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Introduction

We fix two distinct primeg and/. Letk = [, be an algebraic closure of
the finite fieldF,. Let X be an algebraic variety defined oveandK = k(X)
its function field. LetG¢, be the abelianization of the piguotientGy of the
absolute Galois group ak. Under our assumptions dn G¢ is a torsion-
freeZ,-module. LetGy; be its canonical central extension - the second lower
central series quotient @fx. It determines the following structure @ff.: a
setX i of distinguished (primitive) subgroups which are isomorphiéridge
rank Z,-modules. A topologically noncyclic subgroupe Xy iff

— o lifts to an abelian subgroup ©f;
— o is maximal: there are no abelian subgroups- G¢ which lift to an
abelian subgroup d@J¢, and contairv as a proper subgroup.

We will call X, a fan. The main theorem of this paper is

THEOREM1. — Let K and L be function fields over algebraic closures of
finite fields of characteristie ¢. Assume thal{ = k(X) is a function field
of a surfaceX /k and that there exists an isomorphism

U=VUgr:Gx =07
of abelian pro#-groups inducing a bijection of sets
Yk =XrL.

ThenL is isomorphic to a finite purely inseparable extensiorof

We implement the program outlined in][and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (se, [2],[5])-
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2. Overview

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX' over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let G% be the proé-quotient of the abelianization

Gr/[Gk, Gkl

of the absolute Galois groui; = Gal(K/K) of K, ¢ # char(k). By
Kummer theoryg$. determines the pré-completion/™ of the multiplicative
group K*.

A Galois-theoretic characterization of the figidinvolves the recognition
of the subgroupk™*/k* c K*, and of the canonical projective structure, the
projectivization of theadditive group K, considered as a vector space over
k. This projective structure is invariant undaultiplicative translations by
elements of* /k*.

For this we need Galois-theoretic information coming fr@gn the maxi-
mal pro+4-quotient of

Gk/[[Gk, Gk|, Gk].

This topological group parametrizes thasextensions of’ whose Galois
group is a central extension of an abeltagroup.

Our main Galois-theoretic object is a pa@s, X x), where thefan X
is the set of all maximal (by inclusion) topologically noncyclic subgroups
o C G% whose set-theoretic preimage @ is an abelian group. It turns
out that such liftable subgroupsarefinite-dimensional.,-subspaces ig..
Moreover, the maximaL,-rank of suchy is dim(.X).

Theorem1 states that if for two function field& = k(X),L = I(Y),
whereX/k is an algebraic surfac#;/! an algebraic variety; and/ are alge-
braic closures of finite fields of characteristic/ there is an isomorphism

v (G Xk) — (97, 21)
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thenk ~ [, Y is a surface and is isomorphic to a purely inseparable exten-
sion of K.

Define a subfartdlV C Yk as the set of those maximal liftable subgroups
which have nontrivial intersection with at least one other subgroupn
There is a geometric reason to distingulsfi'. Let K be the function field
of a surfaceX overk, D an irreducible divisor onX andv = vp the cor-
responding nonarchimedian divisorial valuation. Its abelian decomposition
groupD? C G% is a (noncanonical) direct product of the inertia subgroup
I, ~ Zy and the grouy 5, of the fieldk(D). Now a subgroupr C Dj
of Z,-rank 2 is liftable if and only if it containsZ?. ThusZ}EV contains all
liftable subgroups o¥,-rank2 which are contained in groufd3’.

The first important result says that!" exactly coincides with the set of
all liftable subgroups o¥,-rank2 contained in the group®?, for different
v = vp. This gives an purely group-theoretic description of the graDpis
the nontrivial intersection of two liftable groupsc’ is alwaysZ?, for some
divisorial valuationv = vp, andD¢ “centralizes™Z?, it consists of all those
elements irg¢. which commute witti?, after lifting to G¢..

The proof is based on Kummer theory and the interpretatio@fofis a
space of special (logarithmicj,-valued maps on the infinite-dimensional
projective spac@®;,(K) = K*/k* over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results far = F,(X) are contained in Sectidh
The case of arbitrary algebraically closed ground fiégldstreated in £],[2].

At this stage we characterized all pal®s ,Z;  inside G, or, vaguely
speaking, we recovered “all curves” on all modé&lsof K (andY of L).
Next we recover the “points” o), as inertia groups;, C Gy ), using
various subgroups;  as follows: the image dfy, under any homomorphism
of G to a finite group, which is trivial o}, coincides with the image of
someZy (see Sectiori(). Conversely, for anyy € D; \ Z7, for some
divisorial valuation onk(D) (a point), there exists such a homomorphism
with the property that the image af is not contained in the image of any
inertia subgroufT; .



FUNCTION FIELDS 5

Now we can recover the genus of and distinguish the set of divisorial
valuations of K which on some model of{ are represented by curves of
genus> 0. Note that these valuations have 1-dimensional centees/ery
modelof K.

We switch our attention to the dual spasé of G%. We seek to recover the
subsetZ*/I* ¢ K* = L* using Galois-theoretic data. This is done in several
steps, each time obtaining a smaller subgroup:

— FS(K) c K* - elements infs* with finite nonrational support,
- K*/k*®7Zy C FS(K)and
— K*/k* X Z(g).

Elements of<* can be thought of as infinite products of elemefiftsc K,
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modeélof the field
with Z,-adic coefficients which converge tbin the /-adic topology. The
subgroupFS(K) C K* consists of elements whose support contains only
finitely many nonrational divisors (characterized above). Of couFs&(,K)
containsK™ /k* and L*/I* but it is still rather big - elements iFS(K) may
have infinite rational “tails” ifX contains infinitely many rational curves.

Next we use arf-adic analog of a symbdlf, g) mod (" € Ky(K)/(".
Notice that(f,g) mod ¢ = 0 for anyn € N if f g belong to the same
one-dimensional subfield if. In particular, for anyf € K \ k there is an
elementg which is not a power off and such thatf,g) = 0 (we can take
g = f+1). Thisimposes a strong condition grsince for a generic element
in K* the “commutator” off consists of-adic powers off only. This allows
us to characterize

K*//{* ®Q Ly = L*/l* & Zy C fS(K)
as the subgroup generated by elements satisfying this property and having a
“sufficiently big” support.

The next step involves a normalization. Insifle/k* ® Z, we cannot
Galois-theoretically distinguish*/I* @ Z,) froma- K* /k*®@Z), fora € Z;.
However, this conformal invariance is the only freedom there is. If we fix the
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values off € L*/I* ® Z, on one (arbitary) irreducible divisor on a model
of K thenL*/I* ® Z, is naturally identified insidél* /k* @ Z,. Thus, after
multiplication bya € Z;, we can assume that /I* C K*/k* ® Zy).

Now we havei™ /k* andL*/I* inside K* /k*®@Z ) = L* /I*®Zy). We also
know that subgroups generated by elemeéniswith pairwise trivial symbol
(f,g) = 0 correspond to one-dimensional subfieldshnL, respectively.
Most one-dimensional subfields i are isomorphic té@(z), for somez, and
Galois data allow us to recognize these subfields. Henkérif C K then
k(x)*/k* ® Z(g) =01*(t)/I* ® Z(g) C K*/k*® Z(@), for somet € L.

Next we show that the corresponding grougs)*/k* andi*(z)/l* inter-
sectink(z)*/(k*)" = I*(x)/(l*)® for some rationat, s. This property implies
that L*/I* is isomorphic (as a multiplicative group) 16 /k* whereK /K, is
a purely inseparable extension.

Now we add the projective structure over, respectively. We notice that
the sets of line§P(k @ kx)} and{P(I&t)} in K*/k* andL*/l*, over allz, ¢
generating closed subfield$z) C K andi(t) C L, are the same. It turns out
that the sets of these lines and their (multiplicative) translations is compatible
with a unique projective structure on the (multiplicative) groups/ k* and
L*/1* - namely the one coming from the field structure. This defines a unique
additive structure and finishes the proof of our main result.

3. Basic algebra and geometry of fields

NOTATIONS 3.1 — Throughoutk is an algebraic closure of the finite field
F =T, andK = k(X) the function field of an algebraic variefy/k overk
(its mode).

In this paper we use extensively the fact that two-dimensional function
fields K have “nice” models: smooth projective surfac&sover k£ with
K = k(X), whose geometric properties play an important role in the recogni-
tion procedure. In this section we collect some technical results about function
fields of curves and surfaces and their models.

We assume familiarity with
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— basic notions of field theory (transcendence degree, purely inseparable
extensions);

— basic notions of algebraic geometry:-rational pointsX(k), Picard
groupPic(X), Néeron-Severi groupiS(.X).

LEMMA 3.2 — LetC/k be a smooth curve an@d C C(k) afinite set. Then
there exists am = ng € N such that for every degree zero divisbrwith
support inQ the divisorn D is principal.

Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisoRic’(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite §8tC C(k) is finitely

generated. O
LEMMA 3.3 — Let X/k be a surface(’;, ..., C a finite set of (pairwise
distinct) curves onX and f; € k(C;)*, fori = 1,...,s. Then there exists an
f € E(X)* whose restriction t@; is defined and equal tf, for all .

Proof. — Well known. O
LEMMA 3.4 — For some ample smooth curve: C' — X the restriction

i* : Pic’(X) — Pic’(C) is an injection of abstract groups (&fpoints).
In particular, every element iRic”(X) is torsion.

Proof. — Let H be a polarization otX. There exists an € N such that for
all pairsL, L' € Pic’(X) one hasf' (X, —(L — L' +nH)) = 0. Indeed, the

property
HYX,—(L— L +mH)) =0

is open inPic’(X) x Pic”(X) \ A (whereA the diagonal subgroup), since
Pic’(X) is an algebraic group scheme. Denote by

Unn C (Pic®(X) x Pic’(X) \ A)
the corresponding subset. If we consider a increasing sequence
UTLZ’H7 n; € Z, Una C UnH, for m < n,

the union of allU,,, ; is equal toPic’(X) x Pic’(X) \ A. Then there is an
n € N such thatU,,; = Pic’(X) x Pic’(X) \ A (due to algebraicity of
Pic’(X) x Pic’(X) \ A and allU,,, ;).
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Exact sequence in cohomology implies that:
H'(X,—L+L)=HC, —L+ L,

whereC,, is a smooth curve in the clagsH]. SinceH(X,—~L + L') = 0,
for L # L', the same holds for their restrictions. In particular,

i* : Pic’(X) — Pic’(nH)
is a set-theoretic embedding (on the set-gdoints). O

REMARK 3.5. — A more delicate analysis shows that for> 0 the map
i* : Pic?(X) — Pic’(nH) is an embedding of algebraic groups. Note that
over a closure of a finite field the map

i : Pic(X) — Pic(C)
is never an embeddingik NS(X') > 1 (in contrast with characteristic zero).

LEMMA 3.6. — Let X/k be a smooth projective surfac€, C X an irre-
ducible curve and) a finite set of points on’. Then there exists a diagram

Cc X—=Y

CcX

whereX = BI(X) — X is a blowup ofX with center supported i’ \ @
and is an isomorphism otk \ C (the strict transform o under) which
mapsC' to a point onY'.

Proof. — There is a polarizatiod/ on X such thatd — C restricted taX \ C

is very ample (induces an embeddingXf\ C' into a projective space). Let
IP7. be the projective space spanned®@wnder the embeddingg C P by

H. By our choice off, r < n. A generic hyperplan® ! C P, intersects

C transversally in finitely many smooth points . . ., ¢s which are contained

in C'\ @ (here we use Bertini's theorem for embedded curves, which in this
case is evident over any algebraically closed field). The projection from this
P! (insideP") induces a proper map from the blowtpof X with center

in Ug; onto a projective surfacé C P"". Note that the image af' under

the projectionis a poinf € Y.
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By constructionPf, intersectsX exactly inC. Hence, the proper preimage
of ¢ in X is C. Any otherP” C P" intersectsX \ C' in at most one point and
transversally (by assumption @’ (X, H — (). It follows that the projection
induces an isomorphism betwean\ C' andY”\ q. O

LEMMA 3.7. — Let X/k be a smooth projective surfac€, C X a curve
and@ C C(k) afinite set. LetC be a line bundle o whose restriction to
C'istrivial (Lo ~ O¢). Then there exists a diagram

Cc X—=Y

CcCcX

whereX = BI(X) — X is a blowup with center supported in finitely many
points onC'\ @ andr is a proper map as in Lemnfat (contractingC’) such
that the pullbackC = 7*L is induced fromy”.

