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0. Introduction

Let X be an algebraic variety of dimensionn overC. One says thatX is rational
if its function fieldC(X) is isomorphic toC(x1, . . . , xn). The study of rationality
properties of fields of invariantsC(X)G = C(X/G) is a classical theme in algebraic
geometry. For a finite groupG ⊂ PGLn acting onX = Pn−1 the problem is referred
to as Noether’s problem (1916). It is still unsolved forn = 4. Another class of
examples is provided bymoduli spaces. Birationally, they are often representable as
quotients of simple varieties, like projective spaces or Grassmannians, by actions of
linear algebraic groups, likePGL2. Rationality is known for each of the following
moduli spaces:

– curves of genus≤ 6 [18], [32], [20], [21], [31];
– hyperelliptic curves [18], [7];
– plane curves of degrees4n + 1 and3n [33], [19];
– Enriques surfaces [24];
– polarized K3 surfaces of degree 18 [32];
– stable vector bundles (with various numerical characteristics) on curves, Del

Pezzo surfaces,P3 [22], [5], [11],[25],[29];

and in many other cases. For excellent surveys we refer to [12] and [33]. We
will study rationality properties of moduli spaces of smooth nonisotrivial Jacobian
elliptic fibrations over curves

π : E → C

with fixed global monodromy group̃Γ = Γ̃(E) ⊂ SL2(Z). In [8] we developed
techniques aimed at the classification of possible global monodromiesΓ̃. The
present paper gives a natural application of these techniques.

Let B be an irreducible algebraic family of Jacobian elliptic surfaces. Then the
set of subgroups̃Γ ⊂ SL2(Z) such that̃Γ is the (global) monodromy group of some
E in this family is finite. Moreover, for every such group̃Γ the subset of fibrations
with this monodromy

BΓ̃ := {b ∈ B | Γ̃(Eb) = Γ̃}
is an algebraic (not necessarily closed) subvariety ofB.

Generalizing this observation, we introduce (maximal)parameter spacesFΓ̃ of
elliptic fibrations with fixed global monodromỹΓ (considered up to fiberwise bi-
rational transformations acting trivially on the base of the elliptic fibration). These
parameter spaces can be represented as quotients of quasi-projective varieties by
algebraic groups. In particular, we can considerirreducible connected components
of the parameter spaceFΓ̃, which we callmoduli spaces. Even though these moduli
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spaces need not be algebraic varieties, we can still make sense of their birational
type.

Theorem. Let Γ̃ ⊂ SL2(Z) be a proper subgroup of finite index. Then all moduli
spaces of (Jacobian) elliptic rational or elliptic K3 surfaces with global monodromy
Γ̃ are rational.

Notice that the finite index condition in the theorem is not a restriction since it
always holds for nonisotrivial Jacobian elliptic fibrations, considered in this paper.

Corollary. For all Γ̃ with moduliFΓ̃ of dimension> 0 there exists a number field
K such that there are infinitely many nonisomorphic elliptic K3 surfