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Introduction
sect:introduction

We fix two distinct primesp and`. Let k = F̄p be an algebraic closure of
the finite fieldFp. LetX be an algebraic variety defined overk andK = k(X)
its function field. LetGaK be the abelianization of the pro-`-quotientGK of the
absolute Galois group ofK. Under our assumptions onk, GaK is a torsion-
freeZ`-module. LetGcK be its canonical central extension - the second lower
central series quotient ofGK . It determines the following structure onGaK : a
setΣK of distinguished (primitive) subgroups which are isomorphic tofinite
rankZ`-modules. A topologically noncyclic subgroupσ ∈ ΣK iff

– σ lifts to an abelian subgroup ofGcK ;
– σ is maximal: there are no abelian subgroupsσ′ ⊂ GaK which lift to an

abelian subgroup ofGcK and containσ as a proper subgroup.

We will call ΣK a fan. The main theorem of this paper is

THEOREM 1. — LetK andL be function fields over algebraic closures ofthm:main
finite fields of characteristic6= `. Assume thatK = k(X) is a function field
of a surfaceX/k and that there exists an isomorphism

Ψ = ΨK,L : GaK ' GaL

of abelian pro-̀-groups inducing a bijection of sets

ΣK = ΣL.

ThenL is isomorphic to a finite purely inseparable extension ofK.

We implement the program outlined in [1] and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (see [9], [8],[5]).

Acknowledgments. Both authors were partially supported by the NSF. The
second author was employed by the Clay Mathematics Institute. We are grate-
ful to Laurent Lafforgue and Barry Mazur for their interest and the referee for
many useful remarks. We thank the participants of the Algebraic Geometry
Seminar at the University of Nice for their comments and suggestions.
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2. Overview
sect:ober

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let GaK be the pro-̀-quotient of the abelianization

GK/[GK ,GK ],

of the absolute Galois groupGK = Gal(K̄/K) of K, ` 6= char(k). By
Kummer theory,GaK determines the pro-`-completionK̂∗ of the multiplicative
groupK∗.

A Galois-theoretic characterization of the fieldK involves the recognition
of the subgroupK∗/k∗ ⊂ K̂∗, and of the canonical projective structure, the
projectivization of theadditivegroupK, considered as a vector space over
k. This projective structure is invariant undermultiplicative translations by
elements ofK∗/k∗.

For this we need Galois-theoretic information coming fromGcK , the maxi-
mal pro-̀ -quotient of

GK/[[GK ,GK ],GK ].

This topological group parametrizes those`-extensions ofK whose Galois
group is a central extension of an abelian`-group.

Our main Galois-theoretic object is a pair(GaK ,ΣK), where thefan ΣK

is the set of all maximal (by inclusion) topologically noncyclic subgroups
σ ⊂ GaK whose set-theoretic preimage inGcK is an abelian group. It turns
out that such liftable subgroupsσ arefinite-dimensionalZ`-subspaces inGaK .
Moreover, the maximalZ`-rank of suchσ is dim(X).

Theorem1 states that if for two function fieldsK = k(X), L = l(Y ),
whereX/k is an algebraic surface,Y/l an algebraic variety,k andl are alge-
braic closures of finite fields of characteristic6= ` there is an isomorphism

Ψ : (GaK ,ΣK) → (GaL,ΣL)



4 FEDOR BOGOMOLOV and YURI TSCHINKEL

thenk ' l, Y is a surface andL is isomorphic to a purely inseparable exten-
sion ofK.

Define a subfanΣdiv
K ⊂ ΣK as the set of those maximal liftable subgroups

which have nontrivial intersection with at least one other subgroup inΣK .
There is a geometric reason to distinguishΣdiv

K . LetK be the function field
of a surfaceX over k, D an irreducible divisor onX andν = νD the cor-
responding nonarchimedian divisorial valuation. Its abelian decomposition
groupDa

ν ⊂ GaK is a (noncanonical) direct product of the inertia subgroup
Iaν ' Z` and the groupGak(D) of the fieldk(D). Now a subgroupσ ⊂ Da

ν

of Z`-rank 2 is liftable if and only if it containsIaν . ThusΣdiv
K contains all

liftable subgroups ofZ`-rank2 which are contained in groupsDa
ν .

The first important result says thatΣdiv
K exactly coincides with the set of

all liftable subgroups ofZ`-rank2 contained in the groupsDa
ν , for different

ν = νD. This gives an purely group-theoretic description of the groupsDa
ν :

the nontrivial intersection of two liftable groupsσ, σ′ is alwaysIaν , for some
divisorial valuationν = νD, andDa

ν “centralizes”Iaν , it consists of all those
elements inGaK which commute withIaν , after lifting toGcK .

The proof is based on Kummer theory and the interpretation ofGaK as a
space of special (logarithmic)Z`-valued maps on the infinite-dimensional
projective spacePk(K) = K∗/k∗ over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results forK = F̄q(X) are contained in Section5.
The case of arbitrary algebraically closed ground fieldsk is treated in [3],[2].

At this stage we characterized all pairsDa
νD
, IaνD insideGaK , or, vaguely

speaking, we recovered “all curves” on all modelsX of K (andY of L).
Next we recover the “points” onD, as inertia groupsIaw ⊂ Gak(D), using
various subgroupsIaνD′ as follows: the image ofIaw under any homomorphism
of GaK to a finite group, which is trivial onIaνD , coincides with the image of
someIaνD′ (see Section10). Conversely, for anyγ ∈ Da

νD
\ Iaw, for some

divisorial valuation onk(D) (a point), there exists such a homomorphism
with the property that the image ofγ is not contained in the image of any
inertia subgroupIaνD′ .
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Now we can recover the genus ofD and distinguish the set of divisorial
valuations ofK which on some model ofK are represented by curves of
genus> 0. Note that these valuations have 1-dimensional centers onevery
modelof K.

We switch our attention to the dual spaceK̂∗ of GaK . We seek to recover the
subsetL∗/l∗ ⊂ K̂∗ = L̂∗ using Galois-theoretic data. This is done in several
steps, each time obtaining a smaller subgroup:

– FS(K) ⊂ K̂∗ - elements inK̂∗ with finite nonrational support,
– K∗/k∗ ⊗ Z` ⊂ FS(K) and
– K∗/k∗ ⊗ Z(`).

Elements ofK̂∗ can be thought of as infinite products of elementsf `
i

i ∈ K∗,
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modelX of the field
with Z`-adic coefficients which converge to0 in the `-adic topology. The
subgroupFS(K) ⊂ K̂∗ consists of elements whose support contains only
finitely many nonrational divisors (characterized above). Of course,FS(K)
containsK∗/k∗ andL∗/l∗ but it is still rather big - elements inFS(K) may
have infinite rational “tails” ifX contains infinitely many rational curves.

Next we use aǹ-adic analog of a symbol(f, g) mod `n ∈ K2(K)/`n.
Notice that(f, g) mod `n = 0 for any n ∈ N if f, g belong to the same
one-dimensional subfield inK. In particular, for anyf ∈ K \ k there is an
elementg which is not a power off and such that(f, g) = 0 (we can take
g = f + 1). This imposes a strong condition onf since for a generic element
in K̂∗ the “commutator” off consists of̀ -adic powers off only. This allows
us to characterize

K∗/k∗ ⊗ Z` = L∗/l∗ ⊗ Z` ⊂ FS(K)

as the subgroup generated by elements satisfying this property and having a
“sufficiently big” support.

The next step involves a normalization. InsideK∗/k∗ ⊗ Z` we cannot
Galois-theoretically distinguishL∗/l∗⊗Z(`) froma·K∗/k∗⊗Z(`), for a ∈ Z∗` .
However, this conformal invariance is the only freedom there is. If we fix the
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values off ∈ L∗/l∗ ⊗ Z` on one (arbitary) irreducible divisor on a modelX
of K thenL∗/l∗ ⊗ Z(`) is naturally identified insideK∗/k∗ ⊗ Z`. Thus, after
multiplication bya ∈ Z∗` , we can assume thatL∗/l∗ ⊂ K∗/k∗ ⊗ Z(`).

Now we haveK∗/k∗ andL∗/l∗ insideK∗/k∗⊗Z(`) = L∗/l∗⊗Z(`). We also
know that subgroups generated by elementsf, g with pairwise trivial symbol
(f, g) = 0 correspond to one-dimensional subfields inK,L, respectively.
Most one-dimensional subfields inK are isomorphic tok(x), for somex, and
Galois data allow us to recognize these subfields. Hence ifk(x) ⊂ K then
k(x)∗/k∗ ⊗ Z(`) = l∗(t)/l∗ ⊗ Z(`) ⊂ K∗/k∗ ⊗ Z(`), for somet ∈ L.

Next we show that the corresponding groupsk(x)∗/k∗ andl∗(x)/l∗ inter-
sect ink(x)∗/(k∗)r = l∗(x)/(l∗)s for some rationalr, s. This property implies
thatL∗/l∗ is isomorphic (as a multiplicative group) toK∗1/k

∗ whereK/K1 is
a purely inseparable extension.

Now we add the projective structure overk, l, respectively. We notice that
the sets of lines{P(k⊕kx)} and{P(l⊕ lt)} inK∗/k∗ andL∗/l∗, over allx, t
generating closed subfieldsk(x) ⊂ K andl(t) ⊂ L, are the same. It turns out
that the sets of these lines and their (multiplicative) translations is compatible
with a unique projective structure on the (multiplicative) groupsK∗/k∗ and
L∗/l∗ - namely the one coming from the field structure. This defines a unique
additive structure and finishes the proof of our main result.

3. Basic algebra and geometry of fields
sect:basicalg

NOTATIONS 3.1. — Throughout,k is an algebraic closure of the finite fieldnota:k
F = Fp andK = k(X) the function field of an algebraic varietyX/k overk
(its model).

In this paper we use extensively the fact that two-dimensional function
fields K have “nice” models: smooth projective surfacesX over k with
K = k(X), whose geometric properties play an important role in the recogni-
tion procedure. In this section we collect some technical results about function
fields of curves and surfaces and their models.

We assume familiarity with
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– basic notions of field theory (transcendence degree, purely inseparable
extensions);

– basic notions of algebraic geometry:k-rational pointsX(k), Picard
groupPic(X), Néron-Severi groupNS(X).

LEMMA 3.2. — LetC/k be a smooth curve andQ ⊂ C(k) a finite set. Thenlemm:C
there exists ann = nQ ∈ N such that for every degree zero divisorD with
support inQ the divisornD is principal.

Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisorsPic0(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite setQ ⊂ C(k) is finitely
generated.

LEMMA 3.3. — LetX/k be a surface,C1, . . . , Cs a finite set of (pairwiselemm:ress
distinct) curves onX andfi ∈ k(Ci)

∗, for i = 1, . . . , s. Then there exists an
f ∈ k(X)∗ whose restriction toCi is defined and equal tofi, for all i.

Proof. — Well known.

LEMMA 3.4. — For some ample smooth curvei : C ↪→ X the restrictionlemm:new
i∗ : Pic0(X) → Pic0(C) is an injection of abstract groups (ofk-points).

In particular, every element inPic0(X) is torsion.

Proof. — LetH be a polarization onX. There exists ann ∈ N such that for
all pairsL,L′ ∈ Pic0(X) one hasH1(X,−(L− L′ + nH)) = 0. Indeed, the
property

H1(X,−(L− L′ +mH)) = 0

is open inPic0(X) × Pic0(X) \ ∆ (where∆ the diagonal subgroup), since
Pic0(X) is an algebraic group scheme. Denote by

UmH ⊂ (Pic0(X)× Pic0(X) \∆)

the corresponding subset. If we consider a increasing sequence

UniH , ni ∈ Z, UmH ⊂ UnH , for m < n,

the union of allUniH is equal toPic0(X) × Pic0(X) \ ∆. Then there is an
n ∈ N such thatUnH = Pic0(X) × Pic0(X) \ ∆ (due to algebraicity of
Pic0(X)× Pic0(X) \∆ and allUniH).



8 FEDOR BOGOMOLOV and YURI TSCHINKEL

Exact sequence in cohomology implies that:

H0(X,−L+ L′) = H0(Cn,−L+ L′),

whereCn is a smooth curve in the class[nH]. SinceH0(X,−L + L′) = 0,
for L 6= L′, the same holds for their restrictions. In particular,

i∗ : Pic0(X) → Pic0(nH)

is a set-theoretic embedding (on the set ofk-points).

REMARK 3.5. — A more delicate analysis shows that forn � 0 the maprem:stra
i∗ : Pic0(X) → Pic0(nH) is an embedding of algebraic groups. Note that
over a closure of a finite field the map

i : Pic(X) → Pic(C)

is never an embedding ifrk NS(X) > 1 (in contrast with characteristic zero).

LEMMA 3.6. — LetX/k be a smooth projective surface,C ⊂ X an irre-lemm:gogo
ducible curve andQ a finite set of points onC. Then there exists a diagram

C̃ ⊂ X̃

π̃

��

π // Y

C ⊂ X

whereX̃ = Bl(X) → X is a blowup ofX with center supported inC \ Q
andπ is an isomorphism oñX \ C̃ (the strict transform ofC underπ̃) which
mapsC̃ to a point onY .

Proof. — There is a polarizationH onX such thatH−C restricted toX \C
is very ample (induces an embedding ofX \ C into a projective space). Let
PrC be the projective space spanned byC under the embeddingX ⊂ Pn by
H. By our choice ofH, r < n. A generic hyperplanePr−1 ⊂ PrC intersects
C transversally in finitely many smooth pointsq1, . . . , qs which are contained
in C \ Q (here we use Bertini’s theorem for embedded curves, which in this
case is evident over any algebraically closed field). The projection from this
Pr−1 (insidePn) induces a proper map from the blowup̃X of X with center
in ∪qi onto a projective surfaceY ⊂ Pn−r. Note that the image ofC under
the projection is a pointq ∈ Y .
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By construction,PrC intersectsX exactly inC. Hence, the proper preimage
of q in X̃ is C̃. Any otherPr ⊂ Pn intersectsX \ C in at most one point and
transversally (by assumption onH0(X,H−C)). It follows that the projection
induces an isomorphism betweeñX \ C̃ andY \ q.

