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Introduction

We fix two primesp and¢. We will assume that # p. Letk = T,
be an algebraic closure of the finite fidig. Let X be an algebraic variety
defined overk and K = k(X)) its function field. LetG}. be the abelianiza-
tion of the pro¢-quotientGy of the absolute Galois group @&f. Under our
assumptions or, G- is a torsion-fre€Z,-module. LetG¢ be its canonical
central extension - the second lower central series quotie@i ofit deter-
mines the following structure o@¢.: a set¥y of distinguished (primitive)
subgroups which are isomorphic finite rank(torsion-free)Z,-modules. A
topologically noncyclic subgroup € > iff

— o lifts to an abelian subgroup of;;
— o is maximal: there are no abelian subgroups_ G¢ which lift to an
abelian subgroup df$, and contairv as a proper subgroup.

We will call X a fan. The main theorem of this paper is

THEOREM1. — Let K and L be function fields over algebraic closures of
finite fields of characteristi¢ ¢. Assume thal{ = k(X)) is a function field
of a surfaceX/k and that there exists an isomorphism

VU = \IIK,L : ?( ~ g}j
of abelian pro¢-groups inducing a bijection of sets
Yk =Y.

ThenL is a finite purely inseparable extension/of

We implement the program outlined in][and [2] describing the corre-
spondence between higher-dimensional function fields and their abelianized
Galois groups. For results concerning the reconstruction of function fields
from their (full) Galois groups (the birational Grothendieck program) we re-
fer to the works of Pop, Mochizuki and Efrat (seg, [ 71,[5])-
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2. Overview

In this section we outline our strategy of reconstruction, or rather recog-
nition, of the function fieldK of an algebraic varietyX' over an algebraic
closurek of a finite field from a certain quotient of its Galois group.

Let G% be the proé-quotient of the abelianization

Gr/[Gk, Gkl

of the absolute Galois groui; = Gal(K/K) of K, ¢ # char(k). By
Kummer theoryg$. determines the pré-completion/™ of the multiplicative
group K'*.

A Galois-theoretic characterization of the figidinvolves the recognition
of the subgroupk™*/k* c K*, and of the canonical projective structure, the
projectivization of theadditive group K, considered as a vector space over
k. This projective structure is invariant undawultiplicative translations by
elements of* /k*.

For this we need Galois-theoretic information coming fr@gn the maxi-
mal pro+4-quotient of

Gk/[[Gk, Gk], Gk].

This topological group parametrizes thasextensions of’ whose Galois
group is a central extension of an abeltagroup.

Our main Galois-theoretic object is a pa@s, X x), where thefan X
is the set of all maximal (by inclusion) topologically noncyclic subgroups
o C G% whose set-theoretic preimage @§. is an abelian group. It turns
out that such liftable subgroupsarefinite-dimensional,-subspaces ig}..
Moreover, the maximaL,-rank of suchy is dim(.X).

Theorem1 states that if for two function field& = k(X),L = [(Y),
whereX/k is an algebraic surfac#;/! an algebraic variety; and/ are alge-
braic closures of finite fields of characteristic/ there is an isomorphism

v (G Xk) — (97, 21)
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thenk ~ [, Y is a surface and is isomorphic to a purely inseparable exten-
sion of K.

Define a subfartdlV C Yk as the set of those maximal liftable subgroups
which have nontrivial intersection with at least one other subgroupn
There is a geometric reason to distingulsfi'. Let K be the function field
of a surfaceX overk, D an irreducible divisor onX andv = vp the cor-
responding nonarchimedian divisorial valuation. Its abelian decomposition
groupGy. C G% is a (noncanonical) direct product of the inertia subgroup
1y ~ Z and the grouy, p, of the fieldk(D). Now a subgroupr C Gy,
of Z,-rank 2 is liftable if and only if it containsZ¢. ThusX¢¥ contains all
liftable subgroups oF,-rank2 which are contained in groufs; .

The first important result says that!" exactly coincides with the set of
all liftable subgroups o¥,-rank2 contained in the groupSy. , for different
v = vp. This gives an purely group-theoretic description of the grakfps
the nontrivial intersection of two liftable groupsc’ is alwaysZ?, for some
divisorial valuationv = vp, andGg, “centralizes”Zy, it consists of all those
elements irg¢- which commute witti?, after lifting to G

The proof is based on Kummer theory and the interpretatio@fofis a
space of special (logarithmicj,-valued maps on the infinite-dimensional
projective spac@®,(K) = K*/k* over k. The description of liftable sub-
groups is then reduced to questions in finite-dimensional projective geometry.
Complete proofs of these results far = F,(X) are contained in Sectidh
The case of arbitrary ground fieldss treated in §],[2].

At this stage we characterized all paﬁ‘guD,IgD inside G, or, vaguely
speaking, we recovered “all curves” on all modéfsof K (andY of L).
Next we recover the genus d? and its “points”, as inertia groups;, of
g;;(D), using various subgroupE}D, (see Sectiorl0). Note that the set of
curves of genus- 0 is the same on any smooth modélof K.

We switch our attention to the dual spasé of G%. We seek to recover the
subsetl.*/I* ¢ K* = L* using Galois-theoretic data. This is done in several
steps, each time obtaining a smaller subgroup:

— FS(K) c K* - elements infs* with finite nonrational support,
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- K*/k*®7Z, Cc FS(K) and
— K*/k’* ®Z(g).

Elements ofs* can be thought of as infinite products of elemefftsc K*
modulo natural identifications, and they can be represented by, in general,
infinite sums of irreducible divisors on a projective modélof the field
with Z,-adic coefficients which converge tbin the /-adic topology. The
subgroupFS(K) C K* consists of elements whose support contains only
finitely many nonrational divisors (characterized above). Of couFs&(,K)
containsK™* /k* and L*/I* but it is still rather big - elements iFS(K) may
have infinite rational “tails” ifX contains infinitely many rational curves.

Next we use arf-adic analog of a symbdlf,g) mod (" € Ky(K)/¢™.
Notice that(f,g) mod ¢ = 0 for anyn € N if f g belong to the same
one-dimensional subfield iA". In particular, for anyf € K \ k there is an
elementg which is not a power off and such thatf,g) = 0 (we can take
g = f+1). This imposes a strong condition which allows us to characterize

Kk ®Z, = L'/l ® Z, € FS(K)

as the subgroup generated by elements satisfying this property and having a
“sufficiently big” support.

The next step involves a normalization. Insifle/k* ® Z, we cannot
Galois-theoretically distinguish* /I* @ Z, froma- K* /k* ® Zy), for a € Z;.
However, this conformal invariance is the only freedom there is. If we fix the
values off € L*/I* ® Z, on one (arbitary) irreducible divisor on a model
of K thenL*/I* ® Z, is naturally identified insidél*/k* ® Z,. Thus, after
multiplication bya € Z;, we can assume that /I* C K*/k* ® Zy).

Now we haveK™ /k* andL*/I* inside K* /k*®Zy = L* /I*®@Z,. We also
know that subgroups generated by eleméghiswith pairwise trivial symbol
(f,g) = 0 correspond to one-dimensional subfieldshnL, respectively.
Most one-dimensional subfields i are isomorphic té@(z), for somez, and
Galois data allow us to recognize these subfields. Henkérif C K then
k(x)*/k* @ Zgy = 1*(t)/I* ® Zyy C K*/k* @ Z for somet € L.

Next we show that the correspoding grougs)*/k* andi*(z)/l* intersect
in k(z)*/(k*)" = [*(x)/(l*)* for some rational, s. This property implies
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that */1* is isomorphic (as a multiplicative group) 16 /k* where K / K is
a purely inseparable extension.

Now we add the projective structure overl, respectively. We notice that
some natural sets of liné¥k & kx) andP(l & It) in K*/k* and L*/I* are
the same for all;, t generating a closed subfieldz) ¢ K andi(t) C L.
It turns out that the set of these lines and their (multiplicative) translations is
compatible with a unique projective structure on the (multiplicative) groups
K*/k* and L*/l* - namely the one coming from the field structure. This
defines a unique additive structure and finishes the proof of our main result.

3. Basic algebra and geometry of fields

NOTATIONS 3.1 — Throughoutk is an algebraic closure of the finite field
F =F, andK = k(X) the function field of an algebraic variety/k overk
(its mode).

In this paper we use extensively the fact that two-dimensional function
fields K have “nice” models: smooth projective surfac&sover k with
K = k(X), whose geometric properties play an important role in the recogni-
tion procedure. In this section we collect some technical results about function
fields of curves and surfaces and their models.

We assume familiarity with

— basic notions of field theory (transcendence degree, purely inseparable
extensions);

— basic notions of algebraic geometry:-rational pointsX(k), Picard
groupPic(X), Néron-Severi groupiS(X).

LEMMA 3.2 — LetC/k be a smooth curve and C C'(k) afinite set. Then
there exists am = ngy € N such that for every degree zero divisbrwith
support inQ the divisorn D is principal.

Proof. — Finitely generated subgroups of torsion groups are finite. The
group of degree zero divisoic’(C) (over any finite field) is torsion and
every subgroup of divisors with support in a finite §etC C'(k) is finitely
generated. O
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LEMMA 3.3 — Let X/k be a surface(’, ..., C; a finite set of (pairwise
distinct) curves onX and f; € k(C;)*, fori = 1,...,s. Then there exists an
f € E(X)* whose restriction t@; is defined and equal tg, for all 4.

Proof. — Well known. O

LEMMA 3.4 — For some ample smooth curve: C' — X the restriction
i* : Pic’(X) — Pic’(C) is an injection of abstract groups (&fpoints).

In particular, every element iRic”(X) is torsion.
Proof. — Let H be a polarization otX. There exists an € N such that for
all pairsL, L' € Pic’(X) one hasf' (X, —(L — L' +nH)) = 0. Indeed, the

property
HY(X,—(L — L' +mH)) =0

is open inPic’(X) x Pic’(X) \ A (whereA the diagonal subgroup), since
Pic’(X) is an algebraic group scheme. Denote by

Uni C (Pic?(X) x Pic’(X)\ A)
the corresponding subset. If we consider a increasing sequence
UniH7 n; € Z, Uno C UnH, for m < n,

the union of allU,,,; is equal toPic’(X) x Pic’(X) \ A. Then there is an
n € N such thatU,; = Pic’(X) x Pic’(X) \ A (due to algebraicity of
Pic’(X) x Pic’(X) \ A and allU,,, z).

Exact sequence in cohomology implies that:

HYX,~L+L')=H"C,,—L+ L,
whereC,, is a smooth curve in the clagsH|. SinceH(X,—L + L") = 0,
for L # L', the same holds for their restrictions. In particular,
i* : Pic’(X) — Pic’(nH)
is a set-theoretic imbedding (on the setkgboints). O
REMARK 3.5. — A more delicate analysis shows that fer> 0 the map
i* : Pic’(X) — Pic’(nH) is an imbedding of algebraic groups. Note that
over a closure of a finite field the map
i : Pic(X) — Pic(C)

is never an embeddingik NS(X) > 1 (in contrast with characteristic zero).
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LEMMA 3.6, — Let X/k be a smooth projective surfac€, C X an irre-
ducible curve and) a finite set of points on’. Then there exists a diagram

Cc X—=Y

CcX

whereX = BI(X) — X is a blowup ofX with center supported it \ @
andm is an isomorphism otk \ C (the strict transform o under) which
mapsC' to a point onY.

Proof. — There exists a polarizatioH on X such thatH — C restricted to

X'\ Cis very ample (induces an embedding’of, C' into a projective space).
Let P{, be the projective space spanned®yinder the embedding C P

by H. By our choice off, r < n. A generic hyperplanB™~! C P, intersects

C transversally in finitely many smooth poinis . . ., ¢s which are contained

in C'\ @ (here we use Bertini’s theorem for embedded curves, which in this
case is evident over any algebraically closed field). The projection from this
P! (insideP") induces a proper map from the blowpof X with center

in Ug; onto a projective surfacé C P"~". Note that the image af' under

the projection is a poin € Y.

By constructionPy, intersectsX exactly inC. Hence, the proper preimage
of ¢ in X is C. Any otherP” C P" intersectsX \ C'in at most one point and
transversally (by assumption @’ (X, H —C')). It follows that the projection
induces an isomorphism betwean\ C andY \ g. O

LEMMA 3.7. — Let X/k be a smooth projective surfac€, C X a curve
and(@) C C(k) afinite set. LetC be a line bundle onX whose restriction to
C'is trivial (Lo ~ O¢). Then there exists a diagram

™

c X—Y
c X

(@)

C
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whereX = BI(X) — X is a blowup with center supported in finitely many
points onC' \ @ andr is a proper map as in Lemnta6 (contractingC’) such
that the pullbackC = 7* L is induced fromy”.

