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ABSTRACT. — We study the structure of abelian subgroups of Galois groups of func-
tion fields of surfaces.
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Introduction

We fix two primesp and/. We will assume that # p andp # 2. Let
k = FF, be an algebraic closure of the finite fidlg. Let X be an algebraic
variety defined ovek and K = k(X) its function field. We will refer to
X as amodelof K. Let Pic(X) be the Picard groupNS(X) the Neron-
Severi group ofX andGy. the abelianization of the pré-quotientGy of the
absolute Galois group oK. Under our assumptions df G is a torsion
freeZ,-module. LetG$, be its canonical central extension - the second lower
central series quotient ¢fx. It determines the following structure @f.: a
setX i of distinguished (primitive) subgroups which are isomorphitirde
rank (torsion free)Z,-modules. A topologically noncyclic subgroupe Xy
iff

— o lifts to an abelian subgroup of;

— o is maximal: there are no abelian subgroups- G¢ which lift to an

abelian subgroup d@¥, and contairv as a proper subgroup.

We will call X, a fan. The main theorem of this paper is

THEOREM1. — Let K and L be function fields over algebraic closures of
finite fields of characteristi¢z 2, /. Assume thak” = k(X)) is a function field
of a surfaceX/k such that

(1) Pic(X) = NS(X);

(2) there exists an isomorphism

b= r : G ~GF
of abelian pro#-groups inducing a bijection of sets
Yk = 2.
ThenlL is a finite purely inseparable extension/ef

The conditions onX do not depend on a choice of a model, which we can
assume to be smooth (by resolution of singularities in dimension two). We
chose to treat in detail a class of surfaces for which the proof of Thet@rem
is most transparent. The assumption (1) is not necessary; we have included it
since it allows us to avoid certain geometric technicalities.

In this paper we implement the program outlined 1h &nd [2] describ-
ing the correspondence between higher-dimensional function fields and their
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abelianized Galois groups. For results concerning the reconstruction of func-
tion fields from their (full) Galois groups (the birational Grothendieck pro-
gram) we refer to the works of Pop, Mochizuki and Efrat (sée[[/] and

[5D.
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2. Basic algebra and geometry of fields
In this section we collect some technical results about function fields.

NOTATIONS 2.1. — Throughoutk is an algebraic closure of the finite field
F =F, andK = k(X) the function field of an algebraic variety/k overk
(its mode).

We assume familiarity with

— basic notions of field theory (transcendence degree, purely inseparable
extensions);

— basic notions of algebraic geometry (mod&lsof a field K, k-rational
points X (k), Picard grouic(X), Néron-Severi groupNS(.X)).

LEMMA 2.2 — LetC/k be a smooth curve an@d C C(k) a finite set. Then
there exists am = ng € N such that for every degree zero divisbrwith
support in@ the divisorn D is principal.

Proof. — Every finitely generated subgroup of a torsion group is finite. Since
the group of degree zero divisoPsc’(C') (over any finite field) is a torsion
group and its subgroup of divisors with support in a finite set of pdihts
C'(k) is finitely generated, the claim follows. O

LEMMA 2.3 — Let K/k be the function field of a surfacé€;/k a smooth
curve on a model o and @ = {qo,...,qs} C C(k) a finite set of points.
Then there exist a modél of K, irreducible divisorsD;, H;, H; on X (with
j =0,...,s) and a positive integern = n¢ such that:

(1) X is smooth and contains;
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(2) DyNnC =g forallj=1,..,s;

(3) n(D; — D,) restricted toC'is a principal divisor;

(4) n(D; — Do) + (H; — H}) is a principal divisor onX;

(5) the divisorsD, are pairwise disjoint;

(6) all intersections betweeD;, H; and H; are transversal, pairwise dis-
tinct and outside”;

(7) H;, H; don't intersectC'.

Proof. — On a modelX containingC' as a smooth curve choose any divisors
D; C X passing (transversally) through (for all j = 0,...,s). Blowing

up points inC'(k) \ @ we can insure that the (strict transform 6f)becomes
contractible and that the image of the surface under a contracting morphism
is projective Blowing up again (if necessary) and removing components of
exceptional divisors, we can insure that the (strict transfoimsh C' = ¢;

(for all j). By LemmaZ2.2, there exists am = ng such that the restriction

of n(D; — Dy) to C'is a principal divisor. We continue to blow up (outside
() so that eacm(D; — D) becomes a trivial line bundle on some affine
neighborhood of” in some modelX. Throughout,C' remains contractible
and we write

T: X =Y

for the corresponding blow-down. Now(D; — D) is induced from a line
bundle onY (which is projective). In particular, there exiatnpleclasses
[H;], [H}] € Pic(Y) such that

[n(D; = Do)] + ([H;] — [H}])

is a principal divisor onX (here we identifiedH;], [[}] with their full trans-
forms in X). Finally, we can choose representativés H; C Y of these
classes which are disjoint from(C'), irreducible and satisfy all required

transversality assumptions. O
LEMMA 2.4 — Let K/8 be a purely inseparable extension. Then
- KDk

— K/R s afinite extension;
— R = k(X’) for some algebraic varietyX .
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DEFINITION 2.5. — We writeE~ C K for thenormalclosure of a subfield
E C K (elements inK which are algebraic oveF). We say that € K \ k

is generatingf k(x)K = k(x).

REMARK 2.6. — If E C K is 1-dimensional then for alt € E \ k one has
k:(x)K — E" (afinite extension of).

LEMMA 2.7. — For any subfield? C K there is a canonical sequence

X“’E Yl PE :

where
— mg IS birational dominant with irreducible generic fiber;
— pg IS quasi-finite and dominant;
— k(Y")=E" andk(Y) = E.

For generating € K we write
T, X =Y

for the morphism from Lemma.7, with k£(Y) = k(z). Fory € K \ k(x)
we definedeg,(y) (the degree of; on the generic fiber of,) as the degree
of the corresponding surjective map from the generic fiber otinder the
projectionr,,.

PROPOSITION2.8 — Let X/k be a smooth surface. Then

(1) if X contains finitely many rational curves then the same holds for every
modelX’ of K;

(2) if Pic(X) = NS(X) then for every 1-dimensional subfield C K =
k(X) such thatt) = E" one hasF = k(x) for somer € K;

(3) for every curveC C X and every finite set of irreducible divisors
Dy, ..., D, of X not containingC, there exists a blowup

T: X =X

such that every branch in the strict transform! (C') intersects at most
one irreducible component of the full transformwof_, D; and these
intersections are transversal.
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Proof. — Property (1) is evident. Property (2) follows from the fact that
every such 1-dimensional field corresponds to a dominantkhap C' onto

a curve. IfPic(X) = NS(X) thenPic’(X) = 0 and X admits no such
maps onto curves of genus 1. The last property follows from resolution of
singularities for surfaces. O]

LEMMA 2.9 — Assume thaPic(X) = NS(X) and letz,y € k(X) \ k be
such that

deg,(y) = min (deg,(f)).

feR\k(@)"
Theny is generating:k(y) = k;(y)K.
Proof. — If y is not generating thep = z(y') for somey € K = k(X)
and some function € k(y') of degree> 2. This implies thaideg,(y) >
2deg,(y'), contradicting minimality. O

PROPOSITION2.10 — Let X/k be an algebraic variety of dimension 2
such thatPic(X) = NS(X). If t € K = k(X) is not generating then there
existy,y’ € K such that for allxy, ko, K}, K, € k* the elements

(2.1) y,y/(t+ K1), (y + ko) /tandy’, ' /(t + k1), (¥ + K3)
are generating and the elements

(2.2) Ly.y.t
are linearly independent ovér.