Proof. — By Lemma3.6, we may assume thdt is (already) contractible.
Since/ is trivial on C we havel ~ O(R; — R,), whereR;, R, are divisors
on X intersecting” transversally, and

RiNC=R,NCCC\Q.
Indeed, we can find a polarizatidi, so thatC + H is also a polarization,
giving surjective maps

HY(X, L+ H) — HC,(L+ H)c)
H'(X,H) —  HYC, He).
Letic : (L+ H)c — He be anisomorphism. We can find a pair of sections
s;€ HY(X, L+ H), s, € H'(X, H)

with ic(s1)c = (s2)c. Let R; be the zero divisor of;. ThenO(R; — Ry) ~ L
and R, R, intersectC transversally with

RlﬂC:RszCO\Q,

as claimed.

Consider the smooth surfage: X — X obtained by blowing ug; N C'.
The proper preimageB; of R; in X don'tintersect the proper preimagec
X of C. The divisor ofr*£ = 7™ (R; — Ry) doesn’t contain components
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which are exceptional curves lying over points(in Hencer* L is trivial on
the open quasi-projective neighborhodd\ supp(7*(R; — Ry)) containing
C'. Therefore, the bundI€ is induced fromY” (as in LemmeB.6). O

LEMMA 3.8 — Let K/k be the function field of a surfac€;/k a smooth
curve on a model of{ and@ = {qo,...,qs} C C(k) a finite set of points.
Then there exist a modél of K, irreducible divisorsD;, H;, H} on X, with
j=0,...,s, and a positive integet = ng such that:

(1) X is smooth and contains;

(2) DyNnC =g forallj=1,...,s;

(3) n(D; — D,) restricted toC' is a principal divisor;

(4) n(D; — Do) + (H; — H}) is a principal divisor onX;

(5) the divisorsD, are pairwise disjoint;

(6) all intersections betweel;, H; and H; are transversal, pairwise dis-

tinct and outside”;
(7) H;, H; don't intersectC'.

Proof. — Let X be a smooth projective model &f containingC' as a smooth
curve. Choose divisor®); C X passing (transversally) through (for all

j = 0,...,s). Blowing up points inC' \ @ we can insure that the (strict
transform of)C' becomes contractible and that the image of the surface under
a contracting morphism isrojective(by Lemmas3.6).

Blowing up again (if necessary) and removing components of exceptional
divisors, we can insure that the (strict transfortbs)\ C' = ¢; (for all j). By
Lemma3.2, there exists am = ng such that the restriction of(D; — D)
to C'is a principal divisor. We continue to blow up (outsi§¢ so that each
n(D; — Dy) becomes a trivial line bundle on some open neighborhoad of
in some model (using Lemma3.7).

ThroughoutC' remains contractible and we write

T: X —=Y

for the corresponding blow-down. Now(D; — Dy) is induced from a line
bundle onY (which is projective). In particular, there exiatnpleclasses
[H;],[H]] € Pic(Y') such that

[n(D; — Do)] + ([H] — [H]])
is a principal divisor onX (here we identified#;], /7] with their full trans-
forms in X). Finally, we can choose representativés H; C Y of these
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classes which are disjoint from(C), irreducible and satisfy all required
transversality assumptions.
More precisely, choose clasgés| so that

(n(D; = Do)l + ([Hj]), [n(D; — Do)l + ([H3]), [H;],[Hj]

provide an embedding df into a projective space. Consider an embedding
of Y into a projective space defined by one of the sefii€s, [H}]. For any
finite set of irreducible divisors iln” we find a hyperplane section intersecting
the union of these divisors transversally and not containing the given finite
set of points inY". Using induction ory we find representatives ff;], [H’]

satisfying the lemma. O
lemm:purely | LEMMA 3.9 — Let K/R be a purely inseparable extension. Then
- RDK

— K/Ris afinite extension;
— R = k(X’) for some algebraic varietyX”.

’defn:gener ‘ DEFINITION 3.10 — We writeE" C K for the normal closure of a subfield
E C K (elements inK which are algebraic oveF). We say that € K \ k

is generatingf k(x)K = k(x).

rem:just REMARK 3.11 — If £ C K is 1-dimensional then for all € £'\ k one has
k(x)K = E" (afinite extension oF).

LEMMA 3.12 — For any subfield® C K there is a sequence

X T2y PE

where

— mg is rational dominant with irreducible generic fiber;
— pg is quasi-finite and dominant;

— k(Y")=E" andk(Y) = E.
For generating: € K we write
T s X =Y

for the morphism from Lemma.12 with k(Y) = k(x). Fory € K \ k(x)
definedeg, (y) (the degree of on the generic fiber af,) as the degree of the
corresponding surjective map from the generic fiber ofinderr,.
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PROPOSITION3.13 — Let K = k(X) be the function field of a smooth
surface,C' € X a smooth irreducible curve and, ..., f, € K* rational
functions onX, restricting nontrivially toC'. Then there exists a modal
of K (a blowup ofX) such that for every poinf in (the strict transform) of
C C X there exists an irreducible divisdp, ¢ X (possibly the zero divisor)
with the property that for alf = 1,. .., s the order ofD, in the divisor off;

is equal to the order of; in q.

Proof. — Consider the divisor§' anddiv(f;), i = 1,...,s and a modelX

of K such that the total preimage c X of the union of all these divisors in

X has strict normal crossings (resolution of singularities for surfaces). After
further blowups we can assume that each irreducible componénditinct
from C') intersects (the strict transform af) in at most one point. For each

q € Cn(D)\C)let D, be this component. For all othglet D, be the zero
divisor. These divisors have the required properties. O

LEMMA 3.14 — LetK = k(X) be the function field of a surface amdy €
K\ k be such that

deg,(y) = min_(deg,(f))

FeR\k@)"

andk(y) = k(y') for somey’ € k*. Theny is generating(y) = k(y) .

Proof. — If y is not generating thep = z(y') for somey’ € K and some
functionz € k(y')* of degree> 2. This implies thatleg, (y) > 2deg,(v),
contradicting minimality. O

LEMMA 3.15 — Let X be a model of{ containing a rational curv&’ and
x € K* a function such that its restrictiom: to C' is defined and such that

k(C) = k(zc). Thens is generatingk(z) . = k(z).

Proof. — The restriction map extends kxﬁx)K and hence is an isomorphism

betweenk(z¢) andk(z) = k(z) . O

The next proposition characterizes multiplicative groups of fi®ds K
such thatK'/f is a purely inseparable extension. Notice that for a one-
dimensional field:(C') the subfields is always of the forni(C)*", for some
n € N. Thus for any one-dimensional subfigilC K thereis an(F) € N
such that the intersection &f with £* consists exactly of( £')-powers of the
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elements of£*. Below we show that this property of intersection with sub-

fields of the special fornt(z) = k;(x)K already characterizes multiplicative
groups of suctR among multiplicative subsets i*.

DEFINITION 3.16 — LetR&* C K* be a (multiplicative) subgroup such that

for any subfieldt = k(z) = k(x)K C K there exists an = r(F) with
the property thatR* N E* = (E*)" (r-powers of elements d*). For every
t € E*\ k* we define(t) = r(E).

REMARK 3.17. — Note that(¢) is not defined for € K* \ k* iff k(1) is
the function field of a curve of genus 1.

DEFINITION 3.18 — We will say thaty € K* is a powerif there exist an
x € K* and an integer > 2 such thaty = 2".

PROPOSITION3.19 — LetK = k(X) be the function field of a surface and
K* C K* asubset such that

(1) 8* is a multiplicative subgroup aok™;

(2) for everyE = k(z) = W:B)K C K there exists am = r(FE) € N with
R'NE" = (E");

(3) there exists & € K \ k withr(y) = 1.

Theng := K* U 0 is a field, whose multiplicative group 8 and K /K is a
purely inseparable finite extension.

Proof. — Once we know thag is a field we can conclude that every: K*
is either in&* or some power of it is inR*. Of course, it can only be a
power ofp so that// R is a purely inseparable extension, of finite degree (by
Lemma3.9).

By (3), £ C K. To conclude thaR is a field, it suffices to show that for
everyx € R one hast + 1 € R (and then use multiplicativity). For every
xr € R\ kwith r(z) = 1 we have)* N k(z)* = k(z)* and

r+ k€ R, forallk € k.

In particular, this holds foy.
Considerz € & with r(z) > 1 or not defined. We claim that for some

k €k
_THY+E

= d =1.
2 y+m—1€ﬁ andr(z)
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This implies that

z2—1=(x+1)/(y+r—1) € & andz +1 € K&,
(by multiplicativity). We can assume that/k(C)(y), wherek(C) = &(z) ",
is a finite separable extension. (Otherwise, we caklée a minimal proper
subfield in®’ C K containingk(C)(y) and such thak’/ R’ is purely insepa-
rable and use the intersection®fwith &’ instead of{.)
To prove the claim, choose a mode€lof K such that both maps
—K

T X — C, k(C)=k(z)
T, X — Pl=(y:1)

are proper morphisms (as in Lemrfidl?). Sincex andy are algebraically
independenti(x) > 1), only finitely many components of the fibersmofare
contained in the fibers of, and there exists a € k such that both fibers

m, ' (—r) andm, (1 — k)

are transversal to the fibersof, since we assume that/k(C)(y) is separa-
ble. Note that

divo(y + K — 1) £ div(z + y + k),
sincey + k = —1 ondivy(y + k — 1) andx is nonconstant on these fibers
(wheredivy is the divisor of zeroes). It follows in the first case thath

t:=(y+k)/z and z:= (z+y+k)/(y+Kr—1)

are not powers.

Note thatt, z are generating elements. Indeed, if we blow up the smooth
point ¢ of transversal intersectiofy + x = 0} N {z = 0} thent restricts
nontrivially to IP’; and similarly

zi=@+y+r)/y+tr-1)=c+1/(y+r-1)+1

restricts nontrivially taP},, whereq' = {z = -1} N {y = 1 — x}.
Note thatt C K and since it is not a powet(t) = 1 and

(1/t)y+1=(zx+y+r)/(y+kK) €R
To show that: € R observe that both, y + x € & so thatt € K. Therefore,
t+l=(r+y+r)/rch
and, by (1) + vy + x € & Finally, since(y +x — 1) € Rwe getz € K. [
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REMARK 3.20 — If assumption (3) is not satisfied then we can take
(ﬁ*)l/r(y) m K*,

which satisfies all the conditions of the lemma. Thus in general without the
assumption (3) we have = (R')", where K/&’ is purely inseparable and
r e N.

