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Introduction

We fix two distinct primeg and/. Letk = [, be an algebraic closure of
the finite fieldF,. Let X be an algebraic variety defined oveandK = k(X)
its function field. LetG¢, be the abelianization of the piguotientGy of the
absolute Galois group ak. Under our assumptions dn G¢ is a torsion-
freeZ,-module. LetGy; be its canonical central extension - the second lower
central series quotient @ . It determines the following structure: fan
Yk of distinguished (primitive) subgroups of. which are finite rankz,-
modules. A topologically noncyclic subgroupe Y iff

— o lifts to an abelian subgroup of;
— o is maximal: there are no abelian subgroups- G¢ which lift to an
abelian subgroup d@f, and contairv as a proper subgroup.

THEOREM1. — Let K and L be function fields over algebraic closures of
finite fields of characteristiez ¢. Assume thall’ = k(X)) is a function field
of a surfaceX/k and that there exists an isomorphism

‘I’:‘I’K,L c G =07
of abelian pro#-groups inducing a bijection of sets
Yk = 2.

Then, for some € Z;, ¢V is induced by an isomo[phis@i of the perfect
closure of K" with the perfect closure df; the pair (¢, ¥) is unique up to

(e, W) = (p"c, (x> 2™ 0 ).

We implement the program outlined in][and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (se#, [S],[5])-
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many useful remarks. Comments by Pierre Deligne were of tremendous help.
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2. Overview

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX' over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let G% be the proé-quotient of the abelianization

Gr/|Gr, Grl,

of the absolute Galois groui; = Gal(K/K) of K, ¢ # char(k). By
Kummer theoryG¢ determines the pré-completionk™ of the multiplicative
group K.

A Galois-theoretic characterization of the fididinvolves the recognition
of the subgroupk™*/k* c K*, and of the canonical projective structure, the
projectivization of theadditivegroup K, considered as a vector space over
The necessary information is encodedip, the maximal pro~quotient of

Gk/[[Gk, Gk, Gk].

Our main Galois-theoretic object is a pa@é, ), where thefan X
is the set of all maximal (by inclusion) topologically noncyclic subgroups
o C G¢ whose set-theoretic preimage dfj. is an abelian group. It turns
out that theZ,-rank of such liftable subgroups C G is bounded by the
dimension ofX,

Theoreml states that if for two function field& = k(X),L = [(Y),
whereX/k is an algebraic surfac&;/! an algebraic variety; and! are alge-
braic closures of finite fields of characterisgc/ there is an isomorphism

v (G5, Bk) — (97, %1)
thenk ~ [, Y is a surface and is isomorphic to a purely inseparable exten-
sion of K.

Define a subfartlV c X as the set of those maximal liftable subgroups
which have nontrivial intersection with at least one other subgroupn
There is a geometric reason to distingulshi’. Let K be the function field
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of a surfaceX overk, D an irreducible divisor onX andv = v, the cor-
responding nonarchimedian divisorial valuation. Its abelian decomposition
groupD¢ C G% is a (noncanonical) direct product of the inertia subgroup
7y ~ Z, and the grou; , of the fieldk(D). Now a subgroupr C Dj

of Z,-rank 2 is liftable if and only if it containsZ¢. ThusX¢¥ contains all
liftable subgroups oZ,-rank2 which are contained in groufs.

The first important result says that¥ exactly coincides with the set of
all liftable subgroups oZ,-rank 2 contained in the group®¢?, for different
v = vp. This gives an purely group-theoretic description of the grabfis
the nontrivial intersection of two liftable groupsc’ is alwaysZ?, for some
divisorial valuationv = vp, andD¢ “centralizes”Z?, it consists of all those
elements irG§, which commute witlZ?, after lifting to G¢.

The proof is based on Kummer theory and the interpretatio@fofis a
space of special (logarithmicj,-valued maps on the infinite-dimensional
projective spac@®,(K) = K*/k* over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results far = F,(X) are contained in Sectidh
The case of arbitrary algebraically closed ground fi¢glastreated in £],[2].

At this stage we characterized all pal®s_,7; inside G, or, vaguely
speaking, we recovered “all curves” on all modéfsof K (andY of L).
Next we recover the “points” o), as inertia groups;, C Gy ), using
various subgroupi;?gD, as follows: the image df? under any homomorphism
of G to a finite group, which is trivial od;} , coincides with the image of
someZ;  (see Sectiori(). Conversely, for anyy € Dy \ Z2, for some
divisorial valuation onk(D) (a point), there exists such a homomorphism
with the property that the image of is not contained in the image of any
inertia subgrouﬁ;}D,.

Now we can recover the genus Of and distinguish the set of divisorial
valuations of K which on some model of{ are represented by curves of
genus> 0. Note that these valuations have 1-dimensional centees/ery
modelof K.
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We switch our attention to the dual spaé of G%. We seek to recover the

subsetL*/I* ¢ K* = L* using Galois-theoretic data. This is done in several
steps, each time obtaining a smaller subgroup:

— FS(K) c K* - elements ink™* with finite nonrational support,
- K*/k*®7Zy C FS(K) and
- K*/k’* ® Z(g).

Elements of* can be thought of as infinite products of elemefitss K™,
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modelof the field
with Z,-adic coefficients which converge tbin the /-adic topology. The
subgroupFS(K) C K* consists of elements whose support contains only
finitely many nonrational divisors (characterized above). Of couFs&(,K)
containsK™* /k* and L*/I* but it is still rather big - elements iFS(K) may
have infinite rational “tails” ifX contains infinitely many rational curves.

Next we use arf-adic analog of a symbdlf,g) mod (" € Ky(K)/¢™.
Notice that(f,¢g) = 0 mod ¢" for anyn € N if f g belong to the same
one-dimensional subfield i In particular, for anyf € K \ k there is an
elementg which is not a power off and such thatf,g) = 0 (we can take
g = f + 1). This imposes a strong condition grsince for a generic element
in X* the “commutator” off consists of-adic powers off only. This allows
us to characterize

K*/k?*@Zg = L*/Z*®Zg C fS(K)

The next step involves a normalization. Insifle/k* ® Z, we cannot
Galois-theoretically distinguish* /I* ®Z ) froma- K* /k*®Zy), fora € Z;.
However, this conformal invariance is the only freedom there is. If we fix the
values off € L*/I* ® Z, on one (arbitary) irreducible divisor on a mode€l
of K thenL*/I* ® Z, is naturally identified insidé(* /k* ® Z,. Thus, after
multiplication bya € Z;, we can assume that /I* C K*/k* ® Z).

Now we haveK™ /k* andL*/I* inside K* /k*®@Zy = L* /I*®Z,). We also
know that subgroups generated by elemégntswith pairwise trivial symbol
(f,9) = 0 correspond to one-dimensional subfieldsAnL, respectively.
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Most one-dimensional subfields i are isomorphic té(z), for somez, and
Galois data allow us to recognize these subfields. Henkérif C K then
k(z)*/k* ® Lgy = rt)/I* ® Ly C K*/k* ® Ly, for somet € L.

Next we show that the corresponding grougs)*/k* andi*(z)/l* inter-
sectink(z)*/(k*)" = I*(x)/(l*)® for some rationat, s. This property implies
that L*/1* is isomorphic (as a multiplicative group) 16 /k* whereK / K is
a purely inseparable extension.

Now we add the projective structure over, respectively. We notice that
the sets of line§P(k @ kx)} and{P(I&!t)} in K*/k* andL*/l*, over allz, ¢
generating closed subfielé¢éz) C K andi(t) C L, are the same. It turns out
that the set of these lines and their (multiplicative) translations is compatible
with a unique projective structure on the (multiplicative) groups/ k* and
L*/1* - namely the one coming from the field structure. This defines a unique
additive structure and finishes the proof of our main result.

3. Basic algebra and geometry of fields

NOTATIONS 3.1 — Throughoutk is an algebraic closure of the finite field
F =F, andK = k(X) the function field of an algebraic variety/k overk
(its mode).

In this paper we use the fact that two-dimensional function figldsave
“nice” models: smooth projective surfac&soverk with K = k(X), whose
geometric properties play an important role in the recognition procedure. In
this section we collect some technical results about function fields of curves
and surfaces and their models.

We assume familiarity with

— basic notions of field theory (transcendence degree, purely inseparable
extensions);

— basic notions of algebraic geometry:-rational pointsX (k), Picard
groupPic(X), Néron-Severi groupiS(X).

LEMMA 3.2 — LetC'/k be a smooth curve an@ C C(k) afinite set. Then
there exists am = ngy € N such that for every degree zero divisbrwith
support inQ the divisorn D is principal.
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Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisoRic’(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite §etC C'(k) is finitely

generated. O
LEMMA 3.3 — Let X/k be a surface(’y, ..., C; a finite set of (pairwise
distinct) curves onX and f; € k(C;)*, fori = 1,...,s. Then there exists an
f € k(X)* whose restriction t@; is defined and equal tg;, for all 7.

Proof. — Well known. ]
LEMMA 3.4 — For some ample smooth curve: C' — X the restriction

i* : Pic’(X) — Pic’(C) is an injection of abstract groups (&fpoints).
Proof. — Let H be a polarization otX. There exists an € N such that for
all pairsL, L' € Pic’(X) one hasf' (X, —(L — L' +nH)) = 0. Indeed, the

property
H'(X,—(L— L' +mH)) =0

is open inPic’(X) x Pic’(X) \ A (whereA the diagonal subgroup), since
Pic’(X) is an algebraic group scheme. Denote by

Unn C (Pic®(X) x Pic’(X) \ A)
the corresponding subset. If we consider a increasing sequence
UTLZ’H7 n; € Z, Una C UnH, for m < n,

the union of allU,,, ; is equal toPic’(X) x Pic’(X) \ A. Then there is an
n € N such thatU,,; = Pic’(X) x Pic’(X) \ A (due to algebraicity of
Pic’(X) x Pic’(X) \ A and allU,, ;). Exact sequence in cohomology gives:

HY(X,~L+L')=HC,,~L+1L),
whereC,, is a smooth curve in the clagsH]|. SinceH’(X,—L + L) = 0,
for L # L', the same holds for their restrictions. In particular,

i* 1 Pic’(X) — Pic’(nH)

is a set-theoretic embedding (on the sekgdoints). O

REMARK 3.5. — A more delicate analysis shows that for> 0 the map
i* . Pic’(X) — Pic’(nH) is an embedding of algebraic groups. Note that
over a closure of a finite field the map

i : Pic(X) — Pic(C)
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is never an embeddingik NS(X) > 1 (in contrast with characteristic zero).

LEMMA 3.6. — Let X/k be a smooth projective surfac€, C X an irre-
ducible curve and) a finite set of points ot. Then there exists a diagram

Cc X—=Y

CccX

whereX = BI(X) — X is a blowup ofX" with center supported it \ )
andr is an isomorphism orX \ C (the strict transform of under7) which
mapsC' to a point onY'.

Proof. — There is a polarizatiod/ on X such thatd — C restricted taX \ C

is very ample (induces an embeddingXf\ C' into a projective space). Let
P7. be the projective space spanned®@ynder the embedding’ C P" by

H. By our choice ofH, r < n. A generic hyperplan® ! C PZ, intersects

C transversally in finitely many smooth poings . . ., ¢s which are contained

in C'\ @ (here we use Bertini’s theorem for embedded curves, which in this
case is evident over any algebraically closed field). The projection from this
P! (insideP") induces a proper map from the blowpof X with center

In Ug; onto a projective surfacé C P"~". Note that the image af' under

the projectionis a poinf € Y.

By construction]Pf, intersectsX exactly inC'. Hence, the proper preimage
of ¢ in X is C. Any otherP” C P" intersectsX \ C in at most one point and
transversally (by assumption @ (X, H —C)). It follows that the projection
induces an isomorphism betwean\ C andY \ g. O

LEMMA 3.7. — Let X/k be a smooth projective surfac€, C X a curve
and(@) C C(k) afinite set. LetC be a line bundle onX whose restriction to
C'is trivial (Lo ~ O¢). Then there exists a diagram

™

c X—Y
c X

(@)

C



lemm:cc

FUNCTION FIELDS 9

whereX = BI(X) — X is a blowup with center supported in finitely many
points onC' \ @ andr is a proper map as in Lemnta6 (contractingC’) such
that the pullbackC = 7* L is induced fromy”.