LEMMA 3.7. — LetX/k be a smooth projective surface,C ⊂ X a curvelemm:go
andQ ⊂ C(k) a finite set. LetL be a line bundle onX whose restriction to
C is trivial (LC ' OC). Then there exists a diagram

C̃ ⊂ X̃

π̃

��

π // Y

C ⊂ X

whereX̃ = Bl(X) → X is a blowup with center supported in finitely many
points onC \Q andπ is a proper map as in Lemma3.6(contractingC̃) such
that the pullbackL̃ = π̃∗L is induced fromY .

Proof. — By Lemma3.6, we may assume thatC is (already) contractible.
SinceL is trivial onC we haveL ' O(R1 − R2), whereR1, R2 are divisors
onX intersectingC transversally, and

R1 ∩ C = R2 ∩ C ⊂ C \Q.
Indeed, we can find a polarizationH, so thatL + H is also a polarization,
giving surjective maps

H0(X,L+H) → H0(C, (L+H)C)
H0(X,H) → H0(C,HC).

Let iC : (L+H)C
∼−→ HC be an isomorphism. We can find a pair of sections

s1 ∈ H0(X,L+H), s2 ∈ H0(X,H)

with iC(s1)C = (s2)C . LetRi be the zero divisor ofsi. ThenO(R1−R2) ' L
andR1, R2 intersectC transversally with

R1 ∩ C = R2 ∩ C ⊂ C \Q,
as claimed.

Consider the smooth surfaceπ̃ : X̃ → X obtained by blowing upRi ∩ C.
The proper preimages̃Ri of Ri in X̃ don’t intersect the proper preimagẽC ⊂
X̃ of C. The divisor ofπ∗L = π∗(R1 − R2) doesn’t contain components
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which are exceptional curves lying over points inC. Henceπ∗L is trivial on
the open quasi-projective neighborhoodX̃ \ supp(π∗(R1 − R2)) containing
C̃. Therefore, the bundleL is induced fromY (as in Lemma3.6).

LEMMA 3.8. — LetK/k be the function field of a surface,C/k a smoothlemm:cc
curve on a model ofK andQ = {q0, . . . , qs} ⊂ C(k) a finite set of points.
Then there exist a modelX ofK, irreducible divisorsDj,Hj, H

′
j onX, with

j = 0, . . . , s, and a positive integern = nQ such that:

(1) X is smooth and containsC;
(2) Dj ∩ C = qj for all j = 1, . . . , s;
(3) n(Dj −D0) restricted toC is a principal divisor;
(4) n(Dj −D0) + (Hj −H ′j) is a principal divisor onX;
(5) the divisorsDj are pairwise disjoint;
(6) all intersections betweenDj, Hi andH ′i are transversal, pairwise dis-

tinct and outsideC;
(7) Hj, H

′
j don’t intersectC.

Proof. — LetX be a smooth projective model ofK containingC as a smooth
curve. Choose divisorsDj ⊂ X passing (transversally) throughqj (for all
j = 0, . . . , s). Blowing up points inC \ Q we can insure that the (strict
transform of)C becomes contractible and that the image of the surface under
a contracting morphism isprojective(by Lemma3.6).

Blowing up again (if necessary) and removing components of exceptional
divisors, we can insure that the (strict transforms)Dj ∩C = qj (for all j). By
Lemma3.2, there exists ann = nQ such that the restriction ofn(Dj − D0)
to C is a principal divisor. We continue to blow up (outsideQ) so that each
n(Dj − D0) becomes a trivial line bundle on some open neighborhood ofC
in some modelX (using Lemma3.7).

Throughout,C remains contractible and we write

π : X → Y

for the corresponding blow-down. Nown(Dj − D0) is induced from a line
bundle onY (which is projective). In particular, there existampleclasses
[Hj], [H

′
j] ∈ Pic(Y ) such that

[n(Dj −D0)] + ([Hj]− [H ′j])

is a principal divisor onX (here we identified[Hj], [H
′
j] with their full trans-

forms inX). Finally, we can choose representativesHj, H
′
j ⊂ Y of these
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classes which are disjoint fromπ(C), irreducible and satisfy all required
transversality assumptions.

More precisely, choose classes[Hi] so that

[n(Dj −D0)] + ([Hj]), [n(Dj −D0)] + ([H ′j]), [Hj], [H
′
j]

provide an embedding ofY into a projective space. Consider an embedding
of Y into a projective space defined by one of the series[Hj], [H

′
j]. For any

finite set of irreducible divisors inY we find a hyperplane section intersecting
the union of these divisors transversally and not containing the given finite
set of points inY . Using induction onj we find representatives of[Hj], [H

′
j]

satisfying the lemma.

LEMMA 3.9. — LetK/K be a purely inseparable extension. Thenlemm:purely
– K ⊃ k;
– K/K is a finite extension;
– K = k(X ′) for some algebraic varietyX ′.

DEFINITION 3.10. — We writeE
K ⊂ K for the normal closure of a subfielddefn:gener

E ⊂ K (elements inK which are algebraic overE). We say thatx ∈ K \ k
is generatingif k(x)

K
= k(x).

REMARK 3.11. — If E ⊂ K is 1-dimensional then for allx ∈ E \k one hasrem:just

k(x)
K

= E
K

(a finite extension ofE).

LEMMA 3.12. — For any subfieldE ⊂ K there is a sequencelemm:subf

X
πE−→ Y ′

ρE−→ Y,

where

– πE is rational dominant with irreducible generic fiber;
– ρE is quasi-finite and dominant;
– k(Y ′) = E

K
andk(Y ) = E.

For generatingx ∈ K we write

πx : X → Y

for the morphism from Lemma3.12, with k(Y ) = k(x). For y ∈ K \ k(x)
definedegx(y) (the degree ofy on the generic fiber ofπx) as the degree of the
corresponding surjective map from the generic fiber ofπx underπy.
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PROPOSITION3.13. — Let K = k(X) be the function field of a smoothprop:geome
surface,C ⊂ X a smooth irreducible curve andf1, . . . , fs ∈ K∗ rational
functions onX, restricting nontrivially toC. Then there exists a model̃X
of K (a blowup ofX) such that for every pointq in (the strict transform) of
C ⊂ X̃ there exists an irreducible divisorDq ⊂ X̃ (possibly the zero divisor)
with the property that for alli = 1, . . . , s the order ofDq in the divisor offi
is equal to the order offi in q.

Proof. — Consider the divisorsC anddiv(fi), i = 1, . . . , s and a modelX̃
of K such that the total preimagẽD ⊂ X̃ of the union of all these divisors in
X̃ has strict normal crossings (resolution of singularities for surfaces). After
further blowups we can assume that each irreducible component ofD̃ (distinct
from C) intersects (the strict transform of)C in at most one point. For each
q ∈ C ∩ (D̃ \ C) letDq be this component. For all otherq letDq be the zero
divisor. These divisors have the required properties.

LEMMA 3.14. — LetK = k(X) be the function field of a surface andx, y ∈lemm:XX
K \ k be such that

degx(y) = min
f∈K\k(x)K

(degx(f))

andk(y)
K

= k(y′) for somey′ ∈ K∗. Theny is generating:k(y) = k(y)
K

.

Proof. — If y is not generating theny = z(y′) for somey′ ∈ K and some
functionz ∈ k(y′)∗ of degree≥ 2. This implies thatdegx(y) ≥ 2 degx(y

′),
contradicting minimality.

LEMMA 3.15. — LetX be a model ofK containing a rational curveC andlemm:xcxc
x ∈ K∗ a function such that its restrictionxC to C is defined and such that

k(C) = k(xC). Thenx is generating:k(x)
K

= k(x).

Proof. — The restriction map extends tok(x)
K

and hence is an isomorphism

betweenk(xC) andk(x) = k(x)
K

.

The next proposition characterizes multiplicative groups of fieldsK ⊂ K
such thatK/K is a purely inseparable extension. Notice that for a one-
dimensional fieldk(C) the subfieldK is always of the formk(C)p

n
, for some

n ∈ N. Thus for any one-dimensional subfieldE ⊂ K there is anr(E) ∈ N
such that the intersection ofK∗ withE∗ consists exactly ofr(E)-powers of the



FUNCTION FIELDS 13

elements ofE∗. Below we show that this property of intersection with sub-

fields of the special formk(x) = k(x)
K

already characterizes multiplicative
groups of suchK among multiplicative subsets inK∗.

DEFINITION 3.16. — LetK∗ ⊂ K∗ be a (multiplicative) subgroup such thatdefi:new

for any subfieldE = k(x) = k(x)
K
⊂ K there exists anr = r(E) with

the property thatK∗ ∩ E∗ = (E∗)r (r-powers of elements ofE∗). For every
t ∈ E∗ \ k∗ we definer(t) = r(E).

REMARK 3.17. — Note thatr(t) is not defined fort ∈ K∗ \ k∗ iff k(t)
K

is
the function field of a curve of genus≥ 1.

DEFINITION 3.18. — We will say thaty ∈ K∗ is a power if there exist andefi:power
x ∈ K∗ and an integern ≥ 2 such thaty = xn.

PROPOSITION3.19. — LetK = k(X) be the function field of a surface andprop:KKK
K∗ ⊂ K∗ a subset such that

(1) K∗ is a multiplicative subgroup ofK∗;

(2) for everyE = k(x) = k(x)
K
⊂ K there exists anr = r(E) ∈ N with

K∗ ∩ E∗ = (E∗)r;

(3) there exists ay ∈ K \ k with r(y) = 1.

ThenK := K∗ ∪ 0 is a field, whose multiplicative group isK∗ andK/K is a
purely inseparable finite extension.

Proof. — Once we know thatK is a field we can conclude that everyx ∈ K∗
is either inK∗ or some power of it is inK∗. Of course, it can only be a
power ofp so thatK/K is a purely inseparable extension, of finite degree (by
Lemma3.9).

By (3), k ⊂ K. To conclude thatK is a field, it suffices to show that for
everyx ∈ K one hasx + 1 ∈ K (and then use multiplicativity). For every
x ∈ K \ k with r(x) = 1 we haveK∗ ∩ k(x)∗ = k(x)∗ and

x+ κ ∈ K∗, for all κ ∈ k.
In particular, this holds fory.

Considerx ∈ K∗ with r(x) > 1 or not defined. We claim that for some
κ ∈ k

z :=
x+ y + κ

y + κ− 1
∈ K andr(z) = 1.
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This implies that

z − 1 = (x+ 1)/(y + κ− 1) ∈ K∗ andx+ 1 ∈ K∗,

(by multiplicativity). We can assume thatK/k(C)(y), wherek(C) = k(x)
K

,
is a finite separable extension. (Otherwise, we can letK be a minimal proper
subfield inK′ ⊂ K containingk(C)(y) and such thatK/K′ is purely insepa-
rable and use the intersection ofK with K′ instead ofK.)

To prove the claim, choose a modelX of K such that both maps

πx : X → C, k(C) = k(x)
K

πy : X → P1 = (y : 1)

are proper morphisms (as in Lemma3.12). Sincex andy are algebraically
independent (r(x) > 1), only finitely many components of the fibers ofπx are
contained in the fibers ofπy and there exists aκ ∈ k such that both fibers

π−1
y (−κ) andπ−1

y (1− κ)

are transversal to the fibers ofπx, since we assume thatK/k(C)(y) is separa-
ble. Note that

div0(y + κ− 1) 6⊂ div(x+ y + κ),

sincey + κ = −1 on div0(y + κ − 1) andx is nonconstant on these fibers
(wherediv0 is the divisor of zeroes). It follows in the first case thatboth

t := (y + κ)/x and z := (x+ y + κ)/(y + κ− 1)

are not powers.
Note thatt, z are generating elements. Indeed, if we blow up the smooth

point q of transversal intersection{y + κ = 0} ∩ {x = 0} then t restricts
nontrivially toP1

q and similarly

z := (x+ y + κ)/(y + κ− 1) = x+ 1/(y + κ− 1) + 1

restricts nontrivially toP1
q′, whereq′ = {x = −1} ∩ {y = 1− κ}.

Note thatt ⊂ K∗ and since it is not a powerr(t) = 1 and

(1/t) + 1 = (x+ y + κ)/(y + κ) ∈ K.

To show thatz ∈ K observe that bothx, y + κ ∈ K so thatt ∈ K. Therefore,

t+ 1 = (x+ y + κ)/x ∈ K

and, by (1),x+ y+ κ ∈ K. Finally, since(y+ κ− 1) ∈ K we getz ∈ K.
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REMARK 3.20. — If assumption (3) is not satisfied then we can take

(K∗)1/r(y)
⋂

K∗,

which satisfies all the conditions of the lemma. Thus in general without the
assumption (3) we haveK = (K′)r, whereK/K′ is purely inseparable and
r ∈ N.

4. Projective structures
sect:proj-str

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition in [7].

DEFINITION 4.1. — A projective structureis a pair (S,L) whereS is adefi:proj
(nonempty) set (of points) andL a collection of subsetsl ⊂ S (lines) such
that

P1 there exist ans ∈ S and anl ∈ L such thats /∈ l;
P2 for everyl ∈ L there exist at least three distincts, s′, s′′ ∈ l;
P3 for every pair of distincts, s′ ∈ S there exists exactly one

l = l(s, s′) ∈ L

such thats, s′ ∈ l;
P4 for every quadruple of pairwise distincts, s′, t, t′ ∈ S one has

l(s, s′) ∩ l(t, t′) 6= ∅ ⇒ l(s, t) ∩ l(s′, t′) 6= ∅.

For s ∈ S andS ′ ⊂ S define thejoin

s ∨ S ′ := {s′′ ∈ S | s′′ ∈ l(s, s′) for somes′ ∈ S ′}.
For any finite set of pointss1, . . . , sn define

〈s1, . . . sn〉 := s1 ∨ 〈s2 ∨ · · · ∨ sn〉
(this does not depend on the order of the points). Write〈S ′〉 for the join of
a finite setS ′ ⊂ S. A finite setS ′ ⊂ S of pairwise distinct points is called
independentif for all s′ ∈ S ′ one has

s′ /∈ 〈S ′ \ {s′}〉.
A set of pointsS ′ ⊂ S spansa set of pointsT ⊂ S if

– 〈S ′′〉 ⊂ T for every finite setS ′′ ⊂ S ′;
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– for every t ∈ T there exists a finite set of pointsSt ⊂ S ′ such that
t ∈ 〈St〉.