Proof. — By Lemma3.6, we may assume thdt is (already) contractible.
Since/ is trivial on C' we havel ~ O(R; — Rs), whereR;, R, are divisors
on X intersecting” transversally, and

R1mC:R2ﬂCCC\Q.
Indeed, we can find a polarizatidi, so thatl + H is also a polarization,
giving surjective maps
HY(X,L+H) — HC,(L+H)c)
H'(X,H) —  H°C, H).

Letic : (L+ H)c — He be anisomorphism. We can find a pair of sections
s € HY(X, L+ H), s, € H'(X, H)

with ic(s1)c = (s2)c. Let R; be the zero divisor of;. ThenO(R; — Ry) ~ L
andR;, R, intersectC' transversally with

RlﬂC:RszCC\Q,

as claimed.

Consider the smooth surfage: X — X obtained by blowing ug; N C'.
The proper preimageB; of R; in X don'tintersect the proper preimagec
X of C. The divisor ofr*£ = n*(R;, — R,) doesn’t contain components
which are exceptional curves lying over pointsin Hencer*L is trivial on
the open quasi-projective neighborhoﬁ’d\ supp(m*(R; — Ry)) containing
C'. Therefore, the bundlé is induced fromt” (as in LemmaB.6). O

LEMMA 3.8 — Let K/k be the function field of a surfac€;/k a smooth
curve on a model of{ and@ = {qo,...,qs} C C(k) a finite set of points.
Then there exist a modél of K, irreducible divisorsD;, H;, H} on X, with
j=0,...,s, and a positive integet = ng such that:

(1) X is smooth and contains;

(2) DjNnC =g forallj=1,...,s;

(3) n(D; — D,) restricted toC'is a principal divisor;

(4) n(D, - Dy) + (H; — HJ’) iS a_prin_cipal divisor onX;

(5) the divisorsD, are pairwise disjoint;
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(6) all intersections betweeD;, H; and H; are transversal, pairwise dis-
tinct and outside”;
(7) H;, H; don’tintersectC'.

Proof. — Let X be a smooth projective model &f containingC' as a smooth
curve. Choose divisor®; C X passing (transversally) through (for all

j = 0,...,s). Blowing up points inC'\ ¢ we can insure that the (strict
transform of)C' becomes contractible and that the image of the surface under
a contracting morphism igrojective(by Lemmas3.6).

Blowing up again (if necessary) and removing components of exceptional
divisors, we can insure that the (strict transformis)" C' = ¢; (for all j). By
Lemma3.2, there exists am = ny such that the restriction of(D; — D)
to C'is a principal divisor. We continue to blow up (outsi¢® so that each
n(D; — Dy) becomes a trivial line bundle on some open neighborhoad of
in some modekX (using Lemm&B.7).

Throughout' remains contractible and we write

T: X—=Y

for the corresponding blow-down. Now(D; — Dy) is induced from a line
bundle onY (which is projective). In particular, there exiatnpleclasses
[H;], [H}] € Pic(Y) such that

[n(D; = Do)] + ([H;] — [H}])

is a principal divisor onX (here we identified;], [[/}] with their full trans-
forms in X). Finally, we can choose representativés H; C Y of these
classes which are disjoint from(C), irreducible and satisfy all required
transversality assumptions.

More precisely, choose clasgés| so that

(n(Dj = Do)l + ([H;]), [n(D; — Do)l + ([H}]), [H;], [H]]

provide an imbedding oY into a projective space. Consider an imbedding
of Y into a projective space defined by one of the sefiés, [[/;]. For any
finite set of irreducible divisors ilr” we find a hyperplane section intersecting
the union of these divisors transversally and not containing the given finite
set of points inY". Using induction ory we find representatives of/;], [H’]
satisfying the lemma. ]

LEMMA 3.9 — Let K/8 be a purely inseparable extension. Then
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- RDk
— K/Ris afinite extension;
— R = k(X’) for some algebraic varietyX”.

DEFINITION 3.10 — We writeEK C K for the normal closure of a subfield
E C K (elements inK which are algebraic oveF). We say that € K \ k

is generatingf k(z) = k(z).

REMARK 3.11 — If E C K is 1-dimensional then for all € £\ k one has
k@) = E" (afinite extension off).

LEMMA 3.12 — For any subfield2 C K there is a sequence

X“’E Yl PE :

where
— 7 is rational dominant with irreducible generic fiber;
— pg Is quasi-finite and dominant;
— k(Y")=E" andk(Y) = E.
For generating: € K we write
Ty : X =Y

for the morphism from Lemma&.12 with k(Y) = k(x). Fory € K \ k(x)
definedeg, (y) (the degree of on the generic fiber af,) as the degree of the
corresponding surjective map from the generic fiber ofinderr,.

PROPOSITION3.13 — Let K = k(X) be the function field of a smooth
surface,C' C X a smooth irreducible curve and, ..., f, € K* rational
functions onX, restricting nontrivially toC. Then there exists a modal
of K (a blowup ofX) such that for every poinf in (the strict transform) of
C C X there exists an irreducible divisdp, C X (possibly the zero divisor)
with the property that for alf = 1,. .., s the order ofD, in the divisor off;

is equal to the order of; in q.

Proof. — Consider the divisor§' anddiv(f;), i = 1,...,s and a modelX

of K such that the total preimage c X of the union of all these divisors in

X has strict normal crossings (resolution of singularities for surfaces). After
further blowups we can assume that each irreducible componénfdistinct
from C') intersects (the strict transform af) in at most one point. For each
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q € Cn(D\C)let D, be this component. For all othedet D, be the zero
divisor. These divisors have the required properties. ]

LEMMA 3.14 — LetK = k(X) be the function field of a surface amdy €
K \ k be such that

deg,(y) = min (deg,(f))

fFEK k()
and k(y)K = k(y') for somey’ € K*. Theny is generating:k(y) = k(y)K.

Proof. — If y is not generating thep = z(y') for somey’ € K and some
functionz € k(y')* of degree> 2. This implies thatleg,(y) > 2deg,(v/),
contradicting minimality. O]

LEMMA 3.15 — Let X be a model of< containing a rational curv&’ and
x € K* afunction such that its restriction: to C' is defined and such that

k(C) = k(zc). Thens is generatingk(z) . = k(x).

Proof. — The restriction map extends fdqxz) and hence it is an isomor-

phism betweert(z¢) andk(x) = k(m)K. O

The next proposition is a characterization of multiplicative groups of sub-
fields 8 C K such thatK/R is a purely inseparable extension. Notice that
for a one-dimensional field(C) the subfield’ is always of the fornk(C)?",
for somen € N. Thus for any one-dimensional subfieldC K there is an
r(F) € N such that the intersection & with E* consists exactly of(£)-
powers of the elements d*. Below we show that this property of intersec-

tion with subfields of the special fori(z) = k:(x)K already characterizes
multiplicative groups of sucl® among multiplicative subsets ™.

DEFINITION 3.16 — Assume thaR* C K* is a (multiplicative) subgroup

such that for any subfield = k(x) = k(x)K C K there exists am = r(F)
with the property that®* N £* = (E*)" (r-powers of elements df*). For
everyt € £*\ k* we define(t) = r(E).

REMARK 3.17. — Note thatr(t) is not defined for € K* \ k* iff k(1) is
the function field of a curve of genus 1.
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DEFINITION 3.18 — We will say thaty € K* is a powerif there exist an
x € K* and an integer > 2 such thaty = 2.

PROPOSITION3.19 — Let K = k(X) be the function field of a surface and
R* C K* asubset such that

(1) K8* is a multiplicative subgroup ok™;

(2) foreveryE = k(z) = k(x)K C K there exists am = r(E) € N with
(3) there exists @ € K \ k withr(y) = 1.

Theng := R* U0 is a field, whose multiplicative group 8" and K /R is a
purely inseparable finite extension.

Proof. — Once we know thag is a field we can conclude that every= K*
is either in&* or some power of it is inR*. Of course, it can only be a
power ofp so thatK/f is a purely inseparable extension, of finite degree (by
Lemma3.9).

By (3), £ C K. To conclude thar is a field, it suffices to show that for
everyx € R one hast + 1 € R (and then use multiplicativity). For every
xz € R\ kwith r(z) = 1 we haveR* N k(z)* = k(z)* and

r+rk e R, forallk € k.

In particular, this holds foy.
Considerz € K with »(z) > 1 or not defined. We claim that for some
k €k
z = rtytr € R andr(z) = 1.
y+r—1

This implies that

z—1=(z+1)/(y+x—1) € & andz + 1 € &,
(by multiplicativity). We can assume that/k(C)(y), wherek(C') = k(a:)K,
IS a finite separable extension. (Otherwise, we cailé&e a minimal proper
subfield in®’ C K containingk(C')(y) and such that{/&’ is purely insepa-
rable and use the intersection®fwvith &’ instead ofR.)
To prove the claim, choose a mode€lof K such that both maps
—K

T X — C, k(C)=k(z)
T, X — Pl=(y:1)
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are proper morphisms (as in Lemrfidl?). Sincex andy are algebraically
independenti(x) > 1), only finitely many components of the fibersmofare
contained in the fibers of, and there exists a € k£ such that both fibers

m, ' (—r) andm, ' (1 — k)

are transversal to the fibersaf, since we assume that/k(C)(y) is separa-
ble. Note that

divo(y + K — 1) £ div(z + y + k),

sincey + k = —1 ondivy(y + k — 1) andz is nonconstant on these fibers
(wheredivy is the divisor of zeroes). It follows in the first case thath

t:=(y+k)/r and z:= (v +y+k)/(y+Kr—1)

are not powers.

Note thatt, z are generating elements. Indeed, if we blow up the smooth
point ¢ of transversal intersectiofy + x = 0} N {z = 0} thent restricts
nontrivially to IP’; and similarly

z=@x4+y+r)/y+r—-—1)=c+1/(y+r—-1)+1

restricts nontrivially taP,,, whereq' = {x = -1} N {y = 1 — x}.
Note thatt C & and since it is not a powet(t) = 1 and

1/t)+1=(x+y+r)/(y+K) €
To show that: € & observe that both, y + x € & so thatt € K. Therefore,
t+l=(+y+r)/zer
and, by (1) + v+« € R. Finally, since(y + xk — 1) € Awe getz € & [
REMARK 3.20 — If assumption (3) is not satisfied then we can take
(ﬁ*)l/r(y) ﬂ[(*,
which satisfies all the conditions of the lemma. Thus in general without the

assumption (3) we have = (R)", where K/& is purely inseparable and
r € N.
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4. Projective structures

In this section we explain the connection between fields and axiomatic pro-

jective geometry. We follow closely the exposition .|

DEFINITION 4.1 — A projective structuras a pair (S, £) where S is a
(nonempty) set (of points) argl a collection of subsets C S (lines) such
that

P1 there exist ans € S and anl € £ such thats ¢ [;
P2 for everyl € £ there exist at least three distingts’, s” € [;
P3 for every pair of distinck, s’ € S there exists exactly one

[=1(s,s) e L

such thats, s’ € [;
P4 for every quadruple of pairwise distingts’, ¢, ¢ € S one has

[(s,s) NIt ) £0 = (s,t)NI(s,¢") #0.
Fors € S andS’ C S define thgoin
sV S :={s"€S|s" €l(s,s) forsomes’ € S'}.
For any finite set of points,, .. ., s, define
(S1y...8n) :=851 V($2 V-V sy)

(this does not depend on the order of the points). Wite for the join of
afinite setS’ C S. A finite setS” C S of pairwise distinct points is called
independenif for all s € S’ one has

s ¢ (S"\{s'}).
A set of pointsS” C S spansa set of pointg” C S'if

- <S”> C T for every finite sets” c 5,
— for everyt € T there exists a finite set of points C S’ such that
t € (Sy).

A setT C S spanned by an independent §ébf points of cardinality> 2 is
called a projectivasubspacef dimension|S’| — 1.

DEFINITION 4.2 — A projective structuré s, £) satisfiedPappus’ axionif
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PA for all 2-dimensional subspaces and every configuration of six points
and lines in these subspaces as below

the intersections are collinear.
The main theorem of abstract projective geometry is:

THEOREM4.3 — Let (S, £) be a projective structure of dimensian> 2
which satisfies Pappus’ axiom. Then there exists a fieddch thatS = P}.
This field is unique, up to isomorphism.

Proof. — See [], Chapter 6. O

DEFINITION 4.4 — A morphism of projective structures
p:(5,8)—(5.8)
is an injection of setg : S — S’ such thafp(l) € £ forall [ € £.

EXAMPLE 4.5, — Letk be a field and”} the usual projective space over
of dimensiom: > 2. ThenP} carries a projective structure: the set of lines is
the set of usual projective linds, C P7.