Proof — Write £ := k(i) . By Propositior2.8 (2), there exists am € K
such that' = k(z) (so thatt = ¢(z)). We have a dominant morphism

. 0 X — P!

with irreducible generic fiber. Choose two algebraically indepengeunids,’
so that

deg,(y) = deg,(y') = min (deg,(f))

FEK\k(z)
and
Lyy,t
are linearly independent (linear independence can be checked, for example,
by restricting to a fiber ofr,). By Lemma2.9, bothy andy’ are generating.
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It suffices to observe that all elements ih1) have the same degree on the
generic fiber ofr,. ]

The next proposition is a characterization of multiplicative groups of sub-
fields 8 C K. We will say thaty € K* is apowerif there exist ant € K*
and an integen > 2 such thaty = z™.

PROPOSITION2.11 — Let X be an algebraic variety of dimension2 such
that every 1-dimensional subfieltl C K = k(.X) has the form& = k(z) for
somer € K*. LetR* C K* be a subset such that

(1) R* is closed under multiplication;
(2) for everyE = k(z) C K with E = E" there exists am = r(x) € N
such that
(3) there exists @ € K \ k with r(y) = 1 such thaty is not a power.
Theng := R* U0 is afield andK /R is a purely inseparable finite extension.

Proof. — Once we know thaf is a field we can conclude that every= K*

Is either inK]* or some power of it is iNR*. Of course, it can only be a
power ofp so thatK'/R is a purely inseparable extension, of finite degree (by
Lemma2.4).

By (3), £ C K. To conclude thaRr is a field, it suffices to show that for
everyz € R one hasr + 1 € K (and then use multiplicativity). For every
x € R\ k with r(z) = 1 we haveR* N k(z)* = k(z)* and

r+ ke R, forallk € k.
In particular, this holds foy.

Now considerr € & with r(z) > 1. We claim that there existsrac k

such that
L rT+Y+K

= d =1
— € K andr(z)

This implies that
z—1=(x+1)/(y+r—1)€ & andzx +1 € K,
(by multiplicativity).
To prove the claim, choose a mode€lof K and consider the morphisms
T X — Pl=(x:1)
T, X — Pl=(y:1)
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(as in Lemma2.7). Sincex andy are algebraically independent ¢) > 1),
only finitely many components of the fibersof are contained in the fibers
of 7, and there exists a € % such that both fibers

7, ' (=) andm, ' (1 — k)

are transversal to the fibers of.
Then

divo(y + x — 1) ¢ div(z + y + k),

sincey + k = —1 ony + k — 1 andx is nonconstant on these fibers (where
divy is the divisor of zeroes). It follows thaibth

t:=(y+k)/r and z = (z+y+k)/(y+r—1)

are not powers so thatt) = r(z) = 1. To show that € | observe that both
x,y + k € Ksothatt € R. Therefore,

t+l=(+y+r)/zech
and, by (1) +y+«x € R. Finally, since(y + k — 1) € Awe getz € & [

3. Projective structures

In this section we explain the connection between fields and axiomatic pro-
jective geometry. We follow closely the exposition .

DEFINITION 3.1 — LetS be a (honempty) set antl = £(S) a collection

of subset$ C S such that

P1 there exist ans € S and anl € £ such thats ¢ ;
P2 for everyl € £ there exist at least three distingts’, s € [;
P3 for every pair of distinck, s’ € S there exists exactly one

[=1(s,s") e L

such thats, s’ € [;
P4 for every quadruple of pairwise distingts’, ¢, ¢’ € S one has

(s, )Nt )£ D = s, t)NIs ) #0D.

Such a pair(S, £) is called aprojective structuren S and the elementse £
are calledlines
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Fors € S andS’ C S define thgoin
sV S :={s"€S|s" €l(s,s) forsomes’ € S'}.
For any finite set of points,, . .., s,, define
(S1,..-8n) :=81V($2 V-V sy

(this does not depend on the order of the points). W(ite for the join of
afinitesetS’ C S. A finite setS” C S of pairwise distinct points is called
independenif for all s € S’ one has

s' ¢ (S"\{s'}).
A set of pointsS” C S spansa set of pointg” C S'if

— (S") C T for every finite sets” C 5';
— for everyt € T there exists a finite set of points C S’ such that
t e (Sy).

A setT C S spanned by an independent §ébf points of cardinality> 2 is
called a projectivsubspacef dimension|S’| — 1.

A projective structurésS, £) satisfiedPappus’ axionif for all 2-dimensional
subspaces and every configuration of six points and lines in these subspaces
as below

the intersections are collinear. The main theorem of abstract projective geom-
etry is:

THEOREM3.2 — Let (S, £) be a projective structure of dimensian> 2
which satisfies Pappus’ axiom. Then there exists a fieddch thatS = P}.
This field is unique, up to isomorphism.
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Proof. — See ], Chapter 6. ]

DEFINITION 3.3 — A morphism of projective structures
p:(8,£)— (5.2
is an injection of setg : S — S’ such thatp(l) € £ forall [ € £.

EXAMPLE 3.4 — Letk be a field and®} the usual projective space over

of dimensionn > 2. ThenP} carries a natural projective structure: the set
of lines is the set of usual projective lin® c P?. Every (not necessarily
finite) extension of fieldd</k induces a morphism of projective structures:
Py — P

DEFINITION 3.5. — LetS be an abelian group. A projective structuig, £)
on S will be calledcompatiblewith the group structure if for alk € S and
[ € £one has

s-Le £(9).

ExAMPLE 3.6. — Let K /k be afield extension (not necessarily finite). Then
S = Pr(K) = (K \ 0)/k"

carries a natural projective structure which is compatible with multiplication
in the abelian groug ™ /k*.

THEOREM3.7. — LetK/kand K'/k' be field extensions of degree4 and
& S = Pk(K) — ]P)k/(K/) = S/

a bijection of sets which is an isomorphism of abelian groups and of projective
structures. Then
k~Fk and K ~ K'.

Proof. — Choose a plan®* c S containing the identity: € S, and two
linesIy, I, in this plane passing through The set of all point®2 \ {I;, [, } is

a principal homogeneous space under the group of projective automorphisms
of P (= I;) stabilizing one point (the intersectidnn ;). A choice of an
additional points € P outsidel; U [, trivializes this homogeneous space

to the group of affine transformations of an affine line okeln particular,

it determines both the additive and the multiplicative structure:onThis
implies thatk is isomorphic tok’ and that for every finite-dimensional space

V C K there exists a uniqu&’-linear spacd/’ ¢ K’ such that the map
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oy : Pu(V) — Pu (V') lifts to a(k, k')-linear mapp, : V — V'. Such a lift
is unigue modulo multiplication by a nonzero scalakion the left (respk’
on the right). We can identify” with P(V') x k* U {0} (as a set). I/ is such
thate € P(V) then there is a unique lift;- with the propertysy (e) = ¢’ € S'.

Letx,y € K \ k be any elements projecting 0y € P(K) andV C K
a k-vector subspace containing

Lx,y,zy.

Fix ¢ = ¢y as above. Since is an isomorphism of abelian groups there is a
c(x,y) € k* such that

o(z - y) = d(@)o(y)c(z, y).
We need to show tha{x, y) = 1. For anya € k* we have
¢((atz) y)=dla-y+c(z,y) zy)=ad-y+d(x,y) 2"y eV CK

by (k, k')-linearity of ¢. Since¢ preserves products, the right side must be
k'-proportional to

a/.y/_'_x/.y/'
On the other handy andx’ - /' arek’-linearly independent (since ¢ £').
This implies that/(2’,y') = 1, as claimed. O

DEFINITION 3.8. — A partial projective structuris a pair (S, F), where’3
is a set of subsets ¢f (lines) such that for every triple of pairwise distinct
elements;, s,t € S there exist distinct elements

z,y, 2,y €8
(pairwise distinct fromr, s, t) and lines

((y,7), Wy, s), (t,2), Wy, r), (Y, 8), (¢, 2), Uy, ) € B
with the property that

rox,y € Wy, r),r o'y €y, r),
y7s€[(y, s),y',s € Y, s),

t,x € l(t,x),t, 2 €l(t,x'),

[(WE) (y,s) # 0,(t,2") N1y, s) # 0,
(y, ) O 1(t,2) = Ly, ) O 1(t,27) = 0.
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REMARK 3.9. — Of course, a projective structure on a projective space of
dimension> 3 is also a partial projective structure.