A setT ⊂ S spanned by an independent setS ′ of points of cardinality≥ 1 is
called a projectivesubspaceof dimension|S ′| − 1.

The axioms imply that projective subspaces of a given projective spaceS
form a lattice and that the dimension function is well defined, i.e.,

dim(T ∪ T ′) + dim(T ∩ T ′) = dim(T ) + dim(T ′)

for all pairs of projective subspacesT, T ′ ⊂ S. Here we putdim(∅) := −1.

DEFINITION 4.2. — A projective structure(S,L) satisfiesPappus’ axiomifdefn:pappus
PA for all 2-dimensional subspaces and every configuration of six points

and lines in these subspaces as below

the intersections are collinear.

The main theorem of abstract projective geometry is:

THEOREM 4.3. — Let (S,L) be a projective structure of dimensionn ≥ 2thm:abstr
which satisfies Pappus’ axiom. Then there exists a vector spaceV over a field
L and an isomorphism

σ : PL(V )
∼−→ S.

Moreover, for any two such triples(V, L, σ) and (V ′, L′, σ′) there is an iso-
morphism

V/L
∼−→ V ′/L′

compatible withσ, σ′ and unique up to homothetyv 7→ λv, λ ∈ L∗.

Proof. — See [7], Chapter 6.
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DEFINITION 4.4. — A morphism of projective structuresdefi:inject

ρ : (S,L) → (S ′,L′)

is an injection of setsρ : S ↪→ S ′ such thatρ(l) ∈ L′ for all l ∈ L.

EXAMPLE 4.5. — Let k be a field andPnk the usual projective space overkexam:Kkexam:basic
of dimensionn ≥ 2. ThenPnk carries a projective structure: the set of lines is
the set of usual projective linesP1

k ⊂ Pnk .
LetK/k be an extension of fields (not necessarily finite). Then the set

S := Pk(K) = (K \ 0)/k∗

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the groupK∗/k∗ preserves this structure.

THEOREM 4.6. — LetK/L andK ′/L′ be field extensions of degree≥ 3 andthm:skk

φ̄ : S = PL(K) → PL′(K ′) = S ′

a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then

L ' L′ and K ' K ′.

Proof. — ConsiderV := K as a vector space overL. By Theorem4.3, toS
there are canonically attached theL-algebraEnd(V ) andGL(V ) ⊂ End(V ),
as the set of elements preserving the collineations of the projective spaceS
(because the action of homotheties onEnd(V ) is trivial). This allows to re-
cover the fieldK as the subfield of theL-algebraEnd(V ) given by

{0} ∪ {x ∈ GL(V ) ⊂ End(V ) |x induces a group-translation onS}.

DEFINITION 4.7. — LetK/k be the function field of an algebraic varietyXdefn:basic2
of dimension≥ 2 andS = Pk(K) the associated projective structure from
Example4.5. The lines passing through1 and a generating element ofK (see
Definition 3.10) and their multiplicative translations by elements inK∗/k∗

will be calledprimary.

LEMMA 4.8. — LetK = k(X) be the function field of a surface. For everylemm:primary-ell
line l = l(1, x) there exists aP2 ⊂ Pk(K) such that all other lines in thisP2

are primary.
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Proof. — Choose a smooth modelX of K and two pointsq1, q2 ∈ X such
thatx(q1) = 0, x(q2) = 1. Blow up q1, q2 and letP1

i be the corresponding
exceptional curves. Lety ∈ K∗ be an element restricting to a generator of
k(P1

i ). The restriction map extends to the normal closurek(y) ⊂ K. Hence
the normal closurek(y) ⊂ K coincides withk(y).

To prove that every linel 6= l(1, x) ⊂ P2 = Pk(k ⊕ kx ⊕ ky) is primary
we need to show that(y + a + bx)/(y + c + dx) is generating, provided
(a, b) 6= (c, d). If a 6= c then the restriction of(y+a+bx)/(y+c+dx) to P1

q1

is equal to(y+a)/(y+c) and hence is a generator ofk(P1
q1

). By the argument
of the previous lemma,(y+a+bx)/(y+c+dx) is generating. Ifa = c, b 6= d
then(y+ a+ bx)/(y+ c+ dx) onP1

q2
coincides with(y+ a+ b)/(y+ c+ d)

and is also generating sincea+ b 6= c+ d, by assumption.

LEMMA 4.9. — Assume that a setS has two projective structures(S,L1)lemm:4.10
and(S,L2), both of dimension≥ 2, and that for someP2

1 (in the first projec-
tive structure) every linel1 ∈ (L1 ∩ P2

1), except possibly one line, is also a
line in the second structure. Then thesetP2

1 is a projective plane in the second
structure(S,L2), projectively isomorphic toP2

1 ∈ (S,L1).

Proof. — Let P̂2
1 be the set of all lines inP2

1 andP̂2
1 \ l the set of lines which

remain projective lines inP2
2. Let l1, l2, l3 be three lines from̂P2

1 \ l which
don’t have a common intersection point. Thenl1, l2, l3 lie in the same plane
P2

2. Since every other linel′ ∈ P̂2
1 \ l intersectsl1, l2, l3 thenl′ ⊂ P2

2. Thus all
lines fromP̂2

1 \ l are inP2
2 which contains all the points ofP2

1.
They are isomorphic since it is an isomorphism between lines and every

point, except possibly one point, is an intersection of two lines inP̂2
1 \ l. Since

P̂2
2 coincides withP̂2

1 outside of one point they coincide.

COROLLARY 4.10. — Let K/k andK ′/k′ be function fields of algebraiccoro:final
surfaces

φ̄ : S = Pk(K) → S ′ = Pk′(K ′)

an isomorphism of (multiplicative) abelian groups inducing a bijection on the
set of primary lines in the corresponding projective structures. Thenφ̄ is an
isomorphism of projective structures and

k ' k′ and K ' K ′.
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Proof. — By Lemma4.8and Lemma4.9 φ̄ induces an isomorphism of pro-
jective structures. It remains to apply Theorem4.6.

5. Flag maps
sect:af

NOTATIONS 5.1. — We fix two distinct prime numbers̀andp. Letnota:pr

– F = Fq be a finite field withq = pn andF∗ its multiplicative group;
– VectF - the set of finite-dimensionalF-vector spaces;
– A a vector space overF andP(A) = PF(A) = (A \ 0)/F∗ its projec-

tivization;
– M(A) the set of maps fromA \ {0} to Z`;
– for µ ∈M(A) andB ⊂ A anF-linear subspace,µB the restriction ofµ

toB \ {0}.

DEFINITION 5.2. — An F-flag on a vector spaceA ∈ VectF is a collectiondefn:aa
of F-subspaces(An)n=0,...,d such that

– A0 = A;
– An ) An+1, for all n = 0, . . . , d− 1.

The flag is calledcompleteif d = dim(A).

DEFINITION 5.3. — A mapµ ∈ M(A) will be calledF∗-invariant if for alldefn:homo
a ∈ A \ {0} and allκ ∈ F∗ one has

µ(κ · a) = µ(a).

DEFINITION 5.4. — A mapµ onA\{0}, for a (possibly infinite-dimensional)defn:inv
vector spaceA, will be called anF-flag map, if

– µ is F∗-invariant;
– every finite-dimensionalF-vector spaceB ⊂ A has a complete flag

(Bn)n=0,...,dim(B) such thatµB is constant onBn \ Bn+1, for all n =
0, . . . , dim(B)− 1.

The value ofµ onB = B0 \ B1 is called thegenericvalue ofµ onB; we
denote it byµgen(B). TheF-subspaceB1 is called the subspace ofnongeneric
elements. The set ofF-flag maps will be denoted byΦF(A).

EXAMPLE 5.5. — Let K = k(X) be a function field. We can consider itexam:main-flag
as a vector space overk or over any of the subfieldsF ⊂ k. Let ν be a
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nonarchimedian valuation onK andχ : Γν → Z` a homomorphism from the
value group ofν (see Section7). Thenχ ◦ ν ∈ Φk(K).

DEFINITION 5.6. — LetA be anF-algebra (without zero-divisors). A mapdefn:lf
µ ∈M(A) will be called logarithmic if

µ(a · a′) = µ(a) + µ(a′), for all a, a′ ∈ A \ 0.

The set of such maps will be denoted byLF(A).

SinceF is torsion, a logarithmic map toZ` is F∗-invariant.

DEFINITION 5.7. — LetA be anF-vector space. Two mapsµ, µ′ ∈ M(A)c:pair
will be called ac-pair (commuting pair) if for all two-dimensionalF-subspaces
B ⊂ A there exist constantsλ, λ′, λ′′ ∈ Z` (depending onB) with (λ, λ′) 6=
(0, 0) such that for allb ∈ B \ 0 one has

λµB(b) + λ′µ′B(b) = λ′′.

THEOREM 5.8. — Let F ⊂ k be a finite field with#F ≥ 11, andµ, µ′ ∈thm:cp
LF(K) nonproportional maps forming ac-pair. Then there exists a pair
(λ, λ′) ∈ Z2

` \ (0, 0) such thatλµ+ λ′µ′ ∈ ΦF(K).

Proof. — This is a special case of the main theorem of [3], where it is proved
over general ground fieldsk. However, the case whenk = F̄q is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

– characterization of flag maps by their restriction to 2-dimensionalF-
linear subspaces, for#F ≥ 11 (see Lemma5.17);

– reduction to linear spaces over prime fields, resp.F4, see Lemma5.19:
if µ /∈ ΦF′(A), for a finite fieldF′, andµ is F∗-invariant with respect to a
large finite extensionF/F′ then there is a subgroupC ' F2

p ⊂ A, (resp.
F2

4), so thatµC /∈ ΦFp(C).
– reduction to dimension 3: for any rank twoZ`-moduleσ = 〈µ, µ′〉 of

logarithmic maps generated by ac-pairµ, µ′ ∈ LF(A), not containing a
flag map there is a subgroupB = Bσ ' F3

p ⊂ A (resp.F3
4), such that for

any nontrivialµ′′ ∈ σ there is a proper subspaceC = Cµ′′ ( B where
µ′′C /∈ ΦFp(C) (this step uses the logarithmic property);

– geometry of collineations onP2 = PF(B) over prime fields (resp.F4):
for any σ spanned by ac-pair µ, µ′ on B there is aµ′′ ∈ σ such that
µ′′ ∈ ΦF(B) - this shows the existence of the desired flag map onA.
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LEMMA 5.9. — If A ∈ VectF andµ ∈ ΦF(A) then there exists a canonicallemm:linearr
F-flag (An)n=0,...,d such that

µgen(An) 6= µgen(An+1),

for all n = 0, . . . , d− 1.

Proof. — PutA0 = A and letAn+1 be the additive subgroup ofAn spanned
by a with µ(a) 6= µgen(An). Sinceµ is F∗-invariant,An+1 is anF-vector
space. Indeed, fora, a′ ∈ An+1 andκ, κ′ ∈ F∗ write

a =
∑
i∈I

bi, a
′ =

∑
j∈J

b′j

with finite I, J . Since

µ(bi) 6= µgen(An), µ(b′j) 6= µgen(An),

for all i ∈ I, j ∈ J , we have

µ(κbi) = µ(bi) 6= µgen(An) and µ(κ′b′j) = µ(b′j) 6= µgen(An)

so thatκa+ κ′a′ ∈ An+1.

REMARK 5.10. — Since a flag mapµ is F∗-invariant, it defines a unique map
on (A \ {0})/F∗ = PF(A). Conversely, a mapµ on PF(A) gives rise to an
F∗-invariant maps onA \ {0}. An F-flag map onA ∈ VectF defines a flag
by projectivesubspaces onPF(A). We denote bygeneric(resp. nongeneric)
elements ofPF(A) the image of generic (resp. nongeneric) elements fromA.

NOTATIONS 5.11. — We denote bŷP(A) = P̂F(A) the set of codimension
one projectiveF-subspaces ofP(A).

DEFINITION 5.12. — Assume thatA ∈ VectF, and for all codimension onedefn:duall
F-subspacesB ⊂ A one hasµB ∈ ΦF(B). Defineµ̂ by

P̂(A) → Z`

B 7→ µ̂(P(B)) := µgen(B).
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LEMMA 5.13. — If A ∈ VectF andµ ∈ ΦF(A) then either̂µ is constant onlemm:1pt
P̂(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flag(An)n=0,...,d. If codim(A1) ≥ 2 then
for everyP(B) ∈ P̂(A) one hasµgen(B) = µgen(A) andµ̂ is constant. Other-
wise,µgen(B) = µgen(A), on anyB 6= A1 (and differs atP(A1) ∈ P̂(A)).

We need the following elementary

LEMMA 5.14. — Let F = Fq be a finite field withq ≥ 11 and Pm = PmF ,lemm:grass
m ≥ 2 a projective space overF. Then for any four projective hyperplanes
and any ten projective subspaces of codimension at least two (all defined over
F) there exists a line (overF) which is not contained in any of the above
hyperplanes and which does not intersect any of the ten codimension two
subspaces.

Proof. — One has

#Gr(2,m)(F) ≤ #Gr(2,m+ 1)(F)/q2.

The number ofF-lines intersecting a subspace of codimension two inPmF is
bounded by#Gr(2,m+ 1)(F)/q2. Our claim holds forq ≥ 11.

LEMMA 5.15. — Let F = Fq be a finite field withq ≥ 11, A ∈ VectFlemm:c11
andµ ∈ M(A) an F∗-invariant map. Assume that there existF-subspaces
Bi ⊂ A, codim(Bi) = 1, for i = 1, . . . , 4 such that

(1) either#{µgen(Bi)} ≥ 3 or
(2) µgen(B1) = µgen(B2) 6= µgen(B3) = µgen(B4).

Then there exists anF-subspaceC ⊂ A, dimF(C) = 2 such thatµC /∈ ΦF(C).

