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0. Introduction

Let X be an algebraic variety of dimensianover C. One says thak is rational

if its function field C(X) is isomorphic toC(z, ..., z,). The study of rationality
properties of fields of invarian§(X )¢ = C(X/G) is a classical theme in algebraic
geometry. For a finite grou@g ¢ PGL,, acting onX = P"~! the problem is referred

to as Noether’s problem (1916). It is still unsolved for= 4. Another class of
examples is provided byoduli spacesBirationally, they are often representable as
guotients of simple varieties, like projective spaces or Grassmannians, by actions of
linear algebraic groups, likBGL,. Rationality is known for each of the following
moduli spaces:

— curves of genus< 6 [16], [37], [20], [21], [31];

— hyperelliptic curves1d], [7];

— plane curves of degreds + 1 and3n [33], [19];

— Enriques surfacesf];

— polarized K3 surfaces of degree 187,

— stable vector bundles (with various numerical characteristics) on curves, Del
Pezzo surface®? [27], [5], [11],[25],[29];

and in many other cases. For excellent surveys we refei ipgnd [33]. We
will study rationality properties of moduli spaces of smooth nonisotrivial Jacobian
elliptic fibrations over curves
7 & —C

with fixed global monodromy group = I'(£) C SLy(Z). In [] we developed
techniques aimed at the classification of possible global monodramiehe
present paper gives a natural application of these techniques.

Let B be an irreducible algebraic family of Jacobian elliptic surfaces. Then the
set of subgroups C SL,(Z) such thaf is the (global) monodromy group of some
£ in this family is finite. Moreover, for every such grolipthe subset of fibrations
with this monodromy

B :={becB|I(&§) =T}

is an algebraic (not necessarily closed) subvariet.of

Generalizing this observation, we introduce (maxinpeljameter space$: of
elliptic fibrations with fixed global monodromy (considered up to fiberwise bi-
rational transformations acting trivially on the base of the elliptic fibration). These
parameter spaces can be represented as quotients of quasi-projective varieties by
algebraic groups. In particular, we can consiilesducible connected components
of the parameter spadg-, which we callmoduli spacesEven though these moduli
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spaces need not be algebraic varieties, we can still make sense of their birational
type.

Theorem. LetT C SL2(Z) be a proper subgroup of finite index. Then all moduli
spaces of (Jacobian) elliptic rational or elliptic K3 surfaces with global monodromy
I" are rational.

Notice that the finite index condition in the theorem is not a restriction since it
always holds for nonisotrivial Jacobian elliptic fibrations, considered in this paper.

Corollary. For all T with moduliF; of dimension> 0 there exists a number field
K such that there are infinitely many nonisomorphic elliptic K3 surfaces éver
with global monodromy'.

REMARK 0.1 — Our method shows that many other classes of moduli of elliptic
surfaces oveP! with fixed monodromy are rational or unirational. However, we
cannot expect a similar result for all moduli spaces of elliptic surfaces over higher
genus curves, since the moduli space of higher genus curves itself is not uniruled
(by a result of Harris and Mumford []).

We proceed to give a more detailed description of our approach. First of all, we
can work not with the monodromy groupitself but rather with its image

' C PSLy(Z)
under the natural projectidtl.y(Z) — PSLy(Z). Let
H={z€C|Im(z) >0}
be the upper half-plane and
H=HUQU {oo}.
The naturalj-map o
j o C—P'=H/PSLy(Z)
decomposes as
j = jF o j€>
where L
Je: C — Mpr = L H/F
jri Mpr — P! = H/PSLy(Z).
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Here My is the j-modular curvecorresponding ta’; it is equipped with a special
triangulation, obtained as the pullback of the standard triangulati€d ef P!(C)
(by two triangles with vertices &t 1 andoo) under the mapr (which ramifies only
over(, 1 andoo). We call the obtained triangulation of- a jr-triangulation. Let
Tr be the preimage id/r of the closed intervalo, 1] ¢ P!. The graphlt is our
main tool in the combinatorial analysis bf

Denote byy(&) the Euler characteristic of. It splits equivalence classes of
Jacobian elliptic surfaces (modulo fiberwise birational transformations i
braic families In particular, ifC = P! then thealgebraic varietyF, parametrizing
(equivalence classes of) Jacobian elliptic surfaces with giy&h is irreducible;
here we put = x(€)/12. Our goal is to analyze the birational type of (irreducible
components)

./’Tnf Cc F,

parametrizing fibrations with fixed monodromy graiiplt suffices to study param-
eter space$, r corresponding td' C PSLy(Z), since every irreducible component
of F, r coincides with a component ¢F, r.

From now on we assume that = Mr = P'. Denote byR,r the space of
rational map$! — P! (of degreed) with prescribed ramification (encodedTi).
The spaces, i are quotients, byGL, x Hr, of fibrations overk, with fibers
(Zariski open subsets ofym‘(P!) (for appropriated and¢). Here PGL, acts
(on the left) by changing the parameter on the b@se P! and Hr is the group
of automorphisms ofi/ = P! stabilizing the embedded gragh (acting on the
right). The nontriviality of i means that there isld C PSL,(Z) containingl” as
a normal subgroup witli/- = I""/T". So in most cases in order to prove rationality
of F,r it is sufficient to establish it foPGL,\R,r, which can be deduced from
general rationality results fa*GLs-quotients (seeq], [1€]). To coverall cases we
need to set up a rather extensive combinatorial analysis.

Here is a roadmap of the paper. In Sectibwe discuss finite covers/r —
P! in the spirit of Grothendieck’s “Dessins d’Enfants” program (s&,[34] and
the references therein) and introduce the invarigfigI'), RD(I') andET(I"). In
“ideal” casesET(I") coincides with the number of triangles in thetriangulation
of Mr (the notation2T(I") stands for Effective Triangl€y. In Section2 we recall
basic facts about elliptic fibrations and introduce the invaiante ). For an “ideal”
elliptic fibration one ha®T(I') = ET(E). In Section3 we discussmoduli of
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elliptic fibrations with fixed monodromy. In Sectioffsand 8 we formulate and
prove several rationality results f®fGL, and related quotients. In Sectiénwe
classify families of rational elliptic surfaces and elliptic K3 surfaces with different
monodromy groups. In Sectiofy we study relations between the combinatorics
of the graphl” and the topology of. And finally, in Sectionl0 we list (certain)
relevant subgroups C PSL,(Z) (represented by trivalent graplis). There are

too many monodromy groups of elliptic K3 surfaces to be drawn on paper, but we
show how to obtain them from our list by simple operations.

1. Finite covers

LetT" be a subgroup of finite index iASL,(Z). The latter is isomorphic to a free
productZ/3 x 7Z./2. Consider the map

H/T = My 25 P! = H/PSLy(Z),

ramified over the point8, 1, co € P. Denote their preimages il by A, B and

I, respectively. The possible ramification orders arer 1 for A-points,2 or 1

for B-points and arbitrary fof-points. The point$), 1 andoo subdivide the circle
PI(R) = S! into three segments and, together with the upper and lower hemi-
sphere, define a decomposition®f(C) = S? into three triangles. This induces

a special triangulation af/r with vertices inA, B and I-points which we call the
jr-triangulation The preimage of the segméft 1] C P! defines a grapfi which
determines thegr-triangulation uniquely. Interior vertices @t are marked by,

and ends are marked by eithés or B,.

NOTATIONS 1.1 — Thegraph datumGD(I") of Tt is the formal sum
GD(F) = [CL()'AG + CLQAQ + bQBQ]a

whereq; (i = 6,2) is the number of4; vertices and; is the number oB3;-vertices.
Denote byr? = 7%(T") the number of vertices d¢fr (including the ends), by! =
71(T") the number of edges and by = 72(T") = mo(Mr \ Tt).

REMARK 1.2 — For givenas,, b, there is a unique group with

GD(F) = [AG + ClgAQ -+ bng].
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Forgetting the markings af we obtain a connected unmarkiegologicalgraph
T with (possibly some) ends and all interior vertices of valeBey- a trivalent
graph

LEMMA 1.3 — Let X be a compact orientable Riemann surface of gefus)
andT" C X an embedding of a connected trivalent graph such that

— the setX \ 7" is a disjoint union of topological cells;
— all interior vertices of7™ are trivalent;
— the ends of ™ are arbitrarily marked by two colorsl; and Bs.

Then there exist a subgrodp C PSL,(Z) and a unique complex structure on
such thatX = Mr andT" = T¢.

Proof. — Assume that we have an embedded graphc X satisfying the condi-
tions above. Mark byA all trivalent vertices and enlarge the graph by putting

a B-vertex in the middle of any edge bounded by tv«vertices. Put oné-vertex
into every connected component &f\ 7" and connect all-vertices withA and
B-vertices at the boundary of the corresponding domain. By assumption, every
connected component of \ 7 is contractible. Consider the boundary of the in-
dividual cell. EveryA-vertex of the boundary is connected by edge®toertices
only. Similarly, the B-vertices are connected by edges onlydtwertices. Hence
every triangle of the induced triangulation has vertices colored by three cdloFs:
and/. This gives gr-triangulation ofX . Following Alexander [], we observe that

a jr-triangulation defines a map

h:X —P!

which is cyclically ramified over, B and! (see {]). The trivalence of™ implies
that 4 has only3 or 1-ramifications ovel) € P! and only2 or 1-ramifications
overl € P! SincePSLy(Z) = Z/3 * 7Z/2 there is exactly one subgroup C
PSL,(Z) (of finite index) which corresponds to the coverifg— P'. Any graph
T constructed via a subgrolipC PSL,(Z) satisfies the conditions above. Indeed,
we have already described tlietriangulation onM. Triangles adjacent to a given
I-vertex constitute a contractible cell and the division\§f into neighborhoods of
I-vertices is a cellular decomposition df. Hence after removing-vertices with
open edges from them we obtain the preimagf of|. If we forget theB-vertices
which lie between twoA-vertices we obtain the graph. ThusT{ € X = Mrp

is the boundary of this cellular decomposition afdis simply 71! with an A, B-
marking of the ends. [
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REMARK 1.4 — Graphs which are isotopic iX (modulo diffeomorphisms ok
of degreel) define conjugated subgroupsieffl, (7).

REMARK 1.5, — Even if we omit the condition of compactness.ofwe still get
a bijection between conjugacy classes of subgroups of finite indesbf(Z) and
embedded trivalent graphs with marked ends.

REMARK 1.6. — The topology ofX restricts the topology of}{'. The graph’}
must contain someé-skeleton ofX. In particular, the mapr (7)) — m (X) is
surjective. Hencd} can be a tree only ik = S2.

For X = P! the connectedness 6f guarantees that all the componentsof7™
are contractible. Hence we can classify graphXis= P! by drawing them on the
plane. In general, connectednesq ¢fis necessary but not sufficient.

DEFINITION 1.7. — Define
ET(F) = 67‘0 = 6(&6 + as + bg)
A(l') = 6ag+ 2ay

Thus bothET(I") and A(T") depend only on the marking of the ends but not on
the embedding of the graph. Observe thgl") is thenumber of trianglesn the
correspondingr-triangulation of M and that

[PSL,(Z) : T] = A()/2.

REMARK 1.8 — If Mt arises from an elliptic fibration as in the Introduction then
A(I")/2 equals the number ddehn twistsin I" around the multiplicative singular
fibers.

NOTATIONS 1.9, — Let f : C — P! be a cover of degreé andp € P! a
ramification point off. Thelocal ramification datumis anN-valued vectorn =
(v), O~ v, = d), wherewy, is the order of ramification of at a pointc, € f~!(p).

A reduced local ramification datuns a vectoru obtained fromw by omitting all
entriesv, = 1. The vectow is defined up to permutation of the entries.

For f = je : C — Mp = P! we have distinguished ramification points, namely

those overA- and B-vertices of the graplit € Mr. The (global)je-ramification
datum is the vector

RD(]g) = [Ul,Aa ceeyUn, Ay Unt1,By - - - 7vn/,Ba@n/+1a .. ,Un//],
where thev; 4 are local ramification data ovet-vertices fori = 1,...,n, (resp.
v; g for B-vertices;i = n+1,...,n') andy; arereducedocal ramification data for

unspecified other points b/ for ¢« > n’ (distinct from A- and B-vertices ofMr).
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For f = jr : My — P! the distinguished (and the only) ramification points are
0,1, c0. We write
R‘D(]F) = [U()) (%0 UOO]
for the globaljr-ramification datum.

ExAMPLE 1.10 — Assume thaGD(T") = [nAg + Az + Bs] is the graph datum of
Tr C Mr and letje : P — My = P! be a finite cover. Then thg-ramification
datum

RD(]E) = [(2’ 3)A7 (2v 2, 1)37 (2)7 <2)]

means thatleg(js) = 5, thatje has ramification points of ord€and3 over one
point A, € Tr and(2, 2, 1) over oneB,-point and ramifications of ord@rover two
other unspecified points /.

2. Elliptic fibrations

In this section we briefly recall some basic facts of Kodaira’s thediy ¢f elliptic
fibrations. For more details we refer te][[ 14] and [35]. Let

m: & —C

be a smooth nonisotrivial relatively minimal Jacobian elliptic fibration over a smooth
projective curve”. This means that:

— £ is a smooth compact complex projective surface amsla proper holomor-
phic map;

— the generic fiber of is a smooth curve of genus

— the fibers of€ do not contain exceptional curves of the first kind, i.e., rational
curvesE' such that %) = —1 (relative minimality;

— there exists a (global) zero sectien C' — £ (Jacobian elliptic fibration;

— the j-function which assigns to each smooth fiker' (p) = £, C £ its j-
invariant is a nonconstant rational function ©@r(nonisotriviality).

It is well known thats? < 0. We define
ET(E) := —245°,
LEMMA 2.1 — We have
ET(E)/2 = —125* = x(€) = »(€).
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Proof. — Well known, but we decided to include an argument. Sifiég smooth
and relatively minimal its canonical bundké: is induced from a one-dimensional
bundle K on the bas€’. The sheaf* K (C) is a subsheaf of(¢. Since there are
singular fibers we have the following equality

RO(E,QY) =R (E,0) =g
whereg is the genus of’. By Riemann-Roch we obtain
X(0) =1—g+h (€, Ke) = x(€)/12.
We also know that? + sK¢ — 2¢ + 2 = 0 (genus formula). Therefore,
1—g+h%E Ke) = deg(K) — 29+ 2 = x(£)/12
sincedeg(K) > 2g — 2 and hencé' (C, K) = 0. Further,
sKg = deg(K).
Thuss? + sKg — 2g + 2 = 0 transforms tos? + x(€)/12 = 0. O

Let C"¢ = {p;,...,pr} C C be the set of points on the base corresponding
to singular fibers. The topological Euler characteristi€) = c»(€) is equal to
the sum of Euler characteristics of the singular fib&rs= 7~'(p;) (since every
generic fiber has Euler characteristic equd)toTherefore,

ET(E)= Y BT,

i eCsing

where the summation runs over all singular fiber€@ndET(E,,) is the contri-
bution from the corresponding singular fiber. Since the fibration is Jacobian every
singular fiber has a unique representative from Kodaira’s list and it is defined by the
local monodromy. The possible types of singular fibers and #i€xcontributions

are:
ET ET

Iy I 12
L, | 2n | I} |2n+12
Ir| 4 |IV* 16
Ir| 6 |III” 18
IV 8 | II” 20

Herel, is a smooth fiben,, is a multiplicative fiber withm-irreducible components.
The typedI, Il andIV correspond to the case of potentially good reduction. More
precisely, the neighborhood of such a fiber is a (desingularization of a) quotient
of a local fibration with smooth fibers by an automorphism of finite order. The
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corresponding order isfor the casdll and3 in the case$l, IV. The fibers of type
I, (resp. I, IT*, I1I*, IV*) are obtained from fiberk, (resp. I,,, IV, III II) (after
changing the local automorphism by the involution— —z in the local group
structure of the fibration). We shall call thesrfibersin the sequel.

REMARK 2.2 — The invariantET(€,) has a monodromy interpretation. Namely,
every element of a local monodromyzat Cs"¢ has a minimal representation as a
product of elements conjugated(tpi ) in SL»(Z). The length of this representation

equalsET(&,)/2. This explains the equalityT(&;) = ET(&,) + 12 —the element

(o' %)) € SLy(Z) is a product ofs elements conjugated {g | ) (elementary Dehn
twists).

3. Moduli spaces

Every Jacobian elliptic fibratioi — P' admits aWeierstrass modél. Its geomet-
ric realization is given as follows: there exists a pair of sections
go € H(P',Op(4r)),
g5 € H(P', Opi(6r))
such that is given by
(3.1) Yz = 4a® — gonz® — g32°,
insideP(Op1 & Op1(21) & Op1(3r)), subject to conditions
— the discriminantA = g5 — 27¢3 is not identicallyo;
— for every pointp € P! we have
(3.2) min(3v,(g2), 2v,(g3)) < 12,

wherev, is the valuation corresponding toc P!
(see 4] or [13], Section 7).

Two pairs(gq, g3) and(gs, g4) define isomorphic Jacobian elliptic surfa¢éss)
and(&', ¢') iff there exits anh € GLy(C) transforming(ge, g3) into (g5, g4) under
the natural action of:L, on (theGL,-linearized)Op: (r). We defineF, as the set
of isomorphism classes of paifs;, g;) subject to the conditions above.

The parameter spadé. has a natural structure of a (categorical) quotient of some
open subvariety/, of the sum of two linea€sL,-representations

HO(P', Op1 (47)) & H(P', O (67))
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by the action ofGL,. Equivalently,F. is a (categorical) quotient of the open sub-
varietyU! = U,./G,, of the weighted projective space

]P)47‘,67’ (47“ + ]_, 67“ -+ ]_)
by the action ofPGLs,.

LEMMA 3.1 — The varietyU, is a disjoint union of locally closed subvarieties
U;f, each preserved under the actionlfL,, such that for every. € U;f one

hasI'(§,) =T.

Proof. — The monodromy group of an elliptic fibration does not change under
deformations preserving the topological type of singular fibers (it is encoded in the
topology of the smooth part). Thus it can change only on algebraic subvarieties
where the topological type of singular fibers changes. The monodromy graip of

is upper-semicontinuous under changes 6fit can only drop on a closed subset

of the parameter space. Forc U/ the corresponding-map has a decomposition

Jju = jr o je. By (3.1,(3.2), j,, is nonconstant of degree 12r. Thus

[PSLy(Z) : T'| = deg(jr) < 12r

and the set of possibIE is finite. Similarly, there are finitely many c SLy(Z)
which can appear as monodromy groups of elliptic fibrations parametrizéd.by
Sincel" definesjr there are only finitely many possible which can appear for
u € Ul. For every fixedjr, a decomposition of, = jr o s,u € U,, wheres is

a rational maps : P! — P! deg(s) > 1, determines &,,-homogeneous set of
algebraic equations on the paiy, g;) defining the point: € U,. Thus there is a
closed algebraic subvariety, » wherej,, = jr o s. The monodromy of the fibration
&, foru € U, r surjects ontd’ unlessu is in U, v, wherel” C I'. There are finitely
many suchl” (with the above degree bound) and hence finitely many algebraic
varietiesU, v such that for every, € U,r — |JU,.r» the monodromy group of,
surjects ontd” C PSLy(Z).

Let M be an irreducible component of . — (J U} .. The monodromy group of
E.,u € M is either constant o/ or drops when the topology of singular fibers
changes. This can occur only on a finite number of closed algebraic irreducible
subvarietiesV/; in M. Since the monodromy group surjects ohta can only drop
from the groupl’ at a generic point if the map — I has a kernel of ordet. If
the above map is an isomorphism then the monodormy group is constaiit ¢hn
the monodromy group o/ does change of/; thenT; (for a generiau € M;) is
isomoprphic tol' and hence does not change &fy. The varieties\/ and M; are
all preserved under theGL,-action. Thus there is one monodromy grdufor a



12 FEDOR BOGOMOLOV, TIHOMIR PETROV and YURI TSCHINKEL

generic point of\/. RenaminglM — (| M; asU’ - and M; asU’ . we obtain the
algebraic stratification of the lemma. ]

The unstable points of theGLs-action on the weighted projective space cor-
respond to sectiong,, g3 with high order of vanishing at some point Namely
vp(g92) > 2r,1v,(g3) > 3r. However, the inequality3(2) implies that6r < 12.
Thus, forr > 2, F, is aPGL,y-quotient of some open subvariety of the semistable
locus

P 6 (4r +1,6r +1) C Pypgr(4r +1,6r + 1),

It follows that F,. is a quasi-projective algebraic variety. This variety is clearly
unirational and in fact rational by .

Moreover, forr > 2 we can define a set gubvarieties?,  C . such that
for everyb € F, i the corresponding Jacobian elliptic surfaég, s) has global

monodromy groug’.

REMARK 3.2 — Notice that the mapg, for elliptic fibrations corresponding
to different points of the same irreducible component/Qt. can have different
RD(j¢), even over thed, or By-ends ofl € Mr. Thus, for a given irreducible
component, we have the notion ofgenericramification datumRD(j¢) and its
degenerations

The case- = 1, corresponding to rational elliptic surfaces, is more subtle - the
subvarietyU; contains unstable points. The quasi-projective locus of semistable
pointsU:* is a disjoint union of locally closeBGL,-semistable subsets™.; tak-

ing quotients we obtain varietie’, . parametrizing rational elliptic fibrations with

global monodromy’.
Let W] = U; — U be the complement. It consists of pairs, g3) with

g2 =P fy, g3 =1"fs,

wherel is a linear form (vanishing at a poiptand) coprime tgfs, f3 a[lddeg(fg) =
1,deg(f3) = 2. Forw € W{ we havedeg(j) < 4. The case of® # SLy(Z)
corresponds tdeg(jr) > 2. Thus we have to consider two cases:

— deg(jr) = deg(je) = 2;
— deg(jr) < 4,deg(je) = 1.
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The first case does not occur singé (0) has ramification of typé3, 1) (by the
assumption thaf; is coprime tol and that3v,(¢g.) < 12). Thus thej-map cannot
be decomposed even locally into a product of two maps. The second case leads to

LEMMA 3.3 — If w € W] andT'(E,) # SLy(Z) thendeg(js) = 1 and one has
one of the following graph and ramification data:

GD(I") ‘ RD(jr)

[AG + AQ] [(3 1)0, ( 72) 1y (37 1)00]
[A6+A2+232} [(3 1)0)( 717 )17(4)00]
[Ag + 3B, [(3)0, (1,1, 1)1, (3)ox]
[As + Bo] (3 )0,<2 1)1, (2,1)e0]

Proof. — The formulay = [f3/(1f3 — f2) shows thatjr has a point with local
ramification datuni3, 1) or (3), corresponding to

[PSLy(Z) : T'(E)] =4 or 3.
Since only two more branch points are allowed and one of them(vgith local

ramifications 1 or 2), the Euler characteristic computation gives the ramification
data listed in the statement plus one more:

[(3’ 1)0’ (27 2)1’ (27 2)00]'

However, this datum is impossible for topological reasons (the only possible graph
datum is[4Ag + A, and there is a unique embedded grdplwith this datum).
If deg(j) = 3 then one has a cyclic point of ord&rleading to the data above]

COROLLARY 3.4 — Every irreducible componerW’ C W/ such thafl'(£,)) #
SLy(Z) for w € W/  is rational.

Consider an irreducible componefi . and the corresponding decomposition
j :jp Ojg. Here
Je = <j5,27j5,3) : P! — Mp =P
is a pair of homogeneous polynomials in 2 variables. Let
G = {(g2.93)} C H'(P", Ops (4r)) & HO(P", O (61))
be the subset corresponding to smooth elliptic fibrations. Put
Jr = {j|3je : P! = My s.t. j = jroje}.

LEMMA 3.5 — If j € Jr N Jr with T # TV then there exist ah € PSLy(Z), a
groupI” Cc T NAl’h~! and a mapj : P! — My~ such thatj = jer o jro.
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Proof. — The monodromy group and its image $1,(Z) are uniquely deter-
mined by the smooth part of the elliptic fibration. Therefore, in any smooth family
of elliptic surfaces

['(generic fiber) 2 I'(special fiber).

SinceTl is defined modulo conjugation by elementsSih,(Z) the claim follows.
O

COROLLARY 3.6. — We have a decompositidgh = | |Gr into a finite (disjoint)
union of algebraioGL,-stable subvarieties such that for ail= (92,93) € Gr the
monodromy group'(&,) C SL»(Z) is a subgroup of a centraél /2-extension of .

REMARK 3.7. — For a giveng € Gr the mapj¢ is not unique. Legs andj;: be
two such maps. Thejr = hr o ji, wherehr € Aut(7r) is an automorphism of
M, preservindlt.

LEMMA 3.8 — We have a decomposition
Gr = |Grs
k

into a finite union of algebraireducibleGL,-stable subvarieties such thate,) =
['forall g € G5,

Proof. — Assume that somg € Gr belongs togr ; N Gy ,, wheregz |, Gy , are
different (nonconjugated) lifts df into SL,(Z). Lemma3.5implies that there exists
apropersubgroug™ c T" such thaty belongs taGr, contradiction. O

Let Gz = Gr,, be an irreducible component 6 as in Lemma3.8andg € Gy
its generic point. It determines a set-efibers on the basB'. We denote their
number by/. Choose (one of) thg , with ramification datunRD = RD(j¢,). We
get a map

du - z/{g - ujg X (P1)67
wherel{, C Gy is a neighborhood of andl{;, C R(RD) is a neighborhood of the
mapj, = je, in the space

R(RD) :={j : P* — P'| RD(j) = RD}
of rational maps with ramification datuRiD.

LEMMA 3.9, — The mapy, is a local (complex analytic) surjection.
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Proof. — It suffices to show that the variation gfin the space of maps with
RD(j) = RD(jg,) lifts to a variation of the elliptic fibratiorf,. Observe thafl/;
minus the preimages 40, 1, co} carries a natural “projective” local systeRVr
with fiber Z © Z modulo+1. This local system lifts onto a similar local system
J*PLr onP!'. Since the fundamental group Bf minus;—'({0,1,cc}) is a free
group the projective local systejiiP L can be lifted to a linear local system with
fiberZ & 7Z.