Proof. — By Lemma3.6, we may assume thdt is (already) contractible.
Since/ is trivial on C' we havel ~ O(R; — Rs), whereR;, R, are divisors
on X intersecting” transversally, and

R1mC:R2ﬂCCC\Q.
Indeed, we can find a polarizatidi, so thatl + H is also a polarization,
giving surjective maps
HY(X,L+H) — HC,(L+H)c)
H'(X,H) —  H°C, H).

Letic : (L+ H)c — He be anisomorphism. We can find a pair of sections
s € HY(X, L+ H), s, € H'(X, H)

with ic(s1)c = (s2)c. Let R; be the zero divisor of;. ThenO(R; — Ry) ~ L
andR;, R, intersectC' transversally with

RlﬂC:RszCC\Q,

as claimed.

Consider the smooth surfage: X — X obtained by blowing ug; N C'.
The proper preimageB; of R; in X don'tintersect the proper preimagec
X of C. The divisor ofr*£ = n*(R;, — R,) doesn’t contain components
which are exceptional curves lying over pointsin Hencer*L is trivial on
the open quasi-projective neighborhoﬁ’d\ supp(m*(R; — Ry)) containing
C'. Therefore, the bundlé is induced fromt” (as in LemmaB.6). O

LEMMA 3.8 — Let K/k be the function field of a surfac€;/k a smooth
curve on a model of{ and@ = {qo,...,qs} C C(k) a finite set of points.
Then there exist a modél of K, irreducible divisorsD;, H;, H} on X, with
j=0,...,s, and a positive integet = ng such that:

(1) X is smooth and contains;

(2) DjNnC =g forallj=1,...,s;

(3) n(D; — D,) restricted toC'is a principal divisor;

(4) n(D, - Dy) + (H; — HJ’) iS a_prin_cipal divisor onX;

(5) the divisorsD, are pairwise disjoint;
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(6) all intersections betweeD;, H; and H; are transversal, pairwise dis-
tinct and outside”;
(7) H;, H; don’tintersectC'.

Proof. — Let X be a smooth projective model &f containingC' as a smooth
curve. Choose divisor®; C X passing (transversally) through (for all

j = 0,...,s). Blowing up points inC'\ ¢ we can insure that the (strict
transform of)C' becomes contractible and that the image of the surface under
a contracting morphism igrojective(by Lemmas3.6).

Blowing up again (if necessary) and removing components of exceptional
divisors, we can insure that the (strict transformis)" C' = ¢; (for all j). By
Lemma3.2, there exists am = ng such that the restriction of(D; — D)
to C'is a principal divisor. We continue to blow up (outsi¢® so that each
n(D; — Dy) becomes a trivial line bundle on some open neighborhoad of
in some modekX (using Lemm&B.7).

Throughout(' remains contractible and we write

Tm: X —=Y

for the corresponding blow-down. Now(D; — D) is induced from a line
bundle onY (which is projective). In particular, there exiaipleclasses
[H;], [H}] € Pic(Y) such that

[n(D; — Do)l + ([H;] — [Hj])

is a principal divisor onX (here we identifiedH;], [[}] with their full trans-
forms in X). Finally, we can choose representativés H; C Y of these
classes which are disjoint from(C), irreducible and satisfy all required
transversality assumptions.

More precisely, choose clasgés| so that

[n(Dj = Do)l + ([H;]), [n(D; = Do)l + ([H}]), [H;], [H]]

provide an embedding df into a projective space. Consider an embedding
of Y into a projective space defined by one of the sefis, [H}]. For any
finite set of irreducible divisors it we find a hyperplane section intersecting
the union of these divisors transversally and not containing the given finite
set of points inY". Using induction ory we find representatives ¢f/;], [ /]
satisfying the lemma. O

lemm:purely | LEMMA 3.9 — Let K/R be a purely inseparable extension. Then
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- RDk
— K/Ris afinite extension;
— R = k(X’) for some algebraic varietyX”.

DEFINITION 3.10 — We writeE. ¢ K for the normal closure of a subfield
FE C K (elements inK which are algebraic oveF). We say that € K \ k
is generatingf k(x)K = k(x).

REMARK 3.11 — If £ C K is 1-dimensional then for at € '\ k one has

] prop:geome \

k(:c)K = E" (afinite extension oF).
LEMMA 3.12 — For any subfield® C K there is a sequence
X By 2y,
where
— 7 is rational dominant with irreducible generic fiber;
— 1 Is quasi-finite and dominant;
— k(Y') =E" andk(Y) = E.
For generating: € K we write
T, : X =Y

for the morphism from Lemma.12 with k(Y') = k(x). Fory € K \ k(z)
definedeg, (y) (the degree of on the generic fiber af,) as the degree of the
corresponding surjective map from the generic fiber ofinderr,.

PROPOSITION3.13 — Let K = k(X) be the function field of a smooth
surface,C' C X a smooth irreducible curve and, ..., f, € K* rational
functions onX, restricting nontrivially toC. Then there exists a modal
of K (a blowup ofX) such that for every poinf in (the strict transform) of
C C X there exists an irreducible divisdp, C X (possibly the zero divisor)
with the property that for alf = 1,. .., s the order ofD, in the divisor off;

is equal to the order of; in q.

Proof. — Consider the divisor§' anddiv(f;), i = 1,...,s and a modelX

of K such that the total preimage c X of the union of all these divisors in

X has strict normal crossings (resolution of singularities for surfaces). After
further blowups we can assume that each irreducible componénfdistinct
from C') intersects (the strict transform af) in at most one point. For each
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q € Cn(D\C)let D, be this component. For all othedet D, be the zero
divisor. These divisors have the required properties. ]

LEMMA 3.14 — LetK = k(X) be the function field of a surface amdy €
K \ k be such that

deg,(y) = min (deg,(f))

fFEK k()
and k(y)K = k(y') for somey’ € K*. Theny is generating:k(y) = k(y)K.

Proof. — If y is not generating thep = z(y') for somey’ € K and some
functionz € k(y')* of degree> 2. This implies thatleg,(y) > 2deg,(v/),
contradicting minimality. O]

LEMMA 3.15 — Let X be a model of< containing a rational curv&’ and
x € K* afunction such that its restriction: to C' is defined and such that

k(C) = k(zc). Thens is generatingk(z) . = k(x).

Proof. — The restriction map extends kxﬁx)K and hence is an isomorphism

betweerk(x¢) andk(z) = k(x)K. O

The next proposition characterizes multiplicative groups of fidlds K
such thatK' /8 is a purely inseparable extension. Notice that for a one-
dimensional field:(C) the subfields is always of the forni(C)*", for some
n € N. Thus for any one-dimensional subfigldC K there is am(F) € N
such that the intersection &f with £* consists exactly of( £')-powers of the
elements of*. Below we show that this property of intersection with sub-

fields of the special fornk(z) = k:(:c)K already characterizes multiplicative
groups of suctR among multiplicative subsets K ™*.

DEFINITION 3.16 — LetR&* C K* be a (multiplicative) subgroup such that

for any subfieldf = k(z) = k(x)K C K there exists an = r(F) with
the property that’* N £* = (E*)" (r-powers of elements df*). For every
t € E*\ k* we define(t) = r(E).

REMARK 3.17. — Note thatr(t) is not defined for € K* \ k* iff k(1) is
the function field of a curve of genus 1.
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DEFINITION 3.18 — We will say thaty € K* is a powerif there exist an
x € K* and an integer > 2 such thaty = 2.

PROPOSITION3.19 — Let K = k(X) be the function field of a surface and
R* C K* asubset such that

(1) K8* is a multiplicative subgroup ok™;

(2) foreveryE = k(z) = k(x)K C K there exists am = r(E) € N with
(3) there exists @ € K \ k withr(y) = 1.

Theng := R* U0 is a field, whose multiplicative group 8" and K /R is a
purely inseparable finite extension.

Proof. — Once we know thag is a field we can conclude that every= K*
is either in&* or some power of it is inR*. Of course, it can only be a
power ofp so thatK/f is a purely inseparable extension, of finite degree (by
Lemma3.9).

By (3), £ C K. To conclude thar is a field, it suffices to show that for
everyx € R one hast + 1 € R (and then use multiplicativity). For every
xz € R\ kwith r(z) = 1 we haveR* N k(z)* = k(z)* and

r+rk e R, forallk € k.

In particular, this holds foy.
Considerz € K with »(z) > 1 or not defined. We claim that for some
k €k
z = rtytr € R andr(z) = 1.
y+r—1

This implies that

z—1=(z+1)/(y+x—1) € & andz + 1 € &,
(by multiplicativity). We can assume that/k(C)(y), wherek(C') = k(a:)K,
IS a finite separable extension. (Otherwise, we cailé&e a minimal proper
subfield in®’ C K containingk(C')(y) and such that{/&’ is purely insepa-
rable and use the intersection®fwvith &’ instead ofR.)
To prove the claim, choose a mode€lof K such that both maps
—K

T X — C, k(C)=k(z)
T, X — Pl=(y:1)
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are proper morphisms (as in Lemrfidl?). Sincex andy are algebraically
independenti(x) > 1), only finitely many components of the fibersmofare
contained in the fibers of, and there exists a € k£ such that both fibers

7, (—x) andm, (1 — )
are transversal to the fibersof, since we assume that/k(C)(y) is separa-
ble. Note that
divo(y + k — 1) ¢ div(z + y + k),

sincey + k = —1 ondivy(y + k — 1) andz is nonconstant on these fibers
(wheredivy is the divisor of zeroes). It follows in the first case thath

t:=w+k)/r and z .= (z+y+k)/(y+r—1)

are not powers.

Note thatt, z are generating elements. Indeed, if we blow up the smooth
point ¢ of transversal intersectiofy + x = 0} N {z = 0} thent restricts
nontrivially to IF’; and similarly

zi=(+y+r)/y+r—1)=x+1/(y+r—-1)+1

restricts nontrivially taP,,, whereq' = {z = -1} N {y = 1 — x}.
Note thatt C & and since it is not a powet(t) = 1 and

1ty +1=(x+y+r)/(y+K) €R
To show that: € R observe that both, y + x € & so thatt € K. Therefore,
t+l=(x+y+k)/zecr
and, by (1) +y+x € R. Finally, since(y + k — 1) € Awe getz € & [
REMARK 3.20 — If assumption (3) is not satisfied then we can take
(ﬁ*)l/r(y) ﬂK*,

which satisfies all the conditions of the lemma. Thus in general without the
assumption (3) we have = (R&')", where K/f' is purely inseparable and
r e N.

In our analysis of Galois groups we need to keep track of rational curves
on a surface.

LEMMA 3.21 — Let X be a surface ovek. There three mutually disjoint
possibilities:
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(1) Pic’(X) = 0;

(2) Pic’(X) # 0 and X contains finitely many rational curves;

(3) Pic’(X) # 0 and, after a finite purely inseparable extensighadmits a
fibration over a curve” of genug(C) > 1 with generic fiber a rational
curve.

Proof. — Follows from the classification of surfaces. IndeedYifs smooth
andPic’(X) # 0 then there is a nontrivial map into the Albanese variety of
X, and all rational curves lie in fibers. The generic fiber of this map is either
rational or there are only finitely many rational curvesXn ]

Let X be a surface ovet and Alb(X) its Albanese variety. Recall that
Alb(X) is a principal homogeneous space for an abelian vadéty ), with
dim A%(X) = dim Alb(X).

llemm:surface2 | LEMMA 3.22 — LetD := {D;},c, be afinite set of irreducible divisors on
X. Assume that there is gh € k(X)* whose divisor is supported iR. Let
B c A° be the smallest abelian subvariety such that the image;afinder
the mapy : Alb(X) — A := Alb(X)/B is a point, for allj € J.