Let K /k be an extension of fields (not necessarily finite). Then the set

S = Py(K) = (K \ 0)/k*

carries a natural (possibly, infinite-dimensional) projective structure. More-
over, multiplication by elements in the grou* /k* preserves this structure.

THEOREM4.6. — LetK/kand K'/K' be field extensions of degree4 and
¢ :S=Pu(K) = Pu(K)=9
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a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then

E~FK and K ~ K'.

Proof. — Choose a plan®? C S containing the identity: € S, and two
linesly, I, in this plane passing through The set of all point®? \ {I;, [,} is
a principal homogeneous space under the group of projective automorphisms
of P; (= [;) stabilizing one point (the intersectionn [,). A choice of an ad-
ditional points € P2\ [; U I, trivializes this homogeneous space to the group
of affine transformations of an affine line ovieand determines both the ad-
ditive and the multiplicative structure dn This implies that is isomorphic
to £’ and that for every finite-dimensional spdceC K there exists a unique
K'-linear spacé’’ C K’ such that the mapy : P,(V) — Py (V') lifts to a
(k,k')-linear mappy, : V — V’. Such a lift is unique modulo multiplication
by a nonzero scalar ik on the left (respk’ on the right). We can identify’
with P(V) x k* U {0} (as a set). IV is such that € P(V) then there is a
unique lift ¢y with the propertypy (¢) = ¢’ € S'.

Letx,y € K \ k be any elements projecting 0y € P(K) andV C K
a k-vector subspace containing

Lx,y, zy.

Fix ¢ = ¢y as above. Since is an isomorphism of abelian groups there is a
c(x,y) € k* such that

oz -y) = o(x)o(y)c(z,y).
We need to show tha{x, y) = 1. For anya € k* we have
¢((a+z)-y)=dla-y+c(zy)z-y)=d-y+d(zy) 2"y eV C K,

by (k, k')-linearity of ¢. Since¢ preserves products, the right side must be
k’-proportional to

a/'y/+xl‘y/-
On the other hand,’ andz’ - /' arek’-linearly independent (since ¢ £').
This implies that/(z', y') = 1, as claimed. O

DEFINITION 4.7. — Let K/k be the function field of an algebraic variely
of dimension> 2 and S = P,(K) the associated projective structure from
Exampled.5. The lines passing throughand a generating element &f (see
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Definition 3.10 and their multiplicative translations by elements Aft /k*
will be calledprimary.

LEMMA 4.8 — Let K = k(X) be the function field of a surface. For every
line [ = [(1, z) there exists &* C P,(K) such that all other lines in thi§?
are primary.

Proof. — Choose a smooth mod&l of K and two pointsy, ¢ € X such
thatz(q;) = 0,2(q2) = 1. Blow up ¢, ¢ and letP; be the corresponding
exceptional curves. Lef € K* be an element restricting to a generator of
k(P}!). The restriction map extends to the normal closti®) C K. Hence
the normal closuré(y) C K coincides withk(y).

To prove that every ling¢ # [(1,z) C P? = P(k ® kz & ky) is primary
we need to show thaty + b + cx)/(y + d + rz) is generating, provided
(b, ¢) # (d,r). If b # d then the restriction ofy + b+ cx)/(y +d+rx) 0P},
is equal toy +b)/(y +d) and hence is a generator/dfP, ). By the argument
of the previous lemmay +b+cz)/(y+d-+rz)is generating. 1b = d,c # r
then(y + b+ cz)/(y + d + rx) onP,, coincides with(y +b+c¢)/(y +d + )
and is also generating sinée- ¢ # d + r, by assumption. O

LEMMA 4.9 — Assume that a se&f has two projective structuress, £;)
and (S, £,), both of dimensio> 2, and that for som@? (in the first projec-
tive structure) every ling, € (£, N P?), except possibly one line, is also a
line in the second structure. Then thetP? is a projective plane in the second
structure(S, £,), projectively isomorphic t#? € (5, £).

Proof. — LetP? be the set of all lines if*? andP? \ [ the set of lines which
remain projective lines ifP2. Let [, [, [; be three lines fron®? \ [ which

don’t have a common intersection point. Then,, [3 lie in the same plane

PZ. Since every other liné ]fbf \ lintersectd, Iy, [3 thenl’ C 2. Thus all

lines fromP? \ [ are inP2 which contains all the points @.

They are isomorphic since it is an isomorphism between lines and every

point, except possibly one point, is an intersection of two Iin@?ih[. Since

P2 coincides withP? outside of one point they coincide. O

COROLLARY 4.10 — Let K/k and K'/k" be function fields of algebraic
surfaces
¢ :S=P(K)— S =Pu(K')
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an isomorphism of (multiplicative) abelian groups inducing a bijection on the
set of primary lines in the corresponding projective structures. Thenan
isomorphism of projective structures and

kE~Fk and K ~ K'.

Proof. — By Lemma4.8and Lemmat.9 ¢ induces an isomorphism of pro-
jective structures. It remains to apply Theorérfi ]

5. Flag maps

NOTATIONS 5.1 — We fix two distinct prime numberéandp. Let
— F =F, be afinite field withy = p™;
— F* =F\ {0} its multiplicative group;
— Vecty - the set of finite-dimensiondl-vector spaces;
— A avector space ovét andP(A) = (A \ 0)/F* its projectivization;
— M(A) the set of maps froml to Z,;
— for u € M(A) andB C A anF-linear subspace,p the restriction ofu
to B.

DEFINITION 5.2 — AnTF-flag on a vector spacd € Vectr is a collection
of F-subspaces$A,,),.—o....q Such that

— Ay = A;
- A, 2 A, foralln=0,...,d—1.
The flag is calledcompletef d = dim(A).

-----

DEFINITION 5.3 — A mapu € M(A) will be calledF*-homogeneous if
forall a € Aand allx € F* one has

plr - a) = p(a).

DEFINITION 5.4 — A mapu on a (possibly infinite-dimensional) vector
spaceA will be called anF-flag map, if

— u isF*-homogeneous;
— every finite-dimensiondF-vector spaceB C A has a complete flag
(Bn)n=0,....dim(B) SUch thatup is constant oni,, \ B, 4, for all n =

-----

0,...,dim(B) — 1.
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The value ofu on B = B, \ B is called thegenericvalue ofy on B; we
denote it by:2*"(B). TheF-subspace3 is called the subspace nbngeneric
elements. The set of flag maps will be denoted ).

EXAMPLE 5.5, — Let K = k(X) be a function field ana@ a nonarchime-
dian valuation on’ which is trivial onk (see Sectior). Thenv € ¢, (K),
whereK is considered as a vector space aver

DEFINITION 5.6. — Let A be anF-algebra (without zero-divisors). A map
p € M(A) will be called logarithmic if

— u isF*-homogeneous and
—pu(a-d) = pla)+ p(a), forala,a’ € A\ 0.
The set of such maps will be denoteddy A).

DEFINITION 5.7. — Let A be anF-vector space. Two maps i/ € M(A)
will be called ac-pair (commuting pair) if for all two-dimension@l-subspaces
B C A there exist constants, \', \” € Z, (depending orB) with (A, \') #
(0,0) such that for allb € B one has

Mg (D) + N pp(b) = X

THEOREMb5.8. — LetF be afinite field with#F" > 11, A anF-algebra and
w, 1’ € Lr(A) nonproportional maps forming apair. Then there exists a
pair (\, \') € Z, \ (0,0) such that\p + N ' € Op(A).

Proof. — This is a special case of the main theorem3fyvhere it is proved
over general ground fields However, the case when= T, is easier. Fol-
lowing the request of the referee, we now give a complete proof in this special
case. The main steps in the proof are:

— characterization of flag maps by their restriction to 2-dimensidhal
linear subspaces, fg¢F > 11 (see Lemm&.17);

— reduction to linear spaces over prime fields, ré&psee Lemm&.19 if
u ¢ P (A), for a finite fieldF’, andp is F*-homogeneous with respect
to a large finite extensioR/F’ then there is a subgroup ~ IFI% C A,
(resp.F}), so thatuc ¢ @, (C).

— reduction to dimension 3: for any rank tvi&-modulec = (u, p’) of
logarithmic maps generated by:-gair p, /' € Lr(A), not containing a
flag map there is a subgroup= B, ~ F> C A (resp.F?}), such that for
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any nontrivialy” € o there is a proper subspace= C,» C B where
pe: & P, (C) (this step uses the logarithmic property);

— geometry of collineations oR?> = Pg(B) over prime fields (respF,):
for any o spanned by a-pair 1, i/ on B there is au” € o such that
p” € dp(B) - this shows the existence of the desired flag maplon

]

LEMMA 5.9 — If A € Vecty andp € $r(A) then there exists a canonical
F-flag (A, )n—o.... 4 SUch that

P (An) # 15 (Apga),

-----

foralln=0,...,d—1.

Proof. — PutA, = A and letA,,,, be the additive subgroup of,, spanned
by a with p(a) # p#*(A,,). Sinceu is F*-homogeneousd,, . ; is anF-vector
space. Indeed, far,a’ € A, andk, k' € F* write

a= Zbi,a’ = Zb;
iel jeJ
with finite 7, J. Since
pu(bs) # R (An), (b)) # B (Ay),
foralli e 1,5 € J, we have

(kb;) = p(bs) # p"(An) and p(k'b)) = p(b;) # 1 (Ay)
so thatka + <'a’ € A,41. O

REMARK 5.10 — The flag property does not depend on the value df-an
flag mapp on0 € A. Sincey is F*-homogeneous, it defines a unique map
on(A\0)/F* =Pg(A). Conversely, a map onPr(A) gives rise to a family

of F*-homogeneos maps ot differing only by their value ab € A. An -
flag map onA € Vecty defines a flag byrojectivesubspaces of(A). We
denote bygeneric(resp. nongeneric) elementslef(A) the image of generic
(resp. nongeneric) elements frafm

NOTATIONS 5.11 — We denote byP(A) = Px(A) the set of codimension
one projectiver-subspaces df(A).
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DEFINITION 5.12 — Assume thatl € Vecty, and for all codimension one
F-subspace#? C A one hasup € $r(B). Defines by

B — [(P(B)) = pt(B).
LEMMA 5.13 — If A € Vecty andp € $p(A) then either is constant on

A~

P(A) or it is constant on the complement to one point.

Proof. — Consider the canonical flagl,,),—o. 4. If codim(A4;) > 2 then
for everyP(B) € P(A) one hag:#"(B) = us"(A) andj is constant. Other-
wise, 8" (B) = us"(A), on anyB # A, (and differs a?(A4,) € P(A)). O

We need the following elementary

LEMMA 5.14 — LetF = [, be a finite field with; > 11 andP™ = Py,

m > 2 a projective space ovef. Then for any four projective hyperplanes
and any ten projective subspaces of codimension at least two (all defined over
[F) there exists a line (oveF) which is not contained in any of the above
hyperplanes and which does not intersect any of the ten codimension two
subspaces.

Proof. — One has
#Gr(2,m)(F) < #Gr(2,m + 1)(F) /¢

The number off-lines intersecting a subspace of codimension twinis
bounded by#Gr(2,m + 1)(F)/q¢?. Our claim holds foi > 11. O

LEMMA 5.15 — LetF = F, be afinite field withy > 11, A € Vecty and
p € M(A) an F*-homogeneous map. Assume that there @&stibspaces
B; C A, codim(B;) =1, fori =1,...,4 such that

(1) either#{us"(B;)} > 3 or

(2) s (By) = e (Bs) # ps™(Bs) = p#(By).
Then there exists df-subspac€’ C A, dimp(C) = 2 such thapc ¢ Pp(C).

Proof. — By Lemmab5.14, there exists &' = P(C) € P(A) such that its

intersection points witf?( B;) are pairwise distinct and generic in the corre-
spondingP(B;) (the nongeneric points @(B;) are contained in 4 subspaces
in codimy > 2, the intersections oB; give rise to 6 more subspaces). Then
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eithery takes at least three distinct values®(d') or has distinct values in at
least two pairs of points. In both cases ¢x(C). O]

COROLLARY 5.16 — Assume that.z € ®x(B) for all P(B) € P(A) (and
#F > 11). Theng is constant outside of one point.

Proof. — The mapj: takes two different values of(B). By Lemma5.15
among any three hyperplanes two have the same generic value, so that there
can be at most three such values. If there are hyperplanés, h; € I@’(A),
whereji(hy) = fi(hs) # [i(h3) then for any otheh € P(A) we haveji(h) =
f(hy) andg is constant outside df;. O

LEMMA 5.17. — LetA € Vecty, with #F > 11, andu € M(A) be anF*-
homogeneous map such that for every two-dimensiBralbspaceB C A,
uB € CI)F(C) Then,u S (I)F(A)

Proof. — Assume the statement holdsdfm(A) < n — 1. Theng is de-
fined and, by Corollarp.16 eitherj is constant on@(A) or constant on the
complement to one point.