4. Projective structures

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition if.[

DEFINITION 4.1 — A projective structurdas a pair (S, £) whereS is a
(nonempty) set (of points) angl a collection of subsets C S (lines) such
that

P1 there exist ans € S and anl € £ such thats ¢ [;
P2 for everyl € £ there exist at least three distingts’, s” € [;
P3 for every pair of distinck, s’ € S there exists exactly one

[=1(s,s") e L

such thats, s’ € [;
P4 for every quadruple of pairwise distingts’, ¢, ¢’ € S one has

(s, )Nt t)AD = s, t)NIs ) #0D.
Fors € S andS’ C S define thgoin
sV S :={s"eS|s" €ls,s) forsomes’ € S'}.
For any finite set of points,, . . ., s,, define
(S$1,...8n) :=81V($2V -+ Vs,

(this does not depend on the order of the points). Wite for the join of
afinite setS’ C S. A finite setS’ C S of pairwise distinct points is called
independenif for all s € S’ one has

s & (S"\{s'}).
A set of pointsS’ C S spansa set of pointd” C S if
- <S”> C T for every finite sets” c 5,
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— for everyt € T there exists a finite set of points C S’ such that
t e (Sy).
A setT C S spanned by an independent séof points of cardinality> 1 is
called a projectivsubspacef dimensionS’| — 1.
The axioms imply that projective subspaces of a given projective space
form a lattice and that the dimension function is well defined, i.e.,

dim(TUT") 4+ dim(T NT") = dim(7T) + dim(7")
for all pairs of projective subspac&s7” C S. Here we putlim()) := —1.

defn:pappus | DEFINITION 4.2 — A projective structuréS, £) satisfiesPappus’ axionif

PA for all 2-dimensional subspaces and every configuration of six points
and lines in these subspaces as below

the intersections are collinear.

The main theorem of abstract projective geometry is:

THEOREM4.3. — Let(S, £) be a projective structure of dimensian> 2
which satisfies Pappus’ axiom. Then there exists a vector dpaneer a field

L and an isomorphism

o . PL(V> ; S
Moreover, for any two such tripled/, L, o) and (V’, L', ¢’) there is an iso-
morphism
V/L V'L

compatible withr, o’ and unique up to homothety— \v, A\ € L*.
Proof. — See [/], Chapter 6. O



defi:inject

| exdrexoasikk |

| defn:basic2

|

mm:primary-ell

FUNCTION FIELDS 17

DEFINITION 4.4 — A morphism of projective structures
p: (S, £)— (5,8
is an injection of setg : S — S’ such thatp(l) € £ forall [ € £.

EXAMPLE 4.5. — Letk be a field and} the usual projective space over
of dimensiom: > 2. ThenP} carries a projective structure: the set of lines is
the set of usual projective linds C P7.

Let K/k be an extension of fields (not necessarily finite). Then the set

= Py(K) = (K \ 0)/k"

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the groufy* /k* preserves this structure.

THEOREM4.6. — LetK /L andK’/L' be field extensions of degree3 and
¢: S=PLK)—PL(K)=5

a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then
L~IL and K ~ K.

Proof. — Considerl’ := K as a vector space ovér By Theoremd.3 to S
there are canonically attached thealgebrakEnd (V) andGL(V) € End(V),

as the set of elements preserving the collineations of the projective Space
(because the action of homothetiestomd (V') is trivial). This allows to re-
cover the fieldK as the subfield of thé-algebrakind (1) given by

{0} U{z € GL(V) C End(V) |z induces a group-translation of}.
0

DEFINITION 4.7. — Let K/k be the function field of an algebraic variely

of dimension> 2 and S = P, (K) the associated projective structure from
Example4.5. The lines passing throughand a generating element &f (see
Definition 3.10 and their multiplicative translations by elements A /k*
will be calledprimary.

LEMMA 4.8 — LetK = k(X) be the function field of a surface. For every
line [ = (1, x) there exists &* C P;(K) such that all other lines in thig?
are primary.
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Proof. — Choose a smooth mod&l of K and two pointsy;, ¢z € X such
thatz(q;) = 0,2(¢q2) = 1. Blow up ¢y, ¢, and letP} be the corresponding
exceptional curves. Lef € K* be an element restricting to a generator of
k(P}!). The restriction map extends to the normal clost(i®) C K. Hence
the normal closuré(y) C K coincides withk(y).

To prove that every ling¢ # [(1,2) C P? = P(k & kz & ky) is primary
we need to show thaty + a + bx)/(y + ¢ + dz) is generating, provided
(a,b) # (¢, d). If a # cthen the restriction ofy +a+bx)/(y + c+dx) O P}
is equal toy +a)/(y+c) and hence is a generator/dfP, ). By the argument
of the previous lemmdy +a-+bzx)/(y+c+dx) is generating. 1t = ¢,b # d
then(y + a + bx)/(y + ¢ + dx) onP,, coincides with(y + a +b)/(y + ¢+ d)
and is also generating sinaet b # ¢ + d, by assumption. O

LEMMA 4.9, — Assume that a sef has two projective structuresS, £,)
and (S, £,), both of dimension> 2, and that for som@? (in the first projec-
tive structure) every ling, € (£, N P?), except possibly one line, is also a
line in the second structure. Then thetP? is a projective plane in the second
structure(S, £,), projectively isomorphic t#? € (S, £).

Proof. — LetP? be the set of all lines ii*? andP? \ [ the set of lines which
remain projective lines iP2. Let [, I, [; be three lines fron®2 \ [ which
don’t have a common intersection point. Then,, I3 lie in the same plane
P2. Since every other liné e P2\ [intersectd, [, s thenl’  P2. Thus all
lines fromP? \ [ are inP2 which contains all the points @.

They are isomorphic since it is an isomorphism between lines and every
point, except possibly one point, is an intersection of two Iinéﬁml. Since

P2 coincides withP? outside of one point they coincide. O
[coro:final | COROLLARY 4.10 — Let K/k and K'/k' be function fields of algebraic
surfaces

& S = Pk(K) — Sl :]Pk/<K/)

an isomorphism of (multiplicative) abelian groups inducing a bijection on the
set of primary lines in the corresponding projective structures. Thenan
isomorphism of projective structures and

k~Fk and K ~ K'.
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Proof. — By Lemma4.8and Lemma4.9 ¢ induces an isomorphism of pro-
jective structures. It remains to apply Theorérfi ]

5. Flag maps

NOTATIONS 5.1 — We fix two distinct prime numberéandp. Let
— F =F, be afinite field withy = p™ andF* its multiplicative group;
— Vecty - the set of finite-dimensiondl-vector spaces;
— A a vector space ovef andP(A) = Pr(A) = (A \ 0)/F* its projec-
tivization;
— M(A) the set of maps froml \ {0} to Zj;
— for u € M(A) andB C A anF-linear subspace, s the restriction ofu
to B\ {0}.
DEFINITION 5.2 — AnF-flag on a vector spacd € Vecty is a collection
of F-subspaces$A,,),—o....q Such that
- Ay =4
- A, 2 A, foralln=0,...,d—1.
The flag is calledcompletef d = dim(A).

.....

DEFINITION 5.3 — A mapu € M(A) will be calledF*-invariant if for all
a € A\ {0} and allx € F* one has

p(k - a) = pla).
DEFINITION 5.4 — Amapu onA\{0}, for a (possibly infinite-dimensional)
vector spaced, will be called anF-flag map, if
— pis F*-invariant;
— every finite-dimensiondF-vector spaceB C A has a complete flag

0,....dim(B) — 1.
The value ofu on B = B, \ B is called thegenericvalue of; on B; we
denote it by#"(B). TheF-subspace3, is called the subspace nbngeneric
elements. The set Bfflag maps will be denoted biyz(A).

ExAMPLE 5.5. — Let K = k(X) be a function field. We can consider it
as a vector space oveéror over any of the subfielde C k. Letv be a
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nonarchimedian valuation did andy : I', — Z, a homomorphism from the
value group ol (see Sectiof). Theny o v € &, (K).

DEFINITION 5.6. — Let A be anF-algebra (without zero-divisors). A map
€ M(A) will be called logarithmic if

p(a-a) = pu(a) +p(d), forall a,a’ € A\ O0.
The set of such maps will be denoteddy A).
SinceF is torsion, a logarithmic map @, is F*-invariant.

DEFINITION 5.7. — Let A be anF-vector space. Two maps i/ € M(A)
will be called ac-pair (commuting pair) if for all two-dimensiond@l-subspaces
B C A there exist constants, \', \" € Z, (depending orB) with (\, \') #
(0,0) such that for allb € B \ 0 one has

M (B) + Npiy () = N

THEOREMb5.8 — LetF C k be a finite field with#F > 11, and u, i/ €
Lr(K) nonproportional maps forming a-pair. Then there exists a pair
(A, N) € Z2\ (0,0) such that\p + X' € $p(K).

Proof. — This is a special case of the main theorem3fyhere it is proved
over general ground fields However, the case when= T, is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

— characterization of flag maps by their restriction to 2-dimensidhal
linear subspaces, fé#F > 11 (see Lemm&.17);

— reduction to linear spaces over prime fields, régp.see Lemm&.19
if u ¢ & (A), for afinite fieldF’, andy is F*-invariant with respect to a
large finite extensioiff /F’ then there is a subgroup ~ F C A, (resp.
%), so thatuc ¢ ®x, (C).

— reduction to dimension 3: for any rank tw&-modulesc = (u, ') of
logarithmic maps generated by:-gair y, i/ € Lr(A), not containing a
flag map there is a subgroup= B, ~ T, C A (resp.IF}), such that for
any nontrivialy” € o there is a proper subspace= C,» C B where
pe ¢ @, (C) (this step uses the logarithmic property);

— geometry of collineations ofi? = Pr(B) over prime fields (respF.,):
for any o spanned by a-pair ., i/ on B there is au” € o such that
p" € ®p(B) - this shows the existence of the desired flag maplon
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LEMMA 5.9 — If A € Vecty andpu € $r(A) then there exists a canonical
F-flag (A, )n—o.... 4 SUcCh that

pE" (An) # 15 (Anga),

77777

foralln=0,...,d—1.

Proof. — PutA, = A and letA, ., be the additive subgroup of,, spanned
by a with p(a) # p&"(A,). Sincep is F*-invariant, A, is anF-vector
space. Indeed, far,a’ € A, andx, k' € F* write

a= Zbi,a’ = Zbg
iel jeJ
with finite 7, J. Since
pu(bi) # M (An), pu(b}) # P (An),
foralli € I,j € J, we have

(kb)) = p(b;) # ps"(An) and p(k'd)) = pu(b}) # P (Ay)
so thatka + <'a’ € A, 4. O

REMARK 5.10 — Since a flag map is F*-invariant, it defines a unique map
on(A\ {0})/F* = Pg(A). Conversely, a map on Pr(A) gives rise to an
F*-invariant maps oM \ {0}. An FF-flag map onA € Vecty defines a flag
by projectivesubspaces oBr(A). We denote bygeneric(resp. nongeneric)
elements ofPr(A) the image of generic (resp. nongeneric) elements flom

NOTATIONS 5.11 — We denote byP(A) = Px(A) the set of codimension
one projectiveF-subspaces df(A).

DEFINITION 5.12 — Assume thatl € Vecty, and for all codimension one
F-subspace#? C A one hasup € ®r(B). Definei by
P(A) — Z,
B i(P(B)):= =" (B).
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LEMMA 5.13 — If A € Vecty andp € ®p(A) then eithers is constant on
P(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flagl,,),—o. . 4. If codim(A4;) > 2 then
for everyP(B) € P(A) one hag:t"(B) = u£(A) and/i is constant. Other-
wise, 8" (B) = us"(A), on anyB # A; (and differs a?(A4;) € P(A)). O

We need the following elementary

lemm:grass | LEMMA 5.14 — LetFF = [, be a finite field withy > 11 andP™ = Py,

m > 2 a projective space ovéf. Then for any four projective hyperplanes
and any ten projective subspaces of codimension at least two (all defined over
F) there exists a line (ovelF) which is not contained in any of the above
hyperplanes and which does not intersect any of the ten codimension two
subspaces.

Proof. — One has
#Gr(2,m)(F) < #Gr(2,m + 1)(]F)/q2.