By a theorem of Kodaira, a nonisotrivial elliptic fibration ovBris uniquely
determined by the nonconstant map B — P! = H/I" and the lifting of the
induced projective monodromy dt \ j~!({0,1,00}) with (Z ® Z)/(Z/2) as a
fiber to the linear monodromy with @ Z as a fiber. Therefore it suffices to lift the
variation of j¢ to a variation of the corresponding local system with fiber

Hi(&)=Z®Z, teP' —j;'({0,1,00}).

Any such lifting corresponds to an elliptic fibration with Jacobian mapHowever,
its topological type depends on the lifting.

A linear lifting is defined by the choice of local monodromy elementslin(Z)
at every point in the preimage of the corresponding projective monodkpray
PSL,(Z). Namely, for every local projective monodromgye PSL,(Z) we have
a choiceg,,,, —g,,» Whereg,, corresponds to the minimal lifting - the lifting with
a minimal Betti number for the corresponding singular fiber (see the next section
for a more detailed discussion ¢id]). The topological type:(&,) is a function of
RD(€) and the number of nonminimal liftinds The existence of a lifting depends
only on the product of local liftingsl(or —1), which can be calculated usiig)(5)
and!. In particular, since it id for £, the same holds for a variatighof jg, (with
constant).

According to Kodaira, a simultaneous lifting of the variationjgand the varia-
tion of the linear system faf, as above is equivalent to the existence of a variation
of the elliptic surface,. This completes the proof of the lemma. O

COROLLARY 3.10 — LetF’ - C F, ; be an (irreducible) component with generic
ramification datumRD. Thenj-";f surjects (rationally) onto the quotient of the
variety of rational mapsR (RD) by Hr.

Proof. — Since both7’ . and R(RD) are algebraic varieties the local complex
analytic surjection from Lemma.9extends to an algebraic correspondence. More-
over, two decompositions of the mams; = jr o je differ by an element infr.
This gives a map to the quotient space, which is a (global) rational surjectian.
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PROPOSITION3.11 — Every irreducible componeif, . contains an open part
F' = with the following properties:

— F' - is a quotient of an algebraic variety’ - , by the (left) action oPGL,
and (right) action of a subgroupi- of Aut(7t);
— U - , admits a fibration with fiber (an open subset ®fm’(P') and base the

varietyR.,.r of mapsf : P! — M with fixed local ramification data ovet,
and B,-points of I+ C Mr;
— the action ofPGL; on U;f ; is induced from the standatlGL,-action onP!;

— the groupAut(7t) is a subgroup oPGL; (acting onMr).

Proof. — Elliptic surfaces parametrized by a smooth irreducible variety have the
sameET(€&), which depends on the numbeéof x-fibers in&, on the degree of;

and on the ramification properties over the endsofOnce/ is fixed, for any given

je, thex-mark can be placed over arbitrafypoints of P'. Their position defines a
unique surfac€. Thisimplies thaU;m is fibered with fibers (birationally) isomor-

phic to Sym‘(P') = P*. The ramification properties g remain the same on the
open part o’ -, , (since the number of-fibers remains the same). Thus the base

of the above fibration is the space of rational mg@ps P! — P! = Mt with fixed
ramification locus. Any such map defines an elliptic surfdosith givenI’ (see
[€]). The PGL,-action onU’ - , identifies points corresponding to isomorphic sur-
faces£. Additional nontrivial isomorphisms correspond to exterior automorphisms
of I', coming from the action oy, i.e., automorphisms of the grafih. O

REMARK 3.12 — If the PGL, x Aut(7})-action onU;N is almost free then
the rationality ofPGL2\U’ . /Aut(Tr) implies the rationality the corresponding

quotients for all. In the other cases the degreegjpfis small and they are handled
separately (see Secti@h

Most of the graphdt have trivial automorphisms. In particular, any nontrivial
automorphism acts on the ends of the graph. In general, automorphisms of the
pair (Mr, Tr) correspond to elements of/I" wherel” C PSLy(Z) is a maximal
subgroup with the property théitis a normal subgroup df’.

LEMMA 3.13 — The groupAut(Tt) acts freely on the set of ends and end-loops.

Proof. — Considerjr : Mr — P! Thenh € Aut(7Tr) is any element if*GL,(C)
such thatjr(hz) = jr(z) forall z € T+ C Mr. If kh stabilizes an end or an end-loop
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of Tt then it stabilizes the unique adjacent vertex and its other end. Any element of
PGL»(C) preserving a closed interval is the identity. O

COROLLARY 3.14 — For r < 2, the only possible groupaut(7t) are cyclic,
dihedral or subgroups af,. More precisely, for graphs with one eddit(71) = 1
and graphs with two end&ut(7t) is a subgroup o /2.

LEMMA 3.15 — Let

R:={f:P' - P}
be the space of rational maps with ramifications over exacpdooc. ThenR is a
G,,,-fibration over the product of symmetric spa&gsn™ (P!).

Proof. — Indeed any two cycles, andc, of fixed degree are equivalent @.
Therefore, there is a rational functignon P! with ¢; = f~'(0) andc, = f~!(c0).
If ¢;,cy do not intersect thedeg(f) = deg(c;) = deg(cy). The functionf is
defined modulo multiplication by a constant. The space of cygles) . n;p; is a
product of symmetric powei$ym™ (P') wherem is the number of equal. O

4. Combinatorics

In this section we investigate relations betwéen(&) andET(I"). We keep the
notations of the previous sections.

LEMMA 4.1 — Letj : £ — C be an elliptic fibration. Then
(4.1) ET(E) = deg(js)A(L) + 8ag + 4y + 661 + 120.

Here a; and a, equal the number of points ovelr,-ends ofl with ramification
multiplicity 1 (mod 3) and2 (mod 3), respectivelyf3, is the number of odd ramifi-
cation points over thé;-ends and is the number o%-fibers of€.

Proof. — The summandieg(j<)A(I") corresponds to multiplicative fibers &f.
The next summands are the contributions of those singular fibérswiich are in
the preimage ofl, or B,-ends oflt. If the ramification order at a poiptover aB;-
end is even then the corresponding fiber with miniii@lis smooth and hence does
not contribute tadET(E). If it is odd then the fiber with minimakT is of typelll
and we have to ad@l3;. Similarly, for the preimages of,-ends and-twists. [

COROLLARY 4.2 — In particular,
ET(E) < deg(je) ET(T") 4 12¢,
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with equality if
200 + a1 = ag - deg(je)
61 = bg . deg(jg>

DEFINITION 4.3 — We call7r saturatedf all vertices of 7% are trivalent and a
treeif it is contractible.

REMARK 4.4 — For saturated graph&(I") = 12rk 7 (71 ), where
l"kﬂ'l(TF) = I‘kHl(TF)
Is the number of independent closed loop§pfc Mr.

The following simple procedures produce new graphs:

— If T} andT; are (unmarked) trivalent graphs we can j@inand7; along two
edges. For the resulting grafi we have

ET(T") = ET(T}) + ET(Ty) + 12.

If T; are marked and the marking of the end§°6is induced from the marking
of the corresponding ends @f and7; then

AT = A(Th) + A(Tz) + 12.
— We can glue an engof 77 to an edge of;. In this case
ET(T") = ET(T}) + ET(T3).
The change ofA depends on the marking of the end:

N A(T1)+A(T2)+6 ifp:Bg
AT = {A(Tl) +A(Ty) +4 ifp= A,

REMARK 4.5, — Any connected graph can be uniquely decomposed into a union
of a saturated graph and a union of trees.

LEMMA 4.6. — ET(I') is divisible by12.

Proof. — Every vertex ofl1 has either one or three incoming edges. Therefore,
the number of edges
1
r =S ),
(7P is the number of vertices witiredges). Thus® = 70 + 77 is even and since
ET(T') = 67° we are done. O
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EXAMPLE 4.7. — If 11 is a tree withk + 2 vertices then
ET(I) =12k +12

= 6k if all ends are Bs,

A(L) { > 6k otherwise.

LEMMA 4.8 — Forall T one has
A(l') > ET(I")/2 + 6(rk H,(TT) — 1).

Proof. — A direct computation shows that for saturated graphs one has an equality.
Suppose thalt is a concatenation of a saturated graph and a tre€l:,... The
number of ends drops by one and the numbedgtertices increases by, Thus

the tree will addi2k + 12 to ET(T") but A(T") will change by6k + 6. Finally, the

ratio A(T") /ET(T") only increases if we chang®,- to A,-markings for some ends.
Indeed,A(I") increases without changirgI'(T"). O

COROLLARY 4.9, — If A(T") = ET(I")/2 thenTt is a concatenation of a loop
and some trees. Moreover, all the endg pfare of typeB,.

PROPOSITION4.10 — Let& — C be an elliptic fibration withET(£) < ET(I).
Then:
— Mr = P! andTr is a tree withoutd,-ends and wittET(T") > 24;
— deg(je) = 2 and itis ramified in all (3;) ends off - (and, possibly, some other
points);
— & hasl or 2 singular fibers of typé,,.

Proof. — From4.1 and4.8 we conclude thatk H,(7r) = 0 which implies that
Tr is a tree andV/r = P!. By LemmaZ2.1 and our assumptioryT(I") > 24,
which implies thatdeg(js) < 2. If deg(je) = 1, we apply Corollaryt.2and get a
contradiction to the assumption. kg (je) = 2 combine Definitionl.7and @.1):

ET(5> = ET(F) + 4@2 + 40&1 + 80[2 + 651 —12.

Sinceaq, resp. f; is twice the number of unramified,, resp. B,-ends, andy; is
the number of ramifiedl,-ends we see that if at least one of them is not zero, then
ET(€) > ET(T'). The claim follows. O

COROLLARY 4.11 — For every elliptic fibration — P! one has
ET(E) > ET(D).
Further, if deg(j¢) = 2 and j¢ is ramified over only oné,-point then
ET(£) > 2ET(D) — 12.
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Proof. — If deg(js) = 2 andC = P! thenje ramifies in two points. If neither
of these points ig3, then, by Lemmat.1, ET(E) > 2ET(T). If both of these
points areB,-points then the coveringe corresponds to a subgrodip of index 2

in " andC' = My, contradiction. Otherwise, the claimed inequality follows from
Lemma4.l [

5. Elliptic K3 surfaces with deg(jg) > 1

In this section we assume th@dt= P!, thatjs > 1 and thaf" is a proper subgroup
of PSLy(Z). We consider

general families : ET(E) —12¢ = deg(je) ET(T),
special families : ET(E) — 120 < deg(je) ET(I).

In Section3 we showed that the main building block in the construction of moduli
space of elliptic surfaces with fixddis the space of rational maps : C' — M of
fixed degree and ramification restrictions over certain points. Fganaralfamily
there are no such restrictions and the corresponding moduli spaces are rational by
classical results of invariant theory for actionsR#kL, and its algebraic subgroups
(see SectiorY). For specialfamilies the corresponding space of rational maps is
more complicated.

LEMMA 5.1 — There are no special families of ellipti¢3 surfaces with
ET(T') = 48, 36.

Proof. —

— If ET(T") = 48 thenA(I") > 18 anddeg(je) < 2. However,deg(js) = 2
contradicts Corollaryt.11(ET(E) > 96 — 24 > 48).

—If ET(I') = 36 andA(I") > 16 thendeg(je) = 2, contradicting to4.11
We are left withA(T") = 16, 14,12 for deg(je) = 3 and A(I') = 12 for
deg(je) = 4.

— If deg(je) = 4thenTr is atree withGD(I") = [24+4B,]. By Lemma4.1, all
ramifications over thé3,-ends are even, which contradicts= P! (compute
x(C)).

— If deg(je) = 3 thenTr is a tree (by4.8) and

GD(F) = [QA() + GQAQ + (4 - CLQ)BQ]
with ay < 2. We have
48 > ET(E) > 3(12 + 2az) + 4ay + 8as + 604,
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where; > 2 (sincedeg(je) is odd there is odd ramification over sorfe-
end). Thereforeg, = 0 and consequentlyj; > 4, contradiction.

]

LEMMA 5.2 — If Tt is not a tree andj¢ is special (and generic for the corre-
sponding irreducible component &1, ) then

ET(T) | deg(je) | GD(I) RD(je)
24 4 245 + 2Bs) [(2,2)5,(2,2)5, (2), (2)]
24 3 [2A6 + 2By) [(2,1)5,(2,1)5,(2),(2)]
24 3 246 + A2 + Bo] | [(3)4,(2,1)5, (2)]
12 6 [Ag + Ay [(3,3) 4, (3,3)4,(2), (2)]
12 5 [Ag 4 Ay [(3,1,1) 4]
12 |5<d<8|[Ag+ By 8= (85, (2)%],
where
BieN, ) Bi=d, #odd p; <8—d
and

d' = 2d — #nonzero 3;.

Proof. — Follows from Lemma4.1. First observe thaf\(I") < 16, which implies
thatag = 2 anday < 2. If a; = 2 thenA(I') = 16 and

ap =ay = =0.