If /1 is constant, then thE-linear envelope of points € A such thaj(b) #
15" (A) has codimension at least two. Indeed, if there is a codimension one
subspaceB C A generated by suchthen by assumptiop € ®r(B) and
uE"(B) # [, contradicting the assumption thais constant. Otherwise, put
B = A,. By the inductive assumptiop, € ®r(B) and is constant od \ B.
Hencep € ®r(A).

Assume thaf: is nonconstant and Ig8 C A be the unique codimension
one subspace with&*(B) # u%"(A). Choose aff-basisb,,...,b, 1 in B
such thafu(b;) = pu&™(B) # s (A). Assume that there is a poiatc A\ B
such thatu(a) # p&"(A) and let B’ be the codimension onB-subspace
spannedy, ..., b,_2,a. Thenu#*(B’) # u&"(A), contradicting the unique-
ness ofB. It follows that is constant o \ B. O

REMARK 5.18 — Let F/F’ be a finite extensionA € Vectr, considered

as anF’-vector space, and € dw(A). If 4 is F*-homogeneous, them €
dp(A). Indeed, by Lemm&.9, the canonicalf’-flag is a flag oflF-vector
spaces. We use this observation to reduce our problem to prime fields (resp.
Fy).
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LEMMA 5.19 — LetF/F’ be a quadratic extension, witfF’ > 2. Let

A be anlF-vector space of dimension 2, considered asamector space of
dimension 4. Let, € M(A) be anF*-homogeneous map such that for every
F’-subspace&’ C A, dimp (C') = 2, one hagu € & (C). Thenu € Op(A).

Proof. — First assume that takes only two values od \ 0, say0, 1, and
thaty ¢ ®p(A). SincePy(A) = Py there exist elements, as, az, a; € A\ 0
such that the orbitB™* - a; do not intersect and

0= plar) = plaz) # plas) = plas) = 1.

ThenF* - a; = A; \ 0, whereA,; is a linear subspace ov&f. The[’-span
A15 of two nonzero vectors; € Ay, zo, € Ay hasus®(A1z) = 0. HenceA,
contains at most on&-subspaceb) of ’-dimensionl with generic valud.
The union of the space,,, for different choices of, x5, coversA and

#{be Alu(b) =1} < (¢+1)%,

where#F’ = ¢. Similarly, there are at most + 1)? such nongeneric € A
with pu(c) = 0. Since#P*(F') = ¢* + ¢* + ¢+ 1 > 2(¢* +2q¢+ 1), forg > 2,
we get a contradiction.

Assume now thaj takes at least 3 distinct values ah\ 0, sayO0, 1,2,
and that there are two vectaig, a; C A such that the orbit§* - a,,F* - a,
don’tintersect an® = p(a;) = p(az). Such a configuration must exist (take
two [F’-spaces of’-dimension two spanned & -orbits; theF’ span of two
generic vectors in these spaces contains elements whuakie coincides
with the value ofi, on one of the two orbits). The modified map, given by

ia) = { 0 if u(a) =0

1 otherwise

satisfies the conditions of the Lemma, and by the above argyimerity(A).

In particular,z = 0 outside oné&™-orbit on A\ 0. Sincey is F*-homogeneous

it follows thaty takes two values, and not three as we assumed. Contradiction.
0

LEMMA 5.20 — LetF’ = F, be afinite field (respF,), and[F/F" an exten-
sion of degree divisible by 4. Ldtbe anF-algebra without zero-divisors and
W,y € Ly(A) ac-pair such that the linear span = (1, ")z, does not con-
tain an®r-map. Then there is aff-subspacé3 C A withdimg (B) = 3 such
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that for every (nonzero) mgp € o there exists afi’-subspac&’ = C, C B,
dimp C' = 2 with the property thajic ¢ O (C).

Proof. — ConsiderA € Vecty as an element iVecty, and lety be anF*-
homogeneous map ot. If ;. were anF’-flag map on every two-dimensional
F’-subspace ofl then, by Lemm&.19, ;. would be ariF-flag map on every-
subspacé& C A ofdimp B = 2. Since#F > 11 we could apply Lemma&.17
and conclude that € ®g(A).

Thus, sinceu is not an®g-map, there is afi’-subspace” = C,, C A,
dimp (C') = 2 such thafuc is nonconstant o'\ 0. Using thec-pair property
we can fix a basig’, u” of o, so thatu,, is constant. LeC” C A be a two-
dimensionalf’-subspace wherg” ¢ ®p (C’). There arer,y € A such that
x - C'andy - ¢’ have a common nonzero vector. Then the restriction tuf
CorC'inz-C +y-C’does not contain &r-map.

Indeed,.’ ¢ & (x - C) sincey/ differs by a constant’(x) from / on C'.
Similarly, for s', s" € Zy,a # 0, the maps'y’ + s"1” ¢ $p(z - C). On the
other hand, fos” € Z,\ 0, s"u" ¢ ®r(y - C"). Hence none of the nonzero
elements irv is an®y-map. O

COROLLARY 5.21 — For any c-pair u, i/ which does not contain afg-
map there exists a subgroup C A, with B = I, p > 2, (resp. B = F})
such that for any. € (i, ")z, thereis aC' = C,, C B withC' = F2 C (or
C' = IF§ in characteristic two) such that ¢ @y, (C) (resp.,®r,(C)).

However, a detailed analysis epairs on the spacdg andF? shows that
(', 1)z, on any such space contains a flag map. This will complete the proof
of the main theorem.

LEMMA 5.22 (Lemma 4.3.2inj]). — LetB =F?>andu, /' € M(B) be a
c-pair of F*-homogeneous maps. Then the image(@f) under map
p + P(B) —  A*(Z)
b= (u(b), (b))
is contained in a union of an affine line and (possibly) one more point.
Proof. — Observe that the image of eve®} C P(B) is contained in an

affine line inZ2. This is simply the geometric interpretation of the condition
for p, 1/ to be ac-pair.
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Next, for any two pairs of distinct pointg, b), (a’,t') in p(P(B)) the affine
linesl = I(a,b),I' = I'(d/,b') in A? = Z2 through these pairs of points must
intersect. (Choose, b, @', I/ in the preimages of, b, @', V'; the projective lines
[,T ¢ P(B) = IP? through these points intersect in somand, by the first
observationy(q) must lie on botH andl’).

We claim that any subséf C Z? with this property is either infinite or
contained in a union of a line and a point.

We imbedA?(Z,) into the projective spade?(Q,). Assume that there are
distinct points in//, no three of which are on one line. We saw thiatontains
the intersection points of any two lines through these points. Then there is a
projective transformation dP?(Q,) with the property that (the image of)
contains points with homogeneous coordinates

(1,0,0),(1,0,1),(0,0,1),(0,1,1),(0,1,0).

Computing the coordinates of intersections of lines through points we
find thatl” contains points with coordinat¢$/2",0, 1), (0,1/2™, 1), for all
n € N. ThusV is infinite, whileP(B) is finite, contradiction.

If in every subset of four points iiv three are collinear then all points but
one are collinear. Indeed, assume this holds for a suf)set 1V consisting
of n > 4 points, letl be a line inP?(Q,) containing the: — 1 aligned points
inV,, and assume thate V,, \ [. LetV,, ., = V,, Uy, withy ¢ [, write [(z, y)
for the line throughe, y and putu = [N [(z,y) € V. Then there are two more
pointsz,t € V,, with z, ¢ # u, (sincel contains at least points inV,,). Now
all six lines

(x,y), (z, 1), (x, 2), [y, 2), (y, 1), (z,t) =
are different, contradicting the assumption. O

Let i, i/ be ac-pair of linearly independent (modulo addition of constants)
F*-homogeneous maps dhandy : P(B) — Z7 the associated map. Note
that o(P?) is not contained in a line and([) is not contained in a point, for
all lines! c P2. We fix a decompositio(P(B)) = line U pt C ZZ (this may
involve a choice it#p(P(B)) = 3). We say thatp contains ar¥-flag map if
someZ,-linear combination of:, 1" is in ®g(B).

Define the dual map

~

PR,
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as follows: letl € P2 be a line such thap(l) C line. Then putp(l) := pt.
Otherwise () = (1) N line. Notice that the dual op is againg.

EXAMPLE 5.23 — Assume thaB3 ~ F? and thatu, ./ are linearly indepen-
dentF*-homogeneous maps @hforming ac-pair and letp be the associated
map. Assume thap contains anf-flag map, say:. Then the associated
canonical flag is one of the following:

(1) the canonical flag is complete: evgrysuch thatp,, ,, = ¢ is anF-flag
map with the same canonical flag;
(2) the canonical flag has the foronC C' C B, wheredimy(C') = 2: then
' is arbitrary onC' and constant o \ C;
(3) the canonical flag has the forinCc D C B, wheredimp(D) = 1: then
for everyC' D D, dimp(C) = 2, 1/ is constant or' \ D.
Notice that if o contains ariF-flag map then so does and that the duality
interchanges the cases (2) and (3) and preserves the case (1).

From now on, we assume that;’ € Lr(A) is ac-pair of linearly inde-
pendent maps such that Ag-linear combination ofi, i is in dr(A). In par-
ticular, we can reduce to a prime fididor IF;) and fix aB as in Lemm&.20
Our next goal is to derive a contradiction.

REMARK 5.24 — We may (and will, from now on) exclude the following
degenerate cases, which contradict our assumptions:

(1) ¢(P(B)) is contained in a line; this means that.’ are linearly depen-
dent (modulo constants);

(2) (1) is a point, for every € P(B); this implies thatp(l) € (I'), for all
" Cc P(B) andy(IP(B)) is contained in a line, contradiction to (1);

(3) »(P(B)) is constant outside one line; here the affine idp— Z,
projectingy(l) to one point gives a nontrivial flag map in the span of

s 1.

LEMMA 5.25 — Letl, I’ C P? be distinct lines. Assume that(), o(I') are
contained in the same affine line #f. Theny(I) = »(I'). Moreover, every
pointz € P? with o(z) ¢ »(I) induces a projective isomorphism  : [ — I
such that for ally € [one hasp(y) = ¢(m,¢(y))-
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Proof. — Choose ay € [ and anxz € P? such thatp(z) ¢ (1), this is
possible by (1), and consider the lif(e;, y). Definer, ¢(y) := [(z,y) N .
By Lemma5.22 ¢(m,.r(y)) is contained in the intersection gf(l') = ¢(I)

andy(I(z, y)), so thatp(m,.v (y)) = »(y). O

COROLLARY 5.26 — Assume thap(l) = o(I') for distinct linesl, ' C P2
and letz, y € P2 be points such thap(z), p(y) ¢ »(l). Then the projective
isomorphismsr, ¢, m, ¢ : [ — [ have the following property: the composi-
tion

7rx7[/o7r?;[1, =1
is a nontrivial translation, preservingnl’ and the level sets gf. In particular,
if F = I, (the prime field) then this translation is transitive b ([N [') and
© IS constant on this complement.

DEFINITION 5.27. — We say that we are in thgeneric casé:
(1) for everya € ¢(P(B)), there exist 3 points ip~!(a) spanningP(B)
(general position) and
(2) for every pair of distinct points, b € p(IP(B)) there exist 3line§, [, [3 C
P(B) in general position (not contained in a pencil) such thab €
o(l;) fori =1,2,3.

LEMMA 5.28 — The generic case does not occur.

Proof. — By Corollary5.21there exists a liné € P(B) such thaj: ¢ ®g(1),
and in particulary is nonconstant oh By genericity, there are at least three
linesly, [; I3 in general position withp(1) = ¢(l1) = ¢(ls) = ¢(I3) and three
pointsz, y, z such thatp(z), ¢(y), ¢(2) ¢ ¢(l;). Denote byg;; = [; N [; the
intersection points. Then, by Lemnia25 and Corollary5.26 7, , o 7@}2
induces a nontrivial translation dnwith fixed pointg,,, preserving the level
sets ofp. Similarly, 7, i, o, [13 induces a nontrivial translation dnwith fixed
pointg3. If Fis a prime field, then the group of projective automorphisms of
[ generated by these two translations acts transitively on the set of points in
andp must be constant, contradicting the genericity assumption.

If F = FF, then the translations above have order two. The number of
pointsq € [; with any p(q) # ¢(q;) is even, fori = 2,3. Sincel(F,) = 5
is odd, this implies thab(q12) = ¢(q13) = ©(g23). By genericity, the lines
l(x,q12), Uy, q12), [(2, q12) intersect the lind; in at least two distinct points
t1,ta € I3\ (q13 U q23). Note thatp(t;) = ¢(qi2). It follows thaty takes the
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same value on 4 out of 5 points &n On the one hand, the numbergivith
©(q) # ¢(q13) is even, contradiction, singe is by assumption nonconstant
onls. ]

The following lemma covers theongenericitycondition (1) from Defini-
tion 5.27. Repeating the same proof for the dual mawe cover the non-
genericity condition (2).

