption.
Let x′ be a point inP2 \ l with ϕ(x′) = ϕ(x). The linesl andl(x, x′) are

not equivalent,ϕ(l) 6= ϕ(l′). For any linel′′ 6= l(x, x′) throughx′ we have
ϕ(l ∩ l′′) 6= ϕ(x). Using a point ony ∈ l′ with ϕ(y) 6= ϕ(x) and applying
Lemma5.23we find thatϕ(l′′) = ϕ(l). For anyy /∈ (l ∪ l′) consider the line
l(x′, y). It follows thatϕ(y) equals the value ofϕ on l \ x, thusϕ is constant
on the complement tol′, contradicting Assumption5.22(3).

COROLLARY 5.25. — Letx, y ∈ P2
F be distinct points so thatϕ(x), ϕ(y) 6∈

(ϕ(l)∪ϕ(l′)) and the linel(x, y) throughx, y passes through the intersection
q0 := l ∩ l′. Then the composition

πx,l ◦ π−1
y,l : l → l

induces a nontrivial translation onl, with fixed pointq0, preserving the level
sets ofϕ. (By symmetry we have a similar translation onl′.)

In particular, if F = Fp (the prime field) then the group generated by this
translation is transitive onl \ (l∩ l′) andϕ is constant on this complement. If
F = F4 then the complementl \ (l ∩ l′) is a union of two (two point) orbits of
this translation andϕ is constant on each orbit.

Proof of Theorem5.7. — We keep the Assumptions5.22.
For every pointx ∈ P2 and every linel throughx there exist linesl′, l′′

throughx such thatϕ(l) = ϕ(l′) andϕ(l′) 6= ϕ(l′′). Indeed, consider a linẽl
with ϕ(x) /∈ ϕ(̃l). If on all such linesϕ takes more than two values, then all
these lines are equivalent andϕ is constant on the complement tox on every
line throughx, contradiction to Corollary5.24. Otherwise, each value oñl
will be taken at least twice, hence the claim.

Corollary 5.25 gives a translation onl \ x preserving the level sets ofϕ.
Over the prime fieldFp, p > 2, ϕ restricted tol is constant on the complement
to x and we can apply Corollary5.24.
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OverF4, ϕ is either constant onl \ x, contradicting Corollary5.24, or the
level sets ofϕ on l\x fall into two orbits of cardinality two. Since we can pick
x on l arbitrarily,ϕ must be constant onl, contradicting Assumption5.22(2).

6. Galois groups

Let k be an algebraic closure of a finite field of characteristic6= `, K the
function field of an algebraic varietyX overk, GaK the abelianization of the
pro-̀ -quotientGK of the Galois groupGK of a separable closure ofK,

GcK = GK/[[GK ,GK ],GK ]
pr−→ GaK

its canonical central extension andpr the natural projection.

DEFINITION 6.1. — We say thatγ, γ′ ∈ GaK form a commuting pairif for
some (and therefore any) of their preimagesγ̃, γ̃′ in GcK one has[γ̃, γ̃′] = 0. A
subgroupH ofGa is calledliftable if any two elements inH form a commuting
pair.

DEFINITION 6.2. — ThefanΣK = {σ} onGaK is the set of all topologically
noncyclic liftable subgroupsσ ⊂ GaK which are not properly contained in any
other liftable subgroup ofGaK .

REMARK 6.3. — For function fieldsK/k of surfaces all groupsσ ∈ ΣK are
isomorphic to torsion-free primitiveZ`-submodulesσ of rank 2, see Section9.

NOTATIONS 6.4. — Let
µ`n := { `n

√
1 }

and
Z`(1) = lim

n→∞
µ`n .

We often identifyZ` andZ`(1) (sincek is algebraically closed). Write

K̂∗ := lim
n→∞

K∗/(K∗)`
n

for the multiplicative group of (formal) rational functions onX.

THEOREM 6.5 (Kummer theory). — The groupK∗/k∗ is a freeZ-module.
One has

– K∗/(K∗)`
n

= (K∗/k∗)/`n, for all n ∈ N ;
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– the discrete groupK∗/(K∗)`
n

and the compact profinite groupGaK/`n
are Pontryagin dual to each other, for aµ`n-duality;

– for K∗/k∗
∼−→ ZI , one hasK∗/(K∗)`

n ∼−→ (Z/`n)I and

GaK/`n
∼−→ (Z/`n(1))I ,

hence the duality between̂K∗ = K̂∗/k∗ and GaK is modeled on that
between

{ functionsI → Z` tending to0 at ∞} and ZI
` .

LEMMA 6.6. — LetE/k be the function field of a curve. ThenΣE = ∅.

Proof. — By a result of Grothendieck, the pro-` fundamental group(π1)
ˆ
` of

a curve punctured in finitely many points is free. We have

GaE = lim
←−
J⊂I

ZJ
` , GcE = lim

←−
J⊂I

∧2(ZJ
` ),

with the commutation map equal to∧. This implies that a liftable subgroup
of GaE is topologically cyclic.

7. Valuations

In this section we recall basic results concerning valuations and valued
fields (we follow [4]). Most of this material is an adaptation of well-known
facts to our context.

NOTATIONS 7.1. — A value group, denoted byΓ, is a totally ordered (torsion-
free) abelian group. We use the additive notation′′+′′ for the group law and
≥ for the order. We have

Γ = Γ+ ∪ Γ−, Γ+ ∩ Γ− = {0} and γ ≥ γ′ iff γ − γ′ ∈ Γ+.

ThenΓ∞ = Γ ∪ {∞} is a totally ordered monoid, by the conventions

γ <∞, γ +∞ = ∞+∞ = ∞, ∀γ ∈ Γ.

DEFINITION 7.2. — A (nonarchimedean)valuationon a fieldK is a pair
ν = (ν,Γν) consisting of a value groupΓν and a map

ν : K → Γν,∞

such that

– ν : K∗ → Γν is a surjective homomorphism;
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– ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K;
– ν(0) = ∞.

REMARK 7.3. — In particular, sinceΓν is nontorsion,ν(ζ) = 0 for every
elementζ of finite order inK∗.

A valuation is calledtrivial if Γ = {0}. If K = k(X) is a function field
over an algebraic closurek of a finite field then every valuation ofK restricts
to a trivial valuation onk (every element ink∗ is torsion).

LEMMA 7.4. — LetK = k(X) and ν be a nonarchimedean valuation on
k(X). ThenHom(Γν ,Z`) is a finitely generatedZ`-module.

Proof. — Note that theQ-rank ofν is bounded bydim(X) (see [11]).

NOTATIONS 7.5. — We denote byKν , oν ,mν andKν the completion ofK
with respect toν, the ring ofν-integers inK, the maximal ideal ofoν and the
residue field

Kν := oν/mν .

If X (over k) is a model forK then thecenterc(ν) of a valuation is the
irreducible subvariety defined by the prime idealmν ∩ k[X] (providedν is
nonnegative onk[X]).

It is useful to keep in mind the following exact sequences:

(7.1) 1 → o∗ν → K∗ → Γν → 1

and

(7.2) 1 → (1 + mν) → o∗ν → K∗
ν → 1.

NOTATIONS 7.6. — Write Iaν ⊂ Da
ν ⊂ GaK for the images of the inertia and

the decomposition group of the valuationν in GaK .

NOTATIONS 7.7. — If χ : Γν → Z`(1) is a homomorphism then

χ ◦ ν : K∗ → Z`(1)

defines an element ofGaK , called an inertia element of the valuationν. The
group of such elements isIaν ⊂ GaK .

NOTATIONS 7.8. — The decomposition groupDa
ν is by definition equal to

the image ofGaKν in GaK .
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LEMMA 7.9. — There is a natural embeddingGaKν ↪→ GaK and a (canonical)
isomorphism

Da
ν/Iaν ' GaKν

.

Proof. — See Theorem 19.6 in [6], for example.

DEFINITION 7.10. — LetK = k(X) be a function field. Its valuationν is

– positive-dimensionalif tr degkKν ≥ 1;
– divisorial if tr degkKν = dim(X)− 1.