Hence botM,-ends have a 3-cyclic ramification and the cover corresponds to a sub-
groupI” C I" of index 3. This exclude&D(I") = [2A4s+2A,]. If deg(je) = 4 then

A(TI") = 12 which implies that all preimages db,-ends have even ramification.
The description of all other ramification data follows similarly from Lem#na
Notice that the (omitted) possibilities

ET(T) | deg(je) | GD(I') | RD(je)
12 6 [Ag + As] | [(6) 4

12 5 [Ag + As

are degenerations of the listed cases (see Reaxk O
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LEMMA 5.3 — If T is atree andj; is special (and generic for the corresponding
irreducible component af;, ) then
deg(je) | GD(T') RD(je)
jl 4 [Aﬁ +A2 +2B2] [(171a171)A7(2’2)37(272)87(2)7(2)]
j2 4 [Aﬁ + A2 + 282] [(37 1)A7 (27 2)37 (27 2)3] + *
J3 4 [Ag + Ay +2Bs] | [(3,1)4,(2,2)5,(2,1,1)5,(2)]
Ja 3 [Ag +2A5 + Bs] | [(3)a,(1,1,1)4,(2,1)5]
Js 3 [Ag + Ay +2Bs] | [(1,1,1)4,(2,1)5,(2,1)5,(2),(2)]
J6 3 [Ag + Ay +2Bs] | [(3)a,(1,1,1)5,(2,1)5,(2)]
or GD(I") = [Ag + 3B,] and
deg(je) | RD(je)
J7 8 [(2,2,2,2)5,(2,2,2,2)5,(2,2,2,2)5,(2),(2)]
7Js 6 [(2,2,2)5,(2,2,2)5,(2,2,1,1)5,(2),(2)]
Jo 6 [(27272)B7<2 2;2>B,(27272>B,<2)] + *
le 5 [(27271)B7<2 271)B7<27271>B7(2)7<2)
jll 4 [(271’1)37(2 1’1)37(2v2)37(2)7(2)]
j12 4 [(271’1)37(2 2)37(272)3’(2)] + ok
j13 3 [(171’1)37(271)37(271)3}
j14 3 [(2’ 1)37 (2, 1)Ba (27 1)3’ (2)] + ok

or ET(T") = 12 andGD(I") = [2A,] with deg(je) = 4 — 10, 12.
(Inthe above tablest« means that there exists a moduli space of elliptic surfaces
with the samé&D(j¢) and with an additionak-fiber over an unspecified point.)

Proof. — Assume thaET(I") = 24 andTr is a tree with
GD(I') # [As + 3B].

First observe thatleg(js) < 6, sinceA(I') > 8. If deg(js) > 5 then, by4.1,
GD(I') = [As+Az+2Bs). If deg(je) = 6 thenje has to be completely ramified over

all ends and no other ramifications are allowed by Euler characteristic computation.
Therefore, it is a group-covering and can’tfge If deg(je) = 5 then there are two

odd ramifications oveB,-ends, and by.1, ET(I") > 48.

We are left with

GD(I) =

[Ag + 3A,],
[Ag + 2A, + Bs,
[A@ —|— AQ + 232]

and3 < deg(je) < 4. If there are at least twd,-ends withouB-cyclic ramification
points over them theRT(E) > 48 (seed.1). The first case is impossibldeg(je) =
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4 does not occur (the degree is not divisible by 3)l¢d(j<) = 3 and there is at most
one3-cyclic ramification over am,-end then, byt.1, ET(E) > 48, contradiction.
Consider the second case afd(jc) = 4. ThenA(T") = 10 and4a; +8as+65; <
8. Sincea; > 2 we haven, = (51 = 0 anda; = 2. The only possible

RD(jé') = [(37 1>A7 (37 1)A7 (27 2)3]7

which corresponds to a group covering, contradiction.

Similarly, if GD(I') = [Ag + Az + 2B,] anddeg(js) = 4 thenA(T") = 8 and
daq + 8an + 607 < 16. We havea; > 1 and8as + 4ay = 16 or 4. In the
first case, bothB,-ends are completely ramified, and we get The second case
splits into subcases? = 0 or 2, leading tojs, resp. js. If deg(je) = 3, then if
GD(T") = [Ag + 2A; + Bs] then exactly one of thel,-ends has cyclic ramification.
It follows that 5, = 1, which leads toj,. If GD(I') = [Ag + Ay + 2Bs] there
are two subcases: there is cyclic ramification over Aheend or not. In the first
subcase, possibRRD(j¢) include[(2, 1)z, (2, 1) 5], which is excluded as it gives a
group covering. The other case leadgdoln the second subcase, we get

Consider the casgr = Ag + 3B,. HereA(I") = 6 and
ET(E) > 6deg(je) + 6n,

wheren is a number of points with odd ramification ovBs-vertices. It follows
that

48 > 6 deg(je) + 65,

andg; > 3 if deg(j¢) is odd and the number of odd ramifications ogachB,-end
is congruent taleg(je) modulo 2.

If deg(je) = 8 then all preimages oB,-vertices ar@n-ramified. Ifdeg(jr) is
odd thenET(E) > 6deg(jr) + 18, which excludesleg(jr) = 7. Now assume
deg(jr) = 6. The number of possible odd ramifications over dyend is even
by 4.1 and it cannot excee®l. There are two possibilities listed above. Assume
thatdeg(je) = 5. The minimal possible ramifications a2 2, 1) over all B,-ends.
Sincel0 — 6 = 4 we can add two more points.

In deg(je) = 4 we could have furtheRD:

RD(]E) = [(272)B7(2’171)B7(2’2
= [(2,2)3,(2,1,1)3,(2,1
= [(2,2)3,(2,1,1)3,(2,1

but they are obtained as degenerationg otind ;.

s, (2)],
D)5, (2),(2)],
1)

)
’ 2),
y L) B> (3)}
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The onlyGD(I") which allowdeg(j¢) > 12 are[As+ Bs] and[2As]. The first case
corresponds t&SL,(Z) (which we don’t consider). The second case corresponds
to subgroupd”™ C PSL,(Z) of index2. For a generi&€ in each moduli space the
ramification datunRD(j¢) is one of the following:

RD(je) =[(3,...,3n 1, .., 1)a, (3,00 30, 1,000 1) A, (2)9] + %,
whereny, ny, d are nonnegative integers such that

deg(je) — (n1 +ng) < 4,

3n1,3ne < deg(je) and, d < 2(deg(je — (n1 + ng + 1))).

(In particular,d < 4). ]

6. Rational elliptic surfaces withdeg(jg) > 1

LEMMA 6.1 — There are no special families of rational elliptic surfaces with
ET(T) = 24.

Proof. — If deg(j¢) = 2 thenjs cannot be ramified over more than oBg-end
(otherwise it is a group covering). Therefore, we can apply Corolaty and get
ET(E) > 2-24 — 12 > 24, contradiction (t02.1). Thusdeg(js) = 3 or 4 and
ag = 1. Moreover,A(I") < 8. This leaves the cases:

GD(I') = [Ag+ 3B,
= [Ag+ As + 2By).

In the first caseleg(js) = 3 is impossible, andeg(js) = 4 leads to
RD(]E) = [(27 2)37 (27 2)37 (27 2>B7 (27 2)3]
which corresponds to a group covering. In the second daggs) # 4 (since

A(T") = 8) anddeg(je) = 3 implies that3, > 2 andET(E) > 36, contradiction.
O
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LEMMA 6.2 — If j¢ is special (and generic for the corresponding irreducible
component of, ) then

deg(je) | GD(I') | RD(je)
Jis| 6 |[249] [(3,3) 4, (3,3) 4, (2), (2)]
Jis | 4 | [249] [(3,1) 4, (3,1)4,(2), (2)]
jir| 3 [2A5] [(3)a, (1,1,1)4,(2),(2)]
Jis| 4 | [As+ Bo] | [(2,2),(2),(2),(2), (2)]
J19 3 [As + Bao] | [(2, 1), (2), (2)]
J20 3 [As + A2] | [(3)a, (2), (2)]

Proof. — If ag > 1 thendeg(js) = 4 or 3. In the first case, = 0 andGD(I") =
[As+ B] and we have complete ramification over theend. This givegis. In the
second case the ramification overis (2, 1)  and we gejiyg. If GD(T") = [Ag+A,]
thendeg(je) = 3 anda; = ay = 0, leadingj.

It remains to consideGD(T") = [2A4,]. We apply the same formulas as in the
proof of Lemmab.3, with the inequality

deg(je) —mn1 —ng < 2.
We havedeg(je) < 6 anda; = ay = 0. Notice thatdeg(je) = 5 is impossible. [

7. General rationality results

NOTATIONS 7.1 — We will denote byS,, the symmetric group on letters, by
2, the alternating group, b®,, the dihedral group and b§,, = Z/n the cyclic
group. In particular&, = ¢ = Z/2 and®, = Z/2 x Z/2 (sometimes we
prefer the notatioi®, over¢, to stress that the action is by permutation). We write
Gr(k,n) for the Grassmannian df-planes in a vector space of dimensiorand

V, for the space of binary forms of degrée We will denote byGL,, PGL;, G,,
etc. the correspondingpmplexalgebraic groups. For a group, we denote by,

the centralizer ofy € G and byZg its center. We denote byl, = V; ¢ V; the

space o x 2-matrices. We write) Y X or simpIyL X for a locally trivial
(in Zariski topology) fibrationV over X with generic fibe”. We will often write
G-map (etc.), instead d@k-equivariant map.

We say that two algebraic varietié§ and X’ are birational, and writeX ~ X',
if C(X) = C(X'). A variety X of dimensionn is rational if X ~ A", k-stably
rational if X x A* ~ A"** andstably rationalif there exists such A € N. We say
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that X is unirational if X is dominated byA™. The first basic result, a theorem of
Castelnuovo from 1894, is:

THEOREM 7.2 — A unirational surface is rational.

Already in dimension three, one has strict inclusions
rational C stably rational C unirational

(see the counterexamples i, [2],[10],[6]). There is a very extensive literature
on rationality for various classes of varieties. We will use the following facts:

LEMMA 7.3 — LetS — B be aruled surface with basB andw : C — S a
conic bundle ovef. Assume that the restriction ofto a generidP! C S is a conic
bundle with at most three singular fibers. Thér- A? x B.

LEMMA 7.4 — Letw : C — S be a conic bundle over an irreducible variety
andY C C a subvariety such that the restrictionofto Y is a surjective finite map
of odd degree. The@ has a section and ~ S x A!.

Let G be an algebraic group. A (goodhtional actionof G is a homomorphism
prat : G — Bir(X)

such that there exists a birational modglof X with the property thap..; extends
to a (regular) morphisrx x X’ — X’. We consider only rational actions. We write
X ~¢ Y for aG-birational & G-equivariant birational) isomorphism betwe&n
andY. We will denote byG\ X a model for the field of invariant§ (X )¢,

Let £ — X be a vector bundle. Anear action ofG on F'is a rational action
which preserves the subspace of fiberwise linear functiorfs.dn particular, there
is a linearG-action on regular and rational sectionsHf

We are interested in rationality properties of quotient spaces for the actions of
PGL,, its subgroups and productsie& L, with finite groups. The finite subgroups
of PGL, are

Qn; ©n7 Ql47 647 52’[5'
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We denote b){tn, D,, etc. their lifts toGL, (as centralf,-extensions). We denote
by
B,T = C*, Ny
the upper-triangular group, the standard maximal torus and the normalizer of this
torus inPGL, and by
B,T,N:
the corresponding subgroups(i.; (or SLs).

Let V be ann-dimensional vector spac€ ¢ GL(V) a subgroup and; its
projection toPGL(V'), acting naturally ori?(V'). Determining the rationality of
quotientsG\P(V) (at least for finite groups) is known as Noether’s problem.

COROLLARY 7.5 (of Theorenv.2). — For all n < 3 the spaces\P(V) is ratio-
nal.

THEOREM7.6. — [29],[36] A quotient ofP(1') by a (projective) action of a con-
nected solvable group, a torus or a finite abelian subgroup of a torus is rational.

A fundamental rationality result is the following theorem of Katsylo:

THEOREM7.7. — [17] For any representatiory’ of GL, or PGL, the quotient
PGL,\P(V) is rational.

In general, the quotients need not be rational (see Saltman’s counterexamples in
[30]). We now describe some patrtial results foe 4, which we will use later on.

DEFINITION 7.8 — A finite groupG c GL,, = GL(V) is calledimprimitive if
there exists a decomposition = ¢,V such that for alle andg € G there is an
o with gV = V¢, OtherwiseG is calledprimitive.

REMARK 7.9. — There are 29 types of primitive subgroups@f.,. For some of
them, like

s, A7, PSLy(F7), G,
rationality of the quotient is still unknown.
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THEOREM7.10 — [26] For every primitive solvable subgroug c PGL, the
quotientG\P? is rational.

REMARK 7.11 — In[26] itis shown that
G\P? ~g G'\ X3,

where X is the Segre cubic threefold afid is a quotient ofG. The problem is
then reduced to the (easy) case of imprimitive actions.

We will also need to consider quotients bgnlinearactions.