LEMMA 5.29 — Assume that there exigte Z2 and a linel = [, C P(B)
such thatp~'(a) C . Theny contains a nontrivialF-flag map.

Proof. — By Remark5.24, [\ ¢~ 1(a) # 0.

Assume first that there are ng € P(B) \ I such thatp(zy) € ¢(I). For
everyz € P(B) \ [ and everyz,y € [ with ¢(x) # ¢(y), consider the lines
[(x,z) andl(y, z) throughz, z andy, z, respectively. Therp is constant on
[(x,z)\z oronl(y, z)\y (and equal tg(z)). Note thatp([(x, z)) # ©(l(y, 2))
(no lines are mapped to points) and that on one of the above itases two
values.

There are two cases:

— There exists another line through such thaty is constant orl, \ ¢,
wheret := [, N [ is the intersection point, and equal ¢gz). Then,
by Lemmab.25 ¢ is constant oreveryline throught, exceptl, and
therefore or?(B) \ I, contradiction to Remark.24(3).

— Otherwise, there exists a unique paint [ such thaty is constant on
[ \ z, for every linel, throughz. Indeed, for ally,y’ € ['\ z, we have
o(y) = p(v') # ¢(x) (again, by Lemmd&.25. Theny(P(B) \ x) is
contained in an affine line and there is an affine projection giving an
F-flag map, as above.

Now we find that for every € [\ = with p(y) # ¢(z) there exists an
y' € P(B) \ I'such thato(y') = ¢(y). Indeed, by the previous argument, this
holds for at least one such This implies thato([(y/, z)) = ¢([), hence our
claim.

There exists @ € P(B) \ [ such thatp takes only two value§z, z) and
hence is constant on\ = (herep(z) = a). If ¢~'(a) contains at least two
points theny is constant oP(B) \ [ by the previous argument. #§~*(a)
consists of one point then(P(B)\z) is contained in a line, contradiction ]
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6. Galois groups

Let k& be an algebraic closure of a finite field of characterigti¢, K the
function field of an algebraic variety( overk, G the abelianization of the
pro-/-quotientG of the Galois groupsx of a separable closure &f,

G5 = Gr/[[Gk, Gx), O] — Ge

its canonical central extension apdthe natural projection. In our situation,
G- is a torsion-fre¢Z,-module.

DEFINITION 6.1 — We say thaty,y € G} form acommuting pairf for
some (and therefore any) of their preimages’ one hag?y,4’| = 0. A sub-
group H of G* is calledliftable if any two elements ifi{ form a commuting
pair.

DEFINITION 6.2 — AfanXy = {o} onGY. is the set of all those topolog-
ically noncyclic liftable subgroups C G¢ which are not properly contained
in any other liftable subgroup @y..

REMARK 6.3 — For function fieldsK'/k of surfaces all groups € >, are
iIsomorphic to torsion-free primitivé,-submodules of rank 2 (ifay € o for
somea € Zy \ 0,7 € G4 theny € o), see Section.

NOTATIONS 6.4 — Let
P = { Z\/I}
and
Sincek is algebraically closed, we often identif andZ,(1). Write
K* := lim K*/(K*)"
for the multiplicative group of (formal) rational functions oA
THEOREM6.5 (Kummer theory) — For everyn € N we have a pairing
Gic/U" < K*[(K*)" = pyn
(v, f) = [ fl = (VO VF

which extends to a nondegenerate pairing
[] : G x K* — Z(1).
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LEMMA 6.6. — Let F/k be the function field of a curve. Théh; = ().

Proof. — Let o C G% be a topologically noncyclic subgroup lifting to an
abelian subgroup® C G¢. Then there exist, ¢ € K* and amn so that

O i=¢rg G = g D Py
v o= ([ flas [vs gln)
mapso to a noncyclic subgroup. Far>> 0,
SO(O-) - lJ/gm @ lvllemly

with n < m + m'. We getf’,¢ € H(G%, uy) with a nontrivial wedge
productf’ A ¢ € H*(G%, u,. ) whose restriction td7? (o, p,. ) is nonzero.
Consider the surjections : G — G, p% : G5, — G% and the maps

pq*:Hz(g%Wp’Z") - Hz(gEvlJ’Z")a
p?*:H (g%vu’f") — H (QEHH’E")

Since H? classifies central extensions,
Ker(p™* o pt™) C Ker(pg™).

Since the lifto° is abelian there is a section: ¢ — G¢, with p? o s = id.
Thusif f A g € H*(G%, p,«) restricts nontrivially tar thenp®*(f A g) # 0.
However,p®* o p»*(f A g) = 0, sinceH*(Gg, puym) = 0 (by [9], Ch. 2, Prop.
11). Contradiction. O

7. Valuations

In this section we recall basic results concerning valuations and valued
fields (we follow []). Most of this material an adoptation of well-known
facts to our context.

NOTATIONS 7.1 — A value groupdenoted by, is a totally ordered (torsion-
free) abelian group. We use the additive notatierf for the group law and
> for the order. We have

F=Ttul", "N~ ={0} and v >+ iff y—+ €T*.
ThenI',, = I' U {oc} is a totally ordered monoid, by the conventions

y<o00, y+oo=00+00=00, Vyel.
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DEFINITION 7.2 — A (nonarchimedianyaluationon a field K is a pair
v = (v, I')) consisting of a value group, and a map

v:K—T,»
such that

—v : K* — T, is a surjective homomorphism;
—v(k+ K') > min(v(k),v(x)) forall x,x" € K;
— v(0) = 0.

REMARK 7.3 — In particular, sincd’, is nontorsiony({) = 0 for every
element( of finite order inK™*.

A valuation is calledrivial if I' = {0}. If K = k(X) is a function field
over an algebraic closufeof a finite field then every valuation df restricts
to a trivial valuation ork (every element it* is torsion).

LEMMA 7.4 — LetK = k(X), withk as above, and be a nonarchimedian
valuation onk(X). ThenHom(T',, Z,) is a finitely generated,-module.

Proof. — Note that theQ-rank ofv is bounded bylim(.X) (see [L.0]). O

NOTATIONS 7.5. — We denote byk,, 0,, m, and K, the completion of’
with respect ta, the ring ofv-integers ink’, the maximal ideal 0é,, and the
residue field

K, :=o0,/m,.
If X (over k) is a model forK then thecenterc(v) of a valuation is the

irreducible subvariety defined by the prime ideal N k[X| (providedv is
nonnegative ork[X]).

It is useful to keep in mind the following exact sequences:

(7.2) l—o, - K —-I,—1
and
(7.2) l—-(1+m,) —o, — K, — 1

NOTATIONS 7.6. — Write Z C D¢ C Gy for the images of the inertia and
the decomposition group of the valuatiom G¢.
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NOTATIONS 7.7. — If x : ', — Z,(1) is a homomorphism then
xov : K*— Z(1)

defines an element @f¢, called an inertia element of the valuation The
subgroup generated by such elemeni&lis- G¢.

NOTATIONS 7.8. — The decompostion grouR? is by definition equal to the
image ofGg in G.

LEMMA 7.9, — There is a natural imbeddings, — G and a (canonical)
isomorphism
Dy /1, ~ Gk, -

Proof. — We haveGj. = Hom(K},Z,(1)) (hereK; is considered with the
discrete topology). Any such homomorphism is continuougsgnwith re-
spect to thev-adic topology onk,. Indeed,1 + m, C K is infinitely ¢-
divisible, sincel is prime tochar(k). Hencel + m, is in the kernel of any
homomorphism itom (K}, Z,(1)), and thus continuous for theadic topol-
ogy on K. SinceK™* is dense inK (in this topology) the restriction map
Hom(K, Z¢(1)) — Hom(K*,Z,(1)) is an imbedding and we have a natural
isomorphism

Hom(K,Z,(1)) — Hom (K /(1 +m,), Ze(1)).
SinceHom (G, Zy(1)) = Z7 andGy, = Hom(K;,Z(1)) there is an exact
sequence
(7.3) 1 -1 - Gx — Gk, .

It suffices to show that the last arrow is surjective. Indeed, by Lemma

the groupZ? is a finitely generated,-module and we can find a finite set

of elementsr; € K¥,i = 1,...,s which generate a free abelian subgroup

Gx C K with animbedding” : Gx — T',, andl',, /v/(Gx) being a torsion

group whose elements have orders primé tGonsiderK /G x. We have:
Hom(K7/Gx, Z(1)) = Hom (K7, Z(1)) /17,

sinceHom(Gx, Z,(1)) = Z¢ by construction. Let us show that:

Hom(K/Gx,Z¢(1)) = Hom(K, Z,(1))

by extending a homomorphism Hom (K, Z,(1)) to Hom (K} /Gx, Z.(1)).
Recall that for any element € K there is ann € Z, not divisible by¢,
and such that (k™) = v(h),h € Gx. Thusk™/h € o and we can define
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the extensiony(x) = (1/m)g(x™/h). Itis straightforward to check that this
defines a homomorphism. Thus the last map in the exact sequeéilies(
surjective which proves the lemma. O

DEFINITION 7.10 — Let K = k(X) be a function field. Its valuation is

— positive-dimensionaf trdeg, K, > 1;
— divisorialif trdeg, K, = dim(X) — 1.

NOTATIONS 7.11 — We letVk be the set of all nontrivial (nonarchimedian)
valuations of K’ andDVy the subset of divisorial valuations. i#f € DVy is
realized by a divisoD on a modelX of K (see Exampl&.13 we sometimes
write Z¢,, resp.D9,, for the corresponding inertia, resp. decomposition group.

EXAMPLE 7.12 — Let E = k(C) be the function field of a smooth curve.
Every pointq € C(k) defines a nontrivial valuation, on £ (the order of a
function f € E* atq). Conversely, every nontrivial valuationon £ defines
a pointg := ¢(v) onC.

EXAMPLE 7.13 — Let K = k(X) be the function field of a surface.

— Every positive-dimensional valuation is divisorial.

— Every (irreducible) curv€’ C X defines a valuation; on K with value
groupZ and every valuatior on K with value grou defines a curve
on some modekK’ of K.

— Every flag(C, ¢), (curve, point on this curve), defines a valuatigf,
on K with value grougZ?.

— There exist valuations of” with value group a subgroup &2 and
center supported in a point (on every model).

LEMMA 7.14 — Let K = k(X) be the function field of a surface.Tf* /Z¢
Is topologically noncyclic then is divisorial.

Proof. — Assume first that thé-divisible subgroup of’, is trivial. Since
Dy/1; = Hom(K7, Z(1))

there is anc € K \ k with v(z) = 0. Choose & € K* with v(y) > 0 (in
I')). Thenz,y are algebraically independent over The restriction of- to
the subfieldk(z, y) takes values in the cyclic subgroufy C I', generated
by v(y). SinceK/k(z,y) has finite degre€ := deg[K : k(z,y)], the set of
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values ofr on K is a cyclic group containing, as a subgroup of index at
mostd.

In general,v defines a valuation’ (obtained by dividing the value group
by the maxima¥-divisible subgroup) so that

— the/-divisible subgroup of",, is trivial and
— the groupsZ?, 7¢ coincide.

We can now assume that# v/. Thus there exists an € K* with v(x) # 0
andv/'(z) = 0. The restriction ofv to the fieldk(x) takes values ifZ and
to the fieldk(x,y) in Z + Z (lexicographically ordered), whené(y) > 0.
Indeedv(y) > v(f(x)), for any polynomialf(:c), and

Zfz _Z] )—|—j]j(y>7

where; is a minimal power of; with nonzero coefficients ang is a similar
power ofz in the coefficientf;(x). This contradicts the assumption ttat
contains a nontrivial infinitely divisible subgroup.

Thus under the conditions of the lemMia = Z andv is a divisorial valu-
ation with residue field<', containingk(z) as a subfield. O

8. Adictionary

Lrx = Ly(K) = {logarithmic mapsk™* — Z,(1)}
O = Pp(K) = {flagmaps K — Z,(1)}

PROPOSITION8.L — One has the following identifications:

Gk = Lk,
D¢ = {p€ Lk |p trivial on (14 m,)},
Z¢ = {p€ Lk |p trivial on o}}.

If two nonproportionaly, i/ € G% form a commuting pair then the corre-
sponding mapsg, i/ € Lx form ac-pair (in the sense of Definitiof.7).

Proof. — The first identification is a consequence of Kummer the®gy
For the second and third identification we ugel) and (7.2). For the last
statement, assume thaty’ € Lx don’t form ac-pair. Then there is an
x € K such that the restrictions qf, /' € Lk to the subgroudl, z) are



36 FEDOR BOGOMOLOQV and YURI TSCHINKEL

linearly independent. Thereforg, i/ € G} define a rank 2 liftable subgroup
in g;;(x). Such subgroups don't exist sinGg,,) is a free proé-group. ]

EXAMPLE 8.2 — If u € D? anda € Z¢ thenu, o form a commuting pair.