ExampPLE 3.10 — Let K/k be the function field of an algebraic varieky

of dimension> 2. We have seen in Exampk6 that S := P, (K) carries

a projective structure compatible with multiplication. Btbe the set of all
lines passing throughand a generating element &f(see Definitior?.5) and

all their translates by elements th(under multiplication). Propositio&.10
implies that(S, ) is a partial projective structure. Indeed, (after translation)
we can assume that= 1, s =t + x etc. The lines in containing 1 will be
calledprimary.

PROPOSITION3.11 — Let (S, £) and (S, £') be two projective structures
on S of dimension> 3 and assume that the intersecti@n £’ contains a
subset]d such that(.S, 3) is a partial projective structure o§. Theng = £'.

Proof. — For any tuple of pointér, s) we need to show that the liié-, s) €
£is also ing’ (and vice versa). Let be any point distinct fromr and s.
There exist points, y, 2/, ¢’ as in Definition3.8together with corresponding
lines inP3. Moreover,t € [(r, s) iff ¢ lies both in the plane spanned Ky, r)
and((y, s) and in the plane spanned Ky/, ) andI((y/, s) (which are distinct
by the assumption thdty,y’) intersects neithef(¢, z) not [(t,2")). These
conditions are satisfied by the assumptions on the liftes), resp. (¢, 2').
Thust € [(r,s) iff t € I(r, s). O
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4. Flag maps

NOTATIONS 4.1 — We fix two prime numberg andp # 2, /. Let

— F = F, be the finite field withp elements;

— F* =F\ {0} its multiplicative group;

— A avector space ovéft of dimensiondim(A) € N U oo;
— P(A) = (A\ 0)/F* its projectivization;

— M(A4, S) the set of maps froml to a setS;

— foru € M(A,S)andB C A, up the restriction of. to B.

DEFINITION 4.2 — A (completeflagon a finite-dimensionall is a collec-
tion of subspacegA,,),—o,.. dim(4) SUCh that

— AO = A;
— A, DA, foralln=0,..,dim(A) — 1.
In particular, A, \ A,41 # 0, for all n, and Agima) = {0}.

DEFINITION 4.3 — A mapu € M(A, S) will be called homogeneous if for
all a € Aand allx € F* one has

p(k - a) = p(a).

We think of homogeneous maps as being defined on the projectivization
P(A) and write M (IP(A), S) for the space of such maps.

DEFINITION 4.4 — A mapu € M(A,S) will be called a flag map if

— 1 is homogeneous;
— every finite-dimensiondF-vector spaceB C A has a complete flag
(Bp)n=o,...aim(p) SUch thatu is constant onB,, \ B,i, for all n =

0,..,dim(B) — 1.
The set of flag maps will be denotedByA, S) or F(P(A), S).

REMARK 4.5, — The flag property does not depend on the valug:oh
0 € A. Thus we will generally work oml \ 0 andP(A).

DEFINITION 4.6. — Let S be a ring andA an F-algebra. A mapu €
M(P(A), S) will be called logarithmic if

pla-a’) = p(a) + pla'),
forall a,a’ € A\ 0. The set of such maps will be denoted{(A), S).
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REMARK 4.7. — In our applicationsA andS are endowed with topologies.
We will always considecontinuousmaps, so that the notatiortd, 7, L etc.
stand for spaces of continuous maps, subject to the above properties.

DEFINITION 4.8. — LetS be aring. Two mapg, i/ € M(PP(A), S) will be
called ac-pair (commuting pair) if
- ,ualu/ € ‘C(P<A)7 S)’
— for all two-dimensionaF-subspace® C A there exist constants ¢, s”
(depending orB) with (s, s") # (0, 0) such that for allb € B one has

sup(b) + s'ls(b) = 5.
THEOREM4.9. — Let A be anF-algebra andu, 1/ € L(P(A),Z;) non-

proportional maps forming a-pair. Then there exist constants¢’ € Z,,
(¢,c') # (0,0) such thatep + 'p’ € F(P(A), Zy).

Proof. — This is a special case of the main theorem &f [We outline its
proof, since the result is crucial for our applications.

Step 1.(Lemma 3.1.2 in§]) p € F(P(A),S)iffforall h : S — Z/27Z
one hasio i € F(P(A),Z/27).

Step 2(Lemma 3.2.1 and Proposition 2.6.1 i) u € F(P(A), S) iff for
all B ¢ A with dim(B) < 2 the restrictionus € F(P(B), S).

Step 3.(Proposition 4.3.1 in{]) Assume thatlim(A) > 3 and thay/, ©” €
L(P(A),Zy) is ac-pair such thaty', u”")z, does not contain af-map. Then
there is aB C A with dim(B) = 3 such that there exist no (honzet&)maps

1B € (p, Wp)z,-

Step 4.(Lemma 4.3.2 inj]) Let B = F3 andy/, i’ € M(P(B),Z,) be a
c-pair. Then the map
p + P(B) —  A*Z)
b= (W(b), 1" (b)),
has the following property: the image of evélty C P(B) is contained in an
affine line inA%(Z,). By affine geometry constructions in Section 4.1 %f [

the imagep(IP(B)) is contained in a union of an affine line and (possibly) one
more point. Using this, and assuming that there are no norZer@apsu €
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(W', ")z, we conclude that there exist nonconstant (and nonproportional)
maps¢’, ¢" € (', n", 1)z, and anh : Z, — Z/27 such thaneitherof the
three maps
hod,
h o ¢//7
h o ¢/ + h o ¢//
is anF-map onB (with values inZ/27).

Step 5.Rename the three mapsq 1", 1/ + 1’ € M(P(B),7Z/27). The
image ¢(P(B)) is contained in 3 points((,0), (0,1) and(1,0)). Conse-
quently, P(B) contains lines of (at most) three typd9(), (01), (10)). We
may assume that there are at least two lines of each type and each line con-
tains at least two points of each type (otherwise, it is easy to find-amap
amongy/, 1, 1’ + 1, leading to a contradiction). We may also assume that
w,resp.y”, @' + @, is constant on lines of typ@o0), resp.(01), (10). The
projective geometry constructions in Section 4.2 gfgdhow that one of the
three maps has the following property: on every If€') C P(B) (where it
IS nonconstant) it satisfies the functional equation of Step 6.

Step 6.(Lemma 2.5.6 in§]) Let C = F? andu € M(P(C),Z/27Z) be
such that”' has a basiséc, b) with p(c) = p(c + kb) # u(b), forall k € F.
Thenp € F(P(C),Z/27).

Indeed, since: is homogeneous, the functional equation implies that

p(ke + K'b) = p(c)
for all k, v’ € F*. Thusy is constant o' \ Fb.

Thus at least one of the maps ", i/ + p” is anF-map onall lines in
P(B), hence arF-map on the whol&(B), contradiction to Step 4. O

5. Galois groups

Let k£ be an algebraic closure &, K = k(X) the function field of an
algebraic varietyX overk, G¢. the abelianization of the pré-quotientG of
the Galois group of a separable closurdsqf

G = G /19, k), G| — Gix
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its canonical central extension apdthe natural projection. By our assump-
tions,G¢. is a torsion fre€Z,-module.