Proof. — By Lemma5.14, there exists aP1 = P(C) ∈ P(A) such that its
intersection points withP(Bi) are pairwise distinct and generic in the corre-
spondingP(Bi) (the nongeneric points ofP(Bi) are contained in 4 subspaces
in codimF ≥ 2, the intersections ofBi give rise to 6 more subspaces). Then
eitherµ takes at least three distinct values onP(C) or has distinct values in at
least two pairs of points. In both casesµ /∈ ΦF(C).

COROLLARY 5.16. — Assume thatµB ∈ ΦF(B) for all P(B) ∈ P̂(A) (andcoro:one
#F ≥ 11). Thenµ̂ is constant outside of one point.
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Proof. — The mapµ̂ takes two different values on̂P(B). By Lemma5.15,
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplanesh1, h2, h3 ∈ P̂(A),
whereµ̂(h1) = µ̂(h2) 6= µ̂(h3) then for any otherh ∈ P̂(A) we haveµ̂(h) =
µ̂(h1) andµ̂ is constant outside ofh3.

LEMMA 5.17. — Let A ∈ VectF, with #F ≥ 11, andµ ∈ M(A) be anlemm:1
F∗-invariant map such that for every two-dimensionalF-subspaceB ⊂ A,
µB ∈ ΦF(B). Thenµ ∈ ΦF(A).

Proof. — Assume the statement holds ifdim(A) ≤ n − 1. Then µ̂ is de-
fined and, by Corollary5.16, eitherµ̂ is constant on̂P(A) or constant on the
complement to one point.

If µ̂ is constant, then theF-linear envelope of pointsb ∈ A such thatµ(b) 6=
µ̂ has codimension at least two. Indeed, if there is a codimension one subspace
B ⊂ A generated by suchb then by assumptionµ ∈ ΦF(B) andµgen(B) 6= µ̂,
contradicting the assumption thatµ̂ is constant. Otherwise, putA1 := B.
By the inductive assumption,µ ∈ ΦF(B) and is constant onA \ B. Hence
µ ∈ ΦF(A).

Assume that̂µ is nonconstant and letB ⊂ A be the unique codimension
one subspace with differingµgen(B). Choose anF-basisb1, . . . , bn−1 in B
such thatµ(bi) = µgen(B). Assume that there is a pointa ∈ A \ B such
that µ(a) 6= the generic value of̂µ and letB′ be the codimension oneF-
subspace spannedb1, . . . , bn−2, a. Thenµgen(B′) 6= the generic value of̂µ,
contradicting the uniqueness ofB. It follows thatµ is constant onA \B.

REMARK 5.18. — Let F/F′ be a finite extension,A ∈ VectF, considered as
an F′-vector space, andµ ∈ ΦF′(A). If µ is F∗-invariant, thenµ ∈ ΦF(A).
Indeed, by Lemma5.9, the canonicalF′-flag is a flag ofF-vector spaces. We
use this observation to reduce our problem to prime fields (resp.F4).

LEMMA 5.19. — Let F/F′ be a quadratic extension, with#F′ > 2. Letlemm:444
A be anF-vector space of dimension 2, considered as anF′-vector space of
dimension 4. Letµ ∈ M(A) be anF∗-invariant map such that for every
F′-subspaceC ⊂ A, dimF′(C) = 2, one hasµC ∈ ΦF′(C). Thenµ ∈ ΦF(A).

Proof. — First assume thatµ takes only two values onA \ {0}, say0, 1,
and thatµ /∈ ΦF(A). SincePF(A) = P1

F there exist elementsa1, a2, a3, a4 ∈
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A \ {0} such that the orbitsF∗ · ai do not intersect and

0 = µ(a1) = µ(a2) 6= µ(a3) = µ(a4) = 1.

ThenF∗ · ai = Λi \ {0}, whereΛi is a linear subspace overF′. TheF′-span
Λ12 of two nonzero vectorsx1 ∈ Λ1, x2,∈ Λ2 hasµgen(Λ12) = 0. HenceΛ12

contains at most oneF′-subspace〈b〉 of F′-dimension1 with generic value1.
The union of the spacesΛ12, for different choices ofx1, x2, coversA and

#{b ∈ A |µ(b) = 1} ≤ (q + 1)2,

where#F′ = q. Similarly, there are at most(q + 1)2 such nongenericc ∈ A
with µ(c) = 0. Since#P3(F′) = q3 + q2 + q+ 1 > 2(q2 + 2q+ 1), for q > 2,
we get a contradiction.

Assume now thatµ takes at least 3 distinct values onA \ {0}, say0, 1, 2,
and that there are two vectorsa1, a2 ⊂ A such that the orbitsF∗ · a1,F∗ · a2

don’t intersect and0 = µ(a1) = µ(a2). Such a configuration must exist (take
two F′-spaces ofF′-dimension two spanned byF∗-orbits; theF′ span of two
generic vectors in these spaces contains elements whoseµ-value coincides
with the value ofµ on one of the two orbits). The modified map, given by

µ̃(a) :=

{
0 if µ(a) = 0
1 otherwise

,

satisfies the conditions of the Lemma, and by the above argumentµ̃ ∈ ΦF(A).
In particular,µ̃ = 0 outside oneF∗-orbit onA \ {0}. Sinceµ is F∗-invariant it
follows thatµ takes two values, and not three as we assumed. Contradiction.

LEMMA 5.20. — LetF′ = Fp (resp.F4), andF/F′ be an extension of degreelemm:p22
divisible by 4. ConsiderK = k(X) as anF-vector space and letµ′, µ′′ ∈
LF(K) be ac-pair such that the linear spanσ = 〈µ′, µ′′, 1〉Z` does not contain
anΦF-map. Then there exist anF′-subspaceB ⊂ K with dimF′(B) = 3, two
distinctF′-subspacesC,C ′ ⊂ B of dimension 2 and maps̃µ, µ̃′ ∈ σ such that

– µ̃C /∈ ΦF′(C) andµ̃C′ is constant;
– µ̃′C′ /∈ ΦF′(C

′) andµ̃′C is constant;

In particular, for every (nonzero) mapµ ∈ σ there exists anF′-subspace
Cµ ⊂ B, dimF′ Cµ = 2 with the property thatµCµ /∈ ΦF′(Cµ).

Proof. — We will considerK as anF-vector space as well as anF′-vector
space.
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Letµ be anF∗-invariant map onK. If µ were anF′-flag map on every two-
dimensionalF′-subspace ofK then, by Lemma5.19, µ would be anF-flag
map on everyF-subspaceB ⊂ K of dimFB = 2. Since#F ≥ 11 we could
apply Lemma5.17and conclude thatµ ∈ ΦF(K).

Thus, sinceµ /∈ ΦF(K)-map, there is anF′-subspaceC ⊂ K, dimF′(C) =
2 such thatµC /∈ ΦF′(C). If µ′C is constant, put̃µ′ := µ. Otherwise, using the
c-pair property onC we find constantsdC , d′C , d

′′
C , with d′C 6= 0, such that

dCµ+ d′Cµ
′
C = d′′C and putµ̃′ = µ′ − d′′C − dCµ

d′C
.

Thenµ̃′C = 0. Since the linear combinatioñµ′ is not a flag map, there exists
a C ′, dimF′(C

′) = 2, whereµ̃′ /∈ ΦF′(C
′). If µC′ is constant, put̃µ := µ.

Otherwise, using thec-pair property onC ′ we find constantsdC′ , d′C′ , d
′′
C′,

with d′C′ 6= 0, such that

dC′µ+ d′C′µ
′
C′ = d′′C′ and putµ̃ = µ− d′′C′ − d′C′µ̃

′

dC′
.

Thenµ̃C′ = 0 andµ̃C /∈ ΦF′(C) (sinceµ̃′C is constant). Now put

B := C +
c

c′
· C ′,

for some nonzeroc ∈ C andc′ ∈ C ′. ThendimF′(B) = 3, the maps̃µB, µ̃′B
are linearly independent, and they satisfy the required conditions, by the log-
arithmic property. Fors 6= 0, we havesµ̃ + s′µ̃′ /∈ ΦF′(C). Otherwise,
sµ̃+ s′µ̃′ /∈ ΦF′(

c
c′
· C ′).

A detailed analysis ofc-pairs on projective planes as above shows that
〈µ′, µ′′〉Z` on any such space contains a flag map. This will complete the
proof of the main theorem.

LEMMA 5.21 (Lemma 4.3.2 in [3]). — LetV ⊂ Z2
` be such that for any twolemm:line-point0

pairs of distinct points the affine line through one pair and the affine line
through the other have a common point and that this point of intersection is
contained inV .

ThenV is contained in a line union one point.
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Proof. — Otherwise,V contains four points in general position. EmbeddZ2
`

into P2(Q`), choose coordinates for these four points

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and(1 : 1 : 1)

and closeV for the operation

x, y, z, t 7→ l(x, y) ∩ l(z, t), when x 6= y, z 6= t, l(x, y) 6= l(z, t).

The closureV̄ of V satisfies the axioms of a projective plane (see Defini-
tion 4.1). For example, to verify that any “line” in̄V contains at least three
points it suffices to pick one of the four initial points not on this line and to
draw lines through this point and the remaining three points in the initial set.

By the fundamental theorem of projective geometry,V̄ = P2(Q). On the
other hand,P2(Q) is dense inP2(Q`). In particular, it cannot be contained in
Z2
` . Contradiction.

COROLLARY 5.22. — LetB = F3 andµ, µ′ ∈ M(B) be ac-pair of F∗-coro:line-point
invariant maps. Then the image ofP(B) under map

ϕ : P(B) → A2(Z`)
b 7→ (µ(b), µ′(b))

is contained in a union of an affine line and (possibly) one more point.

Proof. — Observe that the image of everyP1 ⊂ P(B) is contained in an
affine line inZ2

` . This is simply the geometric interpretation of the condition
for µ, µ′ to be ac-pair.

Next, for any two pairs of distinct points(a, b), (a′, b′) in ϕ(P(B)) the affine
lines l = l(a, b), l′ = l′(a′, b′) in A2 = Z2

` through these pairs of points must
intersect. (Choosẽa, b̃, ã′, b̃′ in the preimages ofa, b, a′, b′; the projective lines
l̃, l̃′ ⊂ P(B) = P2 through these points intersect in someq and, by the first
observation,ϕ(q) must lie on bothl andl′).

Now it suffices to apply Lemma5.21.

ASSUMPTION5.23. — We may now assume thatassu:proof
– F = Fp or F4;
– µ, µ′ ∈ LF(A) is ac-pair of linearly independent maps as in Lemma5.20,
– B is as in Lemma5.20, and in particular, there exist two-dimensional
C,C ′ ⊂ B so thatµC /∈ ΦF(C), µ′C′ /∈ ΦF (C ′) andµC′ = µ′C = 0.
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We can also exclude the following degenerate cases, which contradict our
assumption that no linear combination ofµ, µ′ is a flag map onB:

(1) ϕ(P(B)) is contained in a line; this means thatµ, µ′ are linearly depen-
dent (modulo constants);

(2) ϕ(l) is a point, for somel ∈ P(B); this implies thatϕ(l) ∈ ϕ(l′), for all
l′ ⊂ P(B) andϕ(P(B)) is contained in a line, contradiction to (1);

(3) ϕ(P(B)) is constant outside one line; here the affine mapZ2
` → Z`

projectingϕ(l) to one point gives a nontrivial flag map in the span of
µ, µ′.

LEMMA 5.24. — Let l, l′ ⊂ P2 be distinct lines. Letx ∈ P2 be a point suchlemm:pi-x
that ϕ(x) /∈ (ϕ(l) ∪ ϕ(l′)). Then there is a natural projective isomorphism
πx,l′ : l → l′ respecting the level sets ofϕ. Namely, for every pairy1, y2 ∈ l
with ϕ(y1) = ϕ(y2) one has

ϕ(πx,l′(y1)) = ϕ(πx,l′(y2))

(and vice versa). In particular, ifϕ(l) ⊂ ϕ(l′) thenϕ(l) = ϕ(ml′).

Proof. — The imagesϕ(l(x, y1)) andϕ(l(x, y2)) span the same affine line
Lx. We haveϕ(l′) 6⊂ Lx. Define πx,l′(yi) := l(x, yi) ∩ l′. By Corol-
lary 5.22, ϕ(πx,l′(yi)) are contained in the intersection ofϕ(l′) andLx, so
thatϕ(πx,l′(y1)) = ϕ(πx,l′(y2)).

COROLLARY 5.25. — Letx, y ∈ P2
F be distinct points so thatϕ(x), ϕ(y) 6∈coro:same

(ϕ(l)∪ϕ(l′)) and the linel(x, y) throughx, y passes through the intersection
q0 := l ∩ l′. Then the composition

πx,l ◦ π−1
y,l : l → l

induces a nontrivial translation onl, with fixed pointq0, preserving the level
sets ofϕ. (By symmetry we have a similar translation onl′.)

πx,l′ ◦ π−1
y,l′ : l → l

In particular, if F = Fp (the prime field) then this translation is transitive on
l\(l∩l′) andϕ is constant on this complement. IfF = F4 then the complement
to l \ (l ∩ l′) is a union of two (two point) orbits of this translation andϕ is
constant on each orbit.
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Proof of Theorem5.8. — We keep the Assumptions5.23. Put P2 = P(B)
andl = P1 = P(C), l′ = P1 = P(C ′). For everyP1 ⊂ P2 its imageϕ(P1)
spans a unique affine line.

Assume in addition that there exists aq /∈ l such thatϕ(q) /∈ ϕ(l′). Let
l′′ := l(q, q0) be the line throughq andq0 := l ∩ l′. Then there exist two
distinct pointsx, y ∈ l′ such thatϕ(x), ϕ(y) 6∈ (ϕ(l) ∪ ϕ(l′′)). This gives a
nontrivial translation, preserving the level sets ofϕ on l (andl′′).