LEMMA 7.12 — The quotient ofcL, (or PGL,) by the involutioni : z +— x~1
IS rational.

Proof. — The involution decomposes as a prodiet i; o i, where
.. foa b _,( —etd b
I P R —c a

iy 1y >y -det(y) .
are two commuting involutions. Another set of independent generat@g0b, c, d)
is given by{a, b, ¢, det(z)} (write d = (det(z) + bc + a*)/a). Now the involutions
take the form

and

i1 : (a,b,¢) — (—a,—b, —c)
and
iy : det(x) — det(z)
and we can write down independent generators of the field of invariants. If

det(z) +1
" det(z) — 1
then
19 : D — -D
ir: (a,b,¢,D) — (—a,—b,—c,—D).

This finishes the proof. m
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A (rational) slicefor the action ofG is a subvariety5 C X such that the general
G-orbit intersectss' in exactly one point. (The slicé need not be a rational variety.
To avoid confusion, we will always refer t§ as a slice.) A subvariety C X is
called a(G, H)-slice(whereH C Gis asubgroup)ifs-Y ~ X andgy € Y implies
thatg € H. Clearly,G\X ~ H\Y. Moreover, iff : X — X'is aG-equivariant
morphism and” is a(G, H)-slice in X’ thenf~'(Y”") is a(G, H)-slice in X..

NOTATIONS 7.13 — For (a reductive group) acting (rationally) onX we denote
by
Stgen = Stgen(G, X)

the generic stabilizer (defined up to conjugacy). The action is calledf action
(almost freg if St,.,, is trivial.
We use a more precise version of Theorém

THEOREM7.14 — [17] Letp : PGLy, — PGL(V) be a representation ang a
lifting of p to a representation o&L, — GL(V). Let
G// = Stgen(GLg, V) and G := GLQ/GH.
If the central®, ¢ G” then
]P)(V) ~G G x S,
whereS is a rational variety (with trivialG-action).
If €, C G” then

— either thePGLy-action onP(V') hasnoslice andG\P(V') is rational
—or
]P(V) ~G G x S,
where the slices is a rational variety (with trivialG-action).

We now explain some general techniques in the study of rationality of quotient
varieties.

LEMMA 7.15 — LetE — X be a vector bundle of rank= rk (F). LetG be an
(affine) reductive group acting ol such that the generic orbit @k in E projects
iIsomorphically onto a generic orbit &k in X. Then

ENgXXAT
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with trivial G-action on the affine spaa¥’.

Proof. — Denote byO the G-orbit through a generic point iff. Shrinking (equiv-
ariantly) X, if necessary, we may assume that the map

™ H(X,E) — H°(O, E|o)

Is surjective. With our assumptions, there exists a basis., s, such that for each
J, the G-orbit of s; projects isomorphically onto its image i and generates a
trivial 1-dimensionalG-equivariant sub-bundle of the restrictid#{, of F to the
orbit O. It follows that E|p = @©}_,G - s;. In particular, H°(O, F) contains the
trivial G-module M generated by, ..., s,. Moreover,M generates’(O, E|o)
over every point of). Sincer is a map ofG-modules and is reductiveH° (X, F)
contains a submodulk/’ such thatr(M') = M (asG-modules). The elements of
M’ generate? over a generic point oK. A basiss’, ..., s. of M’ gives the desired
splitting of the action. O

COROLLARY 7.16 — LetG be a reductive group and
F' - F —- X
a G-equivariant sequence of vector bundles such that the gekenchit of £’

projects isomorphically onto its image. Choose a genériequivariant sectiorn’
of £ — X and denote by”, the restriction ofE” to this section. Then

E" ~q E! x A"
(wherer’ = rk E'), with trivial G-action onA"".

PROPOSITION7.17. — Let X be a variety with an actiop : G — X of a linear
algebraic groupG. Let E — X be a vector bundle and : G — E a G-action
lifting p. Consider a generic orbi€ - = ¢ X and the linear action ofs on the
space of section&°(X, E).

Assume tha€ is reductive and/ is a linear representation oft which is con-
tained in H°(X, £). Then there exists an affine op&i C X such that the vector
bundleE — X’ admits aG-map onto aG-representatiori/ *.

If the action of G on X is almost free we may think ok as being (birational
to) a principal fibration over the quotiefit\ X with fiber G. If G is affinewe
may assume that’ andG\ X are also affine. Let us also recall a standard general
construction ofG-maps: if the ringC[X]| is a direct sum ofz-modules then any
G-submodule C C[X] defines aG-map X — Spec(V'). We also have a vector
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bundle version of the above construction: #t— X be aG-vector bundle an@® a
G-orbit through a generic point. Assume tiét(O, E) (the restriction of the space
of sections ta)) containsV’ as a submodule. We obtairGamap

v: H(O,E) = V*
(the dual module, considered as a vector bundle over a point).

LEMMA 7.18 — There exists &-stable Zariski oper/ C X and a rational
G-map of H*(U, E) — V* extending.

Proof. — A generic orbitO has aG-equivariant neighborhoad, with U/ G affine,
such that

HY(U, E) — H°(O, E).

The moduleH°(U, E) is a direct sum of finite dimensional irreduciliiemodules.
We can now take any submodulé ¢ H°(U, E) which surjects isomorphically
onto a submodule i#°(O, E). O

LEMMA 7.19 — If X has ana f-action of PGL, then
X x P(Vaa) ~paL, X x P(Vaq),

with diagonalPGL,-action on the left and triviaPGL,-action onP(V5,) on the
right.

Proof. — We know thatC[PGL,], as aPGL,-module, is sum of all even modules
Vaq. This gives @ GLy-maps : X — P(V4,). The quotient
PGLy\X x P(Vay)

is a projective bundle over the quotieRGL,\ X, with a section obtained from
s. Therefore, it is birational to the produ@GL,\X) x P(V4,), which gives the
claimedPGLy-isomorphism. O]

COROLLARY 7.20 — Let X be a variety with aru f-action of PGL,. ThenX is
a (PGLy, Nt)-slice in
X x P(V3)

(with diagonalPGLs-action).
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LEMMA 7.21 — Assume thaf has anaf-actionp of PGL,. LetV Y, X be
a vector bundle oveX with an actionp of GL; lifting p. Assume thak contains
a PGLy-orbit Y ~ PGL, such that theGL,-module H°(Y, Vy) containsV, for
some oddl. Then

P(V) ~PGLo PGL2 X S,
(with trivial PGLy-action onS). Otherwise) is induced from & L,-vector bundle
onPGL,\ X.

Proof. — Let Y be an orbit such that/’(Y,Vy) containsV;, for some oddd.
Shrinking X, if necessary, gives a surjective mapdi.,-modules

HO(X, V) — HO(Y, Vy).

Since H°(Y, Vy) is an algebra oveH’(Y,Oy) = @®4>0Va4, it containsV; as a
submodule. We obtain RGL,-equivariant surjective map
P(V) — P(V}) = PL.

Since the stabilizer of a point i is solvable, we get a slicé C P(V), as claimed.
Assume that there is an orliit ~ PGL, such thad)y contains only even weight
GLy-submodules. Then the cent® C GL, acts trivially onVy-. If follows that
Vy is a trivial PGL,-bundle, andH?(Y, Vy) a trivial PGLy-module. The semi-
simplicity of thePGL,-action implies tha#/°(X, V) containsH’(Y, Vy) as a sub-
module. ShrinkingX if necessary, we can find linearly independB@tL.-invariant
sections, whose specializationstogenerate®(Y, PGL,). Therefore) is lifted
from the quotienPGL,\ X . O

LEMMA 7.22 — LetV be a representation @k of dimension> 2 (with G acting
on the left). Thew & V' is aG x GLs-space (with rightGLs-action) and

V@&V ~axar, %
lMZ:V1€BV1
Gr(2,V),
a vector bundle with fiber® x 2-matrices (with rightGL,-action).
Proof. — Consider the map

VeV — Gr(2,V)
(v,0) = (0,0,
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defined on the opefi; x GL,-invariant subset of noncollinear pairs v') € VoV
(with fibers consisting of pairs spanning the same 2-space)GIheaction on the
fibers is the right multiplication on matrices:

(v,0") — (av + bV', cvo + dv').
0

Assume thaiG is reductive and denote by"” := St,.,(G,Gr(2,V)) and by
G’ := G/G"” the quotient group ofx which acts effectively oftisr(2, V).

COROLLARY 7.23 — Assume that the action 6f on Gr(2, V') has a sliceS so
that Gr(2,V) ~ S x G'. LetVs be the restriction ol to S (this makes sense by
Corollary 7.16). Then

G\V/GLy ~ G'\Vs.

REMARK 7.24 — The groupG” acts as scalars o = V; & V) (it commutes
with GLy).

LEMMA 7.25 — Assume that we are in the situation of Corollar23 G = GL,
andH C GL; has finite image i’ GL,. ThenG\V/H is rational.

Proof. — By Corollary7.24 the sliceS is 3-stably rational, since
S x PGLy ~ Gr(2,V)

andGr(2, V) is rational. The quotient dfs by a fiberwise linear action is birational
to (My/H) x S (every vector bundle admits dfrequivariant trivialization over an
open subset of). There is a left action o2, ¢ GL, on M, = V; & Vi which
commutes withH. ThusM,/H is (birationally) a three-dimensional variety with
an af-action of G,,. The quotient (a surface) is unirational, hence rational (by
Theorem?.2), and

G\(VaV)/H~Sx (Vi®Vi)/Hn~ S x C,
O

The groupPGL, acts onP(M,) on both sides. We will need an explicit descrip-
tion of the action for some of its subgroups.
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LEMMA 7.26 — We have
Stgen(N7 X Ny, P(My)) = €.
Proof. — IndeedN contains
G ={t} : (z,y) = (ta,t7'y),
i (z,y) — (y, 7).
The corresponding actions @fM,) are
(a,b,c,d) — (titaa, 17 tab, tity e, t7 My d)

and

1: a—c, b—d

19 a—b, c—d,
respectively. A matriXa, b, ¢, d) € M, can be transformed {d, 1, 1, d) by a unique
element ofG,, x G,,, the &, x G,-orbit of which consists of two elements (for
d,d=1). O

COROLLARY 7.27. — The groupNt x C* acts almost freely of*(M;). There is
an openNrt x Nrp-stable subvariety/ C P(M,) such that

U
\L(C*XC*
C* c P!,
with a transitive action o£* x C* C Nt x Nt on the fibers. The diagonal subgroup
G5 C Gy x Gy = (Np x Np)/(C* x C¥)

acts on each fiber as an involutian— z~*. The factors, = (&, x &,)/65 acts
on the basé&C* C P! as an involution without fixed points, on the first factor in the
fiber asz — z~!, and as identity on the second factor.

COROLLARY 7.28 — Let® C Ny be adihedral subgroup such that\N = C*.
Then theC*-bundle

C =D\P(M3) — Np\P(My)
is induced from th€*-bundle

D\P(M,) /Nt — Np\P(Ms)/Np = P!
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and is hence birationally trivial.

Proof. — Indeed, the left and the right actions 8% commute. By Lemm&.26
Stgen (N x Np, P(My)) = €, which implies that the bundle is induced. [

LEMMA 7.29 — For every dihedral grou® and everyH C Nt the conic bundle
Cn = D\P(Mz)/H — Np\P(M2)/H,
has a section.
Proof. — The quotien®\U/H from Corollary7.27admits a fibration
©\U/H
J{c*@ xC3 /G2
P'/G,.

HereC% x Cj; is the quotient of the fibe€* x C* of U — C* by the intersection
of ®, H with the diagonalC, C C* x C*. Isomorphism£}; — C* andC%, — C*
induce a birational fiberwise isomorphism

l !

N\P(M,)/H Np\P(M,)/ &,

and it suffices to considé&d = &5, H = G,. In this case, an alternative equivariant
completion ofU is given by

UcC P} xP} xP!,

|

Py

with an action ofS, x &4, where the first5, acts as an involution on the first two
factors and identity on the base while the complemengnracts only on the base.
Thus the quotient is a conic bundle over the complement in

P! x P'/&, x Gy = P! x P!

to the branch locus of the quotient map. Here the left (resp. rightacts as an
involution on the left (resp. righti* and the branch locus is exactly the union of
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four lines. By Lemma/.3, this conic bundle has a section (it is nonsingular on a
pencil of lines minus at most two points). ]

LEMMA 7.30 — Let G be a subgroup ofL,, not equal to;, andV a linear
representation ofz. ThenG\PP(V) is rational.

Proof. — For G = SL, this is a theorem of Katsylo.[/]. We now consider proper
subgroupss C SL,. If G is solvable and connected then rationality for the quotient
follows from a theorem of Vinberg3[]. For compaciG the proof is similar to the
dihedral case described below. Assume now €has finite and not equal tals.
ThenG is either

1. a finite subgroup of™*,
2. a dihedral group or
3. 2y, Sy.