Assume thaB # A°(X). Then the image oX in A is a curveC and A is
isomorphic to the Jacobiafac(C') of degree 1 zero-cycles @n

Proof. — First of all, dim a(X') > 1: the surfaceX is connected and(X)

generatesi. Further,a(X) is not a surface: otherwise X' — «(X) is the

normalization, then there is a map: X — X’ and the image of D, } < is

a finite set of points otX’. The intersection matrix of the set of irreducible

components in the divisorial support of! ('), for anyz’ € X’, is negative

definite, contradicting the assumption that there is a function supported in
LetC := a(X) C A, we havek(C) C K. LetC’ be a curve with function

field k(C") = k(C) - ¢ K. The mapC” — C'is finite. The mapy : X — A
factors through the Jacobidac(C’): we have

X — Jac(C")

|

A
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The image of{D,},c,; underac- is a finite set of points iac(C’). We
have surjectiondac(C’) — Jac(C) — A and a canonical maflb(X) —
Jac(C"). ThenB = Ker(ac) andC’ = C. O

4. Projective structures

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition if.[|

DEFINITION 4.1 — A projective structurdas a pair (S, £) whereS is a
(nonempty) set (of points) argla collection of subsets C S (lines) such
that

P1 there exist ans € S and anl € £ such thats ¢ [;
P2 for everyl € £ there exist at least three distingts’, s € [;
P3 for every pair of distinck, s’ € S there exists exactly one

[=1(s,s') e L

such thats, s’ € [;
P4 for every quadruple of pairwise distingts’, ¢,¢' € S one has

(s, )Nt 1) £D = (s, t) NI 1) #0.
Fors € S andS’ C S define thgoin
sV S :={s"eS|s" €ls,s) forsomes’ € S'}.
For any finite set of points,, . . ., s, define
(S1y..-8n) :=81 V($2V -+ Vsy)

(this does not depend on the order of the points). Wite for the join of
afinite setS’ c S. A finite setS” C S of pairwise distinct points is called
independenif for all s € S’ one has

s' ¢ (S"\{s'}).
A set of pointsS” C S spansa set of pointg” C S'if

— (S") C T for every finite ses” C S,
— for everyt € T there exists a finite set of points C S’ such that
t € (Sy).
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A setT C S spanned by an independent §éof points of cardinality> 1 is
called a projectivsubspacef dimension|S’| — 1.
The axioms imply that projective subspaces of a given projective space
form a lattice and that the dimension function is well defined, i.e.,
dim(TUT") + dim(T NT") = dim(T) + dim(7")

for all pairs of projective subspac&sT’ C S. Here we putlim()) := —1.

defn:pappus | DEFINITION 4.2 — A projective structuréS, £) satisfiePappus’ axionif

PA for all 2-dimensional subspaces and every configuration of six points
and lines in these subspaces as below

the intersections are collinear.

The main theorem of abstract projective geometry is:

THEOREM4.3 — Let (S5, £) be a projective structure of dimensian> 2
which satisfies Pappus’ axiom. Then there exists a vector Spaser a field
L and an isomorphism

o P (V)—S.

Moreover, for any two such tripled/, L, o) and (V’, L', ¢’) there is an iso-
morphism

V/L = V'L
compatible withr, ¢’ and unique up to homothety— v, A\ € L*.

Proof. — See [/], Chapter 6. O
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DEFINITION 4.4 — A morphism of projective structures
p: (S, £)— (5,8
is an injection of setg : S — S’ such thatp(l) € £ forall [ € £.

EXAMPLE 4.5. — Letk be a field and} the usual projective space over
of dimensiom: > 2. ThenP} carries a projective structure: the set of lines is
the set of usual projective linds C P7.

Let K/k be an extension of fields (not necessarily finite). Then the set

= Py(K) = (K \ 0)/k"

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the groufy* /k* preserves this structure.

THEOREM4.6. — LetK /L andK’/L' be field extensions of degree3 and
¢: S=PLK)—PL(K)=5

a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then
L~IL and K ~ K.

Proof. — Considerl’ := K as a vector space ovér By Theoremd.3 to S
there are canonically attached thealgebrakEnd (V) andGL(V) € End(V),

as the set of elements preserving the collineations of the projective Space
(because the action of homothetiestomd (V') is trivial). This allows to re-
cover the fieldK as the subfield of thé-algebrakind (1) given by

{0} U{z € GL(V) C End(V) |z induces a group-translation of}.
0

DEFINITION 4.7. — Let K/k be the function field of an algebraic variely

of dimension> 2 and S = P, (K) the associated projective structure from
Example4.5. The lines passing throughand a generating element &f (see
Definition 3.10 and their multiplicative translations by elements A /k*
will be calledprimary.

LEMMA 4.8 — LetK = k(X) be the function field of a surface. For every
line [ = (1, x) there exists &* C P;(K) such that all other lines in thig?
are primary.
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Proof. — Choose a smooth mod&l of K and two pointsy;, ¢z € X such
thatz(q;) = 0,2(¢q2) = 1. Blow up ¢y, ¢, and letP} be the corresponding
exceptional curves. Lef € K* be an element restricting to a generator of
k(P}!). The restriction map extends to the normal clost(i®) C K. Hence
the normal closuré(y) C K coincides withk(y).

To prove that every ling¢ # [(1,2) C P? = P(k & kz & ky) is primary
we need to show thaty + a + bx)/(y + ¢ + dz) is generating, provided
(a,b) # (¢, d). If a # cthen the restriction ofy +a+bx)/(y + c+dx) O P}
is equal toy +a)/(y+c) and hence is a generator/dfP, ). By the argument
of the previous lemmdy +a-+bzx)/(y+c+dx) is generating. 1t = ¢,b # d
then(y + a + bx)/(y + ¢ + dx) onP,, coincides with(y + a +b)/(y + ¢+ d)
and is also generating sinaet b # ¢ + d, by assumption. O

LEMMA 4.9, — Assume that a sef has two projective structuresS, £,)
and (S, £,), both of dimension> 2, and that for som@? (in the first projec-
tive structure) every ling, € (£, N P?), except possibly one line, is also a
line in the second structure. Then thetP? is a projective plane in the second
structure(S, £,), projectively isomorphic t#? € (S, £).

Proof. — LetP? be the set of all lines ii*? andP? \ [ the set of lines which
remain projective lines iP2. Let [, I, [; be three lines fron®2 \ [ which
don’t have a common intersection point. Then,, I3 lie in the same plane
P2. Since every other liné e P2\ [intersectd, [, s thenl’  P2. Thus all
lines fromP? \ [ are inP2 which contains all the points @.

They are isomorphic since it is an isomorphism between lines and every
point, except possibly one point, is an intersection of two Iinéﬁml. Since

P2 coincides withP? outside of one point they coincide. O
[coro:final | COROLLARY 4.10 — Let K/k and K'/k' be function fields of algebraic
surfaces

& S = Pk(K) — Sl :]Pk/<K/)

an isomorphism of (multiplicative) abelian groups inducing a bijection on the
set of primary lines in the corresponding projective structures. Thenan
isomorphism of projective structures and

k~Fk and K ~ K'.



sect:af
nota:pr

exam:main-flag |

20 FEDOR BOGOMOLOQV and YURI TSCHINKEL

Proof. — By Lemma4.8and Lemma4.9 ¢ induces an isomorphism of pro-
jective structures. It remains to apply Theorérfi ]

5. Flag maps

NOTATIONS 5.1 — We fix two distinct prime numberéandp. Let

— F =F, be afinite field withy = p™ andF* its multiplicative group;

— Vecty - the set of finite-dimension&l-vector spaces;

— A a vector space ovef andP(A) = Pr(A) = (A \ 0)/F* its projec-
tivization;

— M(A) the set of maps froml \ {0} to Z;;

— for u € M(A) andB C A anF-linear subspace,s the restriction ofu
to B\ {0}.

DEFINITION 5.2 — A mapu € M(A) will be calledF*-invariant if for all
a € A\ {0} and allx € F* one has

plk - a) = pla).
DEFINITION 5.3 — Amapu on A\{0}, for a (possibly infinite-dimensional)
vector spaced, will be called anF-flag map, if
— u is F*-invariant;
— every finite-dimensiondl-vector spacé3 C A has a flag of-subspaces
B:BQDBlD...DBd:O

such thatu is constant orB,, \ B,,.1, foralln =0,...,d — 1.

The value ofu on B = B, \ B is called thegenericvalue ofy on B; we
denote it byus"(B). The set off-flag maps will be denoted bilyr(A).

ExXAMPLE 5.4 — Let K = k(X) be a function field. We can consider it as
a vector space over or over any of the finite subfield8 C k. Letv be a
nonarchimedian valuation ad andy : I', — Z, a homomorphism from the
value group of/ (see Sectiofl). Theny ov € & (K).

DEFINITION 5.5 — Let A be anF-algebra (without zero-divisors). A map
p € M(A) will be called logarithmic if

pla-a') = pla) + p(d), forall a,a" € A\ 0.
The set of such maps will be denoteddy A).
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SinceF is torsion, a logarithmic map @, is F*-invariant.

DEFINITION 5.6. — Let A be anF-vector space. Two maps i/ € M(A)
will be called ac-pair (commuting pair) if for all two-dimensiond@l-subspaces

B C A there exist constants, \', \" € Z, (depending orB) with (\, \') #
(0,0) such that for allb € B\ 0 one has

Mg (D) + XN pp(b) = X

THEOREMbL.7. — LetF C k be a finite field with#F > 11, and u, i/ €
Lr(K) nonproportional maps forming a-pair. Then there exists a pair

(A, X) € Z2\ (0,0) such that\p + Ny € $p(K).

Proof. — This is a special case of the main theorem3fyhere it is proved
over general ground fields However, the case when= T, is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

— characterization of flag maps by their restriction to 2-dimensidhal
linear subspaces, fé#F > 11 (see Lemm&.16);

— reduction to linear spaces over prime fields, régp.see Lemm&.18
if u ¢ &p(A), for afinite fieldF’, andy is F*-invariant with respect to a
large finite extensioff /F’ then there is a subgroup ~ IFZ C A, (resp.
%), so thatuc ¢ ®x, (C).

— reduction to dimension 3: if the rank tw-modulec := (u, i/) does
not contain a flag map then there is a subgrdtip- F; C A (resp.
%), such that for any nontrivigl” € o there is a proper subspace=
Cu € B whereug, ¢ ®g, (C) (this step uses the logarithmic property);

— geometry of collineations oft? = Py(B) over prime fieldsF = F,
(resp.FF,): such subgroup® cannot exist. This shows the existence of
the desired flag map aA.

]

‘ LEMMA 5.8 — If A € Vectr andpu € $r(A) then there exists a canonical
F-flag (A, )n—o.... 4 SUch that

pE (Ap) # P57 (Ans),
foralln=0,...,d—1.

[ lemm:linearr

-----
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Proof. — PutA, = A and letA,,,, be the additive subgroup of,, spanned
by a with p(a) # p&(A,). Sincep is F*-invariant, A, is anF-vector
space. Indeed, far,a’ € A, .1 andk, k' € F* write

a= Zbi’ a = Zb;
iel jeJ
with finite 7, J. Since
1u(bi) # 15" (An), (b)) # 15 (An),
foralli e 1,5 € J, we have

pu(kbi) = p(bi) # pE(Ay) and p(k'd)) = p(by) # p(A,)
sothatka + <'a’ € A, 1. O

REMARK 5.9. — Since a flag map is F*-invariant, it defines a unique map
on(A\ {0})/F* = Pr(A). Conversely, a map onPr(A) gives rise to an
F*-invariant maps o \ {0}. An F-flag map onA € Vectr defines a flag by
projective subspaces @ (A). We denote bygenericelements ofPr(A) the
image of generic elements frorh

NOTATIONS 5.10 — We denote byP(A) = Px(A) the set of codimension
one projectiveF-subspaces df(A).

DEFINITION 5.11 — Assume thatl € Vectr, and for all codimension one
F-subspace®? C A one hasup € ®r(B). Definej by
P(A) — Z
B W(P(B)) = y="(B).
LEMMA 5.12 — If A € Vecty andp € ®p(A) then eithers is constant on
P(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flagl,),—o . 4. If codim(A4;) > 2 then
for everyP(B) € P(A) one hag#"(B) = u#"(A) and is constant. Other-
wise, 2" (B) = ug™(A), on anyB # A; (and differs al?(4;) € P(A)). O

We need the following elementary
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LEMMA 5.13 — LetF = [, be a finite field withy > 11 andP™ = Py,

m > 2 a projective space ovef. For any four projective hyperplanes and
any ten projective subspaces of codimension at least two (all definedpver
there exists a line (ovedr) not contained in any of the above hyperplanes and
not intersecting any of the ten codimension two subspaces.

Proof. — One has
#Gr(2,m)(F) < #Gr(2,m + 1)(F)/q*.

The number off-lines intersecting a subspace of codimension twBjinis
bounded by#Gr(2, m + 1)(F)/q¢?. Our claim holds foi > 11. O

LEMMA 5.14 — LetF = [, be a finite field withy > 11, A € Vecty
and € M(A) anF*-invariant map. Assume that there exissubspaces
B; C A, codim(B;) =1, fori =1,...,4 such that

(1) either#{us™(B;)} > 3 or

(2) pE(B1) = pE(Ba) # p#(Bs) = 15" (By).
Then there exists dfrsubspac€’ C A, dimp(C) = 2 such thafuc ¢ Pp(C).