PROPOSITION8.3. — Let K be afield andv € & N Lx. Then there exists
a unique valuationv = (v,,[',,) (up to equivalence) and a homomorphism
pr : 'y, — Z,(1) such that

a(f) = pr(va(f))

forall f € K*. In particular, « € Z¢ (under the identification of Proposi-
tion 8.1).

Proof. — Let FF be a finite subfield ok and assume that(f) # «(f) for
somef, f' € K and consider the projective lii® = P(Ff + Ff’). Sincea
is a flag map, it is constant outside one point on THiso that either(f +
) = a(f) or = a(f’). This defines a relationf’ >, f (in the first case)
andf >, f’ (otherwise). Ifa(f) = «(f’) and there exists afi” such that
alf) # o(f")andf >, f” >, f' then we putf >, f’. Otherwise, we put
f=a [

It was proved in §], Section 2.4, that the above definitions are correct and
that >, is indeed an order which defines a filtration on the additive gigup
by subgroup$ K, ).r such that

- K = U,erK, and

— Nyer K, =10,
wherel is the set of equivalence classes with respeetjo Sincea € L
this order is compatible with multiplication iR, so that the mag — " is
a valuation andy factors ask* — I' — Z, ~ Z,(1). By (7.1),« € 2. [

COROLLARY 8.4 — Every (topologically) noncyclic liftable subgroup of
G¢. contains an inertia element of some valuation.

Proof. — By Theorenb5.8, every such liftable subgroup contains@&mmap,
which by Propositior8.3 belongs to some inertia group. O

9. Flag maps and valuations

In this section we give a Galois-theoretic description of inertia and decom-
position subgroups of divisorial valuations.
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LEMMA 9.1 — Leta € & N Lk, v = v, be the associated valuation and
i € L. Assume that, i, form a c-pair. Then

p(1+m,) = p(1).
In particular, the restriction of: to o, is induced fromi,.

Proof. — We have

(1) a(k) =0forall k € 0, \ m,;

(2) a(k +m) = a(k) for all Kk andm as above;

(3) m, is generated byn € o0, such thatv(m) # 0.
If m € m, is such thatx(m) # 0 andx € o, \ m, thena is nonconstant on
the subgroupd := (k, m). Then

plk +m) = p(k).

Indeed, ifu is nonconstant ol the restrictionu 4 is proportional ton 4 (by
the c-pair property) andv satisfies (2). In particular, for such we have

p(l +m) = pu(1).

If a(m) = 0 then there exists:’, m” € m, such thatn = m' + m” and
a(m') = a(m”) # 0. Indeed, there exists an’ € m, such thatn > m’ > 1
anda(m’) # «(l) = 0. Since« takes only two values on the subgroup
(m’,m) C m, we have

a(m”) = a(—m'+m) = a(m').
Therefore,
0=pl+m)+ul+m")=pl+m+m'm").

Putk = 1+ m + m/m” and observe that(—m'm"”) = 2a(m’) # 0. By the
argument above

(o = mim") = () = (L +m' +m") = (1 +m),

as claimed. O
COROLLARY 9.2 — Inertia elementsy € Z¢ commute only with elements
e Dy.

PROPOSITION9.3 — Let K = k(X) be the function field of a surface.

Everyo € ¥ hasrky, o = 2. Moreover, it defines a unique valuation= v,
of K so that either every element @fis inertial for v, or v is divisorial and
there is an element € o which is not inertial forv, buty € Dg.
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If distincto, o’ € Y have a nonzero intersection then there exists a divi-
sorial valuation»” such that

- O', OJ E Dg//;
—on OJ = Ig//.
Conversely, itr € Xk is not contained in &¢, for any divisorial valuation

V" thenforallo’ € Yk, 0’ # o, 0ne hasr N o’ = 0.

Proof. — We saw that € X contains an inertial elementfor somevalu-
ationv. Sinceo is topologically noncyclic there is a € o, Z,-independent

on «, and commuting withv. If x is not inertial, that isy ¢ ®(K), then

v gives a nontrivial element in the (abelianized) Galois group of the residue
field K, of v. Thusv is divisorial, K, is 1-dimensional and every liftable
subgroup inGg hasZ,-rank equal to one. Henegy, o = 2 in this case and,

by Corollary9.2, i € Dg. Such a valuatiow is unique, sinc€; NZ% = 0

for distinct divisorialv, /.

If o containsonly inertia elements, then there exists a unique valuation
v such thatr € Z?. Indeed, eithem, + m,, = K or we may assume that
m, C m,, (ando, D o0,/). The first case is impossible since the corresponding
inertia groups don't intersect. In the second cdgg,C Z¢, as claimed.
Moreover, it follows thatk;, o = 2, since theQ-rank of any valuation on a
surface (oveff,) is at most two. This gives af = v, in this case.

If distinct o, o’ have a nontrivial intersection, then the subgr@upC G%
generated by, o’ is not the inertia group of any valuation (the rank of those
is < 2, as we have seen above). However, ¢’ contains a nontrivial inertial
elemento which defines a valuation’. It follows thatD C D¢, since every
element ofD commutes (forms a-pairs) witha and

I'kZZD/IS// 2 2.

Hence the residue field of’ is 1-dimensional and” is a divisorial valuation,
as claimed. O]

Proposition9.3 allows us to identify intrinsically (in terms of the Galois
group) inertia subgroups of divisorial valuations as well as their decompo-
sition groups as follows. Every pair of distinct groupss’ € Y with a
nontrivial intersection defines a divisorial valuatioywhose inertia group

It =o0Nno.
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The corresponding decomposition subgroup is

a
DI/ - UO’DI,‘/LO-'

10. Galois groups of curves

Here we give a Galois-theoretic characterization of subgroups X x
which are inertia subgroups of rank two valuationsgiofarising from a flag
(C,q), whereC' is a smooth irreducible curve (on some modelrof and
q € C(k) is a point (see Examplé.13. We show that Galois-theoretic data
determine the genus ¢f and all “points” onC', as special liftable subgroups
of rank two insidegy .

Throughout,EZ = k(C) is the function field of a smooth curve of gergis
We have an exact sequence
0 — E*/k* — Div(C) — Pic(C) — 0
(whereDiv(C') can be identified with the free abelian group generated by
points inC'(k)). This gives a dual sequence
(10.2) 0— Z(A) — M(C(k), Z¢) — G — Z?g — 0,
with the identifications
— Hom(Pic(C), Zy) = Z(A) (sincePic’(C) is torsion);
- M(C(k),Z;) = Hom(Div(C), Z,) is theZ,-linear space of maps from
— 778 = Ext!(Pic’(C), Zy).
Using this model and the results in Secti®mwe can interpret
(10.2) Gy € M(C(k),Q,)/constant maps

as theZ-linear subspace of all maps : C(k) — Q, (modulo constant
maps) such that
lw, f] € Z, forall fe E*/k".

Here[-, -] is the pairing:
M(C(k),Qp) x E*/k* — Q

(1, [) = s f1 =22, 1) fo
wherediv(f) = _, fyq. In detail, lety € G be an element of the Galois
group. By Kummer theoryy is a homomorphisni™ /k* — Z,(1) ~ Z,.

(10.3)
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Choose a point, € C'(k). For every point € C(k), there is ann.. € N such
that the divisom..(c — ¢) is principal. Define a map

py o C(k) — Qe
c = vy(melc—cp))/me.
Changingey we get maps differing by a constant map.

In this interpretation, an element of an inertia subgr@gpc G¢ corre-
sponds to a “delta’-map (constant outside the p@int EachZ? has a canon-
ical (topological) generata¥,,, given byd,(f) = v, (f), forall f € E*/k*.
The (diagonal) map\ € M(C(k), Q,) from (10.1) is then given by

A= "0u= ) 0,

weVE quw€eC(k)

DEFINITION 10.1 — We say that the support of a subgralipc G is < s
and write

[supp(Z)| <'s
if there exist valuations, ..., w, € Vg such that

ITcC(Z: ...y )z, C Gr.

w1 ) Tws

Otherwise, we writésupp(Z)| > s.

LEMMA 10.2 — LetZ C G¢ be a topologically cyclic subgroup such that
|supp(Z)| > s > 2. Then there exist a finite s¢f;},c, C E* and anm € N
such that the map

Y G — V=@ L/0m
o= (s film)jes
has the following property: for every s, ..., ws} C Vg

w(I) ¢ <w(1511)7 ey ’QD(IS,S»ZZ-

Proof. — Let: € G C M(C(k), Q) be arepresentativeas in (L0.2), of a
topological generator ¢f, wheresupp(Z) > s. There are three possibilities:

(1) «(C(k)) C Qg isinfinite;

(2) thereis & € «(C(k)) C Q, such that'(b) is infinite andthere exist at
leasts + 1 distinct pointsy.o, . . . , 2542 € C(k) such that(q;) # b for
allj=s+2,...,2s+2;

(3) otherwisex(C(k)) is finite, there is & with .~*(b) infinite and there are
at mosts distinct points with values differing frort
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In Case (3)|supp(Z)| < s.

In Case (1), choose any s@t = {q1, ..., 2512} C C(k) of points with
pairwise distinct values. In Case (2) choose distinct.., ¢..; € ¢~*(b) and
put® = {q, ..., @2s12}. In both cases, if)’ C @ is any subset of cardinality
|Q’'| = s then. is nonconstanbn @ \ @'. In particular, there exist points

Qs1,9sy € Q \ Q/ such that

(10.4) U(qs,) 7 1(qsy)-

We may assume that)) C Z, (replacing. by a sufficiently high multiple,
if necessary). Now we choose arf € N such that all values afon remain
pairwise distinct moduld./ /™", LetDiv%((J) be the abelian group of degree
zero divisors orC' supported in). By Lemmag3.2, there isam = ng € N
such thatnD is principal for everyD € Div%((;*). In particular, for every
s+ 9s, € Q thereis afunctiorf € E* such thatliv(f) = n(gs, —gs,). Write
n = (™n, with ged(n, £) = 1, and putn = m’ +m”.

We have a pairing (Kummer theory)

Gy x nDivy(C) — Z/t™
Notice that[Z¢, f] = 0 for all w with ¢, ¢ @ and allf € E* supported in
Q. Further, for every)’ C @ with |Q’| = s and pointsy,,, ¢s, € @ \ Q' asin
(10.4 there is anf € E* with divisordiv(f) = n(gs, — ¢s,) such that

[, /T =n- (e(gs) = 1(gs,)) # 0 mod £
and
[.,Z«'Z}/, f] — O
forall Z¢, of ¢’ € Q'. Let{f;},cs be a basis fof™ - Div(,(C), with f; € E*.
The map
VG — @/l
o= (s film)je

satisfies the required properties. O

The next step is amtrinsic definition of inertia subgroups
Zw C Dy /T = Gioy-

We have a projection
7 G — G /T8
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and an inclusion
9k, = Dy/1) — Gk /1;
PROPOSITION10.3 — Letr be a divisorial valuation of<. A subgroup
I cCDyTs

is the inertia subgroup of a divisorial valuation #{C) = K, iff for every
homomorphism

v GY/TY =V
onto a finite abelian grouf’ there exists a divisorial valuation, such that
W(I) = om/ (L)
Proof. — Let C be the smooth model fdk', = k(C),
I=1I:CDy 1
the inertia subgroup of a divisorial valuation/gfC') corresponding to a point
q=q, € C(k)and
A

a homomorphism onto a finite abelian group. Siggeis a prof-group, we
may assume that

V =@ /0",
for somen,; € N. Letn = max;(n;). By Kummer theory,
Hom(G%, Z/0") = K*/(K*)""
so thaty) determines elements
fi e K*/(K*)"

(for all j € J). Choose functiong; projecting tof;. They define a finite
set of divisorsD;; on X. Moreover, f; are not simultaneously constant 6h
(otherwisew(gg(c)) = w(Ig(C))). Changing the modet — X, if necessary,
we may assume that
— C'is smooth (and irreducible);
— there exists exactly one irreducible compongrin the full preimage of
UD;; which intersect€’ in g. Moreover, this intersection is transversal
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(see Sectio). Then the image df{, undery is equal to the image &f¢.

Conversely, we need to show thatZif# Z2 (for somew € DVk,), then
there exists a homomorphism

v Gr/TE -V
onto a finite abelian group such that for alt’ € DV one has
@D(I) #F1o WV(IS’)'
We consider two cases

(1) there exist two points, ¢ € C(k) such thatZ C (Z2,79);
(2) otherwise.