Over the prime fieldFp, p > 2, ϕ restricted tol (that is,µl) is constant on
the complement toq0. Contradiction to the assumption thatµl is not a flag
map. It follows that for allq 6∈ l, ϕ(q) ∈ ϕ(l′). By symmetry, for allq 6∈ l′,
ϕ(q) ∈ ϕ(l). Thus, for allq 6∈ (l∪ l′) we haveϕ(q) ∈ ϕ(q0) andϕ is constant
on every line throughq0 distinct froml, l′. Contradiction to Assumption5.23
(2).

ForF = F4 we have

l = q0 ∪ (t1 ∪ t2) ∪ (s1 ∪ s2),

with
ϕ(t1) = ϕ(t2) and ϕ(s1) = ϕ(s2).

If ϕ(q) ∈ ϕ(l) thenϕ(l′′) = ϕ(l), by Lemma5.24. Thenl andl′′ are projec-
tively (andϕ-invariantly) equivalent so that

l′′ = q0 ∪ (t′′1 ∪ t′′2) ∪ (s′′1 ∪ s′′2),

with
ϕ(t′′1) = ϕ(t′′2) and ϕ(s′′1) = ϕ(s′′2).

Sinceϕ(l(t′′1, s1)) andϕ(l(s′′1, t1)) are again both contained in the same affine
lineL we get translations onl on the complement to boths1 andt1.

It follows that
ϕ(q0) = ϕ(t1) = ϕ(s1)

contradiction to the assumption thatµ /∈ Φ(l).

6. Galois groups
sect:gal

Let k be an algebraic closure of a finite field of characteristic6= `, K the
function field of an algebraic varietyX overk, GaK the abelianization of the
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pro-̀ -quotientGK of the Galois groupGK of a separable closure ofK,

GcK = GK/[[GK ,GK ],GK ]
pr−→ GaK

its canonical central extension andpr the natural projection. In our situation,
GaK is a torsion-freeZ`-module.

DEFINITION 6.1. — We say thatγ, γ′ ∈ GaK form a commuting pairif fordefn:lift
some (and therefore any) of their preimagesγ̃, γ̃′ in GcK one has[γ̃, γ̃′] = 0. A
subgroupH ofGa is calledliftable if any two elements inH form a commuting
pair.

DEFINITION 6.2. — A fan ΣK = {σ} onGaK is the set of all those topolog-defn:fan
ically noncyclic liftable subgroupsσ ⊂ GaK which are not properly contained
in any other liftable subgroup ofGaK .

REMARK 6.3. — For function fieldsK/k of surfaces all groupsσ ∈ ΣK are
isomorphic to torsion-free primitiveZ`-submodulesσ of rank 2, see Section9.

NOTATIONS 6.4. — Letnota:kkk
µ`n := { `n

√
1 }

and
Z`(1) = lim

n→∞
µ`n .

We often identifyZ` andZ`(1) (sincek is algebraically closed). Write

K̂∗ := lim
n→∞

K∗/(K∗)`
n

for the multiplicative group of (formal) rational functions onX.

THEOREM 6.5 (Kummer theory). — The groupK∗/k∗ is a freeZ-module.thm:ga
One has

– K∗/(K∗)`
n

= (K∗/k∗)/`n, for all n ∈ N ;
– the discrete groupK∗/(K∗)`

n
and the compact profinite groupGaK/`n

are Pontryagin dual to each other, for aµ`n-duality;
– for K∗/k∗

∼−→ ZI , one hasK∗/(K∗)`
n ∼−→ (Z/`n)I and

GaK/`n
∼−→ (Z/`n(1))I ,

hence the duality between̂K∗ = K̂∗/k∗ and GaK is modelled on that
between

{ functionsI → Z` tending to0 at ∞} and ZI
` .
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LEMMA 6.6. — LetE/k be the function field of a curve. ThenΣE = ∅.rem:2

Proof. — By a result of Grothendieck, the pro-` fundamental group(π1)
ˆ
` of

a curve punctured in finitely many points is free. We have

GaE = lim
←−
J⊂I

ZJ
` , GcE = lim

←−
J⊂I

∧2(ZJ
` ),

with the commutation map equal to∧. This implies that a liftable subgroup
of GaE is topologically cyclic.

7. Valuations
sect:val

In this section we recall basic results concerning valuations and valued
fields (we follow [4]). Most of this material an adaptation of well-known
facts to our context.

NOTATIONS 7.1. — A value group, denoted byΓ, is a totally ordered (torsion-nota:vg
free) abelian group. We use the additive notation′′+′′ for the group law and
≥ for the order. We have

Γ = Γ+ ∪ Γ−, Γ+ ∩ Γ− = {0} and γ ≥ γ′ iff γ − γ′ ∈ Γ+.

ThenΓ∞ = Γ ∪ {∞} is a totally ordered monoid, by the conventions

γ <∞, γ +∞ = ∞+∞ = ∞, ∀γ ∈ Γ.

DEFINITION 7.2. — A (nonarchimedian)valuationon a fieldK is a pairdefn:valu
ν = (ν,Γν) consisting of a value groupΓν and a map

ν : K → Γν,∞

such that

– ν : K∗ → Γν is a surjective homomorphism;
– ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K;
– ν(0) = ∞.

REMARK 7.3. — In particular, sinceΓν is nontorsion,ν(ζ) = 0 for everyrem:zeta
elementζ of finite order inK∗.

A valuation is calledtrivial if Γ = {0}. If K = k(X) is a function field
over an algebraic closurek of a finite field then every valuation ofK restricts
to a trivial valuation onk (every element ink∗ is torsion).
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LEMMA 7.4. — LetK = k(X), withk as above, andν be a nonarchimedianlemm:zll
valuation onk(X). ThenHom(Γν ,Z`) is a finitely generatedZ`-module.

Proof. — Note that theQ-rank ofν is bounded bydim(X) (see [10]).

NOTATIONS 7.5. — We denote byKν , oν ,mν andKν the completion ofKnota:ko
with respect toν, the ring ofν-integers inK, the maximal ideal ofoν and the
residue field

Kν := oν/mν .

If X (over k) is a model forK then thecenterc(ν) of a valuation is the
irreducible subvariety defined by the prime idealmν ∩ k[X] (providedν is
nonnegative onk[X]).

It is useful to keep in mind the following exact sequences:

eqn:1 (7.1) 1 → o∗ν → K∗ → Γν → 1

and

eqn:2 (7.2) 1 → (1 + mν) → o∗ν → K∗
ν → 1.

NOTATIONS 7.6. — Write Iaν ⊂ Da
ν ⊂ GaK for the images of the inertia andnota:ine

the decomposition group of the valuationν in GaK .

NOTATIONS 7.7. — If χ : Γν → Z`(1) is a homomorphism thennota:iner

χ ◦ ν : K∗ → Z`(1)

defines an element ofGaK , called an inertia element of the valuationν. The
group of such elements isIaν ⊂ GaK .

NOTATIONS 7.8. — The decomposition groupDa
ν is by definition equal to

the image ofGaKν in GaK .

LEMMA 7.9. — There is a natural embeddingGaKν ↪→ GaK and a (canonical)
isomorphism

Da
ν/Iaν ' GaKν

.

Proof. — See Theorem 19.6 in [6], for example.

DEFINITION 7.10. — LetK = k(X) be a function field. Its valuationν isdefn:div
– positive-dimensionalif tr degkKν ≥ 1;
– divisorial if tr degkKν = dim(X)− 1.
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NOTATIONS 7.11. — We letVK be the set of all nontrivial (nonarchimedian)nota:cv
valuations ofK andDVK the subset of divisorial valuations. Ifν ∈ DVK is
realized by a divisorD on a modelX ofK (see Example7.13) we sometimes
write IaD, resp.Da

D, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12. — Let E = k(C) be the function field of a smooth curve.exam:curve
Every pointq ∈ C(k) defines a nontrivial valuationνq onE (the order of a
functionf ∈ E∗ at q). Conversely, every nontrivial valuationν onE defines
a pointq := c(ν) onC.

EXAMPLE 7.13. — LetK = k(X) be the function field of a surface.exam:suff
– Every positive-dimensional valuation is divisorial.
– Every (irreducible) curveC ⊂ X defines a valuationνC onK with value

groupZ. Conversely, every valuation onK with value groupZ and non-
algebraically closed residue field defines a curveC on some modelX of
K.

– Every flag(C, q), (curve, point on its normalization), defines a valuation
νC,q onK with value groupZ2.

– There exist valuations onK with value groupQ and center supported in
a point (on every model).

LEMMA 7.14. — LetK = k(X) be the function field of a surface. IfDa
ν/Iaνlemm:surf-valua

is nontrivial thenν is divisorial.

Proof. — The only 1-dimensional valuations on function fields of surfaces
are divisorial valuations. For other valuations, the residue fieldKν = k is
algebraically closed andGaKν

trivial.

8. A dictionary
sect:dict

Write

LK := Lk(K) = { homomorphismsK∗ → Z`(1)}
ΦK := Φk(K) = { flag mapsK → Z`(1)}

PROPOSITION8.1. — One has the following identifications:prop:decomp

GaK = LK ,
Da
ν = {µ ∈ LK |µ trivial on (1 + mν)},
Iaν = {µ ∈ LK |µ trivial on o∗ν}.
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If two nonproportionalµ, µ′ ∈ GaK form a commuting pair then the corre-
sponding mapsµ, µ′ ∈ LK form ac-pair (in the sense of Definition5.7).

Proof. — The first identification is a consequence of Kummer theory6.5.
The second identification can be checked on one-dimensional subfields ofK,
where it is evident. For this and the third identification we use (7.1) and (7.2).
For the last statement, assume thatµ, µ′ ∈ LK don’t form ac-pair. Then there
is anx ∈ K such that the restrictions ofµ, µ′ ∈ LK to the subgroup〈1, x〉 are
linearly independent. Therefore,µ, µ′ ∈ GaK define a rank 2 liftable subgroup
in Gak(x). Such subgroups don’t exist sinceGk(x) is a free pro-̀-group.

EXAMPLE 8.2. — If µ ∈ Da
ν andα ∈ Iaν thenµ, α form a commuting pair.exam:cp

PROPOSITION8.3. — LetK be a field andα ∈ ΦK ∩LK . Then there existsprop:may
a unique valuationν = (να,Γνα) (up to equivalence) and a homomorphism
pr : Γνα → Z`(1) such that

α(f) = pr(να(f))

for all f ∈ K∗. In particular, α ∈ Iaν (under the identification of Proposi-
tion 8.1).

Proof. — Let F be a finite subfield ofk and assume thatα(f) 6= α(f) for
somef, f ′ ∈ K and consider the lineP1 = P(Ff + Ff ′). Sinceα is a flag
map, it is constant outside one point on thisP1 so that eitherα(f+f ′) = α(f)
or = α(f ′). This defines a relation:f ′ >α f (in the first case) andf >α f

′

(otherwise). Ifα(f) = α(f ′) and there exists anf ′′ such thatα(f) 6= α(f ′′)
andf >α f

′′ >α f
′ then we putf >α f

′. Otherwise, we putf =α f
′.

It was proved in [3], Section 2.4, that the above definitions are correct and
that>α is indeed an order which defines a filtration on the additive groupK
by subgroups(Kγ)γ∈Γ such that

– K = ∪γ∈ΓKγ and
– ∩γ∈ΓKγ = ∅,

whereΓ is the set of equivalence classes with respect to=α. Sinceα ∈ LK
this order is compatible with multiplication inK∗, so that the mapK → Γ is
a valuation andα factors asK∗ → Γ → Z` ' Z`(1). By (7.1), α ∈ Iaν .

COROLLARY 8.4. — Every (topologically) noncyclic liftable subgroup ofcoro:lift
GaK contains an inertia element of some valuation.
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Proof. — By Theorem5.8, every such liftable subgroup contains anΦ-map,
which by Proposition8.3belongs to some inertia group.

9. Flag maps and valuations
sect:af-val

In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.

LEMMA 9.1. — Letα ∈ ΦK ∩ LK , ν = να be the associated valuation andlemm:am
µ ∈ LK . Assume thatα, µ form a c-pair. Then

µ(1 + mν) = µ(1).

In particular, the restriction ofµ to oν is induced fromKν .

Proof. — We have
(1) α(κ) = 0 for all κ ∈ oν \mν ;
(2) α(κ+m) = α(κ) for all κ andm as above;
(3) mν is generated bym ∈ oν such thatα(m) 6= 0.

If m ∈ mν is such thatα(m) 6= 0 andκ ∈ oν \ mν thenα is nonconstant on
the subgroupA := 〈κ,m〉. Then

µ(κ+m) = µ(κ).

Indeed, ifµ is nonconstant onA the restrictionµA is proportional toαA (by
the c-pair property) andα satisfies (2). In particular, for suchm we have
µ(1 +m) = µ(1).

If α(m) = 0 then there existsm′,m′′ ∈ mν such thatm = m′ + m′′ and
α(m′) = α(m′′) 6= 0. Indeed, there exists anm′ ∈ mν such thatm > m′ > 1
andα(m′) 6= α(1) = 0. Sinceα takes only two values on the subgroup
〈m′,m〉 ⊂ mν we have

α(m′′) = α(−m′ +m) = α(m′).

Therefore,

0 = µ(1 +m′) + µ(1 +m′′) = µ(1 +m+m′m′′).

Putκ = 1 +m +m′m′′ and observe thatα(−m′m′′) = 2α(m′) 6= 0. By the
argument above

µ(κ−m′m′′) = µ(κ) = µ(1 +m′ +m′′) = µ(1 +m),

as claimed.
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COROLLARY 9.2. — Inertia elementsα ∈ Iaν commute only with elementscoro:divv
µ ∈ Da

ν .

PROPOSITION9.3. — Let K = k(X) be the function field of a surface.prop:delta
Everyσ ∈ ΣK hasrkZ` σ = 2. Moreover, it defines a unique valuationν = νσ
ofK so that either every element ofσ is inertial for ν, or ν is divisorial and
there is an elementµ ∈ σ which is not inertial forν, butµ ∈ Da

ν .
If distinct σ, σ′ ∈ ΣK have a nonzero intersection then there exists a divi-

sorial valuationν ′′ such that

– σ, σ′ ∈ Da
ν′′;

– σ ∩ σ′ = Iaν′′.
Conversely, ifσ ∈ ΣK is not contained in aDa

ν′′ for any divisorial valuation
ν ′′ then for allσ′ ∈ ΣK , σ′ 6= σ, one hasσ ∩ σ′ = 0.