NOTATIONS 7.11. — We letVK be the set of all nontrivial (nonarchimedean)
valuations ofK andDVK the subset of divisorial valuations. Ifν ∈ DVK is
realized by a divisorD on a modelX ofK (see Example7.13) we sometimes
write IaD, resp.Da

D, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12. — Let E = k(C) be the function field of a smooth curve.
Every pointq ∈ C(k) defines a nontrivial valuationνq onE (the order of a
functionf ∈ E∗ at q). Conversely, every nontrivial valuationν onE defines
a pointq := c(ν) onC.

EXAMPLE 7.13. — LetK = k(X) be the function field of a surface.

– Every positive-dimensional valuation is divisorial.
– Every (irreducible) curveD ⊂ X defines a valuationνD on K with

value groupZ. Conversely, every valuation onK with value groupZ
and algebraically nonclosed residue field defines a curveD on some
modelX of K.

– Every flag(D, q), (curve, point on its normalization), defines a valuation
νD,q onK with value groupZ2.

– There exist valuations onK with value groupQ and center supported in
a point (on every model).

LEMMA 7.14. — LetK = k(X) be the function field of a surface. IfDa
ν/Iaν

is nontrivial thenν is divisorial.

Proof. — The only 1-dimensional valuations on function fields of surfaces
are divisorial valuations. For other valuations, the residue fieldKν = k is
algebraically closed andGaKν

trivial.
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8. A dictionary

Write

LK := Lk(K) = { homomorphismsK∗ → Z`(1)}
ΦK := Φk(K) = { flag mapsK → Z`(1)}

PROPOSITION8.1. — One has the following identifications:

GaK = LK ,
Da
ν = {µ ∈ LK |µ trivial on (1 + mν)},
Iaν = {µ ∈ LK |µ trivial on o∗ν}.

If two nonproportionalµ, µ′ ∈ GaK form a commuting pair then the corre-
sponding mapsµ, µ′ ∈ LK form ac-pair (in the sense of Definition5.6).

Proof. — The first identification is a consequence of Kummer theory6.5.
The second identification can be checked on one-dimensional subfields ofK,
where it is evident. For this and the third identification we use (7.1) and (7.2).
For the last statement, assume thatµ, µ′ ∈ LK don’t form ac-pair. Then there
is anx ∈ K such that the restrictions ofµ, µ′ ∈ LK to the subgroup〈1, x〉 are
linearly independent. Therefore,µ, µ′ ∈ GaK define a rank 2 liftable subgroup
in Gak(x). Such subgroups don’t exist sinceGk(x) is a free pro-̀-group (see
[10]).

EXAMPLE 8.2. — If µ ∈ Da
ν andα ∈ Iaν thenµ, α form a commuting pair.

PROPOSITION8.3. — LetK be a field andα ∈ ΦK ∩LK . Then there exists
a unique valuationν = (να,Γνα) (up to equivalence) and a homomorphism
pr : Γνα → Z`(1) such that

α(f) = pr(να(f))

for all f ∈ K∗. In particular, α ∈ Iaν (under the identification of Proposi-
tion 8.1).

Proof. — Let F be a finite subfield ofk and assume thatα(f) 6= α(f ′) for
somef, f ′ ∈ K and consider the lineP1 = P(Ff + Ff ′). Sinceα is a flag
map, it is constant outside one point on thisP1 so that eitherα(f+f ′) = α(f)
or = α(f ′). This defines a relation:f ′ >α f (in the first case) andf >α f

′

(otherwise). Ifα(f) = α(f ′) and there exists anf ′′ such thatα(f) 6= α(f ′′)
andf >α f

′′ >α f
′ then we putf >α f

′. Otherwise, we putf =α f
′.
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It was proved in [3], Section 2.4, that the above definitions are correct and
that>α is indeed an order which defines a filtration on the additive groupK
by subgroups(Kγ)γ∈Γ such that

– K = ∪γ∈ΓKγ and
– ∩γ∈ΓKγ = ∅,

whereΓ is the set of equivalence classes with respect to=α. Sinceα ∈ LK
this order is compatible with multiplication inK∗, so that the mapK → Γ is
a valuation andα factors asK∗ → Γ → Z` ' Z`(1). By (7.1), α ∈ Iaν .

COROLLARY 8.4. — Every (topologically) noncyclic liftable subgroup of
GaK contains an inertia element of some valuation.

Proof. — By Theorem5.7, every such liftable subgroup contains anΦ-map,
which by Proposition8.3belongs to some inertia group.

9. Flag maps and valuations

In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.

LEMMA 9.1. — Letα ∈ ΦK ∩ LK , ν = να be the associated valuation and
µ ∈ LK . Assume thatα, µ form a c-pair. Then

µ(1 + mν) = µ(1) = 0.

In particular, the restriction ofµ to oν is induced fromKν .

Proof. — First of all,µ(1) = 0, sinceµ is logarithmic. We have

(1) α(κ) = 0 for all κ ∈ oν \mν ;
(2) α(κ+m) = α(κ) for all κ ∈ oν \mν andm ∈ mν as above;
(3) mν is additively generated bym ∈ oν such thatα(m) 6= 0.

If m ∈ mν is such thatα(m) 6= 0 andκ ∈ oν \ mν thenα is nonconstant on
the subgroupA := 〈κ,m〉. Then

µ(κ+m) = µ(κ).

Indeed, ifµ is nonconstant onA the restrictionµA is proportional toαA (by
the c-pair property) andα satisfies (2). In particular, for suchm we have
µ(1 +m) = µ(1) = 0.



32 FEDOR BOGOMOLOV and YURI TSCHINKEL

Assume thatα(m) = 0. Then there exists anm′ ∈ mν such thatm > m′ >
1 andα(m′) 6= α(1) = 0. Using the first step withκ = 1 and observing that
α(m+m′) 6= 0 we haveµ(1+m+m′) = µ(1) = 0. On the other hand, putting
κ = 1+m and using thatα(m′) 6= 0 we see thatµ(1+m+m′) = µ(1+m).
Thus0 = µ(1) = µ(1 +m) as claimed.

COROLLARY 9.2. — Inertia elementsα ∈ Iaν commute only with elements
µ ∈ Da

ν .

PROPOSITION9.3. — Let K = k(X) be the function field of a surface.
Everyσ ∈ ΣK hasrkZ` σ = 2. Moreover, it defines a unique valuationν = νσ
ofK so that either every element ofσ is inertial for ν, or ν is divisorial and
there is an elementµ ∈ σ which is not inertial forν, butµ ∈ Da

ν .
If distinct σ, σ′ ∈ ΣK have a nonzero intersection then there exists a divi-

sorial valuationν ′′ such that

– σ, σ′ ∈ Da
ν′′;

– σ ∩ σ′ = Iaν′′.
Conversely, ifσ ∈ ΣK is not contained in aDa

ν′′ for any divisorial valuation
ν ′′ then for allσ′ ∈ ΣK , σ′ 6= σ, one hasσ ∩ σ′ = 0.

Proof. — We saw thatσ ∈ ΣK contains an inertia elementα for somevalu-
ationν. Sinceσ is topologically noncyclic there is aµ ∈ σ, Z`-independent
onα, and commuting withα. If µ is not inertial, that is,µ /∈ ΦK , thenµ gives
a nontrivial element in the (abelianized) Galois group of the residue fieldKν

of ν. Thusν is divisorial,Kν is 1-dimensional and every liftable subgroup in
GaKν

hasZ`-rank equal to one. HencerkZ` σ = 2 in this case and, by Corol-
lary 9.2, µ ∈ Da

ν . Such a valuationν is unique, sinceIaν ∩Iaν′ = 0 for distinct
divisorialν, ν ′.

If σ containsonly inertia elements, then there exists a unique valuation
ν such thatσ ∈ Iaν . Indeed, eithermν + mν′ = K or we may assume that
mν ⊂ mν′ (andoν ⊃ oν′). The first case is impossible since the corresponding
inertia groups don’t intersect. In the second case,Iaν ⊂ Iaν′, as claimed.
Moreover, it follows thatrkZ` σ = 2, since theQ-rank of any valuation on a
surface (over̄Fq) is at most two. This gives ofν = νσ in this case.