The number off-lines intersecting a subspace of codimension twBjinis
bounded by#Gr(2, m + 1)(F)/q?. Our claim holds fog > 11. O

LEMMA 5.15 — LetF = [, be a finite field withy > 11, A € Vecty
and u € M(A) an F*-invariant map. Assume that there exissubspaces
B; C A, codim(B;) = 1,fori =1,...,4 such that

(1) either#{us"(B;)} > 3 or
(2) 5 (By) = p5" (By) # 15 (Bs) = u=™ (By).
Then there exists dfrsubspac€’ C A, dimp(C') = 2 such thajuc ¢ Pp(C).

Proof. — By Lemmab5.14 there exists &' = P(C) € P(A) such that its
intersection points witf’(B;) are pairwise distinct and generic in the corre-
spondingP(B;) (the nongeneric points @f(B;) are contained in 4 subspaces
in codimy > 2, the intersections oB; give rise to 6 more subspaces). Then
eithery takes at least three distinct values®(t') or has distinct values in at
least two pairs of points. In both casest ¢x(C). O

COROLLARY 5.16 — Assume thatiz € ®p(B) for all P(B) € P(A) (and
#F > 11). Theng is constant outside of one point.
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Proof. — The mapj: takes two different values di(B). By Lemma5.15
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplanés, h; € P(A),
wherefi(hy) = ji(hs) # ji(hs) then for any otheh € P(A) we haveji(h) =
f(hy) andfi is constant outside dfs. O

LEMMA 5.17 — Let A € Vecty, with #F > 11, andp € M(A) be an
F*-invariant map such that for every two-dimensioffatubspaceB C A,
uB € @F(B) Then,u € @F(A)

Proof. — Assume the statement holdsdifm(A) < n — 1. Theng is de-
fined and, by Corollanp.16 either;i is constant ofiP(A) or constant on the
complement to one point.

If /1 is constant, then thB-linear envelope of points€ A such thap(b) #
it has codimension at least two. Indeed, if there is a codimension one subspace
B C A generated by sudhthen by assumption € ®r(B) andus®™(B) # i,
contradicting the assumption thatis constant. Otherwise, put; := B.
By the inductive assumption, € ®y(B) and is constant onl \ B. Hence

€ Pr(A).
Assume thaf: is nonconstant and |g8 C A be the unique codimension
one subspace with differings”(B). Choose arF-basisby,...,b, 1 in B

such thatu(b;) = us"(B). Assume that there is a pointe A\ B such
that (a) # the generic value of. and let B’ be the codimension ong-
subspace spannéd, . .. b, »,a. Thenus"(B’) # the generic value ofi,
contradicting the uniqueness Bf It follows thaty is constantom \ B. [

REMARK 5.18 — LetF/F’ be a finite extensiond € Vectr, considered as
anF'-vector space, and € ®p(A). If p is F*-invariant, therp € ®p(A).
Indeed, by Lemm&.9, the canonicalF’-flag is a flag off-vector spaces. We
use this observation to reduce our problem to prime fields (fiégp.

LEMMA 5.19 — Let F/F’ be a quadratic extension, withfF’ > 2. Let
A be anFF-vector space of dimension 2, considered agamector space of
dimension 4. Lep € M(A) be anF*-invariant map such that for every
F’-subspace&” C A, dimp (C) = 2, one haguc € ¢ (C). Thenu € Op(A).

Proof. — First assume that takes only two values onl \ {0}, sayO0, 1,
and thaty ¢ ®y(A). SincePr(A) = P} there exist elements;, as, a3, ay €
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A\ {0} such that the orbit8* - a; do not intersect and

0= p(ar) = plaz) # p(az) = plas) = 1.
ThenF* - a; = A; \ {0}, whereA; is a linear subspace ovE&f. Thel’-span
A4, of two nonzero vectors; € Ay, zo, € Ay hasu®™ (A1) = 0. HenceA
contains at most on&-subspaceéb) of F’-dimensionl with generic valud.
The union of the space$,;,, for different choices of1, x5, coversA and

#{be Alpb) =1} < (¢+1)%
where#F’ = ¢. Similarly, there are at most + 1)? such nongeneric € A
with 11(c) = 0. Since#P*(F') = ¢* + ¢* + ¢+ 1 > 2(¢* + 29+ 1), for g > 2,
we get a contradiction.

Assume now that takes at least 3 distinct values an\ {0}, say0, 1, 2,
and that there are two vectais, a; C A such that the orbit&™* - a,,F* - a
don'tintersect an® = u(a1) = p(aq). Such a configuration must exist (take
two [F’-spaces of’-dimension two spanned W -orbits; theF’ span of two
generic vectors in these spaces contains elements whuakie coincides
with the value ofi, on one of the two orbits). The modified map, given by

v 0 ifula)=0
fila) = { 1 otherwise ~’
satisfies the conditions of the Lemma, and by the above argyineriby(A).
In particular,ii = 0 outside oné™-orbit on A\ {0}. Sincey is F*-invariant it
follows thatu takes two values, and not three as we assumed. Contradiction.
O

LEMMA 5.20 — LetF’ =T, (resp.F,), and[F/[F’ be an extension of degree
divisible by 4. ConsideX = k(X) as anF-vector space and let’, i/ €
Lr(K) be ac-pair such that the linear span = (1, 1", 1)z, does not contain
an ®p-map. Then there exist dni-subspace3 C K with dimp/ (B) = 3, two
distinctF’-subspace€¢’, C’ C B of dimension 2 and maps /i’ € o such that
— fic ¢ P (C) andjicr is constant;
— [igy ¢ Pp/(C) andfig is constant;
In particular, for every (nonzero) map € o there exists arf’-subspace
C, C B, dimp C,, = 2 with the property thatic, ¢ @ (C),).

Proof. — We will considerK as anlF-vector space as well as &@‘vector
space.
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Let . be anF*-invariant map on¥. If ;, were anf’-flag map on every two-
dimensionalf’-subspace of< then, by Lemmab.19 1 would be anF-flag
map on everyF-subspaces C K of dimp B = 2. Since#F > 11 we could
apply Lemméb.17and conclude that € Op(K).

Thus, sinceu ¢ Pr(K)-map, there is afi’-subspac€’ C K, dimp (C) =
2 such thajue ¢ ®w (C). If i, is constant, put’ := p. Otherwise, using the

c-pair property orC' we find constantd, d.., d¢, with d;. # 0, such that
dl, —d

dop + dppe = df, and puti’ = p/ — cd—/OM
C

Thenji. = 0. Since the linear combinatigil is not a flag map, there exists
aC’, dimp/(C") = 2, wheref'’ ¢ Pp/(C'). If pes is constant, pufi := pu.
Otherwise, using the-pair property onC’ we find constantsic., di., d.,
with di., # 0, such that
déy — dea i’

dcl '
Thenjicr = 0 andjic ¢ @ (C) (sincefi is constant). Now put

dorp+ dpopier = df, and putin = p —

B:=C+=<.C
C

for some nonzere € C' andc¢’ € C’. Thendimg (B) = 3, the mapgiz, i’y
are linearly independent, and they satisfy the required conditions, by the log-
arithmic property. Fors # 0, we havesi + s'f ¢ & (C). Otherwise,
sp+ s’ & P (5 - C). O

A detailed analysis ot-pairs on projective planes as above shows that
(W', ")z, on any such space contains a flag map. This will complete the
proof of the main theorem.

>mm:line-point0 ‘ LEMMA 5._21_ (Lemma 4.3.21in _i]). — LetV C Z2 be sugh that for any two
pairs of distinct points the affine line through one pair and the affine line
through the other have a common point and that this point of intersection is
contained inV'.
ThenV is contained in a line union one point.
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Proof. — OtherwiseV' contains four points in general position. Embé#jd
into P2(Q), choose coordinates for these four points

(1:0:0),(0:1:0),(0:0:1)and(1:1:1)
and closé/ for the operation

z,y, 2t = Wz, y) NI(z,t), when x#y,z#t (x,y) # (z,1).

The closureV of V satisfies the axioms of a projective plane (see Defini-
tion 4.1). For example, to verify that any “line” i’ contains at least three
points it suffices to pick one of the four initial points not on this line and to
draw lines through this point and the remaining three points in the initial set.

By the fundamental theorem of projective geomelfy= P?(Q). On the
other handP?(Q) is dense irP*(Q,). In particular, it cannot be contained in
ZZ. Contradiction. O

COROLLARY 5.22 — LetB = F® and u, i/ € M(B) be ac-pair of F*-
invariant maps. Then the imageBfB) under map

¢ : P(B) — A%(Zy)
b= (u(d), (b))
is contained in a union of an affine line and (possibly) one more point.

Proof. — Observe that the image of eveR} C P(B) is contained in an
affine line inZ2. This is simply the geometric interpretation of the condition
for u, 1/ to be ac-pair.

Next, for any two pairs of distinct points, b), (a’, ') in p(P(B)) the affine
linest = [(a,b),I' = I'(a’, V) in A? = Z2 through these pairs of points must
intersect. (Choose, b, a’, I/ in the preimages aof, b, @', V'; the projective lines
[A e P(B) = P? through these points intersect in somand, by the first
observationy(q) must lie on botH andl’).

Now it suffices to apply Lemma.21 ]

‘ ASSUMPTIONS.23 — We may now assume that

—F =T, orFy;

— u, 1’ € Lr(A)is ac-pair of linearly independent maps as in Lemfaqg,

— Bis as in Lemma&.20 and in particular, there exist two-dimensional
C,C" C Bsothatuc ¢ ®p(C), e ¢ @p(C’) and e = pg = 0.
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We can also exclude the following degenerate cases, which contradict our
assumption that no linear combinationof;/ is a flag map on3:

(1) »(P(B)) is contained in a line; this means that ' are linearly depen-
dent (modulo constants);

(2) ¢(1) is a point, for somé € P(B); this implies thatp(l) € ¢(I'), for all
" c P(B) andp(PP(B)) is contained in a line, contradiction to (1);

(3) ¢(P(B)) is constant outside one line; here the affine n¥gp— Z,
projecting ¢(l) to one point gives a nontrivial flag map in the span of

s 1

LEMMA 5.24 — Let[, ' C P? be distinct lines. Lei € P2 be a point such

that p(z) ¢ (o) U (). Then there is a natural projective isomorphism
v : | — [ respecting the level sets of Namely, for every paiy;, y, € |
with ¢(y1) = ¢(y2) one has

P(mar (1)) = (e r (y2))
(and vice versa). In particular, ib(I) C o(I') thenyp(l) = (ml’).

Proof. — The imagesy(l(x,y1)) andp(I(z,y2)) span the same affine line

L,. We havey(l') ¢ L,. Definer,y(y;) = l(z,y;) N I'. By Corol-
lary 5.22, ¢(m,¢(y;)) are contained in the intersection ofl') and L,, so
thato(me, v (y1)) = (T, (y2))- O

[Coro:same | COROLLARY 5.25 — Letz,y € P2 be distinct points so that(z), p(y) ¢
_coro.same ) F 5
(p(l)Up(l) and the linel(z, y) throughz, y passes through the intersection

qo := I[N I'. Then the composition
7Tz7[O7T;[1 L=

induces a nontrivial translation ofy with fixed pointy,, preserving the level
sets ofp. (By symmetry we have a similar translation [

-1 .
Ty Oy [— 1

In particular, if F = I, (the prime field) then this translation is transitive on
[\ (INl") andy is constant on this complementFl{= F, then the complement
to [\ (IN ) is a union of two (two point) orbits of this translation apdis
constant on each orbit.
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Proof of Theoren%.8. — We keep the Assumptiors23 PutP? = P(B)
andl = P! = P(C),I' = P! = P(C"). For everyP! C P? its imagep(P')
spans a unique affine line.

Assume in addition that there exists;az | such thatp(q) ¢ o(I'). Let
[ := (g, q0) be the line througly andq, := [N . Then there exist two
distinct pointsz, y € I’ such thatp(z), o(y) & (p(I) U o(I")). This gives a
nontrivial translation, preserving the level setscobn [ (and!l”).

Over the prime field,, p > 2, ¢ restricted td (that is, ) is constant on
the complement t@,. Contradiction to the assumption thatis not a flag
map. It follows that for ally & [, o(q) € ¢(I'). By symmetry, for ally & U,
©(q) € p(I). Thus, forallg & (TU') we havep(q) € ¢(qo) andyp is constant
on every line througly, distinct froml(, I'. Contradiction to Assumptiof.23
(2).

ForF = I, we have
[= qo U (tl UtQ) U (81 U 82),
with
p(t1) = o(t2) and ¢(s1) = @(s2).

If v(q) € (1) thenp(l”) = (), by Lemma5.24 Thenl andl” are projec-
tively (andp-invariantly) equivalent so that

"= qo U (7 Uty) U (s) Usy),
with
p(t) = p(ty) and o(sy) = p(s3).
Sincep(I(t], s1)) andy(I(s], 1)) are again both contained in the same affine

line L we get translations ohon the complement to both andt;.
It follows that

¢(q0) = p(t1) = ¢(s1)
contradiction to the assumption thatt ©(1).

6. Galois groups

Let £ be an algebraic closure of a finite field of characterigti¢, K the
function field of an algebraic variety( overk, G% the abelianization of the
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pro-(-quotientG of the Galois groupis ; of a separable closure &f,

G = G /19x, 9k, G| — Gi

its canonical central extension apdthe natural projection. In our situation,
G is a torsion-fre€Z,-module.

DEFINITION 6.1 — We say thaty,y € G§ form acommuting paitif for
some (and therefore any) of their preimages§’ in G5, one hagd?y,3'] = 0. A
subgroupH of G* is calledliftable if any two elements i form a commuting
pair.

DEFINITION 6.2 — AfanXy = {0} onGY. is the set of all those topolog-
ically noncyclic liftable subgroups C G¢ which are not properly contained
in any other liftable subgroup @s..

REMARK 6.3 — For function fieldsK /k of surfaces all groups € Xk are
isomorphic to torsion-free primitivé,-submodules of rank 2, see Sectioh

NOTATIONS 6.4 — Let .
P = { Z\/I}
and
Zg(l) = hm l,l;gn.
We often identifyZ, andZ,(1) (sincek is algebraically closed). Write
K* := lim K*/(K*)"

for the multiplicative group of (formal) rational functions oA
THEOREM6.5 (Kummer theory)— The groupK*/k* is a freeZ-module.
One has

— K*/(K*)" = (K*/k*)/¢", foralln € N;

— the discrete groups™/(K*)*" and the compact profinite groug /"

are Pontryagin dual to each other, for,.-duality;

~

— for K*/k* — Z', one hask’* /(K*)" — (Z/¢")" and
i/t — (Z/0" (1)),

hence the duality betweeki* = @ and G¢ is modelled on that
between

{ functions! — Z, tending to0 at oo} and Z;.



sect:val

rem:zeta

30 FEDOR BOGOMOLOQV and YURI TSCHINKEL

LEMMA 6.6. — Let F/k be the function field of a curve. Théh; = ().

Proof. — By a result of Grothendieck, the pi¥cfundamental grougr, ), of
a curve punctured in finitely many points is free. We have

?E:hinzgv ]CE:hin/\Q(Zg%

JCI JCI
with the commutation map equal ra This implies that a liftable subgroup
of G¢ is topologically cyclic. O

7. Valuations

In this section we recall basic results concerning valuations and valued
fields (we follow [/]). Most of this material an adaptation of well-known
facts to our context.

NOTATIONS 7.1 — A value groupdenoted by, is a totally ordered (torsion-
free) abelian group. We use the additive notatietf for the group law and
> for the order. We have

F=Ttul", "N~ ={0} and vy >+ iff y—+ €T*.
ThenI',, = I' U {cc} is a totally ordered monoid, by the conventions
y<oo, y+oo=00+00=00, Vyel.
DEFINITION 7.2 — A (nonarchimedianyaluationon a field K is a pair
v = (v, I',) consisting of a value group, and a map
v:K—T,«
such that
— v : K* — T, is a surjective homomorphism;

—v(k+ K') > min(v(k),v(x)) forall k,x" € K;
— v(0) = 0.

REMARK 7.3, — In particular, sincd’, is nontorsiony(¢) = 0 for every
element of finite order inK™.

A valuation is calledrivial if I' = {0}. If K = k(X) is a function field
over an algebraic closufeof a finite field then every valuation df restricts
to a trivial valuation ork (every element irk* is torsion).
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lemm:zIl LEMMA 7.4 — LetK = k(X), withk as above, and be a nonarchimedian
valuation onk(X). ThenHom(T',, Z,) is a finitely generated,-module.

Proof. — Note that theQ-rank ofv is bounded bylim(X) (see [L.0]). O

lemm:zll |

NOTATIONS 7.5. — We denote by, 0,, m, and K, the completion of’
with respect ta, the ring ofv-integers ink’, the maximal ideal oé,, and the
residue field

K, :=o0,/m,.

If X (over k) is a model forK then thecenterc(v) of a valuation is the
irreducible subvariety defined by the prime ideal N k[X]| (providedv is
nonnegative o[ X1).

It is useful to keep in mind the following exact sequences:

the decomposition group of the valuatiomn G¢..

(7.2) l—-o - K —-I,—1
and
(7.2) l—-(1+m,) —o — K, — 1.
NOTATIONS 7.6. — Write Z C D¢ C Gy for the images of the inertia and

notaciner NOTATIONS 7.7. — If x : ', — Z,(1) is a homomorphism then
xov : K*— Z,(1)

defines an element @}, called an inertia element of the valuation The
group of such elements &' C G¢%.

NOTATIONS 7.8 — The decomposition group? is by definition equal to
the image ot7§; in Gf.

LEMMA 7.9, — There is a natural embedding; — G and a (canonical)
isomorphism
Dy/1; ~ Gk, -

Proof. — See Theorem 19.6 irv], for example. O]

DEFINITION 7.10 — Let K = k(X)) be a function field. Its valuation is
— positive-dimensionaf trdeg, K, > 1;
— divisorialif trdeg, K, = dim(X) — 1.
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NOTATIONS 7.11 — We letV be the set of all nontrivial (nonarchimedian)
valuations of K andDVx the subset of divisorial valuations. f € DVy is
realized by a divisoD on a modelX of K (see Exampl&.13 we sometimes
write 79, resp.Dy,, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12 — Let E = k(C) be the function field of a smooth curve.
Every pointq € C(k) defines a nontrivial valuation, on £ (the order of a
function f € E* atq). Conversely, every nontrivial valuationon E defines
a pointg := ¢(v) onC.

ExAMPLE 7.13 — Let K = k(X) be the function field of a surface.

— Every positive-dimensional valuation is divisorial.

— Every (irreducible) curv€’ C X defines a valuation- on K with value
groupZ. Conversely, every valuation di with value groug@ and non-
algebraically closed residue field defines a curven some modek of
K.

— Every flag(C, q), (curve, point on its normalization), defines a valuation
ve,, On K with value groupgZ?.

— There exist valuations o with value groupQ and center supported in
a point (on every model).

LEMMA 7.14 — LetK = k(X) be the function field of a surface.f* /Z¢
IS nontrivial thenv is divisorial.

Proof. — The only 1-dimensional valuations on function fields of surfaces
are divisorial valuations. For other valuations, the residue #€|d= k is
algebraically closed andg, trivial. O

8. Adictionary

Lx = Ly(K) = {homomorphismsK* — Z,(1)}
O = Pp(K) = {flagmapsK — Z,(1)}

PROPOSITION8.L — One has the following identifications:

gk = Lk,
D¢ = {p€ Lk |p trivial on (14 m,)},
I¢ = {pe€ Lk |p trivial on o} }.



FUNCTION FIELDS 33

If two nonproportionaly, i/ € G% form a commuting pair then the corre-
sponding mapsg, i/ € Lx form ac-pair (in the sense of Definitiof.7).

Proof. — The first identification is a consequence of Kummer the®gy
The second identification can be checked on one-dimensional subfigids of
where it is evident. For this and the third identification we us&)@nd (7.2).
For the last statement, assume that’ € Lx don’t form ac-pair. Then there
isanz € K such that the restrictions of i/ € Lk to the subgrougl, z) are
linearly independent. Thereforg, i/ € G¢ define a rank 2 liftable subgroup
in G- Such subgroups don't exist sinGg,,) is a free proé-group. O

EXAMPLE 8.2 — If u € D¢ anda € Z¢ theny, o form a commuting pair.

- PROPOSITION8.3. — Let K be afield andv € ¢, N Lk. Then there exists
__prop.may K K
a unique valuationr = (v,,[',,) (up to equivalence) and a homomorphism
pr : 'y, — Z,(1) such that

a(f) = pr(va(f))

forall f € K*. In particular, « € Z¢ (under the identification of Proposi-
tion 8.1).

Proof. — Let FF be a finite subfield ok and assume that(f) # «(f) for
somef, f/ € K and consider the lin®' = P(Ff + Ff’). Sincea is a flag
map, it is constant outside one point on thisso that eitherr(f + ') = a(f)
or = «(f’). This defines a relationf’” >, f (in the first case) and >, f’
(otherwise). Ifa(f) = a(f’) and there exists aft’ such thaiv(f) # a(f”)
andf >, f” >, f thenwe putf >, f’. Otherwise, we puf =, f’.

It was proved in §], Section 2.4, that the above definitions are correct and
that>,, is indeed an order which defines a filtration on the additive gigup
by subgroup$ X, ).r such that

— K = U,erK, and
- ﬂ’yEFK’y = @1
wherel is the set of equivalence classes with respeetio Sincea € Ly

this order is compatible with multiplication iR, so that the mag — T is
a valuation and factors ask* — I' — Z, ~ Z,(1). By (7.),c € Z¢. [

COROLLARY 8.4 — Every (topologically) noncyclic liftable subgroup of
G¢. contains an inertia element of some valuation.
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Proof. — By Theorenb5.8, every such liftable subgroup contains@&map,
which by Propositior8.3 belongs to some inertia group. ]

9. Flag maps and valuations

In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.

LEMMA 9.1 — Leta € & N Lk, v = v, be the associated valuation and
i € L. Assume that, i, form a c-pair. Then

p(1+m,) = p(1).
In particular, the restriction of: to o, is induced fromi,.

Proof. — We have

(1) a(k) =0forall k € 0, \ m,;
(2) a(k + m) = a(k) for all kK andm as above;
(3) m, is generated by € 0, such thatx(m) # 0.

If m € m, is such thatx(m) # 0 andx € o, \ m, thena is nonconstant on
the subgroupd := (k, m). Then

pks +m) = (k).
Indeed, ify Is nonconstant onl the restrictionu 4 is proportional tax 4 (by
the c-pair property) andy satisfies (2). In particular, for sucth we have

u(1 +m) = (1), |

If a(m) = 0 then there exist&', m” € m, such thatn = m’ + m” and
a(m’) = a(m”) # 0. Indeed, there exists an’ € m, such thatn > m’ > 1
anda(m’) # «(l) = 0. Sincea takes only two values on the subgroup
(m’,m) C m, we have

a(m”) = a(=m' +m) = a(m’).
Therefore,
0=pl+m)+pul+m")=pl+m+m'm").

Putk = 1+ m + m/m” and observe that(—m'm”) = 2a(m’) # 0. By the
argument above

(s —m'm”) = p(k) = p(1+m' +m") = p(l +m),
as claimed. n
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COROLLARY 9.2 — Inertia elementsy € Z¢ commute only with elements

| prop:delta

e Dy.

PROPOSITION9.3 — Let K = k(X) be the function field of a surface.
Everyo € Xk hasrky, o = 2. Moreover, it defines a unique valuation= v,
of K so that either every element @fis inertial for v, or v is divisorial and
there is an element € ¢ which is not inertial forv, butu € D2.

If distincto, o’ € Y have a nonzero intersection then there exists a divi-
sorial valuationv” such that

—O',OJEDS//;
—oNo =1¢

l/// .

Conversely, itr € X is not contained in &, for any divisorial valuation
V" then forallo’ € Xk, 0’ # o, 0ne hasr No’ = 0.

Proof. — We saw thatr € > contains an inertial elementfor somevalu-
ationv. Sinceo is topologically noncyclic there is a € o, Z,~independent

on «, and commuting withv. If 4 is not inertial, that isy ¢ ®(K), then

v gives a nontrivial element in the (abelianized) Galois group of the residue
field K, of v. Thusv is divisorial, K, is 1-dimensional and every liftable
subgroup inGg hasZ,-rank equal to one. Henegy, o = 2 in this case and,

by Corollary9.2, . € Dg. Such a valuatiow is unique, sinc€; NZ% = 0

for distinct divisorialv, /.

If o containsonly inertia elements, then there exists a unique valuation
v such thatr € Z?. Indeed, eithem, + m,, = K or we may assume that
m, C m,, (ando, D o0,/). The first case is impossible since the corresponding
inertia groups don'’t intersect. In the second cdgg,C Z¢%, as claimed.
Moreover, it follows thatk;, o = 2, since theQ-rank of any valuation on a
surface (oveff,) is at most two. This gives af = v, in this case.

If distinct o, o’ have a nontrivial intersection, then the subgr@upc G%
generated by, ¢’ is not the inertia group of any valuation (the rank of those is
< 2, as we have seen above). If the ¢’ contains a nontrivial inertia element
athenD is contained in the decomposition group of this element (all elements
of D commute witha) and the corresponding valuation is divisorial.ulfe
oMo’ is not an inertia element then there exist inertia elemertsr anda’ €
o’ corresponding to distindivisorial valuationsy, /. The decomposition
groups of distinct divisorial valuations don'’t intersect. ]
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Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groupss’ € Y with a
nontrivial intersection defines a divisorial valuatioywhose inertia group

It =ono'
The corresponding decomposition subgroup is

Ds = UO’DI{}O-'

10. Galois groups of curves

Here we give a Galois-theoretic characterization of subgroups X x
which are inertia subgroups of rank two valuationsiofarising from a flag
(C,q), whereC' is a smooth irreducible curve (on some modelrof and
q € C(k) is a point (see Examplé.13. We show that Galois-theoretic data
determine the genus ¢f and all “points” onC', as special liftable subgroups
of rank two insidegy .

Throughout,EZ = k(C) is the function field of a smooth curve of gergis
We have an exact sequence
0 — E*/k* — Div(C) — Pic(C) — 0

(where Div(C') can be identified with the free abelian group generated by
points inC'(k)). This gives a dual sequence

(10.1) 0 — Zy = M(C(k), Ze) — G — Z2E — 0,

with the identifications
— Hom(Pic(C), Z,) = A(Zy) (sincePic’(C) is torsion);
- M(C(k),Z;) = Hom(Div(C), Z,) is theZ,-linear space of maps from
— 778 = Ext! (Pic’(C0), Zy).

Using this model and the results in Secti@we can interpret

(10.2) Gy € M(C(k),Q,)/constant maps

as theZ,-linear subspace of all maps : C(k) — Q, (modulo constant
maps) such that
lw, f] € Z, forall fe E*/k".
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Here[-, -] is the pairing:
M(C(k),Qp) x E*/k* — Q

(M7 f) = [N’? f] = ZqN(Q)JCq;
wherediv(f) = Zq fyq. In detail, lety € G be an element of the Galois
group. By Kummer theoryy is a homomorphisnk™/k* — Z,(1) ~ Z,.

Choose a point, € C'(k). For every point € C'(k), there is ann.. € N such
that the divisom..(c — ¢) is principal. Define a map

Hy - C(k) - Qf?
c = vy(melc—cp))/me.
Changingey we get maps differing by a constant map.

In this interpretation, an element of an inertia subgr@gpc G corre-
sponds to a “delta’-map (constant outside the p@int EachZ? has a canon-
ical (topological) generata¥,,, given byd, (f) = v, (f), forall f € E*/k*.
The (diagonal) map\ € M(C(k), Q,) from (10.1) is then given by

A=Y 0u= Y b,

wEVE quC(k’)

(10.3)

DEFINITION 10.1 — We say that the support of a subgralipC G% is < s
and write

supp(Z)| < s
if there exist valuations, ..., w, € Vg such that

ITc(Z: ...y )z, C G%.

w1 ) Tws

Otherwise, we writgsupp(Z)| > s.

LEMMA 10.2 — LetZ C G¢ be a topologically cyclic subgroup such that
|supp(Z)| > s > 2. Then there exist a finite s€f; };c;, C £* and anm € N
such that the map

Vi G — V=@ L/i™
woo= ([1e, film) e
has the following property: for every sét, ..., ws} C Vg

w(I) ¢ <w(IZ;1)7 ""¢(Ig_g)>zﬁ'

Proof. — Let: € G% Cc M(C(k),Q,) be arepresentativeas in (L0.2), of a
topological generator ¢f, wheresupp(Z) > s. There are three possibilities:
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(1) «(C(k)) C Qs infinite;

(2) thereis & € +(C(k)) C Q, such that~!(b) is infinite andthere exist at
leasts + 1 distinct pointsy,o, . . ., g2s+2 € C(k) such that(g;) # b for
all j=s+2,...,2s+2;

(3) otherwise(C(k)) is finite, there is & with .~1(b) infinite and there are
at mosts distinct points with values differing frorh

In Case (3)|supp(Z)| < s.

In Case (1), choose any s@t = {q1,...,q2s12} C C(k) of points with
pairwise distinct values. In Case (2) choose distinct.., ¢..1 € +~'(b) and
put® := {q, ..., q2s+2}. In both cases, i)’ C @ is any subset of cardinality

|Q’| = s then. is nonconstanbn @ \ @' In particular, there exist points
515 Gs, € @\ Q' such that
(10.4) U(qs,) # 1(ds,)-

We may assume thatQ) C Z, (replacing:. by a sufficiently high multiple,
if necessary). Now we choose arf € N such that all values afon remain
pairwise distinct moduld./ /™", LetDiv%(C) be the abelian group of degree
zero divisors orC' supported in). By Lemmag3.2, there isam = ng € N
such thatnD is principal for everyD € Div%(C). In particular, for every
s, qs, € Q thereis afunctiorf € E* such thatliv(f) = n(gs, —gs,). Write
n = (™7, with ged(n, £) = 1, and putn = m' + m”.

We have a pairing (Kummer theory)

Gy x nDivy(C) — Z/tm

Notice that[Z¢, f] = 0 for all w with ¢, ¢ @ and allf € E* supported in
Q. Further, for every)’ C @ with |Q’| = s and pointsy,,¢s, € @ \ Q' asin
(10.4 there is anf € E* with divisordiv(f) = n(¢s, — gs,) such that

[L> .ﬂ =n- (L(q51) - L(qSQ)) 7é 0 mod £™
and
[IZJ'? f] — O
forall Z¢, of ¢’ € Q'. Let{f;},cs be a basis fof™ - Divy,(C), with f; € E*.
The map
Y GE = @ )
w1 film)jer

satisfies the required properties. ]
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The next step is amtrinsic definition of inertia subgroups
T, C Dy /Iy = Gioy-
We have a projection
Tt Gk — Gk /T,
and an inclusion
9k, =D,/1; — Gk /1T,
PROPOSITION10.3 — Letv be a divisorial valuation of<. A subgroup
I CDyT

is the inertia subgroup of a divisorial valuation 6{C) = K, iff for every
homomorphism

Y1 Gy /IE =V
onto a finite abelian grouf’ there exists a divisorial valuation, such that
V() =vom(Z}).

Proof. — Let C be the smooth model fdkK', = k(C),

I=1I:CDy 1
the inertia subgroup of a divisorial valuation/afC') corresponding to a point
q=qu € C(k)and

Vo GR/TE =V
a homomorphism onto a finite abelian group. Siggeis a pro#-group, we
may assume that

V= @jGJZ/Enjy
for somen; € N. Letn = max;(n;). By Kummer theory,

Hom(Gy, Z/0") = K*/(K*)""

so thaty) determines elements

fi e K*/(K*)"
(for all j € J). Choose functiong; projecting tof;. They define a finite
set of divisorsD;; on X. Moreover,f; are not simultaneously constant 6h
(otherwisew(gg(c)) = w(I,j(c))). Changing the modet — X, if necessary,
we may assume that

— C'is smooth (and irreducible);
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— there exists exactly one irreducible compongrin the full preimage of
UD;; which intersectg’ in g. Moreover, this intersection is transversal

(see Sectio). Then the image df{, undery is equal to the image &f¢.

Conversely, we need to show thatZif# Z¢ (for somew € DVk, ), then
there exists a homomorphism

v GRJIE =V
onto a finite abelian group such that for alt’ € DV, one has

@D(I) # Yo WV(IS’)'
We consider two cases
(1) there exist two points, ¢ € C(k) such thatZ C (Z¢,7¢);
(2) otherwise.
Case 1.There exists a rational map: X — P! such that its restriction

7. C — P!

is surjective, unramified at ¢’ andr(q) # 7(¢'). Under the induced map of
Galois groups

(L) C T3y Taun))
but is not contained in either?  or I . Thus there exist a finite abelian
groupV and a mapy : Gy — Vosuch that)(Z) ¢ ¢(Zj,) for any
q" € PL. It follows that

Yom(T) ¢ ¢ om(Zy)
foranyv € DV.

Case 2. By Lemmal0.2, there exist a finite set of functions € k(C),
with support in a finite sef) = {qo, ..., ¢s} € C(k), and anm € N such that
the homomorphism

VGl — V=@t
wo= ([:uv fj]m)jEJ
has the property that for alt, w’ € DVc

(Z) & (W(T0), ¥ (L))
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Next we choose a model fox andC' as in Lemma3.8. In particular, there
exist functionsy; with divisor

div(g;) = n - (D; — Do) + (H; — Hj)

such that all the divisors are irreducible, with transversal intersections and
div(g;)|C = n(g; — o). These functiong; define a homomorphism

v Gr /Ty =V

If D is adivisor onX theny o, (Zf,) = 0 unlessD = D; for somey. In this
Casel/} © Trl/("z-%]> - w(z-g)])'
Letv' € DV andc(v') C X be its center orX. There are three cases:

— ¢(v') ¢ D; foranyj: theny o m,(Z%) = 0;
— () € DY, whereD? = D; \ (Ujx;D; N Dy ): then

vom(Ly) CY(Zy));
— ¢(v') € D; N D for somey, j": then
w o 7TV(,‘Z’—IC/L/) C <’l/}(1—3)j)7 w(zg;j/))Zz'

All three possibilities contradict our assumptions. O

lemm:gen-type | LEMMA 10.4 — Let E = k(C) be the function field of a curve. Then

g(C) > 1 iff there exists a non-zero homomorphism frgif to a finite
(abelian) group which maps all inertia elementsto

Proof. — Indeed, every curve of genis1 over a finite field of characteristic

p has unramified coverings of degréel hese coverings define maps of Galois
groups, which are trivial on all inertia elements. dfis rational thenG,,

and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequed i) ( H

[remgen-it | REMARK 10.5 — Combining this with Proposition0.3we can decide in
purely Galois-theoretic terms which divisorial valuationgoftorrespond to
nonrational (irreducible) curve§ on some modelX of K. We call such
valuationsnonrational
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11. Valuations on surfaces

The next stage of the recognition process leads us to the following prob-
lem: How to characterize subgroup&”) C K*? In this section we recall a
geometric argument (used in algebraic K-theory) characterizing pairs of func-
tions f, g € K* which are contained ik(C)* C K*, for some curve” (such
curves correspond to projections — ().