Proof. — By Lemmab5.13 there exists &' = P(C) € P(A) such that its
intersection points witf?( B;) are pairwise distinct and generic in the corre-
spondingP(B;) (the nongeneric points @(B;) are contained in 4 subspaces
in codimy > 2, the intersections oB; give rise to 6 more subspaces). Then
eithery takes at least three distinct values®(t') or has distinct values in at
least two pairs of points. In both cases ¢x(C). O

COROLLARY 5.15 — Assume thatz € ®x(B) for all P(B) € P(A) (and
#F > 11). Then is constant outside of one point.

Proof. — The mapj: takes two different values of(B). By Lemma5.14
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplaneés, h; € IP)(A),
whereji(hy) = fi(hs) # [i(h3) then for any otheh € P(A) we haveji(h) =
f(hy) andf is constant outside dfs. O

LEMMA 5.16 — Let A € Vecty, with #F > 11, andpy € M(A) be an
F*-invariant map such that for every two-dimensioffatubspaceB C A,
uB € CI)]F(B) Then,u S (I)F(A)
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Proof. — Assume the statement holdsdifm(A) < n — 1. Theng is de-
fined and, by Corollarp.15 either is constant oﬂ?’(A) or constant on the
complement to one point.

If /1 is constant, then thE-linear envelope of points € A such thaj(b) #

{1 has codimension at least two. Indeed, if there is a codimension one subspace
B C A generated by sudhthen by assumptiop € ®r(B) andu®*(B) # [,
contradicting the assumption thais constant. Otherwise, put; := B. By
induction,. € ®r(B) and is constant oA \ B. Henceu € $p(A).

Assume thaf: is nonconstant and lg8 C A be the unique codimension
one subspace with differings*”(B). Choose arF-basisby,...,b, 1 in B
such thatu(b;) = u&"(B). Assume that there is a pointe A\ B such
that u(a) # the generic value ofi and let B’ be the codimension ong-
subspace spannéd, ... b, 5, a. Thenus(B’) # the generic value ofi,
contradicting the uniqueness Bf It follows thaty is constant oM \ B. [

REMARK 5.17. — LetF/F’ be a finite extensiond € Vectr, considered as
anF’-vector space, and € & (A). If p is F*-invariant, therny € $p(A).
Indeed, by Lemm&.8, the canonicalF’-flag is a flag off-vector spaces. We
use this observation to reduce our problem to prime fields (fégp.

LEMMA 5.18 — LetF/F’ be a quadratic extension, witfF’ > 2. Let
A be anFF-vector space of dimension 2, considered agamector space of
dimension 4. Lejx € M(A) be anF*-invariant map such that for every
F'-subspace&” C A, dimp (C) = 2, one haguc € &w(C). Thenu € Op(A).

Proof. — First assume that takes only two values onl \ {0}, sayO0, 1,
and thaty ¢ ®r(A). SincePr(A) = PL there exist elements;, as, az, ay €
A\ {0} such that the orbitB™* - a; do not intersect and

0= plar) = plaz) # plas) = plas) = 1.

ThenF* - a; = A; \ {0}, whereA; is a linear subspace ov&f. TheF'-span
A1o of two nonzero vectors; € Ay, zo, € Ay hasus(Ajz) = 0. HenceA,
contains at most on&-subspaceb) of ’-dimensionl with generic valud.
The union of the spaces;,, for different choices of, z,, coversA and

#{be Alu(b) =1} < (¢+1)%,
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where#F’ = ¢. Similarly, there are at most + 1)? such nongeneric € A
with u(c) = 0. Since#P*(F) = ¢* + ¢* +q+1 > 2(¢* +2q + 1), for g > 2,
we get a contradiction.

Assume now that takes at least 3 distinct values a@n\ {0}, say0, 1, 2,
and that there are two vectaig, a; C A such that the orbit&™ - a,, F* - a
don’tintersect an® = p(a;) = p(az). Such a configuration must exist (take
two [F’-spaces oft’-dimension two spanned & -orbits; theF’ span of two
generic vectors in these spaces contains elements whuakie coincides
with the value ofi, on one of the two orbits). The modified map, given by

jia) = { 0 if u(a) =0

1 otherwise

satisfies the conditions of the Lemma, and by the above argyimerity(A).

In particular,iz = 0 outside oné™*-orbit on A\ {0}. Sincey is F*-invariant it

follows thaty takes two values, and not three as we assumed. Contradiction.
O

LEMMA 5.19 — LetF’ =T, (resp.F,), andF/F’ be an extension of degree
divisible by 4. Consideli = k(X) as anF-vector space and let, i/ €
Lr(K) be ac-pair such that the linear spam = (u, i/, 1)z, does not contain
an ®r-map. Then there exist dfi-subspace3 C K with dimp (B) = 3, two
distinctlF’-subspace€¢’, C’ C B of dimension 2 and maps /i’ € o such that
— fic ¢ P (C) andjic is constant;
— [ign ¢ Pp (C") and/ig is constant;
In particular, for every (nonzero) map” € o there exists arf’-subspace
C" C B, dimp C" = 2 with the property tha./., ¢ ®p (C”).

Proof. — We consider as anF-vector space as well as @hvector space.
Let i, be anF*-invariant map onk'. If © were anF’-flag map on every two-
dimensionalF’-subspace of{ then, by Lemmgb.18 ;. would be anF-flag
map on everyF-subspaces C K of dimp B = 2. Since#F > 11 we could
apply Lemmeéb.16and conclude that € p(K).

Thus, sinceu ¢ or(K)-map, there is afi’-subspac€’ C K, dimp (C) =
2 such thajue ¢ ®w (C). If il is constant, put’ := p. Otherwise, using the
c-pair property orC' we find constantd, d., d¢., with d;. # 0, such that

dlclr - dou

dop+ depe = d¢, and puti’ =y — 7
C
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Thenji. = 0. Since the linear combinatigil is not a flag map, there exists
aC’, dimp/(C") = 2, wheref’ ¢ Pp/(C'). If pes is constant, pufi := pu.
Otherwise, using the-pair property onC’ we find constantsic., di.,, d.,,
with di., # 0, such that

d, —d. i
derp + dpipiy = dfy and putii = p — Cd—C/“‘
Cl
Thenjic» = 0 andfic ¢ P (C') (sincefiy, is constant). Now put

B:=C+<.C,
C

for some nonzere € C' and¢’ € C’. Thendimg (B) = 3, the mapgiz, iy
are linearly independent, and they satisfy the required conditions, by the log-
arithmic property. Fors # 0, we havesi + s'f ¢ o (C). Otherwise,
spi+ s’ & @ (5 - C). O

A detailed analysis af-pairs on projective planes as above shows that such
planes cannot exist. This will complete the proof of the main theorem.

LEMMA 5.20 (Lemma 4.3.2ind)). — LetV C Z? be such that for any two
pairs of distinct points the affine line through one pair and the affine line
through the other have a common point and that this point of intersection is
contained inV. ThenV is contained in a line union one point.

Proof. — Otherwise,V contains four points in general position. Embetjd
into P2(Q), choose coordinates for these four points

(1:0:0),(0:1:0),(0:0:1)and(1:1:1)
and closé/ for the operation

x,y, 2z, t— Wz, y) N I(z,t), when x #y,z#t,(x,y)#(z,1).

The closurel’ of V satisfies the axioms of a projective plane (see Defini-
tion 4.1). For example, to verify that any “line” i contains at least three
points it suffices to pick one of the four initial points not on this line and to
draw lines through this point and the remaining three points in the initial set.

By the fundamental theorem of projective geomelfy= P?(Q). On the
other handP?(Q) is dense irP*(Q,). In particular, it cannot be contained in
Z2. Contradiction. O
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coro:line-point COROLLARY 5.21 — LetB = F3 and u, i/ € M(B) be ac-pair of F*-

invariant maps. Then the image®fB) under map
o« P(B) —  A*Z)
b= (u(b), (b))
is contained in a union of an affine line and (possibly) one more point.

Proof. — Thec-pair condition foru, i/ implies that the image of evei§* C
P(B) is contained in an affine line iAZ. Next, for any two pairs of distinct
points (a,b), (a’, V') in (P(B)) the affine lined = [(a,b),I' = ['(a’,b) in
A? = 72 through these pairs of points must intersect. (Chaosed’, v’ in
the preimages of, b, a’, V'; the projective lined, I ¢ P(B) = P? through
these points intersect in somend, by the first observatiop(z) must lie on

both! andl’). Now it suffices to apply Lemm&a.2Q O
assu:proof ‘ ASSUMPTIONS.22 — We may now assume that
—F =T, orFy;

— pu, 1’ € Lr(A)is ac-pair of linearly independent maps as in Lemias,
— Bisasin Lemm&.19 for every two-dimensional” C B there exists
au” € (u, ') such thatu, ¢ ®p(C").
We can exclude the following degenerate cases, which contradict our as-
sumption that no linear combination pf 1/’ is a flag map onB:

(1) ¢(P(B)) is contained in a line; this means that ' are linearly depen-
dent (modulo constants);

(2) ¢(1) is a point, for somé C P(B); this implies thaty(l) € o(I'), for all
" C P(B) andp(P(B)) is contained in a line, contradiction to (1);

(3) ¢ is constant outside one line; here the affine n#p— Z, projecting
©(l) to one point gives a nontrivial flag map in the spanof.'.

LEMMA 5.23 — Letl,I' C P? be distinct lines. Let € P? be a point such
that p(z) ¢ (o) U (). Then there is a natural projective isomorphism
v : | — [ respecting the level sets of Namely, for every paig;, y, € |
with o(y1) = ¢(y2) one has

(T (1)) = @(Tar(y2))
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(and vice versa). In particular, ib([) C ¢(I') thenp(l) = ¢(l').

Proof. — The imagesp(l(x,y1)) andp(l(z,y2)) span the same affine line
L,. We havey(l') ¢ L,. Definer,y(y;) = l(z,y;) N . By Corol-
lary 5.21, ¢(m,r(y;)) are contained in the intersection of(') and L,, so
thate(me,e (y1)) = (T, (42))- 0

COROLLARY 5.24 — Ifthere exist a lind C P? and a pointz € [ such that
¢ is constant ort \ x then there is a nontrivial flag map in the span.of./’.

Proof. — By Assumption5.22 ¢ is nonconstant on every line. Assume that
there exists a point € »(P?) such thatp=!(a) consists exactly of. Then
for all ', m!” not containinge one hasy(I') = ¢(I"”) andy is constant on the
complement ta: on every line through:. Then a linear combination of, /'
is constant of®? \ z, thus a flag map, contradicting the assumption.

Let 2’ be a point inP? \ [ with ¢(2') = ¢(x). The linesl and((z, 2’) are
not equivalentp(l) # (). For any linel” # [(x,z) throughz’ we have
e(INT1") # ¢(x). Using a point ory € [ with p(y) # ¢(x) and applying
Lemma5.23we find thatp(I”) = ¢([). For anyy ¢ (IU l') consider the line
[(«',y). It follows thaty(y) equals the value ap on [\ z, thusy is constant
on the complement t6, contradicting AssumptioB.2243). O

COROLLARY 5.25 — Letz,y € P2 be distinct points so that(z), p(y) ¢

(p(I) Up(l) and the linel(z, y) throughz, y passes through the intersection

qo := I[N I'. Then the composition

-1
[

Tgiom, @ =1

induces a nontrivial translation ofy with fixed pointy,, preserving the level
sets ofp. (By symmetry we have a similar translation i

In particular, if F = I, (the prime field) then this translation is transitive on
[\ (INl") andy is constant on this complementFl{= F, then the complement
to [\ (IN ) is a union of two (two point) orbits of this translation apdis
constant on each orbit.

Proof of Theoren®.7. — We keep the Assumptioris22.
For every pointr € P? and every linel throughz there exist lined’, "
throughz such thato(l) = ¢(I') andy(l') # ¢(I”). Indeed, consider a line
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with p(z) ¢ (I). If on all such linesp takes more than two values, then all
these lines are equivalent apds constant on the complement:itmn every
line throughz, contradiction to Corollanb.24 Otherwise, each value dn
will be taken at least twice, hence the claim.

Corollary 5.25 gives a translation oh\ = preserving the level sets of.
Over the prime field,, p > 2, ¢ restricted td is constant on the complement
to x and we can apply Corollary.24

OverF,, ¢ is either constant oh\ z, contradicting Corollary.24 or the
level sets ofp on [\ z fall into two orbits of cardinality two. Since we can pick
x on | arbitrarily, o must be constant o) contradicting Assumptiof.222).