DEFINITION 5.1 — We say that, i’ € Gj form acommuting pairif for
some (and therefore any) of their preimade#’ one hagh, h'] = 0. A sub-
group H of G* is calledliftable if any two elements ift{ form a commuting
pair.

DEFINITION 5.2 — AfanXy = {o} onGY. is the set of all those topolog-
ically noncyclic liftable subgroups C G¢ which are not properly contained
in any other liftable subgroup @y..

REMARK 5.3 — Even though the grou@¢. depends on the choice of a sep-
arable closure of{, the fanX x does not.

REMARK 5.4 — For function fieldsE/k of curves there are no topologi-
cally noncyclic liftable subgroups &f¢, andXz = (). For function fieldsK'/k
of surfaces all groups € X are isomorphic to (torsion fre&),-modules of
rank 2 (see Sectiod).

NOTATIONS 5.5 — Let
P = { Z:/I}
and
Zy(1) = lim payn

n—oo

be the Tate twist o¥,. Write

K* = lim K*/(K*)"
for the multiplicative group of (formal) rational functions oA
THEOREM5.6 (Kummer theory) — For everyn € N we have a pairing

G /0" x K*[(K*)"  —  pym
(1, f) = (s fln =)/ f

which extends to a nondegenerate pairing

] : G x K* — Z(1).
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REMARK 5.7. — Sincek is algebraically closed and-£ p we can choose a
noncanonical isomorphism

Zg ~ Zg(l)
From now on we will fix such a choice.

6. Valuations

In this section we recall basic facts concerning valuations and valued fields
(we follow [4]).

NOTATIONS 6.1 — A value groups a totally ordered (torsion free) abelian
group. We will denote by a value group, use the additive notatior” for
the group law and> for the order. We have

F=T"ul", "N~ ={0} and v >+ iff y—+ €T'".

We putl’, = I" U {oo} and make it to a totally ordered group through the
conventions

y<o00, y+oo=00+00=00, Vyel.

EXAMPLE 6.2 — A standard value group &" with the lexicographicor-
dering.

DEFINITION 6.3 — A (nonarchimedeanyaluationr = (v,T",) on a field
K is a pair consisting of a totally ordered abelian groiip (the value group)
and a map
K —T,«

such that

—v : K* — T, is asurjective homomorphism;

—v(k+ K') > min(v(k), v(x')) forall x,x" € K;

— v(0) = oo.

REMARK 6.4 — In particular, sincd’, is nontorsiony(¢) = 0 for every
element( of finite order inkK*.

A valuation is calledrivial if I' = {0}. In our applicationsK = k(X),
wherek is an algebraic closure of the finite fiekland X is an algebraic
variety overk (a modelfor K). Since every element ik is torsion, every
valuation of K restricts to a trivial valuation oh.
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NOTATIONS 6.5. — We denote by, 0,, m, and K, the completion of’
with respect ta/, the ring ofv-integers ink’, the maximal ideal oé, and the
residue field

K, :=o0,/m,.
If X (over k) is a model forK then thecenterc(v) of a valuation is the
irreducible subvariety defined by the prime ideal N k[X]| (providedv is
nonnegative o[ X]).

It is useful to keep in mind the following exact sequences:

(6.1) l—-o0o - K" —-I,—1
and
(6.2) l—-(1+m,) —o — K, — 1.

NOTATIONS 6.6. — We denote byl C D¢ C Gy, the images of the inertia
and the decomposition group of the valuatiom G¢.. There is a (canonical)
iIsomorphism

Dy /T, ~ Gy .

DEFINITION 6.7. — Let K be the function field of an algebraic variety over
k. A valuationv of K is positive-dimensionalif its residue fieldK, is the
function field of an algebraic variety of dimensionl. It is divisorial if

tr deg, K, = dim(X) — 1.

NOTATIONS 6.8 — We letVy be the set of all nontrivial (nonarchimedean)
valuations ofK’ andDVy the subset of its divisorial valuations. fe DV

is realized by a divisor on a mod#&l of K (see Examplé&.10 we sometimes
write Zf,, resp.D$,, for the corresponding inertia, resp. decomposition group.

EXAMPLE 6.9. — Let C be a smooth curve ovédrand £ = k(C'). Every
pointg € C defines a nontrivial valuation, on £ (the order of a function
f € E* atq). Conversely, every nontrivial valuationon E defines a point
q:=c(v)onC.

EXAMPLE 6.10 — Let X be a smooth surface overand K’ = k(X).

— Every curveC' C X defines a valuatioms on K with value groupZ.
Conversely, every valuatiom on K with value group isomorphic té@
defines a curve osomemodel X’ of K.
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— Every flag(C, ¢), (curve, point on this curve), defines a valuatigh,
on K with value groupZ?.

— There exist (analytic) valuations d&i with value group a subgroup of
Z? and center supported in a point (on every model).

REMARK 6.11 — Every (nontrivial) positive-dimensional valuation on the
function field of a surface(/ is divisorial.

DEFINITION 6.12 — We say that two valuationg/,I';) and (1»,I'y) are
compatiblef there exists a valuatiofv, I') and two surjective order-preserving
homomorphisms of value groups; : I' — I'; (j = 1,2) such that for all
k€ K*

vj(k) = pr;(v(k)).
Two valuations(v,, ') and (1»,I's) are equivalentif there exists an order
preserving isomorphism of value groups — I's commuting with the homo-
morphisms/, vs.

We will not distinguish equivalent valuations.

LEMMA 6.13 — Let K be any field and/, »” two valuations oK. Then
either

— v/ andv” are compatible and there exists a valuatierwith maximal
idealm, = m,, +m,» or
— v/, V" are incompatible,

K = my, + my» and K* = (1 —l—ml,/) . 0;;//.
Proof. — See }J. O]

7. Adictionary
Write
Lx = L(P(K),Z(1)),
Fr = F(P(K), Z(1)).

PROPOSITION7.L — One has the following identifications:

Gk = Lk,
D¢ = {p€ Lk |p trivial on (14 m,)},
I¢ = {p€ Lk |p trivial on o} }.
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If two nonproportionaly, i/ € G% form a commuting pair then the corre-
sponding mapsg, i/ € Lx form ac-pair (in the sense of Definitiof.8).

Proof. — The first identification is a consequence of Kummer theagy
For the second and third identification we use the sequeficB8sapnd ©.2).
For the last statement, assume that’ € £ don’t form ac-pair. Then there
isanz € K such that the restrictions of 1/ € L to the subgrougl, ) are
linearly independent. Thereforg, i/ € G¢ define a rank 2 liftable subgroup

in G- Such subgroups don't exist sinGg,,) is a free proé-group. O
EXAMPLE 7.2 — If p € D% anda € Z¢ thenp anda form a commuting
pair.

PROPOSITION7.3. — Let K be afield andv € Fx N L. Then there exists
a unique valuationr = (v,,I',,) (up to equivalence) and a homomorphism
pr : Iy, — Z, such that

a(f) = pr(va(f))

forall f € K*. In particular, « € Z¢ (under the identification of Proposi-
tion 7.1).

Proof. — Assume thatv(f) # «(f) for somef, f' € K and consider the
projective lineP! = P(Ff +Ff’). Sincea is a flag map, it is constant outside
one point on thi®! so that eitherr(f+ f') = a(f) or= «a(f’). This defines a
relation: ' >, f (in the first case) and >, f’ (otherwise). lfa(f) = a(f’)
and there exists afi” such thatv(f) # a(f”) andf >, f” >, f’' then we
put f >, f’. Otherwise, we put =, f’.