Let K = k(X) be the function field of a smooth surfaée over k andv
a divisorial valuation ofi. We have a well-defined (bilinear, with respect to
multiplication) residue map

_ K*xK* — K /k*
(11.1) fig o 9D,
On a smooth modeX of K, whererv = v for some divisorD C X, we can
define
(11.2) o,=0p : K*xK*"— K /k*

as follows:

— 0.(f,g) = lifboth f, g are invertible onD;

- o0.(f,g9) = fyif fisinvertible (fp is the restriction taD) andg has
multiplicity m along D;

- o.(f,9) = (f™/g™)p in the general case, wheflg have multiplici-
tiesmy, m,, respectively.

The definition does not depend on the choice of the model.
The following is a standard result in K-theory. We include a proof since we
will need its/-adic version.

emm:fg LEMMA 11.1 — For f,g € K*
0,(f,9) =1 Vv € DVg <= f,g € E = k(C) C K for some curve.

Proof. — (<) On an appropriate modet we haver = vp for a divisor

D c X andrw : X — C'isregular and flat with irreducible generic fiber (and
f,g € k(C)*). By definition, o, (f,g) = 1if D is notin a fiber ofr. If D is

in a fiber then there isae k(C)*, vp(t) # 0 such that bottyt™s, gt™s are
regular and constant ab (for somem, m, € N) so thato,(f, g) = 1.
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(=) Assume thab,(f,g) = 1 for everyr € DVyg. Every nonconstant
function f defines a unique map (with irreducible generic fiber)

X = Cf

which corresponds to the algebraic closure:©f) in K (we will say thatf
is induced fromC’). We claim thatry = 7.
Sincef is induced fromC;, we have

div(f) = Z aq,D,,

q€Q

where@Q C Cy(k) is finite andD, = n~'(¢). ThenD; = 0 and D, is either
a multiple of a fiber ofr, or it has an irreducible componef C D, which
dominates”, (underr,). In the second case, the restrictiongofo D, is a
nonconstant element i(D,). Thenvp(f) # 0, while vp(g) = 0. Hence

op(f,g) # 0 since it coincides Witly;,”D(f) =# 1, a contradiction. Therefore,
all D, are contained in the finitely many fibessof 7,. That meansliv(f)
does not intersect the fibefs, t € C,, ¢t ¢ S which implies thatf is constant
on suchR,. Hencef belongs to the normal closure bfC,) in K, and in fact
f € k(C,) sincek(C,) is algebraically closed i, by construction. Thug
is induced fromC, and hence&’'y = C; andr; = m,,. O

12. /-adic analysis: generalities

Hypothetically, surjective homomorphisrgg — gg(c) (or dually, inclu-

—

sionsk(C)* c K*) are characterized as follows: assume, we have a commu-
tative diagram

G — A°

]

where the abelian grougd is a rank two torsion-fre&,-module andA° is
its free central extension. Then there exists a unique figlt) C K and a
factorization ofy:

Gy — Gy — A.
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Here we solve a dual problem. We distinguish, Galois-theoretically, a cer-
tain subgroup insidé * which containg<* /k*. The main result is the Galois-
theoretic determination of pair g of elements of this subgroup which are
contained in the completioﬁ* of the same one-dimensional field.

In detail, to everyf € K* one associates its divisé? = D; on X. Con-
versely, D (uniquely) determines the image ¢fe K*/k*. Recall that the
Galois groupGé determinesik™®, a group substantially bigger thak* /k*.
The goal is to detect théadic subspac&™ /k* ® Z, C K*.

We start with the theory of divisors with,-adic coefficients associated to
elements ink*. Such an element is, in general, represented by a divisor with
infinite support onX, with rapidly decreasing coefficients (in thadic topol-
ogy onZ,). The Galois datuniGy., ¥ ) allows us to distinguish between ra-
tional and nonrational irreducible divisors (via the corresponding valuations)
and to characterize intrinsically a subspa&(K) C K* (of divisors with
finite nonrational support, s€e.2and12.3), containing™* /k* ® Z,.

In order to further shrinkFS(K') using Galois data we use the fact that for
any nontrivialf € K* there are many othere K* with o(f,g9) = 0 (where
p(f,g) = 0is the/-adic generalization of(f, g) = 0). Those are arbitrary
elementsyy € E*, E = mK. However, for a sufficiently generic element
f € K* the elemeny with p(f, g) = 0is equal tof®, a € Z.

Thus the property that fof < K* the set ofg € K* with o(f,g) =
0 contains many elements different froffi,a € Z, can be used to select
a smaller subgrougFSx(K) C FS(K), containing ™ /k*. Elements in
FSx(K) have finite support on every mod&l. We show in Sectiori4 that
p(f,g) =0, f.g € FSx(K) implies thatf,g c E*, E = k(x)* for some
xr e K*.

We have an exact sequence

(12.1) 0 — K*/k* 25 Div(X) - Pic(X) — 0,
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whereDiv(X) is the group of (Weil or Cartier) divisors of . We identify an
f € K*/Ek* with its image undepy. Let
Div(X):={D =" anDn}, resp. Diva(X) C Div(X),
meM

be the group of divisors (resp. nonrational divisors) wahidly decreasing
coefficients

— M is a countable set;
— forall r € Z the set

{m||amle <7}
is finite;
—for D e ﬁi?zm(X), all D,,, are nonrational.
Clearly, the group ofinite /-adic divisors

Div(X), := Div(X) ®z Z; C Div(X).
Every element
feK*=lim K*/(K*)"

n—oo

has a representation

f=fanerwor f=fofify -,
with f,, € K*. We have homomorphisms
px : K* — I/);/(X),
[ div(f) =2, " - div(fn) = 22, @m D,

pxar : K* — Div(X) 25 Divy(X),
whereD,, C X are irreducible divisors,

dm = Zanmgn € Zg,

neN
with a,,,,, € Z, and

div(fa) = D @pmDpn.

Herediv(f,) is theCartier divisor of f,, and)_  a,., Dy, is its image in the
group ofWeil divisors.
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Note that the mapy has a kernel
T,(X) = lim Tor' (Z/¢, Pic’(X)[€]),

wherePic’(X)[¢] C Pic’(X) is the (-power torsion subgroup. The group
T,(X) is isomorpic toZs.

If 7,(X) # 0 then eitherX contains only finitely many rational curves, or
X, modulo purely inseparable covers, is a rational pencil over a durgé
genusg(C) > 1.

Everyv € DVx gives rise to a homomorphism

v K*— Zy
and a residue map
0, : K*xK*— K,
On a smooth modekX, wherer = vp for some divisorD C X, v(f) is
the ¢-adic coefficient aD of div(f), while g, is the natural generalization of

(11.1).

DEFINITION 12.1 — We say that distincf, § € K* commute if,(f, §) =
0, for all divisorial v. We say that they have disjoint support if for all divisorial
valuationsr € DVg

A

v(f)-v(g) =0.
We say thatf € K* has nontrivial commutators if there exigte K* with
disjoint support (fromf) which commute witlf.

NOTATIONS 12.2 — We put

~

suppg(f) ={ ve€DVg | f nontrivial on 7o

~

Supr(f) = { Dm ‘ &m 7é 0 }

DEFINITION 12.3 — We say thaff hasfinite nonrational suppoif the set

A

of nonrationalr € suppy(f) is finite (see Lemma0.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K)C K*

be the set of such elements.
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DEFINITION 12.4 — We say thatf has finite support on the modél if

A

suppy (f) is finite. Put
FSx(K) ={f e K* | px(f) € Div(X),}.

]Iemm:indep ‘ LEMMA 12.5 — The definition ofF Sx (k') does not depend on the choice
of a smooth modeX'.

Proof. — For any two smooth model&”’, X" we can find a smooth model

X dominating both. The difference between the sets of irreducible divisors
Div(X’), resp. Div(X"), andDiv(X) is finite and consists only of rational
curves. ]

[coro:almost | COROLLARY 12.6 — LetK be the function field of a surface containing
only finitely many rational curves. Then

FS(K) = FSx(K).

This gives an intrinsic, Galois-theoretic descriptionB8x(K) in this
case. We proceed to give such a description in general. Note thgt ¢or
FS(K), its nonrational componerﬁx,nr(f) is independent of the model
X. More precisely, for any birational morphisi’ — X we can identify
ﬁnr(X’) = ﬁnr(X). Under this identification

A

pX’,nr(f) = pX,nr(f)-

Let 7(K) be the set of allff € K*/k* such thatpx .,(f) # 0 and for every
rational divisorial valuations such that/(f) = 0 and some (equivalently,
every) modelX of K, wherev = v for a rational curve” C X, either

— fe=1€k(C)"/k*or

— pc(fe) #0 mod .
Geometrically, this condition means thadlifis not a component of the divisor
of f then there is a point in’ N div(f) whose multiplicity is prime td.

LEMMA 12.7. — The setF(K') generates<*/k*. Moreover, for every pair
of commuting element§ g € FS(K) with disjoint support such that there
exists anf € F(K) with

f=f mod (K",
one hasf € FSx(K) andg € FSx(K), for every modeK of k.
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Proof. — Lety € K* be a function such that the generic fiber of the corre-
sponding mapr, : X — ]P;, from some modeKX of K, is an irreducible
nonrational curve. (Notice that sughgeneratel\*.) Using suchy we con-
structF(K) as follows.

For generic quadratic, coprime polynomidts@) € k[y|, the preimage in
X of (0 Uoo) C P! under the composition of, with the map

¢: P — P!
y — fly)=Ply)/Qy)

contains at least 4 irreducible smooth fibersrpf If f were nonconstant on
a rational curve”' (on some modek of K) and f- were an/-th power then
the local ramification indices of and hence of) were divisible by/. Thus
we would have a map, : C' — P, with all local ramification indices over 4
points divisible by/, and by Hurwitz’ theoremg(C') > 0, which contradicts
the rationality ofC'. It follows that f € F(K). Clearly, the elements from
F(K) generaté:(y)*.
Next, write

PX<Jf) = ZieI”iDi+£2Z%1 n;Cj,
px(9) = Zie[’n;D;—i_éZj:ln;C}a

wherel, I’ are finite sets and the second sum is an infinite series over dis-
tinct rational curves’;, C; C X. By assumption, the sef9; }icr, {C}}jen,
{Di}ier, {C}}jen are disjoint.

By assumptionp,,;(f, g) = 0, for all v; corresponding t¢’}. SinceC’; are
rational, this residue equals the residug’ @ C*, which is nonzero mod ¢,
contradiction. Thus, iff, §) = 0, thensuppy (§) is finite. The restriction of
¢ to any irreducible component of the divisor ffis identically zero. This
implies thaty’ is a product of-adic powers of elements belonging to the same
field k(y) asf. Thus all rational curves in the support phlso belong to the
fibers ofy. There are finitely many such curves since some fibers contain
nonrational curves. O

We have an exact sequence

0 — K* 25 Div(X) 25 Pic(X), — 0,
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where we denote bRic(X), the quotient grouﬂi/)iT/(X)/f(*. Write
Div(X)° C Div(X)
for the group generated by (K*) and identify anf € K* with its image.
LEMMA 12.8 — LetX/k be a smooth projective surfack/ afinite set and
D= anDy, € Div(X), :=Div(X) @2 Z¢, am € Zy
meM

a divisor such thatp,(D) = 0. Then there exist a finite sét functions
fi € K* and numbers; € Z,, linearly independent ove£, such that for all
el
suppx (f;) C suppx (D)
and
D = Zazbzdlv(fz>> bz S Q
If NS(X') = Pic(X) then we can take all, = 1.