O

6. Galois groups

Let & be an algebraic closure of a finite field of characterigti¢, K the
function field of an algebraic variety( overk, G% the abelianization of the
pro-(-quotientG of the Galois groupis ; of a separable closure &f,

g}:( == gK/HgKng]u gK] L g}z{
its canonical central extension apdthe natural projection.
DEFINITION 6.1 — We say thaty,y € G} form acommuting pairif for
some (and therefore any) of their preimages’ in G5. one hag?y,3'] = 0. A

subgroupH of G* is calledliftable if any two elements i form a commuting
pair.

DEFINITION 6.2 — ThefanXx = {¢o} onG% is the set of all topologically
noncyclic liftable subgroups C G4 which are not properly contained in any
other liftable subgroup of/..

REMARK 6.3 — For function fieldsK /k of surfaces all groups € ¥k are
isomorphic to torsion-free primitivé,-submodules of rank 2, see Sectioh

NOTATIONS 6.4 — Let

and
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We often identifyZ, andZ,(1) (sincek is algebraically closed). Write
K* := lim K*/(K*)"

for the multiplicative group of (formal) rational functions oa

THEOREM6.5 (Kummer theory)— The groupK*/k* is a freeZ-module.
One has

- K*/(K*)" = (K*/k*)/¢", foralln € N;
— the discrete groups™ /(K*)*" and the compact profinite groug /"
are Pontryagin dual to each other, forg,.-duality;

~

— for K*/k* = Z!, one hask*/(K*)"" — (Z/¢")! and
Gi /0" — (2/0" (1)),
hence the duality betweeli* = IW and G¢- is modelled on that
between

{ functions! — 7Z, tending to0 at co} and Z;.
LEMMA 6.6 — Let E//k be the function field of a curve. Thél = (.

Proof. — By a result of Grothendieck, the pr¥cfundamental grougr, ), of
a curve punctured in finitely many points is free. We have

Gy =limZ{, Gp=1limA*(Z]),

JCI JCI
with the commutation map equal ra This implies that a liftable subgroup
of G¢, is topologically cyclic. O
7. Valuations

In this section we recall basic results concerning valuations and valued
fields (we follow []). Most of this material an adaptation of well-known
facts to our context.

NOTATIONS 7.1 — A value groupdenoted by, is a totally ordered (torsion-
free) abelian group. We use the additive notatieff for the group law and

> for the order. We have
F=T"ul", "N~ ={0} and v >+ iff y—+ €.
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ThenI',, = I' U {cc} is a totally ordered monoid, by the conventions

vy<o00, y+oo=00+00=00, Vyel.

DEFINITION 7.2 — A (nonarchimedianyaluationon a field K is a pair
v = (v, I',)) consisting of a value group, and a map

v: K—T,-
such that

— v : K* — T, is a surjective homomorphism;
—v(k+ K') > min(v(k),v(x)) forall k,x" € K;
— v(0) = 0.

REMARK 7.3 — In particular, sincd”, is nontorsiony({) = 0 for every
element( of finite order inkK™*.

A valuation is calledrivial if I' = {0}. If K = k(X) is a function field
over an algebraic closureof a finite field then every valuation df restricts
to a trivial valuation ork (every element it* is torsion).

LEMMA 7.4 — Let K = k(X) and v be a nonarchimedian valuation on
k(X). ThenHom(T',, Z,) is a finitely generated,-module.

Proof. — Note that theQ-rank ofv is bounded bylim(X) (see [L.0]). O

NOTATIONS 7.5, — We denote by, 0,, m, and K, the completion of
with respect ta/, the ring ofv-integers ink, the maximal ideal oé,, and the
residue field

K, :=o0,/m,.
If X (over k) is a model forK then thecenterc(v) of a valuation is the
irreducible subvariety defined by the prime ideal N k[X]| (providedv is
nonnegative o[ X]).

It is useful to keep in mind the following exact sequences:

(7.1) l—o, - K —I,—1
and
(7.2) l1-(14+m,) —o, - K, — 1.

NOTATIONS 7.6. — Write Z C D¢ C Gy for the images of the inertia and
the decomposition group of the valuatiom G¢..
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NOTATIONS 7.7. — If x : ', — Z,(1) is a homomorphism then
xov : K*— Z(1)

defines an element @}, called an inertia element of the valuation The
group of such elements & C G¢.

NOTATIONS 7.8 — The decomposition group? is by definition equal to
the image oG5 in Gf.

LEMMA 7.9, — There is a natural embedding; — G% and a (canonical)
iIsomorphism
D, /1] ~ Gk, -

Proof. — See Theorem 19.6 irb], for example. [

DEFINITION 7.10 — LetK = k(X) be a function field. Its valuation is

— positive-dimensionaf trdeg, K, > 1,
— divisorialif trdeg, K, = dim(X) — 1.

NOTATIONS 7.11 — We letVk be the set of all nontrivial (nonarchimedian)
valuations of K andDVx the subset of divisorial valuations. #f € DVy is
realized by a divisoP on a modelX of K (see Exampl&.13 we sometimes
write Z§,, resp.D$,, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12 — Let E = k(C) be the function field of a smooth curve.
Every pointq € C(k) defines a nontrivial valuation, on £ (the order of a
function f € E* atg). Conversely, every nontrivial valuationon E defines
a pointg := ¢(v) onC.

EXAMPLE 7.13 — Let K = k(X) be the function field of a surface.

— Every positive-dimensional valuation is divisorial.

— Every (irreducible) curveD C X defines a valuatiomp on K with
value groupZ. Conversely, every valuation olf with value groupZ
and non-algebraically closed residue field defines a cne@n some
model X of K.

— Everyflag(D, q), (curve, point on its normalization), defines a valuation
vp, On K with value groupZ?.

— There exist valuations oR” with value groupQ and center supported in
a point (on every model).
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lemm:surf-valua | LEMMA 7.14 — LetK = k(X) be the function field of a surface. T /7

is nontrivial thenv is divisorial.

Proof. — The only 1-dimensional valuations on function fields of surfaces
are divisorial valuations. For other valuations, the residue €|d= k is
algebraically closed andy,  trivial. O

8. A dictionary

Lyx = Ly(K) = {homomorphismsK* — Z,(1)}
O = Pp(K) = {flagmapsK — Z,(1)}

prop:decomp PROPOSITION8.L — One has the following identifications:

;L{ - 'CKa
D¢ = {p€ Lk |p trivial on (1 +m,)},
Z¢ = {p€ Lk|p trivial on o}}.

If two nonproportionalu, i/ € G§ form a commuting pair then the corre-
sponding mapsg, i/ € Lx form ac-pair (in the sense of Definitioh.6).

Proof. — The first identification is a consequence of Kummer the®gy
The second identification can be checked on one-dimensional subfields of
where it is evident. For this and the third identification we usé)@nd (7.2).
For the last statement, assume that’ € £ don’t form ac-pair. Then there
isanz € K such that the restrictions of 1/ € L to the subgrougl, ) are
linearly independent. Thereforg, i/ € G¢ define a rank 2 liftable subgroup
in G- Such subgroups don’t exist sinGg,,) is a free proé-group. O

EXAMPLE 8.2 — If € D2 anda € Z¢ thenu, o form a commuting pair.

- PROPOSITION8.3. — LetK be afield andy € &, N L. Then there exists
__prop.may K K
a unique valuationv = (v,,[',,) (up to equivalence) and a homomorphism
pr : 'y, — Z,(1) such that

a(f) = pr(va(f))

forall f € K*. In particular, « € Z¢ (under the identification of Proposi-
tion 8.1).
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Proof. — Let F be a finite subfield ok and assume that(f) # «(f) for
somef, f/ € K and consider the lin®' = P(Ff + Ff’). Sincex is a flag
map, it is constant outside one point on thisso that either(f + ') = «a(f)
or = «(f’). This defines a relationf’” >, f (in the first case) and >, f’
(otherwise). Ifa(f) = a(f’) and there exists aff’ such thatv(f) # a(f")
andf >, " >, f thenwe putf >, f’. Otherwise, we puf =, f'.

It was proved in §], Section 2.4, that the above definitions are correct and
that >, is indeed an order which defines a filtration on the additive grsup
by subgroup$ K, ).r such that

— K = U,erK, and
- m'yEFK’y — @,

wherel is the set of equivalence classes with respectto Sincea € Lx
this order is compatible with multiplication if*, so that the mag” — I"is
a valuation and factors ask* — I' — Z, ~ Z,(1). By (7.),c € 7% [

COROLLARY 8.4 — Every (topologically) noncyclic liftable subgroup of
G¢. contains an inertia element of some valuation.

Proof. — By Theoremb5.7, every such liftable subgroup contains@&map,
which by Propositior8.3 belongs to some inertia group. O

9. Flag maps and valuations
In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.

LEMMA 9.1 — Leta € & N Lk, v = v, be the associated valuation and
i € L. Assume that, i, form a c-pair. Then

p(l+m,) = p(1).
In particular, the restriction of: to o, is induced fromi,,.

Proof. — We have

(1) a(k) =0forall k € 0, \ m,;
(2) a(k +m) = a(k) for all kK andm as above;
(3) m, is generated byn € 0, such thatv(m) # 0.
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If m € m, is such thatx(m) # 0 andx € o, \ m, thena is nonconstant on
the subgroupd := (k, m). Then

pk+m) = p(r).
Indeed, ify Is nonconstant onl the restrictionu 4 is proportional tax 4 (by
the c-pair property) andx satisfies (2). In particular, for suath we have

u(1 +m) = u(1).

If a(m) = 0 then there exists ', m” € m, such thatn = m’ + m” and
a(m’) = a(m”) # 0. Indeed, there exists an’ € m, such thatn > m’ > 1
anda(m’) # «(l) = 0. Since« takes only two values on the subgroup
(m’,m) C m, we have

a(m”) = a(=m' +m) = a(m’).
Therefore,
0=pl+m)+pul+m") =pl+m+m'm").

Putk = 1 +m + m/m” and observe that(—m'm”) = 2a(m’) # 0. By the
argument above

(s —m'm”) = p(k) = p(1+m' +m") = p(l +m),

as claimed. n
COROLLARY 9.2 — Inertia elementsy € 79 commute only with elements
e Dy.

PROPOSITION9.3 — Let K = k(X) be the function field of a surface.

Everyo € X hasrky, o = 2. Moreover, it defines a unique valuation= v,
of K so that either every element @fis inertial for v, or v is divisorial and
there is an element € o which is not inertial forv, butu € D2,

If distincto, o’ € Y have a nonzero intersection then there exists a divi-
sorial valuationv” such that

— 0,0 € DY,

—onNo =14,

Conversely, it € Yk is not contained in &¢, for any divisorial valuation

V//

V" thenforallo’ € Xk, 0’ # o, 0ne hasr No’ = 0.

Proof. — We saw that € Xk contains an inertia elemeatfor somevalu-
ationv. Sinceo is topologically noncyclic there is a € o, Z,~independent
on«, and commuting withw. If i is not inertial, that sy ¢ @, thenv gives
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a nontrivial element in the (abelianized) Galois group of the residue Keld
of v. Thusv is divisorial, K, is 1-dimensional and every liftable subgroup in
G, hasZ,-rank equal to one. Hena&z, o = 2 in this case and, by Corol-
lary 9.2, 1 € Dg. Such a valuatiow is unique, sinc€: NZ¢% = 0 for distinct
divisorial v, /.

If & containsonly inertia elements, then there exists a unique valuation
v such thatv € 7¢. Indeed, eithem, + m,, = K or we may assume that
m, C m,, (ando, D 0,/). The first case is impossible since the corresponding
inertia groups don't intersect. In the second cdagg,C Z¢, as claimed.
Moreover, it follows thatk;, o = 2, since theQ-rank of any valuation on a
surface (oveff,) is at most two. This gives af = v, in this case.