The first case is easy. For dihedral groups all irreducible representatidrs of
have dimensior< 2 and the corresponding quotients are rational by Theofém
Let V' be a faithful representation of a dihedral gradotherwise, we are reduced
to a quotient group). Thug = W ¢ W', wheredim W = 2 anddim W’ > 1.
Denote byG’ = G/ the quotient acting faithfully o’ (¢’ is a cyclic group).
We havelV ~5 C* x P!, with trivial action of® on C* and trivial action of¢’ on
P!. By Lemma7.15

C*xP' x W ~q (C*x P x W,
with trivial action of G’ onC* x P!. Thus
D\V ~ (D'\W') x (C* x P')

and we can apply induction.

We turn to the last case. An irreducible representatidﬁp‘s either a character,
or a faithful two-dimensional representation, or a three-dimensional representation,
trivial on the center (a faithful representationf). An irreducible representation
of &, is either a faithful two-dimensional representation, a faithful four-dimensional
representatiol’ := Sym?®(V}) or a representation @, (of dimension< 3).

For irreducible representations of dimensiorB rationality for the quotient fol-
lows from Theorenv.2. We turn toll/. Recall that

W =Sym*(Vy) = 1V @ Vi %,
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as a§2~l4-representation, whefleéX =V, @ x, V"X =V, ® ! and

XA —Z/3CC
is the cubic character. A pair of (generic) points

py EP'=P(VX), p_, € P' =P(V7X)

defines a liné®* c P(W). This shows that

P(W) ~s, ,

I
P! x P!

where&, acts on the base&|, acts linearly on the fibef. and&, = (:34/64 acts
as an involution on the fibekt. ThusS,\PP(1) is a conic bundle over the rational
surfaceS,\ (P! x P'). We now analyze the geometry of this bundle in more detail.
Consider the actio®, C &, onP' x P! and onP? = Sym?(P'). Every involution
i € D, has two invariant points;, y;. Consider the grapt' connecting the points
(wi,95) — (yi, x;). Their set is equal t&' and there is a graph:

li . (Q?z,yl) — (yZ,SCZ) C ]P)l X ]P)l
consisting of pointgz,i(x)). The linel; is exactly the subset afinvariant points
in P! x P!. The action ofD, is free outside the three lingsi € D,,i # 1. There
are exactly6 points which are invariant undey,.

The corresponding action d?¥ can be described as follows. There are three
points corresponding tor;, y;) which are stable undéd, and three lines (images
of /;) so that the action is free on the tord$ x C* (the complement if? to the
union of/;). The group®, acts onC* x C* as a translation by the subgroup of
points of order.

The quotient?? := D,\P* is a nonsingular variety isomorphic B (indeed the
only possible singularities come from the thr®g-invariant points inP? but the
quotient by the local action is nonsingular). The diagdhalc P! x P! projects
onto a conicC' C P2, which is invariant unde®,. The conicC intersects the
“vertical” and “horizontal” subgroups ift* x C* c P? in two points and does not
intersect the line at infinity.

Thus inP? = D,\P?, the image of?} intersectsC* in one point. Therefore, the
images ofP} and ofi; are lines (since pairwise intersections of thare equal to
1) and the(&;,)?-coveringP' x P! — P2 is ramified exactly over a union of four
lines. If suffices to observe that every conic bundle d?ﬁ;has a section. Indeed,
let p be the intersection point of two linésand/;; and consider the pencil of lines
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in Pg throughp. Each line in this pencil intersects the ramification locus in at most
three points and we can apply Lemma.

_ Now we turn to reducible representatiris= ©qc 4V * of 2,. If V is faithful for
2, then there is an € A such that/*o is a three-dimensional irreducibliaithful
representation dil, and

Vv ™~y Veo x (@aiaova)

with trivial action of 2, on Daxa, V" (by Lemma7.19. If V is faithful for 2,
thenV contains a faithful irreducible three-dimensional representatia,cdéind
we can apply the same argument. In all other cdsésa sum of one-dimensional
representations and we are reduced to Case 1.

Finally, consider reducible representatidn®f &4. If V is faithful then it con-
tains either a faithful irreducible two-dimensional representation or the faithful rep-
resentatioi’V. Again, we apply Lemma.15as before. IV is faithful for S, then
it contains a faithful irreducible representation of dimensio and we conclude
as above. In all other cas&sis a sum of one-dimensional representations. [

LEMMA 7.31 — LetV be a representation off C SL,, with G # ;. Then
G\ Gr(2,V) is rational.
Proof. — The relevant group& can be subdivided as follows:

1. G is a subgroup of the normalizer of a maximal torus;
2. G an infinite subgroup of a Borel subgroup;

3. G = Ay, Ay;
4. G = Gy, G,.
LetV =W & W’ be areducible representation@f Then (birationally)
Gr(2,V)
iHom(Cg,W)
Gr(2, W)

(wherex is a point on the base). In particulardifm 1/ < 2 then

Gr(2,V) ~g Hom(W' W),
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with linear G-action onHom(W”’, ). This reduction suffices for the relevant in-
finite groups (for example, for connected solvableve can apply Lemma&.6).
Further,

— if Styen (G, Gr(2,V)) = 1 then (birationally)
G\ Gr(2,V) — G\ Gr(2, W),

a vector bundle.
— if Styen (G, Gr(2,V)) = € C Zg (a cyclic subgroup) then (birationally)

G\ Gr(2,V)
i ¢\ Hom(C2,W)
G\ Gr(2,W).
We now conside®l,, 2,, &,. The rationality ofG\ Gr(2, V) for irreduciblerep-
resentations of these groups follows from the fact that all of them have dimension
< 3. Assume now that” = W @ W', with I irreducible of dimensior3. The

classification of these representations implies that the action of the center must be
trivial. Then, birationally,

Gr(2,V)
lHom(C%,W’)
P2 = P(IW*).
The G-action is equivalent to &-action on a vector bundle
G\ Gr(2,V)

|

G\ Gr(2,) = G\P2.

Finally, let us consider the case 6f,. Let W be its unique irreducible repre-
sentation of dimension four (as in Lemnia80. We claim thatS,\ Gr(2, W) is
rational. Indeed, a&,-modules, we have

W =WXg WX,
wherelVx, W ~x are two copies of the standard representatiohaff dimensiore
andy (resp.—y) indicates the eigenspace decomposition for the nontrivial character

XAy —Z/3CC.



40 FEDOR BOGOMOLOV, TIHOMIR PETROV and YURI TSCHINKEL

Further,
Gr(2, W) ~ Hom (WX, W™X),

with a linearll-action (since the center acts trivially) and a permutaé@gnnvert-
ing the mapw € Hom(WX, W~=X). More precisely)V X = (WX)* and

Hom (WX, W™X) = Sym*(W %) @& C,

where('; corresponds to skew symmetric maps &ndacts onC'; by x. The invo-
lution &, = &,/ acts onC; and onSym?(W ~X) ast +— t~'. In particular, if
C* x C* is the diagonal group acting ¢fym?(W ) @ C, then&, acts as

X —s1X,
wheres € C* x C* andX € Sym?*(W—X) @ C,. There is an equivariant map

f : Hom(WX W—X) — (Y,
s = (z,5(y)) — (s(2),p),

with an effective action of5; = &,/9, on the targeC;, which to a subspace
s € C* ¢ Wx @& W~x assigns the value of theform (z, s(y)) — (s(z),y). The
fiber of f is D,-birational toSym?(1WX) = P2, We have already seen in the proof
of Lemma7.30 that ©,\P? = P2. Thus &4\ Gr(2,W) is a C*- bundle over a
P2-fibration overG,\C;. It is clear that thisP>-fibration is trivial. The quotient
conic bundle is nondegenerate over a producPofrvith an open subvariety in
C,/G3. Hence it has a section. Rationality &f,\ Gr(2, W), and more generally,
G4\ Cr(2,W @ --- @ W), follows (the latter is a vector bundle over the former).

Assume now that” = nWWV @ V/, wheredim V' > 1, andn € N. Since the
Sg-action onGr(2, nW) is af there is a5 ,-equivariant homogeneous rational map
f : Gr(2,nW) — V' sending the generi& ,-orbit in 1V to the genericS 4-orbit in
V. Notice that the cente®, acts as a scalar diiom (1V, V). We have (birationally)

(7.1) S,\ Gr(2,V) ~ C*x
\LGg\Hom(Ci,V’) P(Hom(C2,V"))

G4\ Gr(2, nWV) S\ Gr(2, nW)



RATIONALITY OF MODULI 41

(with rational bases). The projective bundle on the right has a section. Indeed,

(7.2)
lHom(Cg,V’)

Gr(2,nW)

is an equivariant quotient bundle of the trivial bundle with fiberm (17, V"). The

map f defines ar6,-equivariant section( f) in the projective bundle in/(1). The
(equivariant) linear projection

Hom (W, V') — Hom(C2, V")

mapss(f) to an equivariant section of the bundle inZ). Thuss(f) projects onto
a section of the bundle on the right in.{), making it birationally trivial. ]

We proceed to describe possildé,, resp. PGLy-actions on Grassmannians.
(If all weights in1” are of the same parity therr(2, V') carries thePGL,-action,
otherwise the&SL,-action.)

LEMMA 7.32 — LetV be a faithfulSL,-representation of dimension 3. Then

1% Stgen
dim > 5 1
Vi <,
V3 Dy
Vod Vo | &
Vo Nt
ieVy | C*
VieVy, | B

Further,

— Gr(2,V,) has a(PGLy, Np)-sliceS = Sym?*(P?) with ana f-action ofN /&5,
(wherec, is the center oNr);

— Gr(2,V3) has a(PGL,, 2l,)-slice birational toP!, with 2(, acting onP! as¢;.

Proof. — Consider first irreducible representatioris= V; = Sym?(V;) and as-
sume that the stabilizer of a generic lif®é¢ C P(V) contains a nontrivial cyclic
group¢. Then¢ fixes at least two points in thig'. Any orbit of ¢ onP! is a union

of a zero-cycle - = and a zero-cycle supported in the fixed points. In particular,
the subvariety of points i?(V;) which are fixed by has dimensior< d/|¢|. The
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dimension of the variety af-fixed lines inP(V') is therefore< 2d/|€|. The subva-
riety of distinct cyclic subgroupg C PGL, has dimensio2 anddim Gr(2, V;) =
2d — 2. Sinced/|€| < d/2 the inequalities

2d—4>2d/2 and d—4>0

imply the result.

Assume thal” = @©;c;Vy,, |J| > 2 and thatSt,.,, # 1. Thend; < 2, for all
j € J. Indeed, the stabilizer of a genefi¢ through a generic point € P(V}) is
a subgroup of the stabilizer @f which stabilizes some generic line in the tangent
space ap. This group is trivial ford > 2 and equal ta, for d = 2.

If V=1V, V’/, withdimV’ > 2, thenGr(2,V) is (birationally) a fibration
over Gr(2,V3), with fibers Hom(C?, V') so thatSty., = 1 if dimV’ > 3. If
V =V, @ Vi thenSt,,, is the same as the (generic) stabilizer of ¥g-action
onHom(V', V1), V' € Gr(2,V,) = P?, hence trivial. Fol/ = V5 & Vp, Styen, = Cs.

In the remaining cases; = 0 or 1, for all j € J. If V' contains at least three
copies ofV; then the argument above shows that the actiomfis Similarly, if
V =V @ VithenSt,, = CandifV = V; @ V; @ 1} thenSt,.,, = 1. For
Vi & 3V, the generic stabilizer is the same as for three linear functionals - which is
zero. [

LEMMA 7.33 — The quotienPGL,\ Gr(2, V) is 2-stably rational.
REMARK 7.34 — Forevend > 10, PGL,\ Gr(2, V) is rational by BZ].

Proof. — By Lemma7.32 if dimV > 5 then theSt,.,, = 1 and we can apply
Lemma7.19and Corollary7.20to conclude that

PGL,\ Gr(2,V) x C* ~¢ N1\ Gr(2,V).

The claim follows from Lemma& .31 It remains to consider:

1. Gr(2,V}),

2. Gr(2,V3),

3. reducibleV.

In the first caset,., (PGL2, Gr(2,Vy)) = &4, with normalizerNy C PGLs.
We claim that the subset C Gr(2,V}) of Gs-invariant points is gdPGLy, Nr)-
slice. Indeed, there is a Zariski open suliset X such that the stabilizer of each

pointin U is exactlyS,. In particular,g - U intersectd/ only if g € Nt. Consider
the P> ¢ P(V}) consisting of&,-invariant subschemes containidgooints. Any
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line in U joins a pair of points in thi®2. Therefore, we have a (birationa¥);-
isomorphism of/ andSym?(IP?). The stabilizer of a generic point i is a central
subgroup iNN+ whose action ofP? is equivalent to a linear action di¥. (Indeed,
Sym?(V;) = C @ W,, whereC is the trivial representation - the invariant symmetric
form - andiV;, is a faithful two-dimensional representatiomdf /S,). Thus instead
of X with theNr-action we can considet? x C? with the (N1/S&,) x G,-action
(where the secon@, interchanges the factors). In particular, (by linearity)

NT\X ~ C* x NT\P3,

and is hence rational.

In the second caséGr(2,V3) has a surjection of degree 2 onigl,). The
connected component of the preimage of (R&L,, S,4)-slice P! in P(V,) is a
(PGLo, 2l,)-slice, isomorphic td@!. The guotient is rational.