Proof. — We have a diagram

Ker(¢) — ®memZD,, —— ACPic(X) —0
! l l
Ker(w) — @mgMZgDm L, Ag C PlC(X)g — 0.
The group) is finitely generated and its imageNs(X) = Pic(X)/Pic’(X)
has the same rank as(sincePic’(X) is a torsion group):

rkz A = rky, Ay andrky Ker(p) = rkyg, Ker(¢y).

In particular,Ker(y,) has a basi§ D;};c; (overZ,), where eachD; is aZ-
integral linear combinations add,, (with m € M) and is also ifKer(p). It
follows that D, = div(f;) for some functionf; € K* with support inD.
Finally, if o,(D) = 0, we can find a representation

D = Z aidiv(fibi)v

with b, €= Q anda; € Z,, linearly independent ovef (passing to a subset
of I, if necessary). O
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COROLLARY 12.9 — There is an exact sequence

1 — K*/k* ® Zy — FSx(K) — Pic’(X)[{] — 1
wherePic’(X)[(] C Pic’(X) is the/-power torsion subgroup.
Proof. — If suffices to recall that elements Ric’(X)[¢], are represented, in

our description, by elemenyd/*", for somen € N, which define unramified
(-power cyclic covering of a modeX . O

Lemmal2.7and Lemmal2.8 allow us to defineFSx (K) intrinsically.
Namely, for every

feFS(K)/t =Kt =K*)¢

denote byF; C FS(K) the groupZ,-generated byf/f")'/¢, wheref and '
are elements which have nontrivial commutators and which both redyte to
modulo/. Then define

FSo(K) = Ngern o
Note that for allf € F(K)/¢ and every modek of K one has
Fr C FSx(K).
Lemmal2.8implies that, conversely
FSx(K) C Fy,

for everyf. In particular, for everyf € F(K), with f = f mod ¢, both sets
coincide. Therefore,

(12.2) FSo(K) = FSx(K),

for all modelsX.

Moreover, notice that elements i*/k* ® Z, C FSx(K) are Galois-
theoretically characterized as elements whose projectiBict@.X) is trivial.
As a group,K*/k* ® Z, is generated by elements whasealues (forv €
DVk) are not all divisible by.
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13. /-adic analysis: curves

sect:curves-ell \

In this section we begin the process recognition of the lafticgr* C K*.
We solve an analogous problem for the function field of a rational curve. This
result will play an essential role in the analysis of surfaces.

- PROPOSITION13.1 — Let#k be the closure of a finite fieldhar(k) # ¢, C
[prop:cc | ! <
a curve ovelk of genugg with function fieldf = £(C') and

v Q,?(]pl) — Gg
an isomorphism of Galois groups inducing an isomorphism on inertia groups

of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let

U lﬁ”\)* — E*
be the dual isomorphism. Then = k(P') and there is a constant € Z;
such thatv* (k(PY)* /k*) = a - E*/k*.
Proof. — Recalling the exact sequenc&0(1), we have a commuting dia-
gram

0 — Ze(Acy) — M(C(k)) Gt Z.® 0

|

0 — Ze(Api (1)) —= M(P(k)) —= Gipr) — 0

SinceV is an isomorphism on inertia grou@$, for eachw, thesetsC'(k)
andP! (k) coincide and we getaniqueisomorphism ofZ,-modules (of maps
to Zg)

M(C (k) = M~(P1(7%))~
In particular, we find thag = 0 andE' = k(P!). Further, we have an induced
isomorphism
Zo( Y 60) =Zu( > Our)

weVE wlevk(]pl)

(Z dw) = a( Z Our)

weVE w'eVy p1y

so that
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for somea € Z;. This implies that),, = ad,s, for all w € Vg and the
correspondingy’ € Vpi. In particular, for the dual groups we have

E*/}%* _ (K*/k?*)a,
wherea € Z;. O]

14. /-adic analysis: surfaces

Let K = k(X) be a function field of a smooth surfa¢é over k. We will
need arf-adic version of Lemma1l.1.

PROPOSITION14.1 — Let [, §j € FS,(K) be such that
— 0,(f,§) = 0 for everyv € DVy;

~

— suppg (f) Nsuppg (g) = 0.
Then there is a 1-dimensional field = k(C) C K such thatf, j € E*.

Proof. — By Lemmal2.§
f=T1#" resp.g=]]g"
i€l jeJ
where
— I, J are finite sets;
— fi,g; € K*forall ¢, j;
—a; € Q (resp.b; € Q) are linearly independent over.

Fix a valuationr and choose a (smooth) mod¥l so thatr = v, for some
divisorD C X. Then

oo(f.9) =] en(fi 95)

and we can compute it using only those pafirsg; which haveD in their
support. In particular,

fmg/gmf - H(fiaimj/g?jmi)»

wherem,; (resp.m;) is the order ofy; (resp. f;) on D. This order vanishes

~ A

unlessD € supp(f) Usupp(g). By assumption, ifD € supp(f) thenD ¢
supp(g) (andn; = 0) so that

QD(JE,

~

) € k(D)*.

»
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Since the nonzero numbeis are linearly independent ovép the equality
> a;m; = 0 implies thatm,; = 0 (for all ;) and thatyp, € k*.

Similarly, gp = H(gj)’g, whereb; are linearly independent ovéf, and
gp € k* implies that(g;)p € k* (for all j € J). It follows that

ov(fir95) =0
for all f;, g; and every valuatior = v. By Lemmall.l all f;, g; belong to
the same 1-dimensional field ¢ K and hencef, j € E*. ]

REMARK 14.2 — For everyf € K* the elemeny = (f +a)(f + b) where
a # bandab # 0, satisfies the conditions of Propositih. 1

[propisurfa | PROPOSITIONIA.3 — Let&" C FS(K) C K* be a subset with the fol-
lowing properties:
— R*is closed under multiplication;
— &*NE* = ag - E*/k* for every 1-dimensional subfield = k(z) C K,
with ap € Zj;
— there exists a, € DVj such that

{[60, /]| f € &}~ Z
for a topological generatod, of Z .
Theng* C K*/k’* & Z(g).

Proof. — Forz € K \ k let E = k(z) be the corresponding 1-dimensional
field. By assumption, there exists ap € Z, such that

R NE*=ag-E* k"
If some (any) topological generatéy of 7, is not identically zero org*
then there exists a (smooth) mod€| wherev is realized by a divisoD,,
together with a morphism
X - P =P
such thatD, dominatesP!. It follows that
ap € QQZZ = Z(g).
It remains to observe that everyc K* can be written as a product
r=ua-2"

such that, is nontrivial on both®’ = k(2') andE” = k(z"”). O
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: COROLLARY 14.4 — After a choice ob,, for every 1-dimensionadl C K
[coro:pm | 0s
and everyf € E*/k* we can Galois-theoretically distinguish its poles from
its zeroes.

The last essential step is a Galois-theoretic characterization of the partial
projective structure oR*/k*, more precisely, the characterization of gener-
ating elements and primary lines &t /k* (see Definition3.10 and Defini-
tion 4.7).

LEMMA 145 — Letz € K* be a generating elementy := k(z) and
r =r(x) € N the smallest positive integer such théte 8*. Then

— r = p™ for somem € N (with p = char(k));

— (E7/k") 0 (R k") = (B7)" [k,

— (pointwise)p™-th powers of primary lines i2* /k* coincide with pri-
mary lines in(EP™)* /k*.

Proof. — The first property follows sinc&’/{ is a finite purely inseparable
extension, by Proposition3.19and 14.3 Next, we claim that a generator
y € Ris ap™-th power of a generator ok (for somem depending ony).

Indeed,F' := k(y) C K is afinite and purely inseparable extensiork @f),
E := k(x) (for somez € K). Thus

y = (ax?" +b)/(ca?” +d) = ((dz +V)/(dx+d))P"

for somem € Z, a,b, c,d € k and theirp™-th rootsa’, ', ¢, d' € k (sincek
is algebraically closed).

In particular, a generatgr € 8* is in E* N K* (and is the minimal positive
power of a generator ity contained inE* N K*). This implies the third
property: the generators &" arep™-th powers of the generators 6t [

coro:pro-uni ‘ COROLLARY 14.6 (Definition) — Assume thay, ¢/ are primitive elements

in (EP")* C &* such that

— vy, have support in 2 points;

— the pole ofy coincides with the pole of.
Then (the images of), ¥/ in 8*/k* are contained in a primary line passing
through (the images ofl), y, /.
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Proof. — Definition 10.1and Lemmal0.2give a Galois-theoretic character-
ization of the notion “support in 2 points”. By Corollafyt.4we can Galois-
theoretically distinguish zeroes and poleg/of 8*/k*. It remains to apply
Lemmal4.a 0

15. Proof
In this section we prove our main theorem: if

(g}l(v EK) - (gg7 ZL)7

whereL is a function field over an algebraic closure of a finite field of char-
acteristic# ¢, thenK is a purely inseparable extension/af

Step 1.We have a hondegenerate pairing
G x K* — Z,(1).

This implies thatx* = L*.

Step 2.We haveX{V = ¥4V and we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

I C Dl C Gy

every liftable subgroup € ¢ C Yk contains an inertia element of a divi-
sorial valuation (which is also contained in at least one otter X, ). The
corresponding decomposition group is the “centralizer” of the (topologically)

cyclic inertia group (the set of all elements which “commute” with inertia).
This identifiesDVy = DV;..

Step 3.For everyv € DV we characterize intrinsically
I CDy/Is
(see Proposition0.3).

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemmal0.4and Remark0.5.
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Step 5.For f € K* we have two notions of supporstuppK(f‘) (intrinsic)
andsupr(f) (depending on a modé&l’) and two notions of finitenesg‘:: is
nontrivial on at most finitely many nonrational divisorial valuationgesp.

f has finite divisorial support on a model. We definB8(K) C K* as the

set of elements satisfying the first notion of finiteness. If some (any) model

of K contains only finitely many rational curves, both notions of finiteness of
support coincide and one obtains an intrinsic Galois-theoretic characterization
of K*/k* ® Z, C K*, as elements iFS(K). In general, it may happen that
someg € L*/I* has an “infinite rational tail” on some (every) modélof K:

pX(g) = pX,nr(g) + Z njcj7
i>1
whereC; are irreducible rational curves ox. In Lemmal2.7we show that
many elements of.*/I* C FS(L) = FS(K) have finite support on every
model X of K, and vice versa. In particular, we prove that

FSo(K) = K*/k* ® Zy = L' /I' @ Zy

(up to an/-torsion group related tBic’(X), for some modeK of K), where
FSo(K) C FS(K) C K* has an intrinsic Galois-theoretic description.

Step 6.For every pair of elementg, j € FS,(K) satisfying

~

— suppg (f) N suppg () = 0;
—o.(f,9) =0forallv € DVg

there exists a subfield = k(C) c K suchthatf, j € E* (Propositionl4.1).

Step 7 Propositionl 3.lidentifiesE* /k* inside £+, up to conformal equiv-
alence, for all one-dimensional = k(x), which are integrally closed i&".

Step 8.Propositionl4.3identifiesf* := K*/k*NL*/I* (as a multiplicative
group) with a multiplicative subgroup df*/k* @ Z .

Step 9.By Proposition3.19 RK* is isomorphic toi /k*, andL}/l*, where
K,/K andL,/L are finite purely inseparable extensions. Theref@te;ar-
ries two structures of an abstract projective space compatible with the multi-
plicative structure (see Exampieb).
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Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure omR* consisting of primary lines (see Lemmnda8 and
Lemma4.9).

Step 11.Lemmal4.5and Corollaryl4.6 give a Galois-theoretic charac-
terization of generating elements and primary lineskin These define a
(unique) partial projective structure @it (in particular, the projective struc-
tures induced by (K;) andP(L;) coincide). In particular, the fields; and
L, both containt and are isomorphic.

Step 12If follows that K and L are finite purely inseparable extensions of
thesamefield. This concludes the proof of Theorem
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