If distinct o, o’ have a nontrivial intersection, then the subgr@up- G§.
generated by, o’ is not the inertia group of any valuation (the rank of those is
< 2, as we have seen above). If the o’ contains a nontrivial inertia element
a thenD is contained in the decomposition group of this element (all elements
of D commute witha) and the corresponding valuation is divisorial.ulfe
oNo’ is not an inertia element then there exist inertia elemertsr anda’ €
o’ corresponding to distindivisorial valuationsv, /. The decomposition
groups of distinct divisorial valuations don'’t intersect. O

Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groupss’ € Yk with a
nontrivial intersection defines a divisorial valuatioywhose inertia group

It =o0Nd.
The corresponding decomposition subgroup is

a
DV = UO'DIL‘}O-'

10. Galois groups of curves

Here we give a Galois-theoretic characterization of subgreugs X x
which are inertia subgroups of rank two valuationsiofarising from a flag
(C,q), where D is a smooth irreducible curve (on some model/of and
q € C(k) is a point (see Examplé.13. We show that Galois-theoretic data
determine the genus ¢f and all “points” onC', as special liftable subgroups
of rank two insidegy .
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Throughout,EE = k(D) is the function field of a smooth curve of gergis
We have an exact sequence

0 — E*/k* — Div(C) — Pic(C) — 0

(whereDiv(C') can be identified with the free abelian group generated by
points inC'(k)). This gives a dual sequence

(10.1) 0 — Zy = M(C(k), Z) — G — L& — 0,
with the identifications
— Hom(Pic(C), Z,) = A(Zy) (sincePic’(C) is torsion);
- M(C(k),Z;) = Hom(Div(C), Z,) is theZ,-linear space of maps from
— 778 = Ext!(Pic’(C), Zy).
Using this model and the results in Secti®mwe can interpret

(10.2) Gz € M(C(k),Q,)/constant maps
as theZ,-linear subspace of all maps : C(k) — Q, (modulo constant
maps) such that
lw, fl1 €z, forall fe E*/E".

Here[-, -] is the pairing:

— M(C(k),Qp) x E*/k* — Q
(10:3) e f) =5, nla)fo

wherediv(f) = Zq fqq. In detail, lety € G be an element of the Galois
group. By Kummer theoryy is a homomorphisni™/k* — Z,(1) ~ Z,.
Choose a point, € C'(k). For every point € C'(k), there is ann,. € N such
that the divisom..(c — ¢) is principal. Define a map

My C(k) - Qfﬂ

c = y(melc—co))/me.

Changing:, we get maps differing by a constant map.

In this interpretation, an element of an inertia subgr@gpc G¢ corre-
sponds to a “delta’-map (constant outside the p@int EachZ? has a canon-
ical (topological) generataf,,, given byo,,(f) = v, (f), for all f € E*/k*.
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The (diagonal) map\ € M(C(k), Q,) from (10.1) is then given by

A= 6u= > 0,

weVE QureC(k‘)
DEFINITION 10.1 — We say that the support of a subgralipc G% is < s
and write
supp(Z)| < s

if there exist valuations, ..., w, € Vg such that
Ic(Zy,, Iy )z, C G5

wi1?

Otherwise, we writégsupp(Z)| > s.

LEMMA 10.2 — LetZ C Gy be a topologically cyclic subgroup such that
|supp(Z)| > s > 2. Then there exist a finite s¢f; },c; C £*and anm € N
such that the map

v Gy o — V= EBjE,]Z/ﬁm
woo ([ film)jes
has the following property: for every s, ..., ws} C Vg

1/)(1) ¢ <w(1.311)7 EEE) @D(IS,S»ZZ-

Proof. — Let: € G% Cc M(C(k),Q,) be arepresentativeas in (L0.2), of a
topological generator ¢f, wheresupp(Z) > s. There are three possibilities:

(1) «(C(k)) C Qg isinfinite;

(2) thereis & € «(C(k)) C Q, such that—'(b) is infinite andthere exist at
leasts + 1 distinct pointsy,o, . . . , 2542 € C(k) such that(g;) # b for
allj=s+2,...,2s+2;

(3) otherwisex(C(k)) is finite, there is & with .~*(b) infinite and there are
at mosts distinct points with values differing frort

In Case (3)|supp(Z)| < s.

In Case (1), choose any st = {q,...,q2s12} C C(k) of points with
pairwise distinct values. In Case (2) choose distinct.., ¢..; € +~'(b) and
put® := {q, ..., q2s+2}. In both cases, i)’ C @ is any subset of cardinality
|Q'| = s then. is nonconstanbn @ \ @'. In particular, there exist points
s, Gs, € @\ @ such that

(10.4) t(dsy) 7# 1(3s2)-
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We may assume that@) C Z, (replacing:. by a sufficiently high multiple,
if necessary). Now we choose arf € N such that all values afon @ remain
pairwise distinct modul@/¢™". LetDiv{,(C) be the abelian group of degree
zero divisors orC' supported in). By Lemma3.2, there isam = ng € N
such thatn D is principal for everyD & Div%((]). In particular, for every
ds,, s, € Q thereis a functiorf € E* such thatliv(f) = n(qs, — ¢s,). Write
n = (™7, with ged(n, ) = 1, and putm = m’ +m”.

We have a pairing (Kummer theory)

G4 x nDiv%(C’) — ZJim
Notice that[Z¢, f] = 0 for all w with ¢, ¢ @ and allf € E* supported in
Q. Further, for every)’ C @ with |Q’| = s and pointsy,,, ¢,, € Q@ \ @’ asin
(10.4) there is anf € E* with divisordiv(f) = n(gs, — gs,) such that

e, /1 =n- (e(gs,) = 1(gs,)) # 0 mod £
and
[IZL)/, f] — O
forall Z¢, of ¢’ € Q'. Let{f;};c, be abasis fof™ - Divy,(C), with f; € E*.
The map
VG — @/t
po= (s film)je
satisfies the required properties. O
The next step is amtrinsic definition of inertia subgroups
T, C Dy /Iy = Gicy-
We have a projection
T - Gk = 9k/T;
and an inclusion
9k, = Dy/1) — Gk /1;
PROPOSITION10.3 — Letv be a divisorial valuation of<. A subgroup
ZCDy1s

is the inertia subgroup of a divisorial valuation #{C) = K, iff for every
homomorphism
v GR/TE =V
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onto a finite abelian groufp” there exists a divisorial valuation, such that
W(I) =y om(L]).

Proof. — Let C' be the smooth model fdK', = k(C),

I=1I:CD)T;
the inertia subgroup of a divisorial valuation/diC') corresponding to a point
q¢=qu € C(k)and

v GR/TE =V
a homomorphism onto a finite abelian group. Siggeis a pro#-group, we
may assume that

V =®,cZ/0",
for somen; € N. Letn = max;(n;). By Kummer theory,

Hom(Gy, Z/0") = K*/(K*)""

so thaty) determines elements

fi € K* /(K"
(for all j € J). Choose functiong; projecting tof;. They define a finite
set of divisorsD;; on X. Moreover,f; are not simultaneously constant 6h
(otherwises) (Gy ) = zp(Ig(C))). Changing the modet — X, if necessary,
we may assume that

— C'is smooth (and irreducible);
— there exists exactly one irreducible compongrin the full preimage of
UD;; which intersect€’ in g. Moreover, this intersection is transversal

(see Sectio). Then the image af?, undery is equal to the image af?.

Conversely, we need to show thatZif# Z¢ (for somew € DVk, ), then
there exists a homomorphism

VoGRS —V
onto a finite abelian group such that for alt’ € DV one has
V(I) # v om,(I}).
We consider two cases

(1) there exist two points, ¢ € C(k) such thatZ C (Z%,7¢);
(2) otherwise.
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Case 1.There exists a rational map: X — P! such that its restriction
7:C—P!

is surjective, unramified at ¢’ andr(q) # 7(¢'). Under the induced map of
Galois groups

(L) C Ty Taun))
but is not contained in either’  or Z7 . Thus there exist a finite abelian
groupV and a mapy : Gy — Vosuch thaty(Z) ¢ (Z¢,) for any
q" € PL. It follows that

Yom(Z) & Yom(Ly)
foranyrv € DVy.

Case 2. By Lemma10.2, there exist a finite set of functions € k(C),
with support in a finite sef) = {qo, ..., ¢s} € C(k), and anm € N such that
the homomorphism

ViGley — V=8eZ/m
wo= ([:uv fj]m)jEJ
has the property that for alb, w’ € DV
V() & (W) v(Ty )z,

Next we choose a model foX andC' as in Lemma3.8. In particular, there
exist functionsy; with divisor

div(g;) = n - (D; — Do) + (H; — H})
such that all the divisors are irreducible, with transversal intersections and
div(g;)|C = n(g; — o). These functiong; define a homomorphism
v GR/IE— V.

If D is adivisor onX theny o, (Z},) = 0 unlessD = D; for somey. In this
Casel/J o Trl/(‘,z-%]> - w(z-g)])'

Letr' € DV andc(v') C X be its center orX. There are three cases:

— ¢(v') ¢ D; foranyj: theny o 7, (Z%) = 0;

- C(V/) € DE), Whel‘eD? = Dj \ (U]’;E]D] N Dj/) then

bom (L) CY(Iy,);
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— ¢(v) € D; N Dy for somey, j": then
bom(Zy) C (W(Zy,) V(T )z,

All three possibilities contradict our assumptions. O

lemm:gen-type | LEMMA 10.4 — Let E = k(C) be the function field of a curve. Then

g(C) > 1 iff there exists a non-zero homomorphism frgih to a finite
(abelian) group which maps all inertia elementsito

Proof. — Indeed, every curve of genas1 over a finite field of characteristic

p has unramified coverings of degréel hese coverings define maps of Galois
groups, which are trivial on all inertia elements. dfis rational thenG,

and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequ&cg) ( O

[remgen-it | REMARK 10.5 — Combining this with Proposition0.3we can decide in
purely Galois-theoretic terms which divisorial valuationgoftorrespond to
nonrational (irreducible) curve§ on some modelX of K. We call such
valuationsnonrational

11. Valuations on surfaces

Next we are lead to the following problem: How to characterize subgroups

—k

k(C) C K*? We recall a geometric argument (from algebraic K-theory)
characterizing pairg, g € K* which are contained ik(C)* C K*, for some
curveC' (such curves correspond to projectiokis— C').
Let v be a divisorial valuation oi" and
v: K" —7Z

the valuation map. We have the residue map

res, : Ker(v) — K
and a bilinear (with respect to multiplication) symbol

. K*x K* 2% K;
a1 fg o PO
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On a smooth modeX of K, wherer = v, for a divisorD C X, we define

(11.2) oo=0p: K*xK'— K

as follows:

— 0,(f,g9) = lifboth f, g are invertible onD;

- o.(f,9) = fiyif fisinvertible (fp is the restriction taD) andg has
multiplicity m along D;

- o.(f,9) = (f™/g™)p in the general case, whef)g have multiplici-
tiesmy, m,, respectively.

The definition does not depend on the choice of the model.

The following is a standard result in K-theory. We include a proof since we
will need its/-adic version.

LEMMA 11.1 — For f g € K*
o.(f,9) =1 Vv eDVg < f,g€ £ =k(C) C K for some curve’.

Proof. — (<) On an appropriate modet we haver = vp for a divisor
D c X andrw : X — C'isregular and flat with irreducible generic fiber (and
f,g € k(C)*). By definition, o, (f,g) = 1if D is notin a fiber ofr. If D is
in a fiber then there isae k(C)*, vp(t) # 0 such that bottyt™s, gt™s are
regular and constant ab (for somem, m, € N) so thato,(f, g) = 1.