Proof. — We saw thatσ ∈ ΣK contains an inertial elementα for somevalu-
ationν. Sinceσ is topologically noncyclic there is aµ ∈ σ, Z`-independent
on α, and commuting withα. If µ is not inertial, that is,µ /∈ Φ(K), then
ν gives a nontrivial element in the (abelianized) Galois group of the residue
field Kν of ν. Thusν is divisorial,Kν is 1-dimensional and every liftable
subgroup inGaKν

hasZ`-rank equal to one. HencerkZ` σ = 2 in this case and,
by Corollary9.2, µ ∈ Da

ν . Such a valuationν is unique, sinceIaν ∩ Iaν′ = 0
for distinct divisorialν, ν ′.

If σ containsonly inertia elements, then there exists a unique valuation
ν such thatσ ∈ Iaν . Indeed, eithermν + mν′ = K or we may assume that
mν ⊂ mν′ (andoν ⊃ oν′). The first case is impossible since the corresponding
inertia groups don’t intersect. In the second case,Iaν ⊂ Iaν′, as claimed.
Moreover, it follows thatrkZ` σ = 2, since theQ-rank of any valuation on a
surface (over̄Fq) is at most two. This gives ofν = νσ in this case.

If distinct σ, σ′ have a nontrivial intersection, then the subgroupD ⊂ GaK
generated byσ, σ′ is not the inertia group of any valuation (the rank of those is
≤ 2, as we have seen above). If theσ∩σ′ contains a nontrivial inertia element
α thenD is contained in the decomposition group of this element (all elements
of D commute withα) and the corresponding valuation is divisorial. Ifµ ∈
σ∩σ′ is not an inertia element then there exist inertia elementsα ∈ σ andα′ ∈
σ′ corresponding to distinctdivisorial valuationsν, ν ′. The decomposition
groups of distinct divisorial valuations don’t intersect.
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Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groupsσ, σ′ ∈ ΣK with a
nontrivial intersection defines a divisorial valuationν, whose inertia group

Iaν = σ ∩ σ′.
The corresponding decomposition subgroup is

Da
ν = ∪σ⊃Iaνσ.

10. Galois groups of curves
sect:valc

Here we give a Galois-theoretic characterization of subgroupsσ ∈ ΣK

which are inertia subgroups of rank two valuations ofK arising from a flag
(C, q), whereC is a smooth irreducible curve (on some model ofK) and
q ∈ C(k) is a point (see Example7.13). We show that Galois-theoretic data
determine the genus ofC and all “points” onC, as special liftable subgroups
of rank two insideGak(C).

Throughout,E = k(C) is the function field of a smooth curve of genusg.
We have an exact sequence

0 → E∗/k∗ → Div(C) → Pic(C) → 0

(whereDiv(C) can be identified with the free abelian group generated by
points inC(k)). This gives a dual sequence

eqn:crrr (10.1) 0 → Z`
∆−→M(C(k),Z`) → GaE → Z2g

` → 0,

with the identifications
– Hom(Pic(C),Z`) = ∆(Z`) (sincePic0(C) is torsion);
– M(C(k),Z`) = Hom(Div(C),Z`) is theZ`-linear space of maps from
C(k) → Z`;

– Z2g
` = Ext1(Pic0(C),Z`).

Using this model and the results in Section6, we can interpret

eqn:cm (10.2) GaE ⊂M(C(k),Q`)/constant maps

as theZ`-linear subspace of all mapsµ : C(k) → Q` (modulo constant
maps) such that

[µ, f ] ∈ Z` for all f ∈ E∗/k∗.
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Here[·, ·] is the pairing:

eqn:inter (10.3)
M(C(k),Q`)× E∗/k∗ → Q`

(µ, f) 7→ [µ, f ] :=
∑

q µ(q)fq,

wherediv(f) =
∑

q fqq. In detail, letγ ∈ GaE be an element of the Galois
group. By Kummer theory,γ is a homomorphismK∗/k∗ → Z`(1) ' Z`.
Choose a pointc0 ∈ C(k). For every pointc ∈ C(k), there is anmc ∈ N such
that the divisormc(c− c0) is principal. Define a map

µγ : C(k) → Q`,
c 7→ γ(mc(c− c0))/mc.

Changingc0 we get maps differing by a constant map.
In this interpretation, an element of an inertia subgroupIaw ⊂ GaE corre-

sponds to a “delta”-map (constant outside the pointqw). EachIaw has a canon-
ical (topological) generatorδw, given byδw(f) = νw(f), for all f ∈ E∗/k∗.
The (diagonal) map∆ ∈M(C(k),Q`) from (10.1) is then given by

∆ =
∑
w∈VE

δw =
∑

qw∈C(k)

δqw .

DEFINITION 10.1. — We say that the support of a subgroupI ⊂ GaE is≤ sdefn:sup
and write

|supp(I)| ≤ s

if there exist valuationsw1, ..., ws ∈ VE such that

I ⊂ 〈Iaw1
, ..., Iaws〉Z` ⊂ GaE.

Otherwise, we write|supp(I)| > s.

LEMMA 10.2. — Let I ⊂ GaE be a topologically cyclic subgroup such thatlemm:cu
|supp(I)| > s ≥ 2. Then there exist a finite set{fj}j∈J ⊂ E∗ and anm ∈ N
such that the map

ψ : GaE → V := ⊕j∈JZ/`m
µ 7→ ([µ, fj]m)j∈J

has the following property: for every set{w1, ..., ws} ⊂ VE
ψ(I) 6⊂ 〈ψ(Iaw1

), ..., ψ(Iaws)〉Z` .

Proof. — Let ι ∈ GaE ⊂ M(C(k),Q`) be arepresentative, as in (10.2), of a
topological generator ofI, wheresupp(I) > s. There are three possibilities:
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(1) ι(C(k)) ⊂ Q` is infinite;
(2) there is ab ∈ ι(C(k)) ⊂ Q` such thatι−1(b) is infiniteandthere exist at

leasts+ 1 distinct pointsqs+2, . . . , q2s+2 ∈ C(k) such thatι(qj) 6= b for
all j = s+ 2, . . . , 2s+ 2;

(3) otherwise:ι(C(k)) is finite, there is ab with ι−1(b) infinite and there are
at mosts distinct points with values differing fromb.

In Case (3),|supp(I)| ≤ s.
In Case (1), choose any setQ = {q1, ..., q2s+2} ⊂ C(k) of points with

pairwise distinct values. In Case (2) choose distinctq1, ..., qs+1 ∈ ι−1(b) and
putQ := {q1, ..., q2s+2}. In both cases, ifQ′ ⊂ Q is any subset of cardinality
|Q′| = s then ι is nonconstanton Q \ Q′. In particular, there exist points
qs1 , qs2 ∈ Q \Q′ such that

eqn:iota (10.4) ι(qs1) 6= ι(qs2).

We may assume thatι(Q) ⊂ Z` (replacingι by a sufficiently high multiple,
if necessary). Now we choose anm′′ ∈ N such that all values ofι onQ remain
pairwise distinct moduloZ/`m′′. LetDiv0

Q(C) be the abelian group of degree
zero divisors onC supported inQ. By Lemma3.2, there is ann = nQ ∈ N
such thatnD is principal for everyD ∈ Div0

Q(C). In particular, for every
qs1 , qs2 ∈ Q there is a functionf ∈ E∗ such thatdiv(f) = n(qs1−qs2). Write
n = `m

′
n̄, with gcd(n̄, `) = 1, and putm = m′ +m′′.

We have a pairing (Kummer theory)

GaE × nDiv0
Q(C) → Z/`m
(µ, f) 7→ [µ, f ]m.

Notice that[Iaw, f ] = 0 for all w with qw /∈ Q and allf ∈ E∗ supported in
Q. Further, for everyQ′ ⊂ Q with |Q′| = s and pointsqs1 , qs2 ∈ Q \Q′ as in
(10.4) there is anf ∈ E∗ with divisordiv(f) = n(qs1 − qs2) such that

[ι, f ] = n · (ι(qs1)− ι(qs2)) 6= 0 mod `m

and
[Iaw′ , f ] = 0

for all Iaw′ of q′ ∈ Q′. Let {fj}j∈J be a basis for̀m ·Div0
Q(C), with fj ∈ E∗.

The map
ψ : GaE → ⊕j∈JZ/`m

µ 7→ ([µ, fj]m)j∈J
satisfies the required properties.
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The next step is anintrinsic definition of inertia subgroups

Iaw ⊂ Da
ν/Iaν = Gak(C).

We have a projection
πν : GaK → GaK/Iaν

and an inclusion
GaKν

= Da
ν/Iaν ↪→ GaK/Iaν

PROPOSITION10.3. — Letν be a divisorial valuation ofK. A subgroupprop:intri

I ⊂ Da
ν/Iaν

is the inertia subgroup of a divisorial valuation ofk(C) = Kν iff for every
homomorphism

ψ : GaK/Iaν → V

onto a finite abelian groupV there exists a divisorial valuationνψ such that

ψ(I) = ψ ◦ πν(Iaνψ).

Proof. — LetC be the smooth model forKν = k(C),

I = Iaw ⊂ Da
ν/Iaν

the inertia subgroup of a divisorial valuation ofk(C) corresponding to a point
q = qw ∈ C(k) and

ψ : GaK/Iaν → V

a homomorphism onto a finite abelian group. SinceGaK is a pro-̀ -group, we
may assume that

V = ⊕j∈JZ/`nj ,
for somenj ∈ N. Letn = maxj(nj). By Kummer theory,

Hom(GaK ,Z/`n) = K∗/(K∗)`
n

so thatψ determines elements

f̄j ∈ K∗/(K∗)`
n

(for all j ∈ J). Choose functionsfj projecting tof̄j. They define a finite
set of divisorsDij onX. Moreover,fj are not simultaneously constant onC
(otherwise,ψ(Gak(C)) = ψ(Iak(C))). Changing the model̃X → X, if necessary,
we may assume that

– C is smooth (and irreducible);
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– there exists exactly one irreducible componentD in the full preimage of
∪Dij which intersectsC in q. Moreover, this intersection is transversal

(see Section3). Then the image ofIaD underψ is equal to the image ofIaw.

Conversely, we need to show that ifI 6= Iaw (for somew ∈ DVKν ), then
there exists a homomorphism

ψ : GaK/Iaν → V

onto a finite abelian groupV such that for allν ′ ∈ DVK one has

ψ(I) 6= ψ ◦ πν(Iaν′).

We consider two cases

(1) there exist two pointsq, q′ ∈ C(k) such thatI ⊂ 〈Iaw, Iaw′〉;
(2) otherwise.

Case 1.There exists a rational mapπ : X → P1 such that its restriction

π : C → P1

is surjective, unramified atq, q′ andπ(q) 6= π(q′). Under the induced map of
Galois groups

π∗(I) ⊂ 〈Iaπ(w), Iaπ(w′)〉
but is not contained in eitherIaπ(q) or Iaπ(q′). Thus there exist a finite abelian
groupV and a mapψ : Gak(P1) → V such thatψ(I) /∈ ψ(Iaw′′) for any
q′′ ∈ P1. It follows that

ψ ◦ π∗(I) /∈ ψ ◦ π∗(Iaν )

for anyν ∈ DVK .

Case 2. By Lemma10.2, there exist a finite set of functions̄fj ∈ k(C),
with support in a finite setQ = {q0, ..., qs} ⊂ C(k), and anm ∈ N such that
the homomorphism

ψ̄ : Gak(C) → V = ⊕j∈JZ/`m
µ 7→ ([µ, f̄j]m)j∈J

has the property that for allw,w′ ∈ DVk(C)

ψ(I) 6∈ 〈ψ(Iaw), ψ(Iaw′)〉Z` .
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Next we choose a model forX andC as in Lemma3.8. In particular, there
exist functionsgj with divisor

div(gj) = n · (Dj −D0) + (Hj −H ′j)

such that all the divisors are irreducible, with transversal intersections and
div(gj)|C = n(qj − q0). These functionsgj define a homomorphism

ψ : GaK/Iaν → V.

If D is a divisor onX thenψ ◦πν(IaD) = 0 unlessD = Dj for somej. In this
caseψ ◦ πν(IaDj) = ψ(Iawj).

Let ν ′ ∈ DVK andc(ν ′) ⊂ X be its center onX. There are three cases:

– c(ν ′) 6⊂ Dj for anyj: thenψ ◦ πν(Iaν′) = 0;
– c(ν ′) ∈ D0

j , whereD0
j = Dj \ (∪j′ 6=jDj ∩Dj′): then

ψ ◦ πν(Iaν′) ⊂ ψ(Iawj);

– c(ν ′) ∈ Dj ∩Dj′ for somej, j′: then

ψ ◦ πν(Iaν′) ⊂ 〈ψ(Iawj), ψ(Iawj′ )〉Z` .

All three possibilities contradict our assumptions.

LEMMA 10.4. — Let E = k(C) be the function field of a curve. Thenlemm:gen-type
g(C) ≥ 1 iff there exists a non-zero homomorphism fromGaE to a finite
(abelian) group which maps all inertia elements to0.

Proof. — Indeed, every curve of genus≥ 1 over a finite field of characteristic
p has unramified coverings of degree`. These coverings define maps of Galois
groups, which are trivial on all inertia elements. IfC is rational thenGaE,
and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequence (10.1)).

REMARK 10.5. — Combining this with Proposition10.3we can decide inrem:gen-tt
purely Galois-theoretic terms which divisorial valuations ofK correspond to
nonrational (irreducible) curvesC on some modelX of K. We call such
valuationsnonrational.
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11. Valuations on surfaces
sect:recc

The next stage of the recognition process leads us to the following prob-

lem: How to characterize subgroupŝk(C)
∗
⊂ K̂∗? In this section we recall a

geometric argument (used in algebraic K-theory) characterizing pairs of func-
tionsf, g ∈ K∗ which are contained ink(C)∗ ⊂ K∗, for some curveC (such
curves correspond to projectionsX → C).