If distinct σ, σ′ have a nontrivial intersection, then the subgroupD ⊂ GaK
generated byσ, σ′ is not the inertia group of any valuation (the rank of those is
≤ 2, as we have seen above). If theσ∩σ′ contains a nontrivial inertia element
α thenD is contained in the decomposition group of this element (all elements
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of D commute withα) and the corresponding valuation is divisorial. Ifµ ∈
σ∩σ′ is not an inertia element then there exist inertia elementsα ∈ σ andα′ ∈
σ′ corresponding to distinctdivisorial valuationsν, ν ′. The decomposition
groups of distinct divisorial valuations don’t intersect.

Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groupsσ, σ′ ∈ ΣK with a
nontrivial intersection defines a divisorial valuationν, whose inertia group

Iaν = σ ∩ σ′.

The corresponding decomposition subgroup is

Da
ν = ∪σ⊃Iaνσ.

10. Galois groups of curves

Here we give a Galois-theoretic characterization of subgroupsσ ∈ ΣK

which are inertia subgroups of rank two valuations ofK arising from a flag
(C, q), whereC is a smooth irreducible curve (on some model ofK) and
q ∈ C(k) is a point (see Example7.13). We show that Galois-theoretic data
determine the genus ofC and all “points” onC, as special liftable subgroups
of rank two insideGak(C).

Throughout,E = k(C) is the function field of a smooth curve of genusg.
We have an exact sequence

0 → E∗/k∗ → Div(C) → Pic(C) → 0

(whereDiv(C) can be identified with the free abelian group generated by
points inC(k)). This gives a dual sequence

(10.1) 0 → Z`
∆−→M(C(k),Z`) → GaE → Z2g

` → 0,

with the identifications

– Hom(Pic(C),Z`) = ∆(Z`) (sincePic0(C) is torsion);
– M(C(k),Z`) = Hom(Div(C),Z`) is theZ`-linear space of maps from
C(k) → Z`;

– Z2g
` = Ext1(Pic0(C),Z`).
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Using this model and the results in Section6, in particular the identification

GaE = Hom(E∗/k∗,Z`),

we can interpret

(10.2) GaE ⊂M(C(k),Q`)/constant maps

as theZ`-linear subspace of all mapsµ : C(k) → Q` (modulo constant
maps) such that

[µ, f ] ∈ Z` for all f ∈ E∗/k∗.
Here[·, ·] is the pairing:

(10.3)
M(C(k),Q`)× E∗/k∗ → Q`

(µ, f) 7→ [µ, f ] :=
∑

q µ(q)fq,

wherediv(f) =
∑

q fqq.
In detail, letγ ∈ GaE be an element of the Galois group. By Kummer theory,

γ is a homomorphismK∗/k∗ → Z`(1) ' Z`. Choose a pointc0 ∈ C(k). For
every pointc ∈ C(k), there is anmc ∈ N such that the divisormc(c − c0) is
principal (see Lemma3.2). Define a map

µγ : C(k) → Q`,
c 7→ γ(mc(c− c0))/mc.

Changingc0 we get maps differing by a constant map.
In this interpretation, an element of an inertia subgroupIaw ⊂ GaE corre-

sponds to a “delta”-map (constant outside the pointqw). EachIaw has a canon-
ical (topological) generatorδw, given byδw(f) = νw(f), for all f ∈ E∗/k∗.
The (diagonal) map∆ ∈M(C(k),Q`) from (10.1) is then given by

∆ =
∑
w∈VE

δw =
∑

qw∈C(k)

δqw .

DEFINITION 10.1. — We say that the support of a subgroupI ⊂ GaE is≤ s
and write

|supp(I)| ≤ s

if there exist valuationsw1, ..., ws ∈ VE such that

I ⊂ 〈Iaw1
, ..., Iaws〉Z` ⊂ GaE.

Otherwise, we write|supp(I)| > s.
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LEMMA 10.2. — LetE = k(x) and letI ⊂ GaE be a topologically cyclic
subgroup which is not equal toIaw for some divisorial valuation (point) on
E (P1(k)). Then for any nonzeroι ∈ I there exist a finite groupV and a
homomorphismψ : GaE → V such that for allw ∈ VE one hasψ(ι) /∈ ψ(Iaw).

Proof. — By the assumption onI, the elementι ∈ I corresponds to aZ`-
mapµι on P1(k) which is not a delta-map of a point (modulo addition of
constants). Ifµι takes at least three distinct values there are three distinct
q1, q2, q3 ∈ P1(k) andn ∈ N so that the valuesµι(qi) mod `n are pair-
wise distinct fori = 1, 2, 3. Consider a mapψ : GaE → (Z/`n)2 defined
by elements ofE = k(x) with divisors (q1 − q2), (q1 − q3). Note that
ψ(Iaw) = 0, qw ∈ P1(k) unlessqw = q1, q2, q3 andψ(ι) /∈ ψ(Iawi), i = 1, 2, 3,
as claimed.

Similarly, if µι takes two values onP1(k) there are pointsqi, i = 1, . . . , 4
andn ∈ N so that

µι(q1) = µι(q2) 6= µι(q3) = µι(q4) mod `n.

Thenψ : GaE → (Z/`n)3, given by elements ofE with divisors

(q1 − q2), (q1 − q3), (q3 − q4),

satisfies the claim.

The next step is anintrinsic definition of inertia subgroups

Iaw ⊂ Da
ν/Iaν = Gak(C).

We have a projection
πν : GaK → GaK/Iaν

and an inclusion
GaKν

= Da
ν/Iaν ↪→ GaK/Iaν

PROPOSITION10.3. — Letν be a divisorial valuation ofK. A topologically
cyclic subgroup

I ⊂ Da
ν/Iaν

is the inertia subgroup of a divisorial valuation ofk(C) = Kν iff for every
homomorphism

ψ : GaK/Iaν → V

onto a finite abelian groupV there exists a divisorial valuationνψ such that

ψ(I) = ψ ◦ πν(Iaνψ).
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Proof. — LetC be the smooth model forKν = k(C),

I = Iaw ⊂ Da
ν/Iaν

the inertia subgroup of a divisorial valuation ofk(C) corresponding to a point
q = qw ∈ C(k) and

ψ : GaK/Iaν → V

a homomorphism onto a finite abelian group. SinceGaK is a pro-̀ -group, we
may assume that

V = ⊕j∈JZ/`nj ,
for somenj ∈ N. Letn = maxj(nj). By Kummer theory,

Hom(GaK ,Z/`n) = K∗/(K∗)`
n

so thatψ determines elements

f̄j ∈ K∗/(K∗)`
n

(for all j ∈ J). Choose functionsfj projecting tof̄j. They define a finite
set of divisorsDij on X, the irreducible components of the divisors offj.
Moreover,fj are not simultaneously constant onC (otherwise,ψ(Gak(C)) =

ψ(Iak(C))). Changing the model̃X → X, if necessary, we can ensure that
the full preimage of a finite set of divisors becomes a divisor with normal
crossings. In particular, we may assume that

– C is smooth (and irreducible);
– there exists exactly one irreducible componentD in the full preimage of
∪Dij which intersectsC in q. Moreover, this intersection is transversal.

Then the image ofIaD underψ is equal to the image ofIaw.

Conversely, we need to show that ifI 6= Iaw (for somew ∈ DVKν ), then
there exists a homomorphism

ψ : GaK/Iaν → V

onto a finite abelian groupV such that for allν ′ ∈ DVK one has

ψ(I) 6= ψ ◦ πν(Iaν′).
Let ῑ ∈ I be any nonzero element. Its liftι to GaK is not a flag map onK∗. By
Lemma5.16there exists aP1

ι = P1(k) ⊂ Pk(K) such that the restriction of
ι to P1

ι is is not a flag map. By the logarithmic property ofι we can assume
thatP1

ι is the projectivization of thek-span of1, x, for somex ∈ K∗. This
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defines a birational surjective mapπx : X → P1 and a corresponding map
of Galois groupsπax : GaK → Gak(x). Under this map, the image ofIaν is zero
(otherwise,C lies in a fiber ofπx and the whole groupGaKν

is mapped to the
valuation group ofπx(C) ⊂ P1, contradicting the assumption that the image
of ι is not a flag map onP1

ι = Pk(k ⊕ k · x) = P1(k)).
This gives a homomorphismην : Da

ν/Iaν → Gak(x) so thatην(ῑ) is not a
flag map onk(x). Let ψx : Gak(x) → V be any homomorphism such that
ψx(ῑ) /∈ ψ(Iaw) for everyIaw ⊂ GaKν

, as in Lemma10.2. The composition
ψ := ψx ◦ ηι has the required properties.