Case 1.There exists a rational map : X — P! such that its restriction
7:C—DP!

is surjective, unramified at ¢’ andn(q) # 7(¢’). Under the induced map of
Galois groups

T(Z) C T3y Tagur))
but is not contained in either?  or Z7 . Thus there exist a finite abelian
groupV and a mapy : Gy — Vosuch that(Z) ¢ ¢(Zj,) for any
q" € PL. It follows that

Yom(I) ¢ ¢om(Zy)
foranyr € DVy.

Case 2. By Lemmal0.2, there exist a finite set of functions € k(C),
with support in a finite sef) = {qo, ..., s} C C(k), and anm € N such that
the homomorphism

P Gioy — V=8ez/tm
po= (s film)ies
has the property that for alb, w’ € DV ¢
V() & (W(Zy), v(T )z,

Next we choose a model foX andC' as in Lemma3.8. In particular, there
exist functionsy; with divisor

div(g;) = n - (D; — Do) + (H; — HY)
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such that all the divisors are irreducible, with transversal intersections and
div(g;)|C = n(g; — o). These functiong; define a homomorphism

v Gy I — V.
If D is adivisor onX theny o, (Z¢,) = 0 unlessD = D; for somej. In this
casey o m, (I}, ) = (I3, ).
Letv € DV andc(v') C X be its center orX. There are three cases:
— ¢(v') ¢ D; foranyj: theny o m,(Z%) = 0;
— () € DY, whereD? = D; \ (Uj;D; N Dy ): then

vom(Ly) CY(Zy);
— ¢(v') € D; N Dy, for somey, j': then
Yo m,(Ty) C (B(T5). (T, )z,
All three possibilities contradict our assumptions. ]

LEMMA 10.4 — Let E = k(C) be the function field of a curve. Then
g(C) > 1iff there exists a homomorphism fra@ig to a finite (abelian) group
which maps all inertia elements (o

Proof. — Indeed, every curve of gents1 over a finite field of characteristic

p has unramified coverings of degréel hese coverings define maps of Galois
groups, which are trivial on all inertia elements. dfis rational thenG,,

and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequ&cg) ( O]

REMARK 10.5 — Combining this with Proposition0.3we can decide in
purely Galois-theoretic terms which divisorial valuationgotorrespond to
nonrational (irreducible) curve§' on some modelX of K. We call such
valuationsnonrational

11. Valuations on surfaces

The next stage of the recognition process leads us to the following prob-

—

lem: How to characterize subgroup&”) C K*? In this section we recall a
geometric argument (used in algebraic K-theory) characterizing pairs of func-
tions f, g € K* which are contained ik(C)*, for some curve” on a model

of K.
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Let K = k(X) be the function field of a smooth surfa¢e over £ andv
a divisorial valuation of. We have a well-defined (bilinear, with respect to
multiplication) residue map

K*xK* — K,/k*
f, g — Y9 /gv,

On a smooth modeX of K, whererv = v for some divisorD C X, we can
define

(11.1)

(11.2) o,=0p : K*xK*— K,/k*

as follows:

— o.(f,g) = lifboth f, g are invertible onD;

- o.(f,g9) = fyif fisinvertible (fp is the restriction taD) andg has
multiplicity m along D;

- o0.(f,9) = (f™/g™)p in the general case, whef)g have multiplici-
tiesmy, mgy, respectively.

The definition does not depend on the choice of the model.
The following is a standard result in K-theory. We include a proof since we
will need its/-adic version.

LEMMA 11.1 — For f,g € K*
0.(f.9) =1 Vv eDVyx < f,g€ E =k(C) C K for some curve’

Proof. — (<) On an appropriate modet we haver = v for a divisor
D c X andw : X — C'isregular and flat with irreducible generic fiber (and
f,g € k(C)*). By definition, o, (f, g) = 1if D is notin the fiber ofr. If D is
in the fiber then there isiac k(C)*, vp(t) # 0 such that bothft™7s, gt™s are
regular and constant ab (for somem, m, € N) so thato,(f, g) = 1.

(=) Assume thab,(f,g) = 1 for everyr € DVg. Every nonconstant
function f defines a unique map (with irreducible generic fiber)

X — Cf

which corresponds to the algebraic closuré:of) in K (we will say thatf
is induced fromC’). We claim thatr; = 7.
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Sincef is induced fromC;, we have

div(f) = Zanq,
q€Q
where@Q C Cy(k) is finite andD, = n~'(¢). ThenD; = 0 and D, is either
a multiple of a fiber ofr, or it has an irreducible componeft C D, which
dominatesC, (underr,). In the second case, the restrictiongofo D, is a
nonconstant element i(D,). Thenvp(f) # 0, while vp(g) = 0. Hence

op(f,g) # 0 since it coincides Witly;,”D(f) =# 1, a contradiction. Therefore,
all D, are contained in the finitely many fibessof 7,. That meansliv(f)
does not intersect the fibefs, t € C,, ¢t ¢ S which implies thatf is constant
on suchR,. Hencef belongs to the normal closure bfC,) in K, and in fact
f € k(C,) sincek(C,) is algebraically closed i, by construction. Thug
is induced fromC, and henc&’'; = C, andr; = 7,. O

12. /-adic analysis: generalities
Hypothetically, surjective homomorphisrgg — g,g(c) (or dually, inclu-
sions@ c K*) are characterized as follows: assume, we have a commu-
tative diagram

G — A°

L]

where the abelian grougd is a rank two torsion-fre&,-module andA€ is
its free central extension. Then there exists a unique figl) C K and a
factorization ofy:

Ok — gg(C) — A
Here we solve a dual problem. We distinguish, Galois-theoretically, a cer-
tain subgroup insid& ™ which containd<* /k*. The main resultis the Galois-

theoretic determination of pairg § of elements of this subgroup which are
contained in the completioA™* of the same one-dimensional field.
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In detail, to everyf € K* one associates its divis&? = D; on X. Con-
versely, D (uniquely) determines the image ¢fe K*/k*. Recall that the
Galois groupGé determinesi™, a group substantially bigger thaki* /k*.
The goal is to detect théadic subspac&™ /k* ® Z, C K*.

We start with the theory of divisors with,-adic coefficients associated to
elements ink*. Such an element is, in general, represented by a divisor with
infinite support onX, with rapidly decreasing coefficients (in thadic topol-
ogy onZ,). The Galois datuniGs., ¥ ) allows us to distinguish between ra-
tional and nonrational irreducible divisors (via the corresponding valuations)
and to characterize intrinsically a subsp#€§(K) c K™ (of divisors with
finite nonrational support, s€e.2and12.3), containingi™* /k* ® Z,.

In order to further shrinkFS(K’) using Galois data we use the fact that for
any nontrivialf € K* there are many other € K* with p(f,g9) = 0 (where
p(f,g) = 0is the(-adic generalization of(f, g) = 0). Those are arbitrary
elementsy € E*, E = k(f)X. However, for a sufficiently generic element
f € K* the elemeny with p(f, g) = 0is equal tof®, a € Z.

Thus the property that fof € K* the set ofg € K* with o(f,g) =
0 contains many elements different froffi,a € Z, can be used to select
a smaller subgrougFSx(K) C FS(K), containing ™ /k*. Elements in
FSx(K) have finite support on every mod&l. We show in Sectiori4 that
p(f.g) =0, f g € FSx(K) implies thatf,g ¢ E* E = k(z)¥ for some
xr e K*.

We have an exact sequence
(12.1) 0 — K*/k* 25 Div(X) % Pic(X) — 0,

whereDiv(X) is the group of (Weil or Cartier) divisors of . We will identify
an elemenff € K*/k* with its image undepx. Let

Div(X):={D =Y awDu}, resp. Div,(X) C Div(X),
meM

be the group of divisors (resp. nonrational divisors) wiéhidly decreasing
coefficients

— M is a countable set;
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— for all r € Z the set
{m||amle <7}
is finite; -

— for D € Div,,(X), all D,,, are nonrational.

Clearly, the group ofinite /-adic divisors
Div(X), := Div(X) ®z Z; C Div(X).
Every element
feK*=lim K*/(K*)"

has a representation

f=(faneror f=fofify -,
with f,, € K*. We have homomorphisms
px 1 K* — ]SE(X),
f = le(f) = ZneN o div(fn) = Zm Uy Dy,

pxar : K* — Div(X) 25 Divy(X),
whereD,, C X are irreducible divisors,
dm = Zanmgn € ZE:
neN

with a,,,,, € Z, and

div(fn) =) @pnDin-

m

Herediv(f,) is theCartier divisor of f,, and)_  a,., Dy, is its image in the
group ofWeildivisors. Everyy € DV gives rise to a homomorphism

v K*— Zy
and a residue map
0, : K*xK*— K,
On a smooth modek, wherer = vp for some divisorD C X, z/(f) is

A

the ¢-adic coefficient aD of div(f), while g, is the natural generalization of

(11.1).
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DEFINITION 12.1 — We say that distincf, § € K* commute if@V(f, g) =
0, for all divisorial v. We say that they have disjoint support if for all divisorial
valuationsr € DVg

v(f)-v(g) = 0.
We say thatf € K* has nontrivial commutators if there exigte K* with
disjoint support (fromf) which commute wittf.

NOTATIONS 12.2 — We put

suppg(f) ={ ve€DVg | f nontrivial on 7o,
Supr(f) = { Dm | &m 7£ 0 }

DEFINITION 12.3 — We say thayf hasfinite nonrational suppoif the set

of nonrationalv € supp(f) is finite (see Lemma0.4for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K) c K*
be the set of such elements.

DEFINITION 12.4 — We say thatf has finite support on the modél if

~

suppy (f) is finite. Put
FSx(K) :={f € K* | px(f) € Div(X)}.

LEMMA 12.5 — The definition ofFSx (K') does not depend on the choice
of a smooth modeX.

Proof. — For any two smooth model&’, X" we can find a smooth model

X dominating both. The difference between the sets of irreducible divisors
Div(X"), resp. Div(X"), andDiv(X) is finite and consists only of rational
curves. [

COROLLARY 12.6 — Let K be the function field of a surfacé containing
only finitely many rational curves. Then

FS(K) = FSx(K).
This gives an intrinsic, Galois-theoretic description B8 (K) in this

case. We proceed to give such a description in general. Note thgt éor
FS(K), its nonrational componeniy ..(f) is independent of the model
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X. More precisely, for any birational morphisid’ — X we can identify
Div,, (X') = Div,,(X). Under this identification

pX’,nr(.f) = pX,nr(f)'

Let F(K) be the set of alff € K*/k* such thatpx .,(f) # 0 and for every
rational divisorial valuationr and some (equivalently, every) mod€lof K,
wherer = v for a rational curve’ C X, either

— fe=1€k(C)"/k*or
— pc(fe) #0 mod L.

Geometrically, this condition means thadlifis not a component of the divisor
of f then there is a point i’ N div(f) whose multiplicity is prime td.

LEMMA 12.7. — The setF(K) generates<*/k*. Moreover, for every pair

of commuting element§ § € FS(K) with disjoint support such that there
exists anf € F(K) with

f=f mod (K%,
one hasf € FSx(K) andj € FSx(K), for every modeK of K.

Proof. — Lety € K* be a function such that the generic fiber of the corre-
sponding mapr, : X — ]Pll/, from some modeK of K, is an irreducible
nonrational curve. (Notice that sughgenerate*.) Using suchy we con-
structF(K) as follows.

For generic quadratic, coprime polynomidtsQ) € k[y|, the preimage in
X of (0 U occo) C P! under the composition of, with the map

o : IP’; — P!
y — fly)=Ply)/Qy)

contains at least 4 irreducible smooth fibersrpf If f were nonconstant on
a rational curve”' (on some modek of K) and fo were an/-th power then
the local ramification indices of and hence of) were divisible by/. Thus
we would have a map, : C' — P, with all local ramification indices over 4
points divisible by/, and by Hurwitz’ theoremg(C) > 0, which contradicts
the rationality ofC. It follows that f € F(K). Clearly, such element$
generate:(y)*.
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Next, write
px(f) = DiermiDi+ €327 n;Cy,
px(9) = DiepmiDi+ 372, 0,
wherel, I’ are finite sets and the second sum is an infinite series over dis-
tinct rational curves’;, C; C X. By assumption, the se{s; }icr, {C}}jen,
{Di}ier, {C}}jen are disjoint.