Let K = k(X) be the function field of a smooth surfaceX overk andν
a divisorial valuation ofK. We have a well-defined (bilinear, with respect to
multiplication) residue map

eqn:ress (11.1)
K∗ ×K∗ → K∗

ν/k
∗

f, g 7→ f ν(g)/gν(f).

On a smooth modelX of K, whereν = νD for some divisorD ⊂ X, we can
define

eqn:res-1 (11.2) %ν = %D : K∗ ×K∗ → K∗
ν/k

∗

as follows:

– %ν(f, g) = 1 if both f, g are invertible onD;
– %ν(f, g) = fmD if f is invertible (fD is the restriction toD) andg has

multiplicity m alongD;
– %ν(f, g) = (fmg/gmf )D in the general case, whenf, g have multiplici-

tiesmf ,mg, respectively.

The definition does not depend on the choice of the model.
The following is a standard result in K-theory. We include a proof since we

will need its`-adic version.

LEMMA 11.1. — For f, g ∈ K∗lemm:fg

%ν(f, g) = 1 ∀ν ∈ DVK ⇐⇒ f, g ∈ E = k(C) ⊂ K for some curveC.

Proof. — (⇐) On an appropriate modelX we haveν = νD for a divisor
D ⊂ X andπ : X → C is regular and flat with irreducible generic fiber (and
f, g ∈ k(C)∗). By definition,%ν(f, g) = 1 if D is not in a fiber ofπ. If D is
in a fiber then there is at ∈ k(C)∗, νD(t) 6= 0 such that bothftmf , gtmg are
regular and constant onD (for somemf ,mg ∈ N) so that%ν(f, g) = 1.
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(⇒) Assume that%ν(f, g) = 1 for everyν ∈ DVK . Every nonconstant
functionf defines a unique map (with irreducible generic fiber)

πf : X → Cf

which corresponds to the algebraic closure ofk(f) in K (we will say thatf
is induced fromCf ). We claim thatπf = πg.

Sincef is induced fromCf , we have

div(f) =
∑
q∈Q

aqDq,

whereQ ⊂ Cf (k) is finite andDq = π−1(q). ThenD2
q = 0 andDq is either

a multiple of a fiber ofπg or it has an irreducible componentD ⊂ Dq which
dominatesCg (underπg). In the second case, the restriction ofg to Dq is a
nonconstant element ink(Dq). ThenνD(f) 6= 0, while νD(g) = 0. Hence
%D(f, g) 6= 0 since it coincides withg−νD(f)

D 6= 1, a contradiction. Therefore,
all Dq are contained in the finitely many fibersS of πg. That meansdiv(f)
does not intersect the fibersRt, t ∈ Cg, t /∈ S which implies thatf is constant
on suchRt. Hencef belongs to the normal closure ofk(Cg) in K, and in fact
f ∈ k(Cg) sincek(Cg) is algebraically closed inK, by construction. Thusf
is induced fromCg and henceCf = Cg andπf = πg.

12. `-adic analysis: generalities
sect:ella

Hypothetically, surjective homomorphismsGaK → Gak(C) (or dually, inclu-

sionsk̂(C)∗ ⊂ K̂∗) are characterized as follows: assume, we have a commu-
tative diagram

GcK

��

// Ac

��
GaK ψ

// A

where the abelian groupA is a rank two torsion-freeZ`-module andAc is
its free central extension. Then there exists a unique fieldk(C) ⊂ K and a
factorization ofψ:

GaK → Gak(C) → A.
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Here we solve a dual problem. We distinguish, Galois-theoretically, a cer-
tain subgroup insidêK∗ which containsK∗/k∗. The main result is the Galois-
theoretic determination of pairŝf, ĝ of elements of this subgroup which are
contained in the completion̂E∗ of the same one-dimensional field.

In detail, to everyf ∈ K∗ one associates its divisorD = Df onX. Con-
versely,D (uniquely) determines the image off ∈ K∗/k∗. Recall that the
Galois groupGaK determinesK̂∗, a group substantially bigger thanK∗/k∗.
The goal is to detect thè-adic subspaceK∗/k∗ ⊗ Z` ⊂ K̂∗.

We start with the theory of divisors withZ`-adic coefficients associated to
elements inK̂∗. Such an element is, in general, represented by a divisor with
infinite support onX, with rapidly decreasing coefficients (in the`-adic topol-
ogy onZ`). The Galois datum(GaK ,ΣK) allows us to distinguish between ra-
tional and nonrational irreducible divisors (via the corresponding valuations)
and to characterize intrinsically a subspaceFS(K) ⊂ K̂∗ (of divisors with
finite nonrational support, see12.2and12.3), containingK∗/k∗ ⊗ Z`.

In order to further shrinkFS(K) using Galois data we use the fact that for
any nontrivialf ∈ K∗ there are many otherg ∈ K̂∗ with ρ̂(f, g) = 0 (where
ρ̂(f, g) = 0 is the`-adic generalization ofρ(f, g) = 0). Those are arbitrary

elementsg ∈ Ê∗, E = k(f)
K

. However, for a sufficiently generic element
f̂ ∈ K̂∗ the elementg with ρ(f, g) = 0 is equal tofa, a ∈ Z`.

Thus the property that forf ∈ K̂∗ the set ofg ∈ K̂∗ with ρ̂(f, g) =
0 contains many elements different fromfa, a ∈ Z` can be used to select
a smaller subgroupFSX(K) ⊂ FS(K), containingK∗/k∗. Elements in
FSX(K) have finite support on every modelX. We show in Section14 that
ρ(f, g) = 0, f, g ∈ FSX(K) implies thatf, g ⊂ Ê∗, E = k̄(x)K for some
x ∈ K∗.

We have an exact sequence

eqn:seqq (12.1) 0 → K∗/k∗
ρX−→ Div(X)

ϕ−→ Pic(X) → 0,
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whereDiv(X) is the group of (Weil or Cartier) divisors ofX. We identify an
f ∈ K∗/k∗ with its image underρX . Let

D̂iv(X) := {D =
∑
m∈M

âmDm}, resp. D̂ivnr(X) ⊂ D̂iv(X),

be the group of divisors (resp. nonrational divisors) withrapidly decreasing
coefficients:

– M is a countable set;
– for all r ∈ Z the set

{m | |âm|` ≤ r}
is finite;

– for D ∈ D̂ivnr(X), allDm are nonrational.

Clearly, the group offinite `-adic divisors

Div(X)` := Div(X)⊗Z Z` ⊂ D̂iv(X).

Every element
f̂ ∈ K̂∗ = lim

n→∞
K∗/(K∗)`

n

has a representation

f̂ = (fn)n∈N or f = f0f
`
1f

`2

2 · · · ,

with fn ∈ K∗. We have homomorphisms

ρ̂X : K̂∗ → D̂iv(X),

f̂ 7→ div(f̂) :=
∑

n∈N `
n · div(fn) =

∑
m âmDm,

ρ̂X,nr : K̂∗ → D̂iv(X)
pr−→ D̂ivnr(X),

whereDm ⊂ X are irreducible divisors,

âm =
∑
n∈N

anm`
n ∈ Z`,

with anm ∈ Z, and

div(fn) =
∑
m

anmDm.

Herediv(fn) is theCartier divisor of fn and
∑

m anmDm is its image in the
group ofWeildivisors.
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Note that the map̂ρX has a kernel

T`(X) = lim
←−

Tor1(Z/`,Pic0(X)[`]),

wherePic0(X)[`] ⊂ Pic0(X) is the `-power torsion subgroup. The group
T`(X) is isomorpic toZg

` .
If T`(X) 6= 0 then eitherX contains only finitely many rational curves, or

X, modulo purely inseparable covers, is a rational pencil over a curveC of
genusg(C) ≥ 1.

Everyν ∈ DVK gives rise to a homomorphism

ν : K̂∗ → Z`

and a residue map

%̂ν : K̂∗ × K̂∗ → K̂ν .

On a smooth modelX, whereν = νD for some divisorD ⊂ X, ν(f̂) is
the`-adic coefficient atD of div(f̂), while %̂ν is the natural generalization of
(11.1).

DEFINITION 12.1. — We say that distinct̂f, ĝ ∈ K̂∗ commute if̂%ν(f̂ , ĝ) =defi:commu
0, for all divisorial ν. We say that they have disjoint support if for all divisorial
valuationsν ∈ DVK

ν(f̂) · ν(ĝ) = 0.

We say thatf̂ ∈ K̂∗ has nontrivial commutators if there existĝ ∈ K̂∗ with
disjoint support (fromf̂ ) which commute witĥf .

NOTATIONS 12.2. — We putnota:supp

suppK(f̂) := { ν ∈ DVK | f̂ nontrivial on Iaν };
suppX(f̂) := { Dm | âm 6= 0 }.

DEFINITION 12.3. — We say that̂f hasfinite nonrational supportif the setrem:alt
of nonrationalν ∈ suppK(f̂) is finite (see Lemma10.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K) ⊂ K̂∗

be the set of such elements.
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DEFINITION 12.4. — We say thatf̂ has finite support on the modelX ifdefn:fs
suppX(f̂) is finite. Put

FSX(K) := {f̂ ∈ K̂∗ | ρX(f̂) ∈ Div(X)`}.

LEMMA 12.5. — The definition ofFSX(K) does not depend on the choicelemm:indep
of a smooth modelX.

Proof. — For any two smooth modelsX ′, X ′′ we can find a smooth model
X dominating both. The difference between the sets of irreducible divisors
Div(X ′), resp. Div(X ′′), andDiv(X) is finite and consists only of rational
curves.

COROLLARY 12.6. — LetK be the function field of a surfaceX containingcoro:almost
only finitely many rational curves. Then

FS(K) = FSX(K).

This gives an intrinsic, Galois-theoretic description ofFSX(K) in this
case. We proceed to give such a description in general. Note that forf̂ ∈
FS(K), its nonrational component̂ρX,nr(f̂) is independent of the model
X. More precisely, for any birational morphismX ′ → X we can identify
D̂ivnr(X

′) = D̂ivnr(X). Under this identification

ρX′,nr(f̂) = ρX,nr(f̂).

Let F(K) be the set of allf ∈ K∗/k∗ such thatρX,nr(f) 6= 0 and for every
rational divisorial valuationν such thatν(f) = 0 and some (equivalently,
every) modelX of K, whereν = νC for a rational curveC ⊂ X, either

– fC = 1 ∈ k(C)∗/k∗ or
– ρC(fC) 6= 0 mod `.

Geometrically, this condition means that ifC is not a component of the divisor
of f then there is a point inC ∩ div(f) whose multiplicity is prime tò .

LEMMA 12.7. — The setF(K) generatesK∗/k∗. Moreover, for every pairlemm:imp
of commuting elementŝf, ĝ ∈ FS(K) with disjoint support such that there
exists anf ∈ F(K) with

f = f̂ mod (K∗)`,

one hasf̂ ∈ FSX(K) and ĝ ∈ FSX(K), for every modelX ofK.
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Proof. — Let y ∈ K∗ be a function such that the generic fiber of the corre-
sponding mapπy : X → P1

y, from some modelX of K, is an irreducible
nonrational curve. (Notice that suchy generateK∗.) Using suchy we con-
structF(K) as follows.

For generic quadratic, coprime polynomialsP,Q ∈ k[y], the preimage in
X of (0 ∪∞) ⊂ P1 under the composition ofπy with the map

φ : P1
y → P1

y 7→ f(y) := P (y)/Q(y)

contains at least 4 irreducible smooth fibers ofπy. If f were nonconstant on
a rational curveC (on some modelX of K) andfC were aǹ -th power then
the local ramification indices off and hence ofy were divisible bỳ . Thus
we would have a mapπy : C → P1

y with all local ramification indices over 4
points divisible bỳ , and by Hurwitz’ theorem,g(C) > 0, which contradicts
the rationality ofC. It follows thatf ∈ F(K). Clearly, the elements from
F(K) generatek(y)∗.

Next, write

ρX(f̂) =
∑

i∈I niDi + `
∑∞

j=1 njCj,
ρX(ĝ) =

∑
i∈I′ n

′
iD
′
i + `

∑∞
j=1 n

′
jC
′
j,

whereI, I ′ are finite sets and the second sum is an infinite series over dis-
tinct rational curvesCj, C ′j ⊂ X. By assumption, the sets{Di}i∈I , {Cj}j∈N,
{D′i}i∈I′, {C ′j}j∈N are disjoint.

By assumption,ρν′j(f̂ , ĝ) = 0, for all ν ′j corresponding toC ′j. SinceC ′j are
rational, this residue equals the residue off onC ′j, which is nonzero mod `,

contradiction. Thus, if(f̂ , ĝ) = 0, thensuppX(ĝ) is finite. The restriction of
g′ to any irreducible component of the divisor off̂ is identically zero. This
implies thatg′ is a product of̀ -adic powers of elements belonging to the same
field k(y) asf . Thus all rational curves in the support off̂ also belong to the
fibers ofy. There are finitely many such curves since some fibers contain
nonrational curves.

We have an exact sequence

0 → K̂∗
ρ̂X−→ D̂iv(X)

ϕ`−→ Pic(X)` → 0,
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where we denote byPic(X)` the quotient group̂Div(X)/K̂∗. Write

D̂iv(X)0 ⊂ D̂iv(X)

for the group generated bŷρX(K̂∗) and identify anf̂ ∈ K̂∗ with its image.

LEMMA 12.8. — LetX/k be a smooth projective surface,M a finite set andlemm:DD

D =
∑
m∈M

amDm ∈ Div(X)` := Div(X)⊗Z Z`, am ∈ Z`

a divisor such thatϕ`(D) = 0. Then there exist a finite setI, functions
fi ∈ K∗ and numbersai ∈ Z`, linearly independent overZ, such that for all
i ∈ I

suppX(fi) ⊂ suppX(D)

and

D =
∑

aibidiv(fi), bi ∈ Q.

If NS(X) = Pic(X) then we can take allbi = 1.

Proof. — We have a diagram

Ker(ϕ) → ⊕m∈MZDm
ϕ−→ Λ ⊂ Pic(X) → 0

↓ ↓ ↓
Ker(ϕ`) → ⊕m∈MZ`Dm

ϕ`−→ Λ` ⊂ Pic(X)` → 0.