(=) Assume thab,(f,g) = 1 for everyr € DVg. Every nonconstant
function f defines a unique map (with irreducible generic fiber)

X = Cf

which corresponds to the algebraic closure:f) in K (we will say thatf
is induced fromC'y). We claim thatr; = 7.
Sincef is induced fromC';, we have

le(f) = ZCLQ‘DQJ
qe@
whereQ C Cy(k) is finite andD, = n~'(¢). ThenD; = 0 and D, is either
a multiple of a fiber ofr, or it has an irreducible componef C D, which
dominatesC, (underr,). In the second case, the restrictiongofo D, is a
nonconstant element i(D,). Thenvp(f) # 0, while vp(g) = 0. Hence

op(f,g) # 1 since it coincides Witty;,”D(f) # 1, a contradiction. Therefore,
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all D, are contained in the finitely many fibefsof =,. That meansliv(f)
does not intersect the fibefs, t € C,, ¢t ¢ S which implies thatf is constant
on suchR,. Hencef belongs to the normal closure bfC,) in K, and in fact
f € k(C,) sincek(C,) is algebraically closed i, by construction. Thug
is induced fromC, and henc&'; = C, andr; = 7,. O

12. /-adic analysis: generalities

sect:ella

Let X be a smooth model of’. An elementf € K*/kx gives rise to
a divisorD = D; on X and conversely, such & uniquely determineg.
Recall that the Galois grou@;- determinesk*, a group substantially bigger
than K* /k*. Our goal is to characterize tifeadic spacek™*/k* @ Z, C K*.
The Galois datumGé., Xk ) allows us to distinguish between rational and
nonrational irreducible divisors oN (via the corresponding valuations) and
to describe intrinsically a subspadeS(K) c K* (of divisors with finite
nonrational support, se&2.6 and 12.7). In this section we further shrink
FS(K), giving an intrinsic characterization of those elements which have
finite divisorial support on every smooth model

For any smooth algebraic variefy over k& with function field X' = k(X)
we have an exact sequence

(12.1) 0 — K*/k* #5 Div(X) == Pic(X) — 0,
whereDiv(X) is the group of (Weil or Cartier) divisors of . Write
Div(X), := Div(X) ® Z, and Pic(X), := Pic(X) ® Z,

for the group offinite /-adic divisors, resp/-adic Picard group. We have an
exact sequence:

(12.2) 0 — K* ® Zy 225 Div(X), 25 Pic(X), — 0
Let
Div(X) :={D = > amDy}, resp. Div,:(X) € Div(X),
meM

be the group of divisors (resp. nonrational divisors) vd#treasing coeffi-
cients
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— M is a countable set;
— forall r € Z the set

{m ] |amle <7}
is finite;/\
— for D € Div,,(X), all D,,, are nonrational.
Clearly,Div(X), C ﬁ(X). Every element
feK* = lim K*/(K*)"
has a representation
f=fanerwor f=fofify -,
with f,, € K*. We have homomorphisms
px - K* — ﬁ;/(X),
[o= div(f) = en " - div(fn) = 22, @m D,

pxamr : K* — Div(X) 25 Divy(X),
whereD,, C X are irreducible divisors,
flm = Zanmﬁn € Zg,
neN
with a,,,, € Z, and

div(fn) =Y tpmDin-

Herediv(f,) is the Cartier divisor off,, and)_  a,.,,D,, is its image in the
group of Weil divisors. The mapy has a kernel

Ty(X) = hﬂlTorl(Z/E", Pic(X)[4)),

wherePic(X)[¢] C Pic(X) is the /-power torsion subgroup. In particular
Ty(X) = 7%, whereg is the dimension oPic’(X).

lemm:tell | LEMMA 12.1 — For varieties overk we have
(1) amorphismX — Y induces a homomorphisifi(X) — 7;(Y);
(2) the canonical morphisnX — Alb(X) into the Albanese variety in-
duces a canonical isomorphisf(Alb(X)) — Ty(X);
(3) if X’ — X is a birational isomorphism between smooth varieties then
Ty(X) — T,(X') is an isomorphism;
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(4) an exact sequence of abelian varieties
1A —-A-A4"—=1
induces an exact sequence
1 — Ty(A") — Ty(A) — Ty(A).

Proof. — The follows from the corresponding properties of the funétif
for smooth algebraic varieties over O

We have a diagram
(12.3)
0 — K'®Z 2% Div(X), 2% Pic(X), — 0
l l |

0 — TuX) — K* 25 Div(X) 5 DPic(X) — 0,
where
Pic(X) := lim Pic(X) ® Z/{" = NS(X) ® Z,.

Everyv € DV gives rise to a homomorphism
v K — 7,

and a homomorphism

rés, : Ker(0) — K,
and a symbol

Oy IA(*XIA(*HIA{i
On a smooth modeX’, wherev = v, for a divisorD C X, (f) is thel-adic

coefficient atD of div(f), while g, is the naturalZ,-bilinear generalization
of (11.1).

LEMMA 12.2 — Let X be a smooth surface or a smooth curve ovend
K =k(X). Then
E(X) = ﬂyeDVKKer(ﬁ).

Proof. — Follows from Lemmal2.1 O]

A%

In particular, we have the maps, : T)(K) :=T,(X) - K

v"
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LEMMA 12.3 — Forall v € DV, we have
rés, (Ty(K)) C Ty(K,).

Proof. — Let X be a model ofK” such thatr = vp, whereD is a smooth
curve. We may assume (after blowing up) thatontains a diviso)’ inter-
sectingD in exactly one point. Consider the diagram

0 — Ker(v) —— Div(X \ D) — Pic(X) —0

0 K Div(D) Pic(D) —=0

whereDiv(X \ D) is theZ-module spanned by divisors different frath By
the choice ofX/, the restrictiony induces a surjectioNS(X) — NS(D).
Tensoring allZ-modules withZ /¢ and passing to the projective limit we
obtain a map
Ty(K) — Tu(Ky),

and the claim. ]

By Lemma3.2], if T,(K) # 0 then eitherX contains only finitely many
rational curves, ofX, modulo purely inseparable covers, is a rational pencil
over a curve”' of genusg(C) > 1.

LEMMA 12.4 — LetX/k be a smooth projective surfack/ afinite set and
D= anDy € Div(X)s, am € Z
meM

a divisor such thatp,(D) = 0. Then there exist a finite sét functions
fi € K* and numbers; € Z,, linearly independent ove£, such that for all
iel

suppx (fi) C suppx (D)
and

Proof. — It suffices to consider equation4.2 and to observe that ari,-
lattice of principal divisors with support in a finite set of divisors contains a
generatingZ-lattice of principal divisors. O
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[deficommu | DEFINITION 12,5 — We say thaf, § € K* commuteif 4, (f,§) = 1, for
all divisorial v. We say that they hawdisjoint supportf for all divisorial
valuationsr € DVg

o(f)-2(3) = 0.
We say thatf € K* has nontrivial commutators if there exigte K* with
disjoint support (fromf) which commute witkf.

NOTATIONS 12.6 — We put

SUPPK(JE) ={ veDVg | f nontrivial on Z¢ };

A

suppx(f) ={ DnCX | an#0}.

DEFINITION 12.7 — We say thagf hasfinite nonrational suppoif the set

A

of nonrationaly € supp,(f) is finite (see Lemma0.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K)C K*

be the subgroup of such elements.

Note that forf € FS(K), its nonrational componety ... (/) is indepen-
dent of the modelX. More precisely, for any birational morphiskY — X

we can identifyﬁi;nr(X’) = Div,,(X). Under this identification
pX’,nr(f) = pX,nr(f)-

DEFINITION 12.8 — We say thatf hasfinite supporton the modelX if

A

suppy (f) is finite. Put
FSx(K) ={f e K* | px(f) € Div(X),}.

lemm:indep ‘ LEMMA 12.9 — The definition ofFSx (K') does not depend on the choice
of a smooth modeX.

Proof. — For any two smooth model&”’, X" we can find a smooth model
X dominating both. The difference between the sets of irreducible divisors
Div(X"), resp.Div(X"), andDiv(X) is finite and consists of rational curves.

0
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Equation (2.3 implies the exact sequence

(12.4) 0 — Ty(X) = FSx(K) — K*/k* ® Zy — 0.
Indeed, iff € FSx(K) thendiv(f) € Div(X), and its image iPic(X), is
zero. Thus there is an elemefic K*/k* @ Z, with the samé-adic divisor.
By definition f/ f € T,(X).

We proceed to give a Galois-theoretic characterizatiaR 8 (K).

Case I.Let K be the function field of a surfacE containing only finitely many
rational curves. Then

FS(K) = FSx(K).

Case Il. Assume that, after a purely inseparable extensiomdmits a fibration
over a curve of genus 1, with generic fiber a rational curve.
Let £S'(K) c K* be the group generated by glsuch that
e f has nontrivial nonrational support;
° f has nontrivial commutators.
Then, for every modek of K, we have

FS'(K) = FSx(K).

Indeed, an infinite rational tail irf in this case consists of an infinite
number of fibers. Same holds fgr Thus the divisor off (resp. §)
intersects all but finitely many fibers in the infinite rational taifgfesp.
f) with intersection multiplicity some power @f = char(k). Consider
v corresponding to rational curves in the divisorintersecting the
divisor of f as above. Then

o,(f.9) # 1,

contradiction.
Case lll. By Lemma3.21, we can now assume thBtc’(X) = 0.

Let Fx(K) be the set of alf € K(X)*/k* such that
(1) pxul(f) # 0 and
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(2) forevery rational curvé C X with v = vp, eitherD € supp(f)
orres,(f) #0 mod ¢in K, /k*.
Geometrically, condition (2) means that/if is not a component of the
divisor of f then there is a point ith N div(f) whose multiplicity is
prime to/.

LEMMA 12.10 — The setFx(K) generates<*/k*.

Proof. — Lety € K* be a function such that the generic fiber of the
corresponding rational map, : X — IP;, is an irreducible nonrational
curve. Suchy generate*.

Let X be a blowup ofX such that the induced mag, : X — P!
is regular. LetD C X be a rational curve surjecting onﬂ@. For
generic coprime polynomialB, () € k[y| of degree> 2, choose 4 points
qi, - - -, qq in the preimage ob, where

¢: B — P!
y — fly):=Py)/Qy).

If f were nonconstant o C X andres, (f) were0 mod ¢ then the
local ramification indices of and hence of; were divisible by/. Thus
we would have a map, : D — P, with all local ramification indices
over 4 points divisible by, and by Hurwitz’ theoremg(D) > 0, con-
tradicting the rationality oD. It follows thatf € Fx(K). Clearly, such
elements generatgy)*, and thusk’™. O

LEMMA 1_2.11_ — For every pair of nonzero cor_nmuting elemeﬁt_s €
FS(K) with disjoint support such that there exists Are Fx (K') with
f=f mod/ in K*
one hasf € FSx(K)andj € FSx(K).
Proof. — Write

~

px(f) = XiermiDi+ fZ;’il n;Cj,

Px(g) = Zie[’ n;D; + Ez]‘:1 n;CJ/7
wherel, I’ are finite sets and the second sum is an infinite series over
distinct rational curveg’;, C; C X. By assumption, the se{sD; }icy,
{C;}iens {Di}icr, {C} e are disjoint.



FUNCTION FIELDS 51

By assumption@l,(f,g) =1, forall v. Forv = vp, whereD €
suppy(¢g), this symbol equals the residue pfon D, which equals the
corresponding residue gf mod ¢. For rational curves in the support
of g it is nonzero by (2). It follows that every divisor Buppy(g) is
nonrational and thaj € FSx(K).

SinceT;(X) = 0, we can writediv(g) = >, s @mDm, WhereM
is a finite set, allD,, ¢ X are nonrational divisors and,, € Z,, or
G = [Liesn 97, with 1" a finite setg; € K*/k* andb; € Z,. We may
assume that all divisors Bupp i (g;) are nonrational.

The restriction ofy; to every irreducible component of the divisor of

f isidentically zero. This means that under the map
Tyt X = C

all components ofuppy (f) map to points (note that’ = P!, since
Pic’(X) = 0). Since the components of the divisorgfare nonrational,

A

the generic fiber of, is also nonrational. Thusipp v (f) contains only

a finite number of rational divisors, so thae FSx (K).
[

lemm:new-arg | LEMMA 12.12 — Letz,y € FSx(K) be noncommuting elements.

Assume that the three elementg, zy have nontrivial commutators in
FSx(K). Then there exists a uniquec Z,/Z; such that

r,y,xy € a- K*/k* C FSx(K)

Proof. — Let P,, P, and P,, be minimalZ-sublattices ofFSx (K)

such thatr € P, ® Zy, y € P, ® Zy andzy € P,, ® Z,. Note that

P, N P, = 0, since there are n@é-relations - the elements d?,, resp.

P,, belong to the same pencil and nontrivial elements of different pencils
are distinct. The latticé’,, surjects onto botl#, and P,. If one of the
projections had a kernel, there would be an elemet.ibelonging to

the pencil?,,, and similarly forP,, but there are no common elements.
We can now assume that one of the projections is an isomorphism. The
corresponding section iR,, gives the claimed imbedding. H

COROLLARY 12.13 — LetK C FS(K) be a lattice such that
e every element ifC has has a nontrivial commutator and
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e K surjects ontak™ //.
Then then there ig € Z; such thate - K C K* ® Z).

Proof. — SinceX is generated by the preimagesBt C K*// the
lattice K is contained iNFSx (K). Then we apply Lemma2.12 [

In partiucular, any such lattice is containeddn' - K* ® Z ) with
the same property. Thus there is a unigue maximal lattice for any triple
of elementsr, y, xy with nontrivial commutators so that,(x,y) # 0
mod ¢ for somev € DV. It equalsa - K* ® Z ), for somea € Zj.