LEMMA 10.4. — Let E = k(C) be the function field of a curve. Then
g(C) ≥ 1 iff there exists a nonzero homomorphism fromGaE to a finite (abelian)
group which maps all inertia elements to0.

Proof. — Indeed, every curve of genus≥ 1 over a finite field of characteristic
p has unramified coverings of degree`. These coverings define maps of Galois
groups, which are trivial on all inertia elements. IfC is rational thenGaE,
and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequence (10.1)).

REMARK 10.5. — Combining this with Proposition10.3we can decide in
purely Galois-theoretic terms which divisorial valuations ofK correspond to
nonrational (irreducible) curvesC on some modelX of K. We call such
valuationsnonrational.

11. Valuations on surfaces

Next we are lead to the following problem: How to characterize subgroups

k̂(C)
∗
⊂ K̂∗? We recall a geometric argument (from algebraic K-theory)

characterizing pairsf, g ∈ K∗ which are contained ink(C)∗ ⊂ K∗, for some
curveC (such curves correspond to projectionsX → C).

Let ν be a divisorial valuation ofK and

ν : K∗ → Z

the valuation map. We have the residue map

resν : Ker(ν) → K∗
ν
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and a bilinear (with respect to multiplication) symbol

(11.1) K∗ ×K∗
%ν−→ K∗

ν

f, g 7→ (−1)ν(f)·ν(g)f ν(g)/gν(f).

On a smooth modelX of K, whereν = νD for a divisorD ⊂ X, we define

(11.2) %ν = %D : K∗ ×K∗ → K∗
ν

as follows:
– %ν(f, g) = 1 if both f, g are invertible onD;
– %ν(f, g) = fmD if f is invertible (fD is the restriction toD) andg has

multiplicity m alongD;
– %ν(f, g) = (fmg/gmf )D in the general case, whenf, g have multiplici-

tiesmf ,mg, respectively.
The definition does not depend on the choice of the model.

The following is a standard result in K-theory. We include a proof since we
will need its`-adic version.

LEMMA 11.1. — For f, g ∈ K∗

%ν(f, g) = 1 ∀ν ∈ DVK ⇐⇒ f, g ∈ E = k(C) ⊂ K for some curveC.

Proof. — (⇐) On an appropriate modelX we haveν = νD for a divisor
D ⊂ X andπ : X → C is regular and flat with irreducible generic fiber (and
f, g ∈ k(C)∗). By definition,%ν(f, g) = 1 if D is not in a fiber ofπ. If D is
in a fiber then there is at ∈ k(C)∗, νD(t) 6= 0 such that bothftmf , gtmg are
regular and constant onD (for somemf ,mg ∈ N) so that%ν(f, g) = 1.

(⇒) Assume that%ν(f, g) = 1 for everyν ∈ DVK . Every nonconstant
functionf defines a unique map (with irreducible generic fiber)

πf : X → Cf

which corresponds to the algebraic closure ofk(f) in K (we will say thatf
is induced fromCf ). We claim thatπf = πg.

Sincef is induced fromCf , we have

div(f) =
∑
q∈Q

aqDq,

whereQ ⊂ Cf (k) is finite andDq = π−1(q). ThenD2
q = 0 andDq is either

a multiple of a fiber ofπg or it has an irreducible componentD ⊂ Dq which
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dominatesCg (underπg). In the second case, the restriction ofg to Dq is a
nonconstant element ink(Dq). ThenνD(f) 6= 0, while νD(g) = 0. Hence
%D(f, g) 6= 1 since it coincides withg−νD(f)

D 6= 1, a contradiction. Therefore,
all Dq are contained in the finitely many fibersS of πg. That meansdiv(f)
does not intersect the fibersRt, t ∈ Cg, t /∈ S which implies thatf is constant
on suchRt. Hencef belongs to the normal closure ofk(Cg) in K, and in fact
f ∈ k(Cg) sincek(Cg) is algebraically closed inK, by construction. Thusf
is induced fromCg and henceCf = Cg andπf = πg.

12. `-adic analysis: generalities

Let X be a smooth model ofK. An elementf ∈ K∗/k∗ gives rise to a
divisorD = Df onX and conversely, such aD uniquely determinesf . Recall
that the Galois groupGaK determinesK̂∗, a group substantially bigger than
K∗/k∗. In this section we introducè-adic versions of standard geometric
notions in algebraic geometry (divisors, Picard group etc.).

For any smooth algebraic varietyX overk with function fieldK = k(X)
we have an exact sequence

(12.1) 0 → K∗/k∗
ρX−→ Div(X)

ϕ−→ Pic(X) → 0,

whereDiv(X) is the group of (Weil or Cartier) divisors ofX. Write

Div(X)` := Div(X)⊗ Z` and Pic(X)` := Pic(X)⊗ Z`

for the group offinite `-adic divisors, resp.̀-adic Picard group. We have an
exact sequence:

(12.2) 0 → K∗ ⊗ Z`

ρX,`−→ Div(X)`
ϕ`−→ Pic(X)` → 0

Let

D̂iv(X) := {D =
∑
m∈M

âmDm}, resp. D̂ivnr(X) ⊂ D̂iv(X),

be the group of divisors (resp. nonrational divisors) withdecreasing coeffi-
cients:

– M is a countable set;
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– for all r ∈ Z the set
{m | |âm|` ≤ r}

is finite;
– for D ∈ D̂ivnr(X), allDm are nonrational.

Clearly,Div(X)` ⊂ D̂iv(X). Every element

f̂ ∈ K̂∗ = lim
n→∞

K∗/(K∗)`
n

has a representation

f̂ = (fn)n∈N or f = f0f
`
1f

`2

2 · · · ,
with fn ∈ K∗. We have homomorphisms

ρ̂X : K̂∗ → D̂iv(X),

f̂ 7→ div(f̂) :=
∑

n∈N `
n · div(fn) =

∑
m âmDm,

ρ̂X,nr : K̂∗ → D̂iv(X)
pr−→ D̂ivnr(X),

whereDm ⊂ X are irreducible divisors,

âm =
∑
n∈N

anm`
n ∈ Z`,

with anm ∈ Z, and
div(fn) =

∑
m

anmDm.

Herediv(fn) is the Cartier divisor offn and
∑

m anmDm is its image in the
group of Weil divisors.

LEMMA 12.1. — LetX/k be a smooth projective surface,M a finite set and

D =
∑
m∈M

amDm ∈ Div(X)`, am ∈ Z`

a divisor such thatϕ`(D) = 0. Then there exist a finite setI, functions
fi ∈ K∗ and numbersai ∈ Z`, linearly independent overZ, such that for all
i ∈ I

suppX(fi) ⊂ suppX(D)

and
D =

∑
aidiv(fi).



FUNCTION FIELDS 41

Proof. — It suffices to consider equation (12.2) and to observe that anyZ`-
lattice of principal divisors with support in a finite set of divisors contains a
generatingZ-lattice of principal divisors.

The mapρ̂X has a kernel

T`(X) := lim
←−

Tor1(Z/`n,Pic(X)[`]),

wherePic(X)[`] ⊂ Pic(X) is the `-power torsion subgroup. In particular
T`(X) = Z2g

` , whereg is the dimension ofPic0(X). We now collect several
facts aboutT` which will be used later on.

LEMMA 12.2. — For varieties overk we have

(1) a morphismξ : X → Y induces a homomorphismξ∗` : T`(Y ) →
T`(X);

(2) the canonical morphismalb : X → Alb(X) to the Albanese variety
induces a canonical isomorphismalb∗` : T`(Alb(X)) → T`(X);

(3) if ξ : X ′ → X is a birational isomorphism between smooth varieties
thenξ∗` : T`(X) → T`(X

′) is an isomorphism;
(4) an exact sequence of abelian varieties

1 → A′ → A→ A′′ → 1

induces an exact sequence

1 → T`(A
′′) → T`(A) → T`(A

′).