It was proved in §], Section 2.4, that the above definitions are correct and
that>,, is indeed an order which defines a filtration on the additive gigup
by subgroup$ X, ).r such that

— K = U,erK, and
- ﬂ’yEFK’y = @1
wherel is the set of equivalence classes with respeetio Sincea € Ly

this order is compatible with multiplication iR, so that the mag — T is
a valuation and factors ask* — I' — Z, ~ Z,(1). By (6.1),c € Z¢. [

COROLLARY 7.4 — Every (topologically) noncyclic liftable subgroup of
G¢. contains an inertia element of some valuation.
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Proof. — By Theorend.9, every such liftable subgroup contains&mmap,
which by Propositiory.3 belongs to some inertia group. ]

8. Flag maps and valuations

LEMMA 8.1 — Leta € Fx N Lk, v = v, the associated valuation and
i € L. Assume that, ;. form a c-pair. Then

p(1+m,) = p(1).
In particular, the restriction of: to o, is induced fromk,,.

Proof. — We have
(1) a(k) =0forall k € 0, \ m,;
(2) a(k + m) = a(k) for all K andm as above;
(3) m, is generated by € o, such thatx(m) # 0.

If m € m, is such thatx(m) # 0 andx € o, \ m, thena is nonconstant on
the subgroupd := (x, m). Then

(s +m) = p(s).
Indeed, ifp is nonconstant ol the restriction: 4 is proportional ton 4 (by
the c-pair property) andv satisfies (2). In particular, for such we have
p(L+m) = p(1).

If a(m) = 0 then there exist&’, m” € m, such thatn = m’ + m” and
a(m’) = a(m”) # 0. Indeed, there exists an’ € m, such thatn > m’ > 1
anda(m’) # «(1) = 0. Since« takes only two values on the subgroup
(m/,m) C m, we have

a(m”) = a(=m' +m) = a(m’).
Therefore,
0=p(l+m)+ul+m")=pl+m+m'm").

Putk = 1 4+ m + m/m” and observe that(—m'm"”) = —2a(m’) # 0. By
the argument above

p(s —m'm") = p(k) = p(L+m' +m") = p(1l +m),
as claimed. O

LEMMA 8.2 — Assume thaty,o/ € G% N Fgx form ac-pair. Then the
associated valuationg and v’ are compatible.
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Proof. — If v andy’ are incompatible then, by Lemnal3
K* = 0;5 . (1 +mul).

By Lemmas.1,
a(l+m,)=0 and a(o}) = 0.
This implies thaty, and similarly,o’ vanish onkK™. O]

COROLLARY 8.3 — Let K/k be the function field of a surface. Then for
everyo € Y i one has

rky, o = 2.

Proof. — Otherwise, by Lemma&.1, we would get a topologically noncyclic
liftable subgroup inGg (for somer € Vg). SinceK, is eitherk or the
function field of some curve, we get a contradiction. O

PROPOSITIONB.4 — Let K = k(X) be the function field of a surface and
0,0’ € Yk be two distinct maximal liftable (topologically noncyclic) sub-
groups ofG¢% such thatc N ¢’ # 0. Then there exists a unique divisorial
valuationr of K such that

—onNo =1

— botho ando’ are contained irD?.
Moreover, for every divisorial valuatiom of K there existo, o’ € Y as
above.

Proof. — First of all, everya € o N ¢’ is anF-map and therefore an inertial
element for some valuation It commutes only with the associat&. Since
in our case every (nontrivial) valuatian is geometric, its center(v) is a
subvariety on some modé{ of K. If ¢(v) is a point then the rank db?
is at most 2. Howevely U o C Dg and has rank 3, contradiction. Hence
dim(c(v)) = 1 andv is divisorial. O

9. Galois groups of curves

Throughout this sectio®’/k is a 1-dimensional field and a smooth curve
of genusg with £(C') = E. We have an exact sequence

0 — E*/k* — Div(C) — Pic(C) — 0
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(whereDiv(C') can be identified with the free abelian group generated by
points inC'(k)). This gives a dual sequence

(9.1) 0 — Z(A) — M(C(k),Z¢) — G — 78 — 0,

with the identifications
— Hom(Pic(C), Z,) = Z, (sincePic’(C) is torsion);
- M(C(k),Z;) = Hom(Div(C), Z,) is theZ,-linear space of maps from
— 7% = Ext!(Pic’(C), Zy).

Using this model and the results in Sectigrwe can interpret

(9.2) G C M(C(k),Qy)/constant maps

as theZ,-linear subspace of all maps : C(k) — Q; (modulo constant

maps) such that
lu, fl € Z, forall fe E*/E".
Here[-, -] is the pairing:
M(C(k),Qe) x E*/k* — Q
(1 ) = (s 1= 220, 1) fos
wherediv(f) = >, f,q. In detalil, lety € G§ be an element of the Galois
group. By Kummer theoryy is a homomorphisnk™*/k* — Z, = Z,(1).

Choose a point, € C'(k). For every point € C'(k), there is ann.. € N such
that the divisom.(c — ¢) is principal. Define a map

Hoy C(k) - Qe,
¢ = (me(c—c))/me.
Changing:, we get maps differing by a constant map.

In this interpretation, an element of an inertia subgr@gpc G4 corre-
sponds to a “delta”™map (constant outside the p@int EachZ¢ has a canon-
ical (topological) generataf,,, given byo,(f) = v, (f), for all f € E*/k*.
The (diagonal) magh € M(C(k),Q,) from (9.1) is then given by

A=) 6= ) b

wEVE quw€C(k)

(9.3)

DEFINITION 9.1 — We say that the support of a subgrafipC G¢ is < s
and write
|supp(Z)| < s
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if there exist valuations, ..., w, € Vg such that
Ic{Zy,,. Ty )z, C Gz

wy?

Otherwise, we writgsupp(Z)| > s.

LEMMA 9.2 — LetZ C G¢ be a topologically cyclic subgroup such that
|supp(Z)| > s > 2. Then there exist a finite séf;},c, C E* and anm € N
such that the map

Y G — V=@ L/i™
o= ([ film)jes
has the following property: for every s, ..., ws} C Vg

¢(I) §Z <¢(Z§J1)7 ) ¢(Igs)>ze‘

Proof. — Let: € G% C M(C(k),Q,) be arepresentativeas in 0.2), of a
topological generator ¢f, wheresupp(Z) > s. There are three possibilities:

(1) «(C(k)) C Qg is infinite;

(2) thereis & € +(C(k)) C Q, such that~!(b) is infinite andthere exist at
leasts + 1 distinct pointsyyo, . . . , gas+2 € C(k) such that(g;) # b for
all j=s+2,...,2s+2;

(3) otherwisex(C(k)) is finite, there is & with . ~*(b) infinite and there are
at mosts distinct points with values differing frorh

In Case (3)|supp(Z)| < s.

In Case (1), choose any s€t = {q1, ..., q2s12} C C(k) of points with
pairwise distinct values. In Case (2) choose distinct.., ¢..; € ¢~1(b) and
put@ := {q, ..., q2s+2}. In both cases, i€)’ C @ is any subset of cardinality
|Q'| = s then. is nonconstanbn @ \ @'. In particular, there exist points

s, Gs, € @\ @ such that

(9.4) U(qs,) 7 1(sy)-

We may assume that)) C Z, (replacing. by a sufficiently high multiple,
if necessary). Now we choose arf € N such that all values afon remain
pairwise distinct moduld./ /™", LetDiv%((J) be the abelian group of degree
zero divisors orC' supported in). By Lemmaz2.2, there isam = ng € N
such thatnD is principal for everyD € Div%(C). In particular, for every
s+ 9s, € Q thereis afunctiorf € E* such thatliv(f) = n(gs, — gs,). Write
n = (™n, with ged(n, £) = 1, and putn = m’ +m”.
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We have a pairing (Kummer theory)
Gy x nDivy(C) — Z/t™
(s ) =y [l