If V' is reducible and th€ GL,-action on the Grassmannian has nontrivial stabi-
lizer thendim V' < 5. Rationality follows sincelim Gr(2, V) < 4 and the generic
orbit has dimension at lea3t ]

PROPOSITION7.35 — LetG, H be finite solvable subgroups BfzL,. Then
G\PGLy/H
IS rational.

Proof. — The action is birational to the (projective) action@fx H on P(M,),
whereG acts on the right antl on the left. The group&, H are either:

— cyclic;

— dihedral or

- 2Ay, Sy
The case oprimitive solvable groups is covered by Theor@mQg, [26]. If V is re-
ducible then there is a nontrivial action©f on G\P(V')/H, leading to rationality.
This covers the case when eitlieror H is cyclic.

We claim that ifV is irreducible and imprimitive (for thé& x H-action) then either
G or H is dihedral. By definition) := M, = &,V*, such thajV’* = V¢ for
all g € G x H. Moreover, by irreducibility, all’* must have the same dimension,
= 1 or 2. Notice that imprimitivity for an action of a grou@’ implies imprimitivity
for the induced action of every subgroGg C G’ (with the same decomposition of
V). We now claim that the actions &f;, x 214, and consequently &1, x &, and
G4 x 64 are primitive. Indeed)l; x 2, contains®, x 5 as a hormal subgroup,
for which the imprimitive structure is either a sum of two subspaces of dimension
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2 or four subspaces of dimensidn corresponding to the choice of a subgroup
S, C D,. The first possible imprimitive structure f@, x ©, does not extend
to one ford, x 2, (which has no indeX subgroups). The second structure is
also impossible?l, rotates the subgrougd, C -, hence there is n@,-invariant
imprimitive structures fo, x 2.

It remains to consider the case when botrand H are dihedral. On/; there
IS a unique imprimitive structure, corresponding to the eigenspacgs, of the
elements ofs. In particular, there is an imprimitive structure on

My=VieV]=(CiaC))a(Caa Cy).
We claim that (birationally)
G\P(M;)/H
P2 = G\Sym?(P*)

is a conic bundle degenerating precisely over the image of the diagonal and the
subvarieties ifP? with nontrivial stabilizers.
Indeed, sincél C Nt (a&,-extension ofC*), (birationally)

G\P(M,)/H
l(C*NT/H
Nr\P(My)/H.

The quotientC*\P(M,) is (birationally) a fibration ove* x P!, with &, act-
ing by permutation, where the coordindtés are the projectivizations of the two-
dimensional eigenspaces for tG&-action onM,. Thus

P(M,)/H
P2 =P! x PI/GQ

is a conic bundle nondegenerate outside a conic (the image of the diag@atin
PY). TheG-action commutes with th¥r-action and is effective on the base. This
proves the claim.



RATIONALITY OF MODULI 45

We haveG C Nt and
G\IED2 — NT\]P)Q

is a conic bundle. Since the left and right action®efcommute G\P? contains an
open subvariety/ x C* where the restriction of the conic bundle is nondegenerate.
HereC* = G\Nt andU is a subset aP' = N1\P2. Therefore the conic bundle has
at most2 singular fibers on any completion of the fidér ¢ U x C*. Rationality
follows.

We can now describe some open subvariety in the quoti&®( M) /H explic-
itly. Consider the action of* C Nt on both side€*\P(M,)/C*. With respect to
this actionP(M,) is birationally equivalent to a triviaC* x C*-fibration overP!.
Now we add the action ab, on both sides. The produ€t,; x &, acts on the base
P!. The group&, contains a normal subgrou®, C Nt and the action of each
S, C ©, inverts the respectiv€* action. Thus (birationally)

Np\P(M,)/NT
iNTXNT
P! — 3 pts,

where the deleted points are the ramification points of the Biap> P!/D,. In
particular, there is an opén such that

G\P(Mz)/H

[i]c*
|

P! — 3 pts.

By Lemma7.3, the conic bundles are trivial.

Finally, the conic bundles oR?/&, andP? /2, have sections. Indeed, bath
and &, contain dihedral subgroups of index B4, resp. ®,). The image of the
section in the conic bundle ovex,\P? (resp.®,\P?), has odd degree in the conic
bundles oveRl,\P? and&,\P?, respectively. We apply Lemma4. O
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PROPOSITION7.36 — LetV be an irreducibleGL,-representation andl C SL,
a finite group, not equal t8(5. Then

GL\(VeV)/H

is rational.

Proof. — Firstof all, V; & V;/H is rational. Next, by Lemma.22,
v @ V NGLQXGLQ V
iMz=V1€9V1
Gr(2,V).
First we assume thdt has odd weight. The Grassmanni@m(2, V') carries
the action ofPGL,. If we restrict the bundl@’ to a genericPGLs-orbit O in

Gr(2,V) then the corresponding modul&’(O, V) containsV; as a submodule.
By Lemma7.18 this gives an equivariant map

V—-VieWw
with a 1-transitive action of5L, on the target. Thus
(7.3) GL2\V/H ~ H\ Gr(2,V)

(with the samesubgroupH C GL, appearing on the left). IndeeL, C (V; &
V1) = My and multiplication byH on the right gives an orbit - H. This orbit is a
(GL, x H, H® x H)-slice (withH” = zHx~') and it is stabilized exactly bji* x H,
acting doubly transitively on the sBF - z. It follows that every point’ € x-His a
(H* x H, H*)-slice of the orbitz - H. The quotientl\ Gr(2, V') is rational by7.31

Assume thal” has even weight. If theGL,-action isa f then
GL2\V/H ~ (PGLy\ Gr(2,V)) x (C*\(V; & V;)/H).

Ifitis not af, then, by Lemm&.32 V =V, or V5.

ForV = V, we have thgPGL,, Np)-slice X = Sym?(P?) with the Nt-action
which we can replace b§? x C? with a (Nt/€,) x €y-linear action. In particular,
we identify the quotient with a quotient &? & C? @ V; @ V; by a linear action of
Nz x G2 x H (whereN; C GL,). The action ofN; x H on V] is transitive with
stabilizer®, x H. Hence it is equivalent to the action®, x HonC? ¢ C*> @ V;,
which is aC?-vector bundle (permutation of the anti-invariant part@®j-action)
overC? x V;, with ©®, x H action. The latter quotient is rational. Fgr= V, the
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action is transitive oi@ir(2, V') = P? and the quotient has dimensi@n rationality
follows. O]

We will also need a more general result b= S,.

PROPOSITION7.37. — Let
X 5y =]]Prvy)
jed
be aGL,-homogeneous line bundle. If at least ahe# 2 thenGLy\ X x X/6, is
rational.

Proof. — Case 1.|J| = 1. If d = d; is even or ifd is odd and the line bundle has
odd degree of*(V;) then

X X X NGL2><62 ‘/d® Vd

and we apply Proposition.36 If the line bundle has even degree then it is trivial
andGL, acts aP GL, x C*. If the PGLs-action onP(V};) is af we have

]P)(Vd> ~PGLy S X PGLQ,

for a rational sliceS (with trivial PGLs-action). We have 8GL, x C* x G,-action
on
C x PGLy x S x C x PGLy x S.

The quotient variety is a vector bundle oW®&&1L,\PGL, x PGL, /&, (rational by
Lemma7.12). The claim follows. If thePGL,-action is notu f, thenV = V5 or V;.
For Vi the quotient is rational by dimensional reasons. Fowe have a projection

CxPPxCxDP3
iplxpl
Gr(2,V3)

commuting with both actions. Recall that(2, 13) hasP! as a(PGL,, 2l,)-slice,
with 2, effectively acting as a cyclic grou@; = 20,/D, on P! (the group®,
acts trivially on the(PGLy,2,)-slice P! c P* and similarly forGr(2,13), see
Lemma7.32. Thus the quotient is the same as for the bundle

l[?’l xCxPlxC
Pl
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under the action dil; x G,. In particular, it is a vector bundle ovei?d = D,\P! x
P! /&,-fibration overP! = P'/¢;, hence is rational.

Case 2.|J| > 2. If at least onel; is odd and> 1 or if all d; = 1 and|J| > 2,
then there is a slicd and thePGL,-action isa f. We can writeY” as (the total space
of the) line bundle:

X
iL
S x PGLy
and, using Lemma.21, reduce to either a vector bundle over
PGL,\PGL; x PGL,/&,,
whenL is trivial on PGL,, or to
GLy\GLy x GLy /&,

otherwise. In both cases the base is rational by Lemrma
If d; = 1foreveryj € Jand|J| = 2 then the there is a map
(PHY* — P(V;) = Sym*(P') = P*

(of degree24, mapping4 points to a form of degre¢). The preimage irfP!)* of
the (PGLy, G,4)-slice P! = P! of P*, will be a set of six Iines}P;h, labeled by a
pair of generatorg, h € D, (which act trivially onP! c P*). More precisely, the
line P, , is the set given byxz : gz : hx : ghx) € (P')%, forz € P'. The map
P;, — Py = P; /D, has degree. ThusP, , is a(PGLy, D,)-slice of (P')* and

the quotient of a vector bundfés p! by a linear action 0, is rational.

Assume that alt; are even. Thed is (birationally) trivial. Unlesg.J| = 2 and
d, = dy = 2, there is a decomposition of
Y xY =P(V)) xY' xP(Vy) x Y’
such that thé®GL,-action isa f and
P(Vy) x Y x P(Vy) X Y ~par,xe, (Y X Y') X (P(Vy) x P(Vy))

(with trivial PGLy-action onP(V;)), by Lemma7.19 The quotient is birational to
a vector bundle ovePGL, x C*\ X' x X'/G,, whereX’ is the trivial line bundle
overY”’.

We have reduced tp/| = 1 treated in Case 1 or to/| = 2 andd; = dy = 2,
treated in Lemm&.38 ]
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LEMMA 7.38 — The quotient
X 1= PGLy\(P1(Va) x Py(Va) x P1(Va) x Pa(V2))/S

is rational, whereP; (V5) andP,(V5) are different copies aP? = P(1,) and &,
acts by permutation.

Proof. — Consider the projection
X — PGLy\Py(V3) x Py(V3)/Gy
and thePGL, x &,-equivariant map of degree

pr . P(V3) xP(Vy) —  P(Vy)
(Ql; QQ) = Q1 Q.

The spaceP(V,) has a(PGL,, &,)-slice P! (the D,-invariant polynomials). The
zeroes of a (polynomiaf) € P! form an orbit unde®,. The preimager—(P!) C

P2 x P? consists of3 lines, each invariant unded,. Indeed, the ordered pair
(@1, Q2) corresponds to a choice of a generatar ©, such that:, g(x) are zeroes
of @, andh(x), hg(x) are zeroes of),. Thus the lineP, C P*> x P* consists
of tupels{(z, gz), (hx, ghz)}, wherez is an arbitrary point ifP! and (z, gx) =
Q1, (hx,ghx) = Q,. The maﬁP’; — P! has degree two and its fibers coincide with
orbits of h (sinceg acts trivially onIP;). The action ofh is given by

h: {(z, gz), (hx, ghz)} — {(hz, ghx), (v, gz)}.
Thush(Q1,Q2) = (Q2,Q1) and the action oh coincides with the restriction of
the permutation action oB? x P? to IP’_}]. The Iine]P; is invariant unde®, x &,

(considered as a subgroup @fGL, x S3)). The groupS, permutes the lines in
pr~'(P}). EachP} is a(PGL, x 65,0, x &,)-slice of P? x P?. Therefore,

X ~ D \P' x P? x P?/6,.

The spacéP? x P? contains a subspad& x C? with alinear action ofD, x &,.
Indeed, the action dd, on P! corresponds to the irreducible representatiofi)@f
onC? = V. Under theD,-action, one has a decompositipm?(V) = V' ¢ V",
wheredim V' = 2, dim VV” = 1 and the action 0D, onP? is equivalent to the linear
action onV’. The additionalS, permutes th@? and hence acts by permutation on
V'@ V'. Thus
P' x P? x PP? DX G
lv/@v/
]P)l
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(a vector bundle).

Consider the effective action of (the nonabelian gradp)x G, onP!. It has a
normal subgrou®, x &, with generatorg, i, k and an element > = 1 which
commutes withy, k£ and acts orh asihi = gh. The stabilizer of a generic point
on IP)_}] is a normal abelian subgroup generatedybiyk. Thus®, x &, acts onP!
effectively through the quotier®,/(g, hk) = D,. The action of thisD, on P! is
almost free. Indeed, the action kfcoincides with the action of and permutes
@1, Q2. Thus the orbits of, andk onP} coincide with fibers of the map, — P..
On the other hand,acts nontrivially oriP.. We claim that

@4\(‘// D V/) X Pl/Gg

|

@4\(‘/, X ]P)l)

is a vector bundle. Indeed, consider the subspgdcec V'@V’ of invariant vectors
(under the permutation). The action®f x S, on ((V'& V") /V! ) x P! is almost
free. Hence

@4\(V’ D V/) X Pl/GQ

|

DNV @ V) V,,) x PG,
is a vector bundle with base a quotient of the vector bufdlen V' /V,,) — P,
by D, x &,. The variety(V' @ V'/V. ) x P! has a fiberwise (scala€)*-action
commuting with theD, x &,-action. Since ever{L*-action has a slice,

X' =2,\((V @ V')/Vip,) x P/6s,

is rational by dimensional reason&” /C* is a unirational, therefore, rational sur-
face and
X'~ (X'/C*) x C".