By assumptionp,,]f,(f, g) = 0, for all v; corresponding t@’. SinceC’; are
rational, this residue equals the residug @in C”,, which is nonzero mod /,
contradiction. Thus, i(f, g) = 0, thensupp (g) is finite and we may put
§ = ¢'. The restriction of/ to any irreducible component of the divisor bfs

identically zero. This implies that is a product of-adic powers of elements
belonging to the same fieldy) as f. Thus all rational curves in the support

of f also belong to the fibers af There are finitely many such curves since
some fibers contain nonrational curves. O]

We have an exact sequence
0— K* 25 m(X) 2L, Pic(X), — 0,
where we denote bRic(X), the quotient grou;ﬁ/)E(X)/f(*. Write
Div(X)° C Div(X)
for the group generated bk (K*) and identify anf € K* with its image.
LEMMA 12.8 — Let X /k be smooth projective surfac&/ afinite set and
D= anDy € Div(X), :=Div(X) @z Zs, am € Zy

meM

a divisor such thatp,(D) = 0. Then there exist a finite sét functions
fi € K* and numbers; € Z,, linearly independent ove£, such that for all
1el
suppx (fi) C suppx(D)
and
D = Zazbzdlv(fz>7 bz S Q
If NS(X') = Pic(X) then we can take all, = 1.
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Proof. — We have a diagram

Ker(¢) — ®memZD,, —— ACPic(X) —0
! | |

P

Ker(or)) — @®memZeDnm —> Ay CPic(X), — 0.

The group) is finitely generated and its imageNs(X) = Pic(X)/Pic’(X)
has the same rank as(sincePic’(X) is a torsion group):

rkz A = rky, Ay andrkyKer(p) = rky, Ker(¢y).

In particular,Ker(y,) has a basi§ D;};c; (overZ,), where eachD; is a’Z-
integral linear combinations adb,, (with m € M) and is also ifKer(p). It
follows that D, = div(f;) for some functionf; € K* with support inD.
Finally, if o,(D) = 0, we can find a representation

D =Y adiv(f)),

with b, €= Q anda; € Z,, linearly independent ovef (passing to a subset
of I, if necessary). O]

COROLLARY 12.9 — There is an exact sequence
1 — K*/k* ® Zy — FSx(K) — Pic’(X)[{] — 1
wherePic’(X)[(] c Pic’(X) is the/-power torsion subgroup.

Proof. — If suffices to recall that elements Ric’(X)[¢], are represented, in
our description, by element8/¢", for somen € N, which define unramified
(-power cyclic covering of a modeX . O

Lemmal2.7 and Lemmal2.8 allow us to defineFSx (K) intrinsically.
Namely, for every

feFS(K)/t =K/t =K*)¢
denote byF; C FS(K) the groupZ,-generated byf/ f')'/*, wheref and f’

are elements which have nontrivial commutators and which both redyte to
modulo/. Then define

fSO(K) = ﬂfeK*/ZFf-
Note that for allf € F(K)/¢ and every modek of K one has
Fr C FSx(K).
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Lemmal2.8implies that, conversely
fSX (K) C FJE,

for every f. In particular, for everyf € F(K), with f = f mod ¢, both sets
coincide. Therefore,

(12.2) FSo(K) = FSx(K),

for all modelsX.

Moreover, notice that elements i*/k* ® Z, C FSx(K) are Galois-
theoretically characterized as elements whose projectiBict@.X) is trivial.
As a group,K*/k* ® Z, is generated by elements whasealues (forv €
DVk) are not all divisible by.

13. /-adic analysis: curves

In this section we begin the process recognition of the lafi¢ek™ C K*.
We solve an analogous problem for the function field of a rational curve. This
result will play an essential role in the analysis of surfaces.

PROPOSITION13.1 — Let & be the closure of a finite fieldhar(k) # p, C
a curve ovelk of genugg with function fieldE = £(C') and

Vs Giey — 9k

an isomorphism of Galois groups inducing an isomorphism on inertia groups
of divisorial valuations, that is, a bijection on the set of such groups and
isomorphisms of corresponding groups. Let

—

U* k(P — E

be the dual isomorphism. Then = k(P') and there is a constant € Z;
such thatv*(k(PY)* /k*) = a - E*/k*.

Proof. — Recalling the exact sequenc&0(1), we have a commuting dia-
gram
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0 —— ZeAg(iy —= M(C(k), Zy) g% 728 0

|

0 — ZeApi gy —> M(P'(k), Z¢) — Grpr) — 0

SinceV is an isomorphism on inertia grouf$, for eachw, thesetsC'(k)
andP!(k) coincide and we get aniqueisomorphism ofZ,-modules

M(C(k), Zy) = M(P' (k). Zy).
In particular, we find thag = 0 andE = k(P!). Further, we have an induced

iIsomorphism
Zo( Y 0u) =Zu( Y Ow)
wEVE w’EVk(]Pl)
so that
(Z Ow) = af Z Our)
weVE w/EVMHﬂ)

for somea € Z;. This implies that),, = ad,s, for all w € Vg and the
correspondingy’ € Vpi. In particular, for the dual groups we have

E*/]:?* — (K*/k?*)a,
wherea € Z;. O]

14. /-adic analysis: surfaces

Let K = k(X) be a function field of a smooth surfa¢é over k. We will
need arf-adic version of Lemmal.1.
PROPOSITION14.1 — Let [, §j € FS,(K) be such that

— 0,(f,9) = 0 for everyv € DV;

A

— suppg (f) Nsuppg(g) = 0.
Then there is a 1-dimensional field = k(C) ¢ K such thatf, j € E*.

Proof. — By Lemmal2.§
¢ a; -~ bj
F=T1]r" resp.g=]]9/,
iel jeJ
where
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— 1, J are finite sets;

— fi,g; € K* forall 7, j;

—a; € Q, (resp.b; € Q) are linearly independent over.
Fix a valuationr and choose a (smooth) mod¥l so thatr = v, for some
divisor D C X. Then

o,(f,9) = [ [ en(fir 95)

and we can compute it using only those pafrsy; which haveD in their
support. In particular,

f’mg/gmf - H(f?imj/g?jmi),

wherem,; (resp.m;) is the order ofy; (resp. f;) on D. This order vanishes

~ A

unlessD € supp(f) Usupp(g). By assumption, ifD € supp(f) thenD ¢
supp(g) (andn; = 0) so that

Since the nonzero numbeds are linearly independent ovép the equality
> a;m; = 0 implies thatm,; = 0 (for all ;) and thatyp, € k*.

Similarly, gp = H(gj)’g, whereb; are linearly independent ovéf, and
gp € k* implies that(g,;)p € k* (for all j € J). It follows that

o(fi,95) =0
for all f;, g; and every valuatiom = vp. By Lemmall.l all f;, g; belong to
the same 1-dimensional field C K and hence’, g € E*. O

REMARK 14.2 — For everyf € K* the elemeny = (f +a)(f + b) where
a # bandab # 0, satisfies the conditions of Propositih. 1

PROPOSITION14.3 — Let&* C FSy(K) C K* be a subset with the fol-
lowing properties:

— R*is closed under multiplication;

— &*NE* = ag - E*/k* for every 1-dimensional subfield = k(z) C K,
with ag € Z;j;

— there exists a, € DVy such that

{160, flI fe &}~ 2

for a topological generatod, of Z .
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Then®* C K*/k* ® Z.

Proof. — Forz € K\ k let E = k(z) be the corresponding 1-dimensional
field. By assumption, there exists ap € Z, such that

RNE*=ag- Bk
If some (any) topological generatéy of 7, is not identically zero ong*
then there exists a (smooth) mod€| wherev is realized by a divisoD,,
together with a morphism
X —P =Py
such thatD, dominatedP!. It follows that
ag € QQZZ = Z(g).
It remains to observe that everye K* can be written as a product
T = x/ . x//

such that, is nontrivial on botht’ = k(2') andE” = k(z"). O

COROLLARY 14.4 — After a choice of, for every 1-dimensionall C K
and everyf € E*/k* we can Galois-theoretically distinguish its poles from
its zeroes.

The last essential step is a Galois-theoretic characterization of the partial
projective structure oR*/k*, more precisely, the characterization of gener-
ating elements and primary lines &f'/k* (see Definition3.10 and Defini-
tion 4.7).

LEMMA 145 — Letx € K* be a generating element; := k(z) and
r = r(z) € N the smallest positive integer such théte K*. Then
— r = p™ for somem € N (with p = char(k));
— (E7 k") N (R/k") = (E7)" [k
— (pointwise)p™-th powers of primary lines i2* /k* coincide with pri-
mary lines in(EP™)* /k*.

Proof. — The first property follows sinc&’/{ is a finite purely inseparable
extension, by Proposition3.19and 14.3 Next, we claim that a generator
y € Ris ap™-th power of a generator ok (for somem depending ony).
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Indeed,F := @K C K is afinite and purely inseparable extensiork @f),
E := k(x) (for somezx € K). Thus
y = (ax?" +b)/(ca?” +d) = ((dz +b)/(dx+d))P"

for somem € Z, a,b, c,d € k and theirp™-th rootsa’, v, ¢, d’ € k (sincek
is algebraically closed).

In particular, a generatar € £* is in £* N 8* (and is the minimal positive
power of a generator iy contained inE* N K*). This implies the third
property: the generators éf*" arep™-th powers of the generators At [

COROLLARY 14.6 (Definition) — Assume thay, ¢/ are primitive elements
in (EP™)* C &* such that

— v,y have support in 2 points;
— the pole ofy coincides with the pole aof.

Then (the images of), 7/ in K*/k* are contained in a primary line passing
through (the images of)), y, /.

Proof. — Definition10.1and Lemmal0.2give a Galois-theoretic character-
ization of the notion “support in 2 points”. By Corollafyl.4we can Galois-
theoretically distinguish zeroes and polegyof £*/k*. It remains to apply
Lemmal4.5 O

15. Proof
In this section we prove our main theorem: if
(k. Ek) = (91, E1r),

whereL is a function field over an algebraic closure of a finite field of char-
acteristic£ /, thenK is a purely inseparable extensioniof

Step 1.We have a nhondegenerate pairing
Gi x K* — Zy(1).
This implies thatx* = L*.
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Step 2.We haveX{v = ¥4V and we identify intrinsically the inertia and
decomposition groups of divisorial valuations:

1, CD;, CGy:
every liftable subgroup € ¢ C ¥k contains an inertia element of a divi-
sorial valuation (which is also contained in at least one otter > ). The
corresponding decomposition group is the “centralizer” of the (topologically)

cyclic inertia group (the set of all elements which “commute” with inertia).
This identifiesDVx = DYV;..

Step 3.For everyr € DV, we characterize intrinsically
Iy CDy)Ts
(see Proposition0.3).

Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemmal0.4and Remarki0.5.

Step 5.For f € K* we have two notions of supportupp (f) (intrinsic)
andsupr(f) (depending on a modet) and two notions of finiteness: is
nontrivial on at most finitely many nonrational divisorial valuationgesp.

f has finite divisorial support on a model. We definB8(K) c K* as the

set of elements satisfying the first notion of finiteness. If some (any) mddel

of K contains only finitely many rational curves, both notions of finiteness of
support coincide and one obtains an intrinsic Galois-theoretic characterization
of K*/k* ® Z, C K*, as elements itFS(K). In general, it may happen that
someg € L*/I* has an “infinite rational tail” on some (every) modélof K:

PX(Q) = pX,nr<g) + Z njcj7
i>1
whereC; are irreducible rational curves oxi. In Lemmal2.7we show that
many elements oL*/I* C FS(L) = FS(K) have finite support on every
model X of K, and vice versa. In particular, we prove that
FSo(K)=K*/k* @7y = L*/I* ® Z4

(up to an/-torsion group related tBic’(X), for some modeK of K), where
FSo(K) C FS(K) C K* has an intrinsic Galois-theoretic description.
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Step 6.For every pair of elemen'[ﬁ, g € FSo(K) satisfying

— suppk (f) Nsuppg(g) = 0;
—o.(f,9) =0forallv € DV

there exists a subfield = k(C) c K suchthatf, § € £* (Propositionl4.1).

Step 7 Propositionl 3. lidentifiesE* /k* inside £*, up to conformal equiv-
alence, for all one-dimensional = k(x), which are integrally closed i&".

Step 8.Propositionl4.3identifiesf* := K*/k*NL*/I* (as a multiplicative
group) with a multiplicative subgroup df*/k* @ Zy).

Step 9.By Proposition3.19 &* is isomorphic toK/k*, andL; /I*, where
K, /K andL,/L are finite purely inseparable extensions. Theref@re;ar-
ries two structures of an abstract projective space compatible with the multi-
plicative structure (see Exampieb).

Step 10.By Theorem4.6 the field is uniquely determined by the partial
projective structure omR* consisting of primary lines (see Lemmnda3 and
Lemma4.9).

Step 11.Lemmal4.5and Corollaryl4.6 give a Galois-theoretic charac-
terization of generating elements and primary lineskin These define a
(unique) partial projective structure it (in particular, the projective struc-
tures induced by (K;) andP(L;) coincide). In particular, the fields; and
L, both containk and are isomorphic.

Step 12If follows that K and L are finite purely inseparable extensions of
thesamefield. This concludes the proof of Theorem
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