Notice that[Z¢, f] = 0 for all w with ¢, ¢ @ and allf € E* supported in
Q. Further, for every)’ C @ with |Q’| = s and pointsy,,, ¢s, € @ \ Q' asin
(9.4 there is anf € E* with divisordiv(f) = n(gs, — gs,) Such that

[L7 f] =n: (L(QSl) - L<q52)) ?é 0 mod /™
and
[Iz(f;’?f] =0

forall Z¢, of ¢’ € Q'. Let{f;},cs be a basis fof™ - Div(,(C), with f; € E*.
The map
10y = @Bt
po—= (s film)jes
satisfies the required properties. O

The next step is amtrinsic definition of inertia subgroups
T, C Dy /17 = Gicy-
We have a projection
T Gk — Gk /1y
and an inclusion
9k, = Dy/1; — Gk/1;
PROPOSITION9.3. — Letv be a divisorial valuation of<. A subgroup
I CDyTs

is the inertia subgroup of a divisorial valuation #{C) = K, iff for every
homomorphism

Vo GR/TE =V
onto a finite abelian group” there exists a divisorial valuation, such that

W) = om(L]).
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Proof. — Let C be the smooth model fak', = k(C),

I=1I!cCDi 1
the inertia subgroup of a divisorial valuation/giC') corresponding to a point
q=qu € C(k)and

Vo GR)T =V
a homomorphism onto a finite abelian group. Siggeis a pro#-group, we
may assume that

V= EB]‘EJZ/Enﬁ
for somen; € N. Letn = max;(n;). By Kummer theory,

Hom(G%, Z/0") = K*/(K*)""

so thaty) determines elements

fi e K* /(K"

(for all j € J). Choose functiong; projecting tof;. They define a finite
set of divisorsD;; on X. Moreover, f; are not simultaneously constant 6h
(otherwisew(gg(c)) = w(Ig(C))). Changing the modet — X, if necessary,
we may assume that

— C'is smooth (and irreducible);
— there exists exactly one irreducible compongrin the full preimage of
UD;; which intersect€ in g. Moreover, this intersection is transversal

(see Sectiorz). Then the image af?, undery is equal to the image af?.

Conversely, we need to show thatZif# Z¢ (for somew € DVk, ), then
there exists a homomorphism

v GR/TE =V
onto a finite abelian grou such that for alt’ € DV one has
V(I) # ¢ om,(I}).
We consider two cases

(1) there exist two points, ¢ € C(k) such thatZ C (Z%,7¢);
(2) otherwise.
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Case 1.There exists a rational map: X — P! such that its restriction
7:C—P!

is surjective, unramified at ¢’ andr(q) # 7(¢'). Under the induced map of
Galois groups

(L) C Ty Taun))
but is not contained in either’  or Z7 . Thus there exist a finite abelian
groupV and a mapy : Gy — Vosuch thaty(Z) ¢ (Z¢,) for any
q" € PL. It follows that

Yom(Z) & Yom(Ly)
foranyrv € DVy.

Case 2. By Lemma9.2, there exist a finite set of functiong € k(C),
with support in a finite sef) = {qo, ..., ¢s} € C(k), and anm € N such that
the homomorphism

ViGley — V=8Z/m
wo= ([:uv fj]m)jEJ
has the property that for alb, w’ € DV
V() & (W) v(Zy )z,

Next we choose a model foX andC' as in Lemma2.3. In particular, there
exist functionsy; with divisor

div(g;) = n - (D; — Do) + (H; — H})
such that all the divisors are irreducible, with transversal intersections and
div(g;)|C = n(g; — o). These functiong; define a homomorphism
v GR/IE— V.

If D is adivisor onX theny o, (Z},) = 0 unlessD = D; for somey. In this
Casel/J o Trl/(‘,z-%]> - w(z-g)])'

Letr' € DV andc(v') C X be its center orX. There are three cases:

— ¢(v') ¢ D; foranyj: theny o 7, (Z%) = 0;

- C(V/) € DE), Whel‘eD? = Dj \ (U]’;E]D] N Dj/) then

bom (L) CY(Iy,);
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— ¢(v) € D; N Dy for somey, j": then
Yom,(Ty) C (B(T5). (T, )z,
All three possibilities contradict our assumptions. H

LEMMA 9.4 — LetC/k be a curve andv = k(C) its function field. Then
g(C) > 1iff there exists a homomorphism fraj to a finite (abelian) group
which maps all inertia elements

Proof. — Indeed, every curve of genas1 over a finite field of characteristic

p has unramified coverings of degréel hese coverings define maps of Galois
groups, which are trivial on all inertia elements. dfis rational thenG,

and hence its image under every homomorphism (onto any finite group), is
generated by inertia elements (see the exact sequerigge ( O]

REMARK 9.5. — Combining this with Propositio®.3 we can decide in
purely Galois-theoretic terms which divisorial valuations iofcorrespond
to nonrational (irreducible) curves on some modek of K. We call such
valuationsnonrational

10. Valuations on surfaces

Let X be a smooth surface ovér K = k(X)) its function field and’ a
divisorial valuation of . We have a well-defined (bilinear, with respect to
multiplication) residue map

K*x K* — K,/k*
f,q — fV(g)/gV(f)‘
On a smooth modeX of K, wherev = vp for some divisorD C X, we can
define
(10.2) oo=0p : K*xK"— K,/k*
as follows:

— 0,(f,g9) = 0ifboth f, g are invertible onD;

- o.(f,9) = fiif fisinvertible (fp is the restriction taD) andg has
multiplicity m along D;

- o.(f,9) = (f™/g™)p in the general case, whef)g have multiplici-
tiesmy, m,, respectively.

(10.1)
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The definition does not depend on the choice of the model.

LEMMA 10.1 — For f,g € K*
0.,(f,9) =0 Yv € DVgx <= f,g € E = k(C) C K for some curve.

Proof. — (<) On an appropriate modet we haver = vp for a divisor
D C X andw : X — C'isregular and flat with irreducible generic fiber (and
f, g € k(C)*). By definition, o, (f, g) = 0 if D is notin the fiber ofr. If D is
in the fiber then there isiac k(C)*, vp(t) # 0 such that bothf¢™s, gt™s are
regular and constant ab (for somem, m, € N) so thato,(f, g) = 0.

(=) Assume thab,(f,g) = 0 for everyr € DVg. Every nonconstant
function f defines a unique map (with irreducible generic fiber)

X = Cf

which corresponds to the algebraic closure:f) in K (we will say thatf
is induced fromC’). We claim thatry = 7.
Sincef is induced fromC;, we have

div(f) = Z a,D,,
q€Q

where@Q C C(k) is finite andD, = n~'(¢). ThenD; = 0 and D, is either
a multiple of a fiber ofr, or it has an irreducible componeft C D, which
dominatesC, (underr,). In the second casey(f) # 0, while vp(g) = 0
andg is nonconstant o®. Henceop(f, g) # 0, contradiction. Therefore, all
D, are (multiples of) fibers of, and f is induced fromC,. HenceC; = C,
andr; = . O

11. /-adic analysis: generalities

Let K = k(X) be the function field of a smooth algebraic variéfyover
k. We have an exact sequence

(11.1) 0 — K*/k* 25 Div(X) - Pic(X) — 0,

whereDiv(X) is the group of (Weil or Cartier) divisors of . We will identify
an elemenff € K*/k* with its image undepy. Let

Div(X) = {D =Y anDn}, resp. Diva(X) C Div(X),

meM
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be the group of divisors (resp. nonrational divisors) wihidly decreasing
coefficients

— M is a countable set;
— forall r € Z the set
{m||amle <7}
is finite;
—for D e ﬁﬁnr(X), all D,,, are nonrational.
Clearly, the group ofinite /-adic divisors

Div(X), := Div(X) ®z Z; C Div(X).
Every element
feK* = lim K*/(K*)"

n—oo

has a representation

f=falnenor f=fofify -,
with f,, € K*. We have homomorphisms
px 1 K* — ]SF/(X),
[ div(f) =2, " - div(fn) = >, @m D,

pxar : K* — Div(X) 25 Divi(X),
whereD,, C X are irreducible divisors,
dm = Zanmgn € Z£>
neN
with a,,,,, € Z, and

div(fa) = D @pmDpn.

Herediv(f,) is theCartier divisor of f,, and _  a,.,D,, is its image in the
group ofWeildivisors. Everyy € DV gives rise to a homomorphism
v K* =17,
and a residue map
0, : K"xK*"— K,.
On a smooth modek, wherev = v, for some divisorD ¢ X, v(f) is

A

the ¢-adic coefficient aD of div(f), while g, is the natural generalization of
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(10.1). We say that two elements § € K* commute ifo, (f, §) = 0, for all
divisorial v.

NOTATIONS 11.1 — We put

~

suppg (f) :={ v €DVx | f nontrivial on Z¢ };
Supr(f) = { Dm ‘ &m 7é 0 }

DEFINITION 11.2 — We say thay6 hasfinite nonrational suppoit the set

of nonrationalv € suppg(f) is finite (see Lemmé@.4 for the definition and
Galois-theoretic characterization of nonrational valuations). Let

FS(K) C K*

be the set of such elements.

DEFINITION 11.3 — We say thatf has finite support on the modal if

~

suppy (f) is finite. Put
FSx(K) ={f € K* | px(f) € Div(X),}.

LEMMA 11.4 — The definition ofFSx (K') does not depend on the choice
of a modelX.

Proof. — For any two modelsX’, X" we can find a modeKX dominating
both. The difference between the sets of irreducible divignkg X'), resp.
Div(X"), andDiv(X) is finite (and consists only of rational curves). [

COROLLARY 11.5 — Let K be the function field of a surfac€ which con-
tains only finitely many rational curves. Then

FS(K) = FSx(K).

In particular, we obtain an intrinsic, Galois-theoretic descriptiofi 8k (K)
in this case. We proceed to give such a description in general. Note that for
f € FS(K), its nonrational component ..(f) is independent of the model
X. More precisely, for any birational morphisi’ — X we can identify
Divy(X') = Divye(X). Under this identification

pX’,nr(f) = pX,nr(f)'
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Let 7(K) be the set of allff € K*/k* such thatpx .,(f) # 0 and for every
rational divisorial valuationr and some (equivalently, every) mod€lof K,
wherer = v for a rational curve’ C X, either

— fe=1€k(C)*/k* or

— pc(fe) #0 mod £.

LEMMA 11.6 — The setF(K') generates<*/k*. Moreover, for every pair
of commuting element§ g € FS(K) with disjoint support such that there
existf, g € F(K) with

f=f mod (K*)" and g=¢ mod (K*)",
one hasf € FSx(K) andg € FSx(K), for every modeK of .

Proof. — Lety € K* be a function such that the generic fiber of the corre-
sponding mapr, : X — ]P’}j, from some modelX of K, is an irreducible
nonrational curve. Suchgenerates™.

For generic quadratic, coprime polynomidts@) € k[y|, the preimage in
X of (0 U o) C P under the composition of, with the map

¢ P, — P!
y — fly):=Ply)/Qy)

contains at least 4 irreducible smooth fibersrpf If f were nonconstant on
a rational curve”' (on some modek of K) and f- were an/-th power then
the local ramification indices of and hence of; were divisible by/. Thus
we would have a map, : C' — P, with all local ramification indices over 4
points divisible by/, and by Hurwitz’ theoremg(C') > 0, which contradicts
the rationality ofC'. It follows that f € F(K). Clearly, such elementg

generate:(y)*.
Next, write

px(f) = DliermiDi+ ! Z;il n;Cj,
rx(g) = Ziep n; D} + ez]‘:1 n;'cjl'a
wherel, I’ are finite sets and the second sum is an infinite series over dis-
tinct rational curves’;, C; C X. By assumption, the se{sD; }ics, {C}jen,
{D;}ier, {C5}jen are disjoint.
By assumptionpl,}(f, g) = 0, for all v; corresponding t@”. SinceC’; are
rational, this residue equals the residug @in C”,, which is nonzero mod /,
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contradiction. Thus, if f,§) = 0, thensuppy(§) is finite and we may put
§ = ¢'. The restriction of/’ to any irreducible component of the divisor pfs
identically zero. This implies that is a product of-adic powers of elements
belonging to the same fieled(y) as f. Thus all rational curves in the support

of f also belong to the fibers gf There are finitely many such curves since
some fibers contain nonrational curves. O

We have an exact sequence
0 — K* 25 Div(X) 2% Pic(X), — 0,
wherePic(X), := Pic(X) ® Z,. We write
Div(X)° C Div(X)
for the group generated by the ima@;e(f(*) and identify an elemelft € K*
with its image.

LEMMA 11.7. — Let X/k be smooth algebraic withS(X') = Pic(X). Let
M be afinite set and
D= anDy € Div(X), :=Div(X) @2 Zs, am € Zy
meM

a divisor such thatp,(D) = 0. Then there exist a finite sé{ functions
fi € K* and numbers; € Z,, linearly independent ove£, such that for all
el

suppx (fi) € suppx (D)
and

Proof. — We have a diagram

Ker(¢) — ®memZD,, —— ACPic(X) —0
| | |

Ker(p)) — ®memZeDn 5 Ay C Pic(X), — 0.

SincePic(X) = NS(X) the mapPic(X) — Pic(X), is injective and
rkz A = rky, Ay andrky Ker(p) = rkyg, Ker(¢y).

In particular,Ker(y,) has a basi§ D;};c; (overZ,), where eachD; is aZ-
integral linear combinations adb,,, (with m € M) and is also inKer(p). It
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follows that D, = div(f;) for some functionf; € K* with support inD.
Finally, we can find a representation

D = Z CLiDi,

with a; € Z, linearly independent oveéf (passing to a subset éf if neces-
sary). O

12. /-adic analysis: curves

PROPOSITION12.1 — Let & be the closure of a finite fieldhar(k) # p, C
a curve ovelk of genusg with function field& = £(C') and

P Qz@m) — g

be an isomorphism of Galois groups inducing an isomorphism on inertia
groups of divisorial valuation, that is, a bijection on the set of such groups
and isomorphisms of corresponding groups. Let

o* I{YIP’\l)*HE*

be the corresponding dual isomorphism. Thén= k(P') and there is a
constant € Z; such thatd*(k(P')*/k*) = a - E*/k*.

Proof. — Recalling the exact sequencel), we have a commuting diagram
0 — ZeAcgy — M(C(k), Zy) G 7% 0

0)0—— ZgApl(k) —_— M(Pl(k), Z[) — gZ(Pl) 0

Since® is an isomorphism on inertia groufg, for eachw, thesetsC'(k)
andP! (k) coincide and we getaniqueisomorphism ofZ,-modules

M(C(k), Z) = M(P" (), Z).
In particular, we find thag = 0 andE = k(P'). Further, we have an induced

isomorphism
Zo( Y 0u) =Zu( Y Ow)

wEVE w’EVk(]PJ)
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so that

(Z bw) = af( Z )

weVE w’EVk(Hﬂ)

for somea € Z;. This implies that),, = ad,s, for all w € Vg and the
correspondingy’ € Vp1. In particular, for the dual groups we have

E*/l'%* _ (K*/k?*)a,

wherea € Z;. O

13. /-adic analysis: surfaces

Let K = k(X) be a function field of a smooth surfa¢é over k. We will
need arf-adic version of Lemmao.1.

PROPOSITION13.1 — Letf, § € FS(K) be such that
— 0,(f,§) = 0 for everyv € DVy;
- SUPPK(f) N suppg(g) = 0.
Then there is a 1-dimensional field = k(C) C K such thatf, j € E*.