Proof. — The follows from the corresponding properties of the functorPic0

for smooth algebraic varieties overk.

We have a diagram
(12.3)

0 → K∗ ⊗ Z`

ρX,`−→ Div(X)`
ϕ`−→ Pic(X)` → 0

↓ ↓ ↓
0 → T`(X) → K̂∗

ρ̂X−→ D̂iv(X)
ϕ̂`−→ P̂ic(X) → 0,

where
P̂ic(X) := lim

←−
Pic(X)⊗ Z/`n = NS(X)⊗ Z`.
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Everyν ∈ DVK gives rise to a homomorphism

ν̂ : K̂∗ → Z`

and a homomorphism

ˆresν : Ker(ν̂) → K̂
∗
ν

and a symbol

%̂ν : K̂∗ × K̂∗ → K̂
∗
ν .

On a smooth modelX, whereν = νD for a divisorD ⊂ X, ν̂(f̂) is the`-adic
coefficient atD of div(f̂), while %̂ν is the naturalZ`-bilinear generalization
of (11.1).

LEMMA 12.3. — LetX be a smooth surface or a smooth curve overk and
K = k(X). Then

T`(X) = ∩ν∈DVKKer(ν̂).

Proof. — Follows from the definition.

In particular, we have the map̂resν : T`(K) := T`(X) → K̂
∗
ν .

LEMMA 12.4. — For all ν ∈ DVK we have

ˆresν(T`(K)) ⊂ T`(Kν).

Proof. — Let X be a model ofK such thatν = νD, whereD is a smooth
curve. We may assume (after blowing up) thatX contains a divisorD′ inter-
sectingD in exactly one point. Consider the diagram

0 // Ker(ν)

resν
��

// Div(X \D)

��

// Pic(X)

δ
��

// 0

0 // K∗
ν

// Div(D) // Pic(D) // 0

whereDiv(X \D) is theZ-module spanned by divisors different fromD. By
the choice ofX, the restrictionδ induces a surjectionNS(X) → NS(D).

Tensoring allZ-modules withZ/`n and passing to the projective limit we
obtain a map

T`(K) → T`(Kν),

and the claim.
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13. `-adic analysis: finite support

Our goal is to characterize the`-adic spaceK∗/k∗⊗Z` ⊂ K̂∗. The Galois
datum(GaK ,ΣK) allows us to distinguish between rational and nonrational ir-
reducible divisors onX (via the corresponding valuations) and to describe
intrinsically a subspaceFS(K) ⊂ K̂∗ (of divisors with finite nonrational
support, see13.2and13.3). In this section we further shrinkFS(K), giv-
ing an intrinsic characterization of those elements which have finite divisorial
support on every smooth modelX.

By Lemma3.14, if T`(K) 6= 0 then eitherX contains only finitely many
rational curves, orX, modulo purely inseparable covers, is a rational pencil
over a curveC of genusg(C) ≥ 1.

DEFINITION 13.1. — We say that̂f, ĝ ∈ K̂∗ commuteif %̂ν(f̂ , ĝ) = 1, for
all divisorial ν. We say that they havedisjoint supportif for all divisorial
valuationsν ∈ DVK

ν̂(f̂) · ν̂(ĝ) = 0.

We say thatf̂ ∈ K̂∗ has nontrivial commutators if there existĝ ∈ K̂∗ with
disjoint support (fromf̂ ) which commute witĥf .

NOTATIONS 13.2. — We put

suppK(f̂) := { ν ∈ DVK | f̂ nontrivial on Iaν };
suppX(f̂) := { Dm ⊂ X | âm 6= 0 }.

DEFINITION 13.3. — We say that̂f hasfinite nonrational supportif the set
of nonrationalν ∈ suppK(f̂) is finite (see Lemma10.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K) ⊂ K̂∗

be the subgroup of such elements.

Note that forf̂ ∈ FS(K), its nonrational component̂ρX,nr(f̂) is indepen-
dent of the modelX. More precisely, for any birational morphismX ′ → X

we can identifŷDivnr(X
′) = D̂ivnr(X). Under this identification

ρX′,nr(f̂) = ρX,nr(f̂).
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DEFINITION 13.4. — We say thatf̂ has finite supporton the modelX if
suppX(f̂) is finite. Put

FSX(K) := {f̂ ∈ K̂∗ | ρX(f̂) ∈ Div(X)`}.

LEMMA 13.5. — The definition ofFSX(K) does not depend on the choice
of a smooth modelX.

Proof. — For any two smooth modelsX ′, X ′′ we can find a smooth model
X dominating both. The difference between the sets of irreducible divisors
Div(X ′), resp.Div(X ′′), andDiv(X) is finite and consists of rational curves.

Equation (12.3) implies the exact sequence

(13.1) 0 → T`(X) → FSX(K) → K∗/k∗ ⊗ Z` → 0.

Indeed, iff̂ ∈ FSX(K) thendiv(f̂) ∈ Div(X)` and its image inPic(X)` is
zero. Thus there is an elementf ∈ K∗/k∗ ⊗ Z` with the samè-adic divisor.
By definition f̂/f ∈ T`(X).

We proceed to give a Galois-theoretic characterization ofFSX(K).

Case I.LetK be the function field of a surfaceX containing only finitely many
rational curves. Then

FS(K) = FSX(K).

Case II.Assume that, after a purely inseparable extension,X admits a fibration
over a curve of genus≥ 1, with generic fiber a rational curve.

LetFS ′(K) ⊂ K̂∗ be the group generated by allf̂ such that
• f̂ has nontrivial nonrational support;
• f̂ has nontrivial commutators.

Then, for every modelX of K, we have

FS ′(K) = FSX(K).

Indeed, an infinite rational tail in̂f in this case consists of an infinite
number of fibers. Same holds forĝ. Thus the divisor off̂ (resp. ĝ)
intersects all but finitely many fibers in the infinite rational tail ofĝ (resp.
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f̂ ) with intersection multiplicity some power ofp = char(k). Consider
ν corresponding to rational curves in the divisor ofĝ intersecting the
divisor of f̂ as above. Then

%̂ν(f̂ , ĝ) 6= 1,

contradiction.

Case III. By Lemma3.14, we can now assume thatPic0(X) = 0.

LetFX(K) be the set of allf ∈ K(X)∗/k∗ such that
(1) ρX,nr(f) 6= 0 and
(2) for every rational curveD ⊂ X with ν = νD eitherD ∈ suppX(f)

or resν(f) 6= 0 mod ` in K∗
ν/k

∗.
Geometrically, condition (2) means that if a rational curveD is not a
component of the divisor off then there is a point inD ∩ div(f) whose
multiplicity is prime to`.

LEMMA 13.6. — Let x ∈ K∗ and letk(y) := k(x)
K

be its normal
closure inK. Let πy : P1

y → P1
x be the corresponding morphism.

Assume that
(1) k(y)/k(x) is a separable extension of degree> 1;
(2) the preimage underπ−1

y of the divisor0 +∞ ∈ Div(P1
x) contains

at least 4 points with multiplicities prime tò.
Then the image ofx in K∗/k∗ is inFX(K).

Proof. — LetX be a smooth model ofK and

βx : X → P1
x, βy : X → P1

y

regular maps withβx = πy ◦ βy. Let R be an irredicible curve inX
which surjects geometrically ontoP1

x. We can assume that the mapβx :
R→ P1

x is separable (after a Frobenius twist of the function field ofR).
Assume that the multiplicities of all poles and zeroes of the function

y onR are divisible bỳ (this does not change after a Frobenius twist).
Thus the mapβx : R→ P1

x has ramifications over4-points divisible by
`. By the Hurwitz formula,g(R) > 0.

In particular, for any rational curveR ⊂ X eitherβy(R) is constant,
so thatR is contained in the fiber ofβy, or the intersection ofR with
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some component ofDiv(x) contains points with multiplicity prime tò.
Thus, the image ofx in K∗/k∗ is inFX(K).

COROLLARY 13.7. — The setFX(K) generatesK∗/k∗.

Proof. — The multiplicative group of every closed subfieldk(x) ⊂ K
is generated by elementsy satisfying the lemma. Indeed, for ay which is
not generatingk(x) and which is not aǹ− th power all elements of the
form y(x − a)/(x − b), wherea, b run throughk minusDiv(y) ⊂ P1

x,
satisfy the lemma. By assumption,Pic0(X) = 0 so that every closed
one-dimensional subfield ofK is isomorphic tok(x) for somex.

LEMMA 13.8. — For every pair of nonzero commuting elementsf̂ , ĝ ∈
FS(K) with nontrivial nonrational support and disjoint support such
that there exists anf ∈ FX(K) with

f = f̂ mod `, in K̂∗

one hasf̂ ∈ FSX(K) and ĝ ∈ FSX(K).

Proof. — Write

ρX(f̂) =
∑

i∈I niDi + `
∑∞

j=1 njCj,
ρX(ĝ) =

∑
i∈I′ n

′
iD
′
i + `

∑∞
j=1 n

′
jC
′
j,

whereI, I ′ are finite sets and the second sum is an infinite series over
distinct rational curvesCj, C ′j ⊂ X. By assumption, the sets{Di}i∈I ,
{Cj}j∈N, {D′i}i∈I′, {C ′j}j∈N are disjoint.

By assumption,̂%ν(f̂ , ĝ) = 1, for all ν. For ν = νD, whereD ∈
suppX(ĝ), this symbol equals the residue off̂ onD, which equals the
corresponding residue off mod `. For rational curves in the support
of ĝ it is nonzero by (2). Since the generic fiber off is nonrational, there
are only a finite number of rational curves onX which are mapped to
points byf . It follows that every divisor insuppX(ĝ) is nonrational,
unless it is in the fiber off , and that̂g ∈ FSX(K).

SinceT`(X) = 0, we can writediv(ĝ) =
∑

m∈M amDm, whereM
is a finite set, someDm ⊂ X are nonrational divisors andam ∈ Z`, or
ĝ =

∏
i∈I′′ g

bi
i , with I ′′ a finite set,gi ∈ K∗/k∗ andbi ∈ Z`.
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The restriction ofgi to every irreducible component of the divisor of
f̂ is identically zero. This means that under the map

πgi : X → C

all components ofsuppX(f̂) map to points (note thatC = P1, since
Pic0(X) = 0). Since some components of the divisor ofgi, for some
i, are nonrational, the generic fiber ofπgi is also nonrational. Thus
suppX(f̂) contains only a finite number of rational divisors, so that
f̂ ∈ FSX(K).

EXAMPLE 13.9. — Let K = k(x, y) be the function field ofP2. Let
Dx, Dy be the divisors of functionsx, y so thataxDx + ayDy = azDz

with nonzeroax, ay, az ∈ Z`, for a principal divisorDz ⊂ P2, iff
ax/ay ∈ Q. Indeed, the functionz = xbxyby , for bx, by ∈ Z. Then
axDx + ayDy = az(bxDx + byDy) andax = azbx, ay = azby. Thus
ax/ay = bx/by ∈ Q.

Generalizing this example, we have:

LEMMA 13.10. — Let x, y ∈ FSX(K) be noncommuting elements.
Assume that the three elementsx, y, xy have nontrivial commutators in
FSX(K). Then there exists a uniquea ∈ Z`, moduloZ(`), such that

x, y, xy ∈ a ·K∗/k∗ ⊂ FSX(K)

Proof. — Let Px, Py andPxy be minimalZ-sublattices ofFSX(K)
such thatx ∈ Px ⊗ Z`, y ∈ Py ⊗ Z` andxy ∈ Pxy ⊗ Z`. We have

Pxy ⊗ Z` ⊂ Px ⊗ Z` ⊕ Py ⊗ Z`.

Note thatPx∩Py = 0, andPx∩Pxy = 0, resp.Py∩Pxy = 0, since there
are noZ-relations - the elements ofPx, resp.Py, resp.Pxy, belong to
the same pencil and nontrivial elements of different pencils are distinct.
The latticePxy⊗Z` surjects onto bothPx⊗Z` andPy⊗Z`. If one of the
projections had a kernel, there would be an element inPx belonging to
the pencilPxy, and similarly forPy, but there are no common elements.
We conclude that both projections are isomorphisms ofZ(`)-lattices, as
claimed.
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COROLLARY 13.11. — LetK ⊂ FS(K) be a lattice such that
• every element inK has a nontrivial commutator and
• K surjects ontoK∗/`.

Then then there isa ∈ Z∗` such thata · K ⊂ K∗ ⊗ Z(`).

Proof. — SinceK is generated by the preimages of the reduction of
FX(K) modulo` (only such elements have nontrivial commutators, by
Lemma13.8), the latticeK is contained inFSX(K). Then we apply
Lemma13.10.

In particular, any such lattice is contained ina−1 · K∗ ⊗ Z(`) with
the same property. It follows that there is a unique maximal lattice
for any triple of elementsx, y, xy with nontrivial commutators so that
ρν(x, y) 6= 0 mod ` for someν ∈ DVK . It equalsa · K∗ ⊗ Z(`), for
somea ∈ Z∗` .

14. `-adic analysis: curves

In this section we begin the process of recognition of the latticeK∗/k∗ ⊂
K̂∗. We solve an analogous problem for the function field of a rational curve.
This result will play an essential role in the analysis of surfaces.

PROPOSITION14.1. — Let k̃ be the algebraic closure of a finite field, with
char(k̃) 6= `, C a curve over̃k of genusg with function fieldE = k̃(C) and

Ψ : GaE → Gak(P1)

an isomorphism of Galois groups inducing an isomorphism on inertia groups
of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let

Ψ∗ : k̂(P1)∗ → Ê∗

be the dual isomorphism. ThenE = k̃(P1) and there is a constanta ∈ Z∗`
such thatΨ∗(k(P1)∗/k∗) = a · E∗/k̃∗.

Proof. — Recalling the exact sequence (10.1), we have a commuting dia-
gram
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0 // Z`(∆C(k̃)) // M(C(k̃)) // GaE //

��

Z2g
`

// 0

0 // Z`(∆P1(k)) // M(P1(k)) // Gak(P1)
// 0

SinceΨ is an isomorphism on inertia groupsIaw, for eachw, thesetsC(k̃)
andP1(k) coincide and we get auniqueisomorphism ofZ`-modules (of maps
to Z`)

M(C(k̃)) = M(P1(k̃)).

In particular, we find thatg = 0 andE = k̃(P1). Further, we have an induced
isomorphism

Z`(
∑
w∈VE

δw) = Z`(
∑

w′∈Vk(P1)

δw′)

so that
(
∑
w∈VE

δw) = a(
∑

w′∈Vk(P1)

δw′)

for somea ∈ Z∗` . This implies thatδw = aδw′, for all w ∈ VE and the
correspondingw′ ∈ VP1. For the dual groups we obtain

E∗/k̃∗ = (K∗/k∗)a,

wherea ∈ Z∗` .

15. `-adic analysis: surfaces

We will need aǹ -adic version of Lemma11.1.

PROPOSITION15.1. — Let f̂ , ĝ ∈ FSX(K) be elements with nontrivial
support such that

– %ν(f̂ , ĝ) = 1 for everyν ∈ DVK ;
– suppK(f̂) ∩ suppK(ĝ) = ∅,

that is, f̂ has nontrivial commutators. Then there is a 1-dimensional field
E = k(C) ⊂ K such thatf̂ , ĝ ∈ Ê∗.

Proof. — By Lemma12.1,

f̂ = tf · f, where f :=
∏
i∈I

faii , resp.ĝ = tg · g, where g :=
∏
j∈J

g
bj
j ,
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where

– tf , tg ∈ T`(X);
– I, J are finite sets;
– fi, gj ∈ K∗ for all i, j;
– ai ∈ Z` (resp.bj ∈ Z`) are linearly independent overZ.

Fix a valuationν = νD, whereD is in the support of̂g on a (smooth) model
X. By assumption

ˆresν(tf ·
∏
i∈I

faii ) = 1 ∈ K̂
∗
ν .

By Lemma12.4, ˆresν(tf ) ∈ T`(Kν) so thattf has trivial support onD. We
claim that for alli ∈ I, resν(fi) = 1 ∈ K∗

ν/k
∗. The divisor of the restriction

of fi toD is
∑

i′ rii′qii′, whereqii′ are points onD andrii′ ∈ Z. This gives a
relation ∑

i∈I

ai(
∑
i′

rii′qii′) = 0.

However,ai were linearly independent overZ which implies thatrii′ = 0, for
all i, i′. In particular,resν(fi) ∈ k∗. The same argument forg shows thatg
andf commute and that all pairsfi, gj commute as well. By Lemma11.1, all
fi, gj ∈ E = k(C) ⊂ K for some curveC.

We now have a diagram:

0 // T`(E) //

��

Ê∗ //

��

D̂iv(C) //

��

P̂ic(C)

��

// 0

0 // T`(K) // K̂∗ // D̂iv(X) // P̂ic(X) // 0

We need to show thattf (resp. tg) is in the image ofT`(E). LetD be an
irreducible component in the divisor ofg (resp.f ). Changing the model, we
may assume thatD is smooth. We have a diagram

D //

��

X

��
Jac(D) ι

// Alb(X) α
// A = Alb(X)/B

whereα is a surjection with connected fibers andB = BD is as in Lemma3.15:
it is the minimal abelian subvariety ofA0(X) so that the image ofD in
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Alb(X)/B is a point,aD (note thatD is irreducible). We have

ι(Jac(D)) = α−1(aD) ' B.

Applying Lemma12.2(4) we conclude that the induced sequence

T`(A)
α∗`−→ T`(Alb(X))

ι∗`−→ T`(B)

of free finite rankZ`-modules is exact in the middle term. We have shown
that resν(fi) = 1, for all i ∈ I. It follows that ˆresν(tf ) = 1 ∈ K∗

ν , where
ν = νD is the corresponding valuation. In particular,

tf = 1 ∈ T`(B) ↪→ T`(Kν) = T`(D).

It follows that there is ana ∈ T`(A) such thatα∗`(a) = tf . We apply this
argument to every componentDj of the divisor ofg and find thattf is induced
from quotientsAlb(X)/Bj, whereBj := BDj , for j ∈ J . Let B be the
abelian subvariety ofA0(X) generated byBj. By Lemma3.15, Alb(A)/B '
Jac(C), andX maps toC with connected fibers. We have the diagrams

X //

��

Alb(X)

��

C // Jac(C)

T`(X) T`(Alb(X))oo

T`(C)

OO

T`(Jac(C))
∼oo

OO

It follows thattf , and similarlytg, is inT`(C) = T`(E).

REMARK 15.2. — For everyf ∈ K∗ the elementg = (f + a)(f + b) where
a 6= b andab 6= 0, satisfies the conditions of Proposition15.1.

Proposition15.1 characterizes Galois-theoretically subgroupsÊ∗ ⊂ K̂∗

corresponding to 1-dimensional subfields ofK. We now have:

PROPOSITION15.3. — The groupK∗/k∗ ⊗ Z` ⊂ FSX(K) is generated
by subgroupsÊ∗ ∩ FSX(K) with E = k(C) so that thatT`(E) is trivial.
Moreover,

(K∗/k∗ ⊗ Z`) ∩ T`(X) = 1.

Proof. — First of all, T`(C) ↪→ T`(X), for every 1-dimensional subfield
k(C) ⊂ K. It suffices to note that multiplicative groupsE∗/k∗ of normally
closed subfieldsE = k(x), with T`(E) trivial, generateK∗/k∗.
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COROLLARY 15.4. — We have a canonical isomorphism

Ψ∗ : L∗/l∗ ⊗ Z` → K∗/k∗ ⊗ Z`.

PROPOSITION15.5. — LetM∗ ⊂ K∗/k∗⊗Z` be a subset with the following
properties:

(1) M∗ is closed under multiplication;
(2) M∗∩Ê∗ = aE ·E∗/k∗ for every 1-dimensional normally closed subfield

E = k(x) ⊂ K, with aE ∈ Z∗` ;
(3) there exists aν0 ∈ DVK such that

{[δ0, f̂ ] | f̂ ∈ M∗} = Z

for a topological generatorδ0 of Iaν0. (Here[·, ·] is the value off̂ on the
element of the Galois groupδ0, see Theorem6.5.)

Then
M∗ ⊂ K∗/k∗ ⊗ Z(`) and M∗ ⊗ Z(`) = K∗/k∗ ⊗ Z(`).

Proof. — For x ∈ K \ k let E = k(x) be the corresponding 1-dimensional
field, assumed to be normally closed inK. By assumption, there exists an
aE ∈ Z∗` such that

M∗ ∩ Ê∗ = aE · E∗/k∗.
If some (any) topological generatorδ0 of Iaν0 is not identically zero on̂E∗

then there exists a (smooth) modelX, whereν0 is realized by a divisorD0,
together with a morphism

X → P1 = P1
E

such thatD0 dominatesP1. It follows that

aE ∈ Q ∩ Z∗` = Z(`).

It remains to observe that everyx ∈ K∗ can be written as a product

x = x′ · x′′

such thatδ0 is nontrivial on both normally closedE ′ = k(x′) andE ′′ = k(x′′).
Finally, every groupk(x)∗/k∗ ⊗ Z(`) is generated overZ(`) by elements

from M∗.

COROLLARY 15.6. — There exists a constantc ∈ Z∗` such that

cΨ∗ : cL∗/l∗ ⊗ Z(`) → K∗/k∗ ⊗ Z(`).

is an isomorphism.
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Proof. — Note thatΨ∗(L∗/l∗) satisfies all conditions of Proposition15.5,
except possibly (3). Multiplication of the latticeΨ(L∗/l∗) by a constantc ∈
Z∗` gives (3).

COROLLARY 15.7. — After a choice ofδ0, for every 1-dimensionalE ⊂ K
and everyf ∈ E∗/k∗ ⊗ Z(`) we can Galois-theoretically distinguish its poles
from its zeroes.

16. Projective structure

In Section15we have proved that

cΨ∗(L∗/l∗) ⊂ K∗/k∗ ⊗ Z(`) ⊃ K∗/k∗

for somec ∈ Z∗` . LetM∗ := cΨ∗(L∗/l∗)∩ (K∗/k∗) be the intersection. Then
M∗ ⊂ K∗/k∗ and (cΨ∗)−1(M∗) ⊂ L∗/l∗ satisfy all conditions of Propo-
sition 15.5. Moreover, the full preimages of these groups toK∗, resp. L∗,
satisfy the conditions of Proposition3.12. Therefore, there exist subfields
K1 ⊂ K andL1 ⊂ L so thatK/K1 andL/L1 are finite purely inseparable
extensions and

cΨ∗(L1/l
∗) = M∗ = K∗1/k

∗.

The setscΨ∗(L1/l
∗) andK∗1/k

∗ carry canonical projective structures com-
ing from field structures ofL1 andK1. A priori, this induces two projective
structures onM∗. The last essential step is to show that these structures on
M∗ coincide. It suffices to show that primary lines in both structures are the
same onM∗ (see Definition3.4and Definition4.7).

LEMMA 16.1. — Let x ∈ K∗ be a generating element,E := k(x) and
r = r(x) ∈ N the smallest positive integer such thatxr, modulok∗ is in M∗.
Then

– r = pm for somem ∈ N (with p = char(k));
– (E∗/k∗) ∩M∗ = (Epm)∗/k∗;
– (pointwise)pm-th powers of primary lines inE∗/k∗ coincide with pri-

mary lines in(Epm)∗/k∗.

Proof. — The first property follows sinceK/K1 is a finite purely inseparable
extension, by Propositions3.12and15.5. Next, we claim that a generating
elementy ∈ K1 (see3.4) is apm-th power of a generating element ofK (for
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somem depending ony). Indeed,E := k(y)
K
⊂ K is a finite and purely

inseparable extension ofk(y), E := k(x) (for somex ∈ K). Thus

y = (axp
m

+ b)/(cxp
m

+ d) = ((a′x+ b′)/(c′x+ d′))p
m

for somem ∈ Z, a, b, c, d ∈ k and theirpm-th rootsa′, b′, c′, d′ ∈ k (sincek
is algebraically closed).

In particular, a generating elementy ∈ K1 is in E∗/k∗ ∩ M∗ (and is the
minimal positive power of a generator inE contained inE∗/k∗ ∩M∗). This
implies the third property: the generating elements ofEpm arepm-th powers
of generators ofE.

LEMMA 16.2. — The isomorphismcΨ∗ : L∗1/l
∗ → K∗1/k

∗ induces isomor-
phisms of multiplicative groups

cΨ∗ : l(t)∗/l∗ → k(x)∗/k∗,

wherel(t), resp.k(x) are algebraically closed 1-dimensional subfields inL1,
resp.K1, inducing a bijection on (the images of) generating elements of the
corresponding fields.

Proof. — For elements ofl(t)∗/l∗, resp.k(x)∗/k∗, we have a Galois-theoretic
notion of divisorial “support”. This characterizes elements of minimal, by in-
clusion, divisorial support. These elements have also minimal support onP1

x

and hence their support onP1
x consists of two points. Thus they are powers

of the images of generating elements ink(x). Among all elements with fixed
minimal divisorial support we distinguished the primitive elements (with re-
spect to multiplication). These primitive elements are generating elements
of L1, resp.K1, andcΨ∗ establishes a bijection on (images inL∗1/l

∗, resp.
K∗1/k

∗, of) generating elements.

COROLLARY 16.3. — The isomorphismcΨ∗ : L∗1/l
∗ → K∗1/k

∗ identifies
primary lines of the corresponding projective structures.

Proof. — By Corollary 15.7we can Galois-theoretically distinguish zeroes
and poles of elements inL∗1/l

∗ andK∗1/k
∗. By Lemma16.2, if l(t), resp.

k(x), is a normally closed 1-dimensional subfield inL1, resp.K1, then the
restriction

cΨ∗ : l(t)∗/l∗ → k(x)∗/k∗

induces a bijection on (the images of) generating elements which have the
same poles. The set of elements ofl(t), resp.k(x), with the same pole is a
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primary line inPl(L1), resp.Pk(K1). In particular,cΨ∗ identifies the primary
lines in the projective structures onM∗.

17. Proof

In this section we prove our main theorem: if

(GaK ,ΣK) = (GaL,ΣL),

whereL is a function field over an algebraic closure of a finite field of char-
acteristic6= `, thenK is a purely inseparable extension ofL. Moreover, for
somec ∈ Z∗` , cΨ is induced by an isomorphism̄Ψ of the perfect closure ofK
with the perfect closure ofL and the pair(c, Ψ̄) is unique up to

(c, Ψ̄) 7→ (pnc, (x 7→ xp
n ◦ Ψ̄).

Step 1.We have a nondegenerate pairing

GaK × K̂∗ → Z`(1).

This induces the dual isomorphism

Ψ∗ : L̂∗ → K̂∗.

Step 2.In Sections4-9 we characterize intrinsically the inertia and decom-
position groups of divisorial valuations:

Iaν ⊂ Da
ν ⊂ GaK :

every liftable subgroupσ ∈ Σdiv
K ⊂ ΣK contains an inertia element of a divi-

sorial valuation (which is also contained in at least one otherσ′ ∈ ΣK). The
corresponding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).

By assumption, the isomorphismΨ of Galois groups induces a bijection on
the sets of maximal topologically noncyclic liftable subgroups. This gives a
bijection of sets of divisorial valuations of the corresponding fields

Ψ : DVK → DVL,
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and induces a canonical isomorphism of Galois groups of the residue fields

Ψν : Da
ν/Iaν = GaKν

→ GaLΨ(ν)
,

for all ν ∈ DVK .

Step 3.For everyν ∈ DVK the isomorphismΨν defines a canonical iso-
morphism of inertia subgroups

Ψν : GaKν
// GaLΨ(ν)

Ψν,w : Iaw // IaΨν(w)

of divisorial valuations of the corresponding residue fields: points on smooth
models - curves - of these fields (see Proposition10.3). In practical terms,
this establishes a bijection on the sets of all curves, and all points on these
curves, on all models ofK, resp.L. This bijection does not change whenΨ
is multiplied by a constantc ∈ Z∗` and under purely inseparable extensions of
K orL.

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemma10.4and Remark10.5).

Step 5.For f̂ ∈ K̂∗ we have two notions of support:suppK(f̂) (intrinsic)
andsuppX(f̂) (depending on a modelX) and two notions of finiteness:̂f is
nontrivial on at most finitely many nonrational divisorial valuationsν, resp.f̂
has finite divisorial support on a model. We definedFS(K) ⊂ K̂∗ as the sub-
group of elements satisfying the first notion of finiteness, andFSX(K) ⊂ K̂∗

as the subgroup of elements satisfying the second notion (this subgroup does
not depend on the choice of a modelX of K). By Step 4, the characterization
of FS(K) is Galois-theoretic and we obtain an isomorphisms

Ψ∗ : FS(L) → FS(K).

Step 6.If some (any) modelX of K contains only finitely many rational
curves thenFS(K) = FSX(K). In general, it may happen that theΨ∗-image
of someg ∈ L∗/l∗ has an “infinite rational tail” on some (every) modelX of
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K:
ρX(Ψ∗(g)) = ρX,nr(Ψ

∗(g)) +
∑
j≥1

njCj,

whereCj are irreducible rational curves onX. In Lemma13.6 we show
thatΨ∗-images of many elements ofL∗/l∗ ⊂ FS(L) have finite support on
every modelX of K, and vice versa. In particular, we obtain a canonical
isomorphism

Ψ∗ : FSY (L) → FSX(K),

whereY is a model ofL andX a model ofK. Combining the exact sequence
(13.1) with Lemma12.3we obtain a canonical isomorphism

Ψ∗ : L∗/l∗ ⊗ Z` → K∗/k∗ ⊗ Z`.

Step 7.For every pair of elementŝf, ĝ ∈ FSX(K) satisfying

– suppK(f̂) ∩ suppK(ĝ) = ∅;
– %ν(f̂ , ĝ) = 1 for all ν ∈ DVK

there exists a subfieldE = k(C) ⊂ K such thatf̂ , ĝ ∈ Ê∗ (Proposi-
tion 15.1). This gives canonical isomorphisms between completions of mul-
tiplicative groups of normally closed 1-dimensional subfields inK andL, in-
sideK∗/k∗⊗Z`. This isomorphism preserves the genus of the corresponding
curves.

Step 8.Proposition14.1identifiesE∗/k∗ insideÊ∗, up to conformal equiv-
alence with respect to multiplication by elements inZ∗` . More precisely, there
exist anc ∈ Z∗` , anx ∈ K∗ \ k∗ and ay ∈ L∗ \ l∗ such that

c ·Ψ∗ : l(y)∗/l∗ → k(x)∗/k∗

is an isomorphism of multiplicative groups of subfields ofK, resp.L.

Step 9.LetM∗ = cΨ∗(L∗/l∗)∩K∗/k∗. By Proposition3.12, we have finite
purely inseparable extensionsK/K1 andL/L1 such thatM∗ = K∗1/k

∗ and
M∗ = cΨ∗(L∗1/l

∗), as a multiplicative group. Thus,M∗ carries two structures
of an abstract projective space compatible with the multiplicative structure
(see Example4.5), induced from the additive structure onK1, resp.L1.
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Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure onM∗ consisting of primary lines (see Lemma4.8 and
Lemma4.9).

Step 11.Corollary 16.3 shows that the mapcΨ∗ identifies primary lines
of these two structures. This defines a unique projective structure onM∗,
compatible with multiplication. It follows thatcΨ∗ induces an isomorphism
of fields

L ⊃ L1 ' K1 ⊂ K,

and of perfect closures ofL andK. This concludes the proof of Theorem1.
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