PROPOSITION7.39 — Let X beV @© V, whereV = V; is an irreducibleGL,-
representation{ > 0 andH C SL, with H # 5. Then

CL,\X x P(V;)/H
is rational (whereH acts trivially onP(1%)).
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Proof. — If ¢ is even and the action dkL, or a quotient ofGL, by a central
subgroup is:f then we apply Lemma.19combined with Propositiofi.36 resp.
7.37.

If /is odd and the action isf then there exists a slice, which is a rational variety,
by Lemma7.31resp.7.30 Rationality follows.

Now we assume that the action is ngt. This means thad < 4. The subcases
with d < 2 are trivial since the action on the corresponding Grassmannian is transi-
tive. If /is odd, then théGL,-action onGr(2, V') x P(V,) has a rational slice and
our claim follows.

If d = 3, the action ofPGL, on Gr(2, V3) has a(PGL,, 2l,)-sliceP!. For even
¢ > 0 the action of2, onP* is faithful and it lifts to a linear representation off.
Further,2(,-acts onP! is through a cyclic quotient. Thus

(P' x P(V) ~a, B x P(V;)
with trivial 2(,-action on theP! on the right. This implies that the quotient is equiv-
alentto
Pt x (P/2) x (Vi @ V1)/C* x H,

a product of rational varieties.

If d = 4, the action oPGL, onGr(2, V}) has aPGLy, Nr)-slice X’. The action
of Nt onP(V;) is linear and the quotient ok x P is a vector bundle over the
quotient of X, which is rational. O

PROPOSITION7.40 — LetX = (- Y)2, whereY = [[;c;P(Va,) and? > 0.
Then

GL\X x P(V})/6,

is rational (whereS, acts trivially onP(1;) and by permutation orx).

Proof. — The same argument as in the proof of PropositioB9 shows that it
suffices to assume that the action &ris notaf. This happens only i = P2 or
PL. The cas&” = P? reduces to Proposition.39 (Grassmannian). If = P! then
the action ofPGL, onP! x P! is transitive and

GL\X x P(V;) /6y ~ (C*\P(Vy)) x (C?/C* x &),

a rational variety. O
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8. Special rationality results

In this section we collect rationality results for spaces of rational nfdps-
P! with prescribed (special) ramification over exactly three distinguished points
(0,1, 00) and unspecified ramifications over other points.

Let R(r0, 71,7+ ) be the space of rational mags: P! — P! with local ramifi-
cation data (vectors,, r1, 7, over the point$), 1, co.

PROPOSITIONB.L — Assume thatry, 1, 7 ) Satisfies one of the following:

— all entries of the vectors, r, are even and some fixed number of entries of
rq IS even;
— all entries of the vectors,, r, are even and a fixed number of entries-pfs
divisible bys;
— all entries of the vectors,, r., are divisible by3 and all entries of-; are even.
ThenR(ry, 1,7 ) is a finite union of irreducible rational varieties.

Proof. — In these cases the map = f,/f~ IS given by coprime polynomials
satisfying the equations:

- fo - f% = gids;

- o= 1% = 9igs;

— fo — 1% = 9idL,
whereg; is an arbitrary polynomial. The first equation leads to

(fo— foo)(fo+ fo) = 9101
and, by coprimality, to
Jo— fo = 9%19/11,
fot foo = 9h9ta
with arbitraryg;1, ¢4, 912, ¢} (Satisfying the obvious degree conditions) — a union
of rational varieties.
The second case is analogous. Consider the third case: &ire¢?. is a square

we obtain
fO - foo = g%
fO - Cfoo - g%
fO - C2foo = g?%
(where¢?® = 1) and we need to solve
2 1—
ﬂ%ﬁ+a%£=£

Now we apply the parametrization as above. O
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COROLLARY 8.2 — LetR(rg,r1,7+) be asingd.L Then
PGLo\R(ro,71,7s0)
IS rational.
Proof. — We have established an explicit parametrizatioriRgf, r1,7-) as a
direct sum of spaces of polynomials (with different weights as irreduciile-

representations). By the theorem of Katsyld4, the corresponding quotients are
rational. O

REMARK 8.3 — Only the first case witly; = 1 can admit a nontrivial action of
Hr (which necessarily i€./3). But even in this case the action®f3 is linear and
it commutes with the action diL, on pairs of polynomials. Lemma31limplies
rationality.

LEMMA 8.4 — Every irreducible component of the varie® of rational maps
f : P! — P! of degrees and prescribed global ramification datum

RD(f) = [(27 27 1)07 (27 2a 1)17 <2a 27 1)007 (2)7 (2)]
is rational.
Proof. — Changing the variables (fixing two ramification points ovee P! as
0, c0), we can writef = Fy/F, where
Fi(z) = fi(2)a(x)?h (o)
Fy(r) = fo(x)?as(r)?bs(x)
wheref,, f», a1, as, by, by are linear forms inc. Since the leading coefficients &t

and F, are equal we can assume that they are both equakfud write f; (x) =

T+ fi,... ,832(:70) = x + by, with some nonzero constanfs . . ., b;. Since we have
one free parameter (under the actiorPefl,) we can assume that = 1. Thus

fi(@)?a (2) a2 (x) — fo(2)?bi(2)’ba(z) = D gir' = c12” (2 + c2)
with arbitrary constants,, c,. We get a system of equations on the coefficignts
91=0,91 =0,90 = 0.

Remark that the coefficients @f are symmetric functions on paifg;, ;) and
(f2,az2). To parametrizé&k we introduce the following variables:

Xi=a1+ fi, Y1 = aifi, Xo = fo+ag, Yo = faag, by, bs.
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Write the equations on the coefficientsas

2X1 —|— bl = 2X2 + b2
}/’12(?1 - 3/22()2
Y24+2X.Viby = Y?+2X,Yob,.
Sinceb; = 1, for a fixedb, we get
2X1 —+ 1 - 2X2 + bg
Vi = Vb,
bQYQ + 2\/b_X1 = }/2 + 2X2b2.

This is a union of two (affine) lines. After a rational coverifgb,) our surface is
(rationally) aP*-bundle oveiP!, a rational surface. O

LEMMA 8.5 — Every irreducible component of the varie® of rational maps
f : P! — P! of degreet and ramification datum

RD(f) = [(27 2)07 (27 17 1)17 (27 17 1)00]
is a rational surface.

Proof. — Using thePGL,-action on the preimage' we can assume that the points
(2,2) are+1, —1, respectively, and that the point of deggegn the local ramifica-
tion datum(2, 1, 1)) over0 is co. Thus we can write

(22 —1)? — c(z + )z + ) (2 + ¢3)* = go(2),

wheregs, is an arbitrary polynomial of degree 2 ants some constant. We get two
equations

c=1,
01+CQ+203:0.
Thus we have a (rational) surjection®f ontoR.. O
LEMMA 8.6. — Every irreducible component of the varie® of rational maps

f : P! — P! of degreet with ramification datum

RD(f) = [(27 2)07 (37 1)17 (27 L, 1)007 (2)7 (2)]
is a rational curve.

Proof. — A generic map with this ramification datum is given by the equation

f = fi/f2, where
fi=0@ =172 fa=(z+ea)(z+ o)+ )



RATIONALITY OF MODULI 55

and
fi—fo=(@* =12 —clz+c)(z+c)(r+e)? =gl(z),
whereg; (z) is linear. Thus: = 1 and
Cl+02+20320,
c1¢y + 2¢1c3 + 2c9¢3 + 2 = 0,

clearly rational. O

LEMMA 8.7. — The irreducible component of the varig®yof rational mapsf :
P! — P! of degree3 with ramification datum

RD(f) = [(27 1)07 (27 1)17 (2’ 1)007 (2)]
is a rational curve.

Proof. — Reduces easily to the rationality of a cuspidal cubic curve. O

9. Rationality of moduli

THEOREM9.1 — Any connected component of a moduli space of rational or K3
elliptic surfaces with fixed monodromy group is rational.

Proof. — In Proposition3.11we have identified (Zariski open subsets of) the cor-
responding moduli spaces,  as quotients (by the leftGL, and rightHr-action)
PGLQ\Z/{;M/HF.
Here
u;’fl ~~PGLyx Hr SymZ(Pl) X RF

and
Rr={f: P! - P'}
is the space of rational maps (with prescribed ramification). For elliptic rational or

K3 surfaced < 3 andHr is either trivial, cyclic, dihedral or a subgroup &f; (see
Corollary3.14). The actions ifPGL, and Hr commute and{ acts only orRr.

First we considegeneral families
ET(E) — 120 = deg(je) ET(I).
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Ford = (di, ..., d;,) € N* we put
k
P = P(va).
j=1
Recall thatR is (birationally) the total space of a line bundle over the space
P x pY,
wherey"" 4, =S d;

j=1"3"
Case 1.d # d'. Then, by3.14 Hr = 1 and rationality ofPGL,\Rr (in all
cases) follows from the rationality of

PGL,\P? x P,
which is the theorem of Katsyl6.14

Case 2.d = d’ andk > 2. By Corollary3.14, Hr = &, (permutation of the
factors). This case is covered by Propositioa?.

Case 3.d = d’' = (d). This case is covered by Propositior3a

Now we discuss thepecial families
ET(E) — 120 < deg(je) ET(I).

We use the classification of these families established in SeBtiofll families
listed in Lemmab.2 are covered by Proposition’s37and the Theoreni.14 Con-
sider the families listed in Lemnia3: Lemma7.30covers the cases, ja, js, Js, j13-
The caseg,, js andj;, are covered by Propositidhl, j3 by Lemma8.6, jz, jo, J10
by 8.1and8.3, j;; by Lemma8.5. The casg4 is covered by Lemma&.7. Finally,
the familiesj;; andj4 (listed in Lemmab.2) are covered by Proposition37and
the remaining familieg,; — js by Theorem7.14 l

REMARK 9.2 — Our methods extend to some moduli spaces of elliptic surfaces
with higher Euler characteristic. In particular, the results of Seciamply that

any moduli space of Jacobian elliptic surfaces desuch that a generic surface

in this space has only singular fibers of multiplicative type is rational. However, we
expect that there are nonrational moduli spaces already for Euler characteristic 36.
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10. Pictures

In this section we give a combinatorial description of monodromy groups of el-
liptic K3 surfaces. More precisely, we describe a simple procedure which allows to
enumerate all the possible grapghsvith givenET(T"). Let£ — P! be an elliptic
K3 surface. We have shown in Sectiéthat

48 = ET(€) > ET(T)

and thatET(T") is divisible by 12. ThusET(I") equals12,24,36 or 48 and all
possiblel’ C PSL,(Z) are described by connected trivalent graffhswith < 8
edges embedded inf3, with an arbitrary bicoloring of the ends.

CaseET(I') = 12: There is only one tre@), with ET(775) = 12

FIGURE 1. The tre€l’s.

The ends ofl}, can be eithe or B-vertices. To obtain all possible graphs
with ET(I") = 12 we just need to attach @, a single loopL.

( —

FIGURE 2. The loopL.

This gives the following list of graphs:

o O O
OO0

FIGURE 3. The cas&T(I') = 12.

There is only one saturated graph from the list above which has no outer loops
(Figure4).
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FIGURE 4.

This graph will be a basic building block in the construction of graphs with
ET(T") > 12 - we will attach trees and loops to its edges. The edges are numbered
to simplify the count of all possible outcomes.
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CaseET(I") = 24: Again, we have only one topological trég, with ET(T") = 24:

A

FIGURE 5. The tre€ls,.

CaseET(I") = 36: There are onl\3 saturated graphs without end-loops (modulo
equivalent embedding into the sphere):

Do T

FIGURE 6. The cas&T(I") = 36.

Any other graph is either a tree or a sum of a saturated grapith ET(7") =
0, 12,24 with trees (with complementariyT). There is only one topological tree

Ts6 with ET(TgG) = 36.

FIGURE 7.

The number of possible markings of the tree or loops at the ergdshst due to
the symmetry of the graph the actual number of graghsorresponding to different
placement of loops at the end and markings is smaller: therglateferent 7 of
this type.

The number of markings f;; is 16 but due to its symmetry the number of differ-
ent graphdt is 7. (Recall that two graph®- give the samé&' modulo conjugation
if they are isotopic in &2).

The graphs of tree type with one end loop are topologically equivalent to:
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There are8 possible markings of the above graph and they all give difféfent
with ET(I") = 36. We havel2 different7r with 2 end-loops6 with 3 end-loops
and one withd end-loops.

All topological graphs which are sums of a loop and a tree can be obtained by
placing a loop into a tree. Thus there are two types:

O e

FIGURE 8.

This gives8 graphsit in the first case and in the second case.

CaseET(I') = 48: We have one tre@,s with ET(I") = 48:

1<

FIGURE 9. The tre€lys.

Here is the list of all saturated graphs wHA'(I") = 48.

@@

FIGURE 10. Saturated graphs in the caS€(I") = 48.
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