The groupΛ is finitely generated and its image inNS(X) = Pic(X)/Pic0(X)
has the same rank asΛ (sincePic0(X) is a torsion group):

rkZΛ = rkZ`Λ` andrkZKer(ϕ) = rkZ`Ker(ϕ`).

In particular,Ker(ϕ`) has a basis{Di}i∈I (over Z`), where eachDi is a Z-
integral linear combinations ofDm (with m ∈ M ) and is also inKer(ϕ). It
follows thatDi = div(fi) for some functionfi ∈ K∗ with support inD.
Finally, if ϕ`(D) = 0, we can find a representation

D =
∑
i

aidiv(f bii ),

with bi ∈= Q andai ∈ Z`, linearly independent overZ (passing to a subset
of I, if necessary).
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COROLLARY 12.9. — There is an exact sequence

1 → K∗/k∗ ⊗ Z` → FSX(K) → Pic0(X)[`] → 1

wherePic0(X)[`] ⊂ Pic0(X) is the`-power torsion subgroup.

Proof. — If suffices to recall that elements inPic0(X)[`], are represented, in
our description, by elementsf 1/`n, for somen ∈ N, which define unramified
`-power cyclic covering of a modelX.

Lemma12.7 and Lemma12.8 allow us to defineFSX(K) intrinsically.
Namely, for every

f̄ ∈ FS(K)/` = K∗/` = K̂∗/`

denote byFf̄ ⊂ FS(K) the groupZ`-generated by(f̂/f̂ ′)1/`, wheref̂ andf̂ ′

are elements which have nontrivial commutators and which both reduce tof̄
modulo`. Then define

FS0(K) = ∩f̄∈K∗/`Ff̄ .

Note that for allf̄ ∈ F(K)/` and every modelX of K one has

Ff̄ ⊂ FSX(K).

Lemma12.8implies that, conversely

FSX(K) ⊂ Ff̄ ,

for everyf̄ . In particular, for everyf ∈ F(K), with f̄ = f mod `, both sets
coincide. Therefore,

eqn:f0 (12.2) FS0(K) = FSX(K),

for all modelsX.
Moreover, notice that elements inK∗/k∗ ⊗ Z` ⊂ FSX(K) are Galois-

theoretically characterized as elements whose projection toPic0(X) is trivial.
As a group,K∗/k∗ ⊗ Z` is generated by elements whoseν-values (forν ∈
DVK) are not all divisible bỳ .
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13. `-adic analysis: curves
sect:curves-ell

In this section we begin the process recognition of the latticeK∗/k∗ ⊂ K̂∗.
We solve an analogous problem for the function field of a rational curve. This
result will play an essential role in the analysis of surfaces.

PROPOSITION13.1. — Let k̃ be the closure of a finite field,char(k̃) 6= `, Cprop:cc
a curve over̃k of genusg with function fieldE = k̃(C) and

Ψ : Gak(P1) → GaE
an isomorphism of Galois groups inducing an isomorphism on inertia groups
of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let

Ψ∗ : k̂(P1)∗ → Ê∗

be the dual isomorphism. ThenE = k̃(P1) and there is a constanta ∈ Z∗`
such thatΨ∗(k(P1)∗/k∗) = a · E∗/k̃∗.

Proof. — Recalling the exact sequence (10.1), we have a commuting dia-
gram

0 // Z`(∆C(k̃)) // M(C(k̃)) // GaE //

��

Z2g
`

// 0

0 // Z`(∆P1(k)) // M(P1(k)) // Gak(P1)
// 0

SinceΨ is an isomorphism on inertia groupsIaw, for eachw, thesetsC(k̃)
andP1(k) coincide and we get auniqueisomorphism ofZ`-modules (of maps
to Z`)

M(C(k̃)) = M(P1(k̃)).

In particular, we find thatg = 0 andE = k̃(P1). Further, we have an induced
isomorphism

Z`(
∑
w∈VE

δw) = Z`(
∑

w′∈Vk(P1)

δw′)

so that
(
∑
w∈VE

δw) = a(
∑

w′∈Vk(P1)

δw′)
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for somea ∈ Z∗` . This implies thatδw = aδw′, for all w ∈ VE and the
correspondingw′ ∈ VP1. In particular, for the dual groups we have

E∗/k̃∗ = (K∗/k∗)a,

wherea ∈ Z∗` .

14. `-adic analysis: surfaces
sect:surr

LetK = k(X) be a function field of a smooth surfaceX overk. We will
need aǹ -adic version of Lemma11.1.

PROPOSITION14.1. — Let f̂ , ĝ ∈ FS0(K) be such thatprop:gff

– %ν(f̂ , ĝ) = 0 for everyν ∈ DVK ;
– suppK(f̂) ∩ suppK(ĝ) = ∅.

Then there is a 1-dimensional fieldE = k(C) ⊂ K such thatf̂ , ĝ ∈ Ê∗.

Proof. — By Lemma12.8,

f̂ =
∏
i∈I

faii , resp.ĝ =
∏
j∈J

g
bj
j ,

where

– I, J are finite sets;
– fi, gj ∈ K∗ for all i, j;
– ai ∈ Q` (resp.bj ∈ Q`) are linearly independent overQ.

Fix a valuationν and choose a (smooth) modelX so thatν = νD for some
divisorD ⊂ X. Then

%ν(f̂ , ĝ) =
∏

%D(fi, gj)

and we can compute it using only those pairsfi, gj which haveD in their
support. In particular,

f̂mg/ĝmf =
∏

(f
aimj
i /g

bjmi
j ),

wheremj (resp.mi) is the order ofgj (resp. fi) onD. This order vanishes
unlessD ∈ supp(f̂) ∪ supp(ĝ). By assumption, ifD ∈ supp(f̂) thenD 6∈
supp(ĝ) (andnj = 0) so that

%D(f̂ , ĝ) ∈ k̂(D)∗.
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Since the nonzero numbersai are linearly independent overQ the equality∑
aimi = 0 implies thatmi = 0 (for all i) and thatgD ∈ k∗.
Similarly, gD =

∏
(gj)

bj
D , wherebj are linearly independent overZ, and

gD ∈ k∗ implies that(gj)D ∈ k∗ (for all j ∈ J). It follows that

%ν(fi, gj) = 0

for all fi, gj and every valuationν = νD. By Lemma11.1, all fi, gj belong to
the same 1-dimensional fieldE ⊂ K and hencêf, ĝ ∈ Ê∗.

REMARK 14.2. — For everyf ∈ K∗ the elementg = (f + a)(f + b) whererem:sati
a 6= b andab 6= 0, satisfies the conditions of Proposition14.1.

PROPOSITION14.3. — Let K∗ ⊂ FS0(K) ⊂ K̂∗ be a subset with the fol-prop:surfa
lowing properties:

– K∗ is closed under multiplication;
– K∗ ∩ Ê∗ = aE ·E∗/k∗ for every 1-dimensional subfieldE = k(x) ⊂ K,

with aE ∈ Z∗` ;
– there exists aν0 ∈ DVK such that

{[δ0, f̂ ] | f̂ ∈ K∗} ' Z
for a topological generatorδ0 of Iaν0 .

ThenK∗ ⊂ K∗/k∗ ⊗ Z(`).

Proof. — For x ∈ K \ k let E = k(x) be the corresponding 1-dimensional
field. By assumption, there exists anaE ∈ Z` such that

K∗ ∩ Ê∗ = aE · E∗/k∗.

If some (any) topological generatorδ0 of Iaν0 is not identically zero on̂E∗

then there exists a (smooth) modelX, whereν0 is realized by a divisorD0,
together with a morphism

X → P1 = P1
E

such thatD0 dominatesP1. It follows that

aE ∈ Q ∩ Z∗` = Z(`).

It remains to observe that everyx ∈ K∗ can be written as a product

x = x′ · x′′

such thatδ0 is nontrivial on bothE ′ = k(x′) andE ′′ = k(x′′).
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COROLLARY 14.4. — After a choice ofδ0, for every 1-dimensionalE ⊂ Kcoro:pm
and everyf ∈ E∗/k∗ we can Galois-theoretically distinguish its poles from
its zeroes.

The last essential step is a Galois-theoretic characterization of the partial
projective structure onK∗/k∗, more precisely, the characterization of gener-
ating elements and primary lines inK∗/k∗ (see Definition3.10 and Defini-
tion 4.7).

LEMMA 14.5. — Let x ∈ K∗ be a generating element,E := k(x) andlemm:unnn
r = r(x) ∈ N the smallest positive integer such thatxr ∈ K∗. Then

– r = pm for somem ∈ N (with p = char(k));
– (E∗/k∗) ∩ (K∗/k∗) = (Epm)∗/k∗;
– (pointwise)pm-th powers of primary lines inE∗/k∗ coincide with pri-

mary lines in(Epm)∗/k∗.

Proof. — The first property follows sinceK/K is a finite purely inseparable
extension, by Propositions3.19 and14.3. Next, we claim that a generator
y ∈ K is a pm-th power of a generator ofK (for somem depending ony).

Indeed,E := k(y)
K
⊂ K is a finite and purely inseparable extension ofk(y),

E := k(x) (for somex ∈ K). Thus

y = (axp
m

+ b)/(cxp
m

+ d) = ((a′x+ b′)/(c′x+ d′))p
m

for somem ∈ Z, a, b, c, d ∈ k and theirpm-th rootsa′, b′, c′, d′ ∈ k (sincek
is algebraically closed).

In particular, a generatory ∈ K∗ is inE∗ ∩ K∗ (and is the minimal positive
power of a generator inE contained inE∗ ∩ K∗). This implies the third
property: the generators ofEpm arepm-th powers of the generators ofE.

COROLLARY 14.6 (Definition). — Assume thaty, y′ are primitive elementscoro:pro-uni
in (Epm)∗ ⊂ K∗ such that

– y, y′ have support in 2 points;
– the pole ofy coincides with the pole ofy′.

Then (the images of)y, y′ in K∗/k∗ are contained in a primary line passing
through (the images of)1, y, y′.
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Proof. — Definition10.1and Lemma10.2give a Galois-theoretic character-
ization of the notion “support in 2 points”. By Corollary14.4we can Galois-
theoretically distinguish zeroes and poles ofy ∈ K∗/k∗. It remains to apply
Lemma14.5.

15. Proof
sect:proof

In this section we prove our main theorem: if

(GaK ,ΣK) = (GaL,ΣL),

whereL is a function field over an algebraic closure of a finite field of char-
acteristic6= `, thenK is a purely inseparable extension ofL.

Step 1.We have a nondegenerate pairing

GaK × K̂∗ → Z`(1).

This implies thatK̂∗ = L̂∗.

Step 2.We haveΣdiv
K = Σdiv

L and we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

Iaν ⊂ Da
ν ⊂ GaK :

every liftable subgroupσ ∈ Σdiv
K ⊂ ΣK contains an inertia element of a divi-

sorial valuation (which is also contained in at least one otherσ′ ∈ ΣK). The
corresponding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).
This identifiesDVK = DVL.

Step 3.For everyν ∈ DVK we characterize intrinsically

Iaw ⊂ Da
ν/Iaν

(see Proposition10.3).

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemma10.4and Remark10.5).
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Step 5.For f̂ ∈ K̂∗ we have two notions of support:suppK(f̂) (intrinsic)
andsuppX(f̂) (depending on a modelX) and two notions of finiteness:̂f is
nontrivial on at most finitely many nonrational divisorial valuationsν, resp.
f̂ has finite divisorial support on a model. We definedFS(K) ⊂ K̂∗ as the
set of elements satisfying the first notion of finiteness. If some (any) modelX
of K contains only finitely many rational curves, both notions of finiteness of
support coincide and one obtains an intrinsic Galois-theoretic characterization
of K∗/k∗ ⊗ Z` ⊂ K̂∗, as elements inFS(K). In general, it may happen that
someg ∈ L∗/l∗ has an “infinite rational tail” on some (every) modelX of K:

ρX(g) = ρX,nr(g) +
∑
j≥1

njCj,

whereCj are irreducible rational curves onX. In Lemma12.7we show that
many elements ofL∗/l∗ ⊂ FS(L) = FS(K) have finite support on every
modelX of K, and vice versa. In particular, we prove that

FS0(K) = K∗/k∗ ⊗ Z` = L∗/l∗ ⊗ Z`

(up to aǹ -torsion group related toPic0(X), for some modelX of K), where
FS0(K) ⊂ FS(K) ⊂ K̂∗ has an intrinsic Galois-theoretic description.

Step 6.For every pair of elementŝf, ĝ ∈ FS0(K) satisfying

– suppK(f̂) ∩ suppK(ĝ) = ∅;
– %ν(f̂ , ĝ) = 0 for all ν ∈ DVK

there exists a subfieldE = k(C) ⊂ K such thatf̂ , ĝ ∈ Ê∗ (Proposition14.1).

Step 7.Proposition13.1identifiesE∗/k∗ insideÊ∗, up to conformal equiv-
alence, for all one-dimensionalE = k(x), which are integrally closed inK.

Step 8.Proposition14.3identifiesK∗ := K∗/k∗∩L∗/l∗ (as a multiplicative
group) with a multiplicative subgroup ofK∗/k∗ ⊗ Z(`).

Step 9.By Proposition3.19, K∗ is isomorphic toK∗1/k
∗, andL∗1/l

∗, where
K1/K andL1/L are finite purely inseparable extensions. Therefore,K∗ car-
ries two structures of an abstract projective space compatible with the multi-
plicative structure (see Example4.5).
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Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure onK∗ consisting of primary lines (see Lemma4.8 and
Lemma4.9).

Step 11.Lemma14.5and Corollary14.6give a Galois-theoretic charac-
terization of generating elements and primary lines inK∗. These define a
(unique) partial projective structure onK∗ (in particular, the projective struc-
tures induced byP(K1) andP(L1) coincide). In particular, the fieldsK1 and
L1 both containk and are isomorphic.

Step 12.If follows thatK andL are finite purely inseparable extensions of
thesamefield. This concludes the proof of Theorem1.
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