Proof. — By Lemmall.7,
P a; A bj
f:Hfz ) resp'g_ng I
i€l jeJ
where

— [, J are finite sets;
— fi,g; € K> forall ¢, j;
— a; € Z¢ (resp.b; € Zj) are linearly independent over.

Fix a valuationr and choose a (smooth) mod¥l so thaty = v, for some
divisor D C X. Then

Qu(f, 9) = H op(fi: 95)

and we can compute it using only those pafrsy; which haveD in their
support. In particular,

fmg/gmf - H(ffimj/g?jmi),
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wherem; (resp.m;) is the order ofg; (resp. f;) on D. This order vanishes

~ ~

unlessD € supp(f) Usupp(g). By assumption, ifD € supp(f) thenD ¢
supp(g) (andn; = 0) so that

Since the nonzero numbeds are linearly independent ovét the equality
> a;m; = 0 implies thatm,; = 0 (for all ;) and thatyp, € k*.

Similarly, gp = H(gj)lg, whereb; are linearly independent ovét, and
gp € k* implies that(g;)p € k* (for all j € J). It follows that

Qu(fi7 g]) =0
for all f;, g; and every valuation = vp. By Lemmal0.1, all f;, g; belong to
the same 1-dimensional field ¢ K and hence, g € E*. O

REMARK 13.2 — For everyf € K* the element = (f +a)(f + b) where
a # b andab # 0, satisfies the conditions of Propositi®8.1

PROPOSITION13.3 — Let &* ¢ FS(K) ¢ K* be a subset with the fol-
lowing properties:
— R*is closed under multiplication;
— &*NE* = ag - E*/k* for every 1-dimensional subfield = k(z) C K,
with ap € Zj;
— there exists ay, € DVy such that

{[60, ]| f € R} =2
for a topological generatod, of Z .
Theng* C K*//{?* & Z(g).
Proof. — Forz € K\ k let E = k(z) be the corresponding 1-dimensional
field. By assumption, there exists ap € Z, such that
R NE*=ag-E* k"

If some (any) topological generatéy of 7, is not identically zero or&*
then there exists a (smooth) mod€| wherev is realized by a divisoD,,
together with a morphism

X P =P
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such thatD, dominatesP!. It follows that
ap € QﬂZ}‘ = Z(g).
It remains to observe that everye K* can be written as a product
T = m/ . x/l
such thav, is nontrivial on bothr’ = k(z') andE” = k(z"). O

COROLLARY 13.4 — After a choice ob, for every 1-dimensiondll C K
and everyf € E*/k* we can Galois-theoretically distinguish its poles from
its zeroes.

The last essential step is a Galois-theoretic characterization of the partial
projective structure oR*/k*, more precisely, the characterization of gen-
erating elements and primary lines &i/k* (see Definition2.5 and Exam-
ple 3.10).

LEMMA 13.5 — Letz € K* be a generating elementy := k(z) and
r = r(z) € N the smallest positive integer such thédte 8*. Then
— r = p™ for somem € N (with p = char(k));
Bk O Rk = (B )k o
— (pointwise)p™-th powers of primary lines ir£* /k* coincide with pri-
mary lines in(EP")* /k*.

Proof. — The first property follows sinc&’/ £ is a finite purely inseparable
extension, by Propositiorns.11and 13.3 Next, we claim that a generator
y € Ris ap™-th power of a generator ok (for somem depending ory).

Indeed,F := k(y)K C K is afinite and purely inseparable extensiork @f),
E := k(z) (for somex € K). Thus

y = (az®" +b)/(ca?" +d) = ((dz +V)/((z+d)P"

for somem € Z, a,b, c,d € k and theirp™-th rootsa’, v, ¢, d’ € k (sincek
is algebraically closed).

In particular, a generatar € £* is in E* N &* (and is the minimal positive
power of a generator iy contained inE* N K*). This implies the third
property: the generators @" arep™-th powers of the generators 6t [

COROLLARY 13.6 (Definition) — Assume thay, ¢/ are primitive elements
in (EP™)* C &* such that
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— vy, have support in 2 points;

— the pole ofy coincides with the pole aof.
Then (the images of), /' in K*/k* are contained in a primary line passing
through (the images ofl), y, /.

Proof. — Definition 9.1 and Lemmead.2 give a Galois-theoretic characteri-
zation of the notion “support in 2 points”. By Corollaiy3.4we can Galois-
theoretically distinguish zeroes and polegyof £*/k*. It remains to apply
Lemmal3.5 [

14. Proof

In this section we prove our main theorem: if
(g}l{j ZK) = (ggn EL)7

whereL is a function field over an algebraic closure of a finite field of char-
acteristic£ 2, ¢, thenK is a purely inseparable extensioniof

Step 1.We have a nhondegenerate pairing
Gi x K* — Zy(1).
This implies thatx* = L*.

Step 2. We identify intrinsically the inertia and decomposition groups of

divisorial valuations:
1, CD; CGg:

every liftable subgroup € Y, contains an inertia element of a divisorial
valuation (which is also contained in at least one otlfee X x). The cor-
responding decomposition group is the “centralizer” of the (topologically)
cyclic inertia group (the set of all elements which “commute” with inertia).
This identifiesDVx = DV;.

Step 3.For everyv € DV we characterize intrinsically
I C DT
(see Propositiod.3).
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Step 4.We distinguish divisorial valuations with nonrational centers (see
Lemma9.4and Remarlo.5).

Step 5.For f € K* we have two notions of supportupp (f) (intrinsic)
andsupr(f) (depending on a modet) and two notions of finiteness: is
nontrivial on at most finitely many nonrational divisorial valuationgesp.

f has finite divisorial support on a model. We defife8(K) c K* as the

set of elements satisfying the first notion of finiteness. If some (any) mddel

of K contains only finitely many rational curves, both notions of finiteness of
support coincide and one obtains an intrinsic Galois-theoretic characterization
of K*/k*®Z, C K*, as elements IFS(K). In general, it may happen that
someg € L*/I* has an “infinite rational tail” on some (every) modélof K:

px(9) = pxam(9) + Y n;C;,

Jj=1

where C; are irreducible rational curves oki. In Lemmall.6 we show
that a many (and consequently, all) elementd.ofl* ¢ FS(L) = FS(K)
have finite support on every modal of K, and vice versa. In particular,
K*k* @7y = L*]I* ® Zy.

Step 6.For every pair of elementg, j € FSx(K) satisfying

— suppk (f) Nsuppg(g) = 0;
—o.(f,9) =0forallv € DV

there exists a subfield = k(C) c K suchthatf, j € £* (Propositionl3.J).

Step 7.SincePic(X) = NS(X) every such subfield = k(x) for some
r e K™

Step 8 Proposition1 2. lidentifiesE* /k* inside £*, up to conformal equiv-
alence.

Step 9. Proposition13.3 identifiesR* := K* N L* (as a multiplicative
group) with a multiplicative subgroup df*/k* @ Z).
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Step 10By Proposition2.11, £* is a multiplicative group of a field so that
both K and L are finite purely inseparable extensions of this field. It remains
to insure that the additive structure @h s intrinsically defined.

Step 11 By Theorem3.7 and Propositior.11, the field is uniquely deter-
mined by the partial projective structure.

Step 12L.emmal3.5and Corollaryl 3.6give a Galois-theoretic character-
ization of generating elements and primary lineRi/k*. Proposition2.10
and Example3.10show that these define a (unique) partial projective struc-
ture onR*/k* (in particular, the projective structures inducedby«’) and
P(L) coincide).

Step 13.If follows K/& and L /R are finite purely inseparable extensions
of thesamefield. This concludes the proof of Theoreim
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