13. /-adic analysis: curves

In this section we begin the process recognition of the lafticgr* C K*.
We solve an analogous problem for the function field of a rational curve. This
result will play an essential role in the analysis of surfaces.

PROPOSITION13.1 — Letk be the closure of a finite fieldhar(k) # ¢, C
a curve ovelk of genugg with function fieldf = £(C') and

v ggml) — Gp
an isomorphism of Galois groups inducing an isomorphism on inertia groups
of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let
v @ — E*
be the dual isomorphism. Then = k(P') and there is a constant € Z;
such that¥* (k(P!)*/k*) = a - E* /k*.
Proof. — Recalling the exact sequenc&0(1), we have a commuting dia-
gram
0 — Ze(Aciy) — M(C(k)) G, VA 0

|

0 — Ze(Api () —= M(PY(k)) —= Gipr) — 0
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SinceV is an isomorphism on inertia grou@§, for eachw, thesetsC' (k)
andP! (k) coincide and we getaniqueisomorphism ofZ,-modules (of maps
to Zg) ~ ~

M(C(k)) = M(P'(K)).
In particular, we find thag = 0 andE = k(P'). Further, we have an induced

iIsomorphism
Zo( D> 0u)=Zo( D bur)
weVE ”LU’GVk<]P1>
so that
(Z dw) = af Z Our)
weVE wlevk(]P’l)

for somea € Z;. This implies that),, = ad,s, for all w € Vg and the
correspondingy’ € Vpi. In particular, for the dual groups we have

E*/]%* _ (K*/k?*)a,
wherea € Z;. O]

14. /-adic analysis: surfaces

LEMMA 14.1 — Let X be a smooth surface anf? a smooth irreducible
divisor on X. Letr = vp be the corresponding divisorial valuation on the
function fieldK" = k(X)) andt € T;(X) an element such thaés,(t) = 1 €

K. Thent is in the image of,(A) in T,(X).

Proof. — LetB = Bp C A°(X) be the abelian variety defined in Lem@&.&2
- the image ofD in the quotientdA = Alb(X)/B is a point; we have a map
Leta : Alb(X) — A := Alb(X)/B projection. For anyu € A the
preimagea!(a) is isomorphic to the image ofac(D) in Alb(X). Since

T:(D)
3.22 O

We will need arv-adic version of Lemmal.1.

PROPOSITION14.2 — Let f,§ € FSx(K) be elements with nontrivial
support such that

— 0,(f,9) = 1foreveryv € DV,



54 FEDOR BOGOMOLOQV and YURI TSCHINKEL

A

— suppg(f) Nsuppg(g) = 0,

that is, f has nontrivial commutators. Then there is a 1-dimensional field
E =k(C) C K suchthatf, g € E*.

Proof. — By Lemmal2.4

f=t;-f where f:=]]f" resp.g=t,-g, whereg:= Hg?j,
iel jeJ

where

=ty t, € Tg(X),

— I, J are finite sets;

— fi,g; € K* forall ¢, j;

— a; € Zy (resp.b; € Zy) are linearly independent oV
Fix a valuationv = vp, whereD is in the support off on a (smooth) model
X. By assumption

wes, (tp- [[ /i) =1€ K,
el

By Lemmal2.3 rés,(t;) € T,(K,) so thatt; has trivial support orD. We

claim that for all; € I, res,(f;) =1 € K /k*. The divisor of the restriction
of fito D is ), i q;», Whereg;;, are points orD andr;;; € Z. This gives a

relation

Z ai(z Tiir Qir) = 0.

i€l i’
However,a; were linearly independent ov&rwhich implies that;;; = 0, for
all 7,4'. In particular,res,(f;) € k*. The same argument fgrshows thay
and f commute and that all pair§, g; commute as well. By Lemmal.1, all
fi,9; € E=k(C) C K for some curve’.

We now have a diagram:

0 — To(E) ok Div(C) — Pic(C) —= 0
I

0 — Ty(K) — f* — Div(X) —> Pic(X) —= 0
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We need to show that (resp.t,) is in the image ofl;,(£). Let D be an
irreducible component in the divisor of(resp. f). Changing the model, we
may assume thdb is smooth. We have a diagram

D X

A

Jac(D) —— Alb(X) —= A = Alb(X)/B

wherea is a surjection with connected fibers aBd= B is asinLemma.22
it is the minimal abelian subvariety of’(X) so that the image oD in
Alb(X)/Bis apoint,ap. (note thatD is irreducible). We have

t(Jac(D)) = o *(ap) ~ B.
Applying Lemmal2.1(4) we conclude that the induced sequence
Ty(A) <= Ty(AIb(X)) - Ty(B)

of free finite rankZ,-modules is exact in the middle term. We have shown
thatres,(f;) = 1, for all i € . It follows thatrés,(t;) = 1 € K, where
v = vp is the corresponding valuation. In particular,

ty =1€Ty(B) = Ti(K,) =Ty(D).

It follows that there is am € T;(A) such thatv*(a) = ¢;.

We apply this argument to every componéntof the divisor ofg and find
thatt, is induced from quotientdlb(X)/B;, whereB; := Bp,, for j € J.
Let B be the abelian subvariety ef’(X) generated by3;. By Lemma3.22,
Alb(A)/B ~ Jac(C), andX maps toC with connected fibers. We have the
diagrams

X —=AIb(X)  Ty(X) ~—— Ty(Alb(X))

I T .

C ——=Jac(C) T,(C)<—T,(Jac(C))
It follows thatt, and similarlyt,, is in7;(C) = Ti(E).

REMARK 14.3 — For everyf € K* the element = (f +a)(f + b) where
a # bandab # 0, satisfies the conditions of Propositiha.2.
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Proposition14.2 characterizes Galois-theoretically subgroups ¢ K*
corresponding to 1-dimensional subfieldsiof We now have:

PROPOSITION14.4 — The groupK*/k* ® Z, C FSx(K) is generated
by subgroupst* N FSx(K) with E = k(C) so that thatT(E) is trivial.
Moreover,

(K* k" @ Z¢) NTy(X) = 1.

Proof. — First of all 7,(C) — T,(X), for every 1-dimensional subfield
k(C) c K. It suffices to note that normally closed fields = k(x), with
Ty(E) trivial, generatel* /k*. O]

PROPOSITION14.5 — Let&* C K*/k* ® Z, C K* be a subset with the
following properties:

— &" is closed under multiplication;
— R*NE* = ap - E*/k* for every 1-dimensional normally closed subfield
E =k(z) C K,withag € Zj;
— there exists a, € DVj such that
{[60, /]| f € &}~ Z
for a topological generatod, of Z .
Theng* C K*/k* ® Zy).
Proof. — Forz € K \ k let E = k(x) be the corresponding 1-dimensional

field, assumed to be normally closed i By assumption, there exists an
ap € Zj such that

R NE*=ag-E*Jk*
If some (any) topological generatég of Z;; is not identically zero one*
then there exists a (smooth) mod€| wherev is realized by a divisoD,,
together with a morphism
X — P =P},
such thatD, dominategP!. It follows that
ap € QQZZ = Z(g).
It remains to observe that everye K* can be written as a product

J}::L’/%E”
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such thatd, is nontrivial on both normally closed’ = k(') and E” =
k(x"). O

- COROLLARY 14.6 — After a choice of, for every 1-dimensionall C K
[coro:pm | 0s
and everyf € E*/k* we can Galois-theoretically distinguish its poles from
its zeroes.

The last essential step is a Galois-theoretic characterization of the partial
projective structure oR*/k*, more precisely, the characterization of gener-
ating elements and primary lines &t /k* (see Definition3.10 and Defini-
tion 4.7).

: LEMMA 14.7 — Letx € K* be a generating elementy := k(z) and
r =r(x) € N the smallest positive intge]:ger suchgthéte £*. Then @
— r = p™ for somem € N (with p = char(k));
= (B*/k*) N (R /k*) = (BEP")* [k
— (pointwise)p™-th powers of primary lines irE* /k* coincide with pri-
mary lines in(EP™)* /k*.

Proof. — The first property follows sinc&’/f is a finite purely inseparable
extension, by Propositiorni3.19and 14.5 Next, we claim that a generator
y € Ris ap™-th power of a generator ok (for somem depending o).

Indeed,F := k(y)K C K is afinite and purely inseparable extensiork @f),
E := k(x) (for somez € K). Thus

y = (az”" +b)/(ca?" +d) = ((dz+b)/((x+d))P"
for somem € Z, a,b, c,d € k and theirp™-th rootsa’, b, ¢, d" € k (sincek
is algebraically closed).
In particular, a generatgr € 8* is in E* N K* (and is the minimal positive
power of a generator ity contained inE* N K*). This implies the third
property: the generators &" arep™-th powers of the generators 6t [

coro:pro-uni ‘ COROLLARY 14.8 (Definition) — Assume thay, ¢’ are primitive elements

in (EP")* C &* such that

— v,y have support in 2 points;

— the pole ofy coincides with the pole aof.
Then (the images of), v/ in 8*/k* are contained in a primary line passing
through (the images ofl), y, /.
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Proof. — Definition 10.1and Lemmal0.2give a Galois-theoretic character-
ization of the notion “support in 2 points”. By Corollafyt.6we can Galois-
theoretically distinguish zeroes and poleg/of 8*/k*. It remains to apply
Lemmal4.v. 0

15. Proof
In this section we prove our main theorem: if

(g}l(v EK) - (gg7 ZL)7

whereL is a function field over an algebraic closure of a finite field of char-
acteristic# ¢, thenK is a purely inseparable extension/af

Step 1.We have a hondegenerate pairing
G x K* — Z,(1).

This implies thatx* = L*.

Step 2.We haveX{V = ¥4V and we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

I C Dl C Gy

every liftable subgroup € ¢ C Yk contains an inertia element of a divi-
sorial valuation (which is also contained in at least one otter X, ). The
corresponding decomposition group is the “centralizer” of the (topologically)

cyclic inertia group (the set of all elements which “commute” with inertia).
This identifiesDVy = DV;..

Step 3.For everyv € DV we characterize intrinsically
I CDy/Is
(see Proposition0.3).

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemmal0.4and Remark0.5.
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Step 5.For f € K* we have two notions of supporstuppK(f‘) (intrinsic)
andsupr(f) (depending on a modé&l’) and two notions of finitenesg‘:: is
nontrivial on at most finitely many nonrational divisorial valuationgesp.

f has finite divisorial support on a model. We definB8(K) C K* as the

set of elements satisfying the first notion of finiteness. If some (any) model

of K contains only finitely many rational curves, both notions of finiteness of
support coincide and one obtains an intrinsic Galois-theoretic characterization
of K*/k* ® Z, C K*, as elements iFS(K). In general, it may happen that
someg € L*/I* has an “infinite rational tail” on some (every) modélof K:

PX(Q) = pX,nr(g) + Z nj0j7
i>1
where(; are irreducible rational curves of. In Lemmal2.10we show that
many elements of.*/I* C FS(L) = FS(K) have finite support on every
model X of K, and vice versa. In particular, we prove that

FSo(K) = K*/k* ® Zy = L* /I* @ Zy

(up to an/-torsion group related tBic’(X), for some modeK of K), where
FSo(K) C FS(K) C K* has an intrinsic Galois-theoretic description.

Step 6.For every pair of elementg, j € FS,(K) satisfying

~

— suppg (f) Nsuppg () = 0;
—o,(f,9) =1forallv € DV

there exists a subfield = k(C) c K suchthatf, j € £* (Propositionl4.2).

Step 7 Propositionl 3.lidentifiesE* /k* inside £+, up to conformal equiv-
alence, for all one-dimensional = k(x), which are integrally closed i&".

Step 8.Propositionl4.5identifiesf* := K*/k*NL*/I* (as a multiplicative
group) with a multiplicative subgroup df*/k* @ Z .

Step 9.By Proposition3.19 RK* is isomorphic toi /k*, andL}/l*, where
K,/K andL,/L are finite purely inseparable extensions. Theref@te;ar-
ries two structures of an abstract projective space compatible with the multi-
plicative structure (see Exampieb).
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Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure omR* consisting of primary lines (see Lemmnda8 and
Lemma4.9).

Step 11.Lemmal4.7 and Corollaryl4.8 give a Galois-theoretic charac-
terization of generating elements and primary lineskin These define a
(unique) partial projective structure @it (in particular, the projective struc-
tures induced by (K;) andP(L;) coincide). In particular, the fields; and
L, both containt and are isomorphic.

Step 12If follows that K and L are finite purely inseparable extensions of
thesamefield. This concludes the proof of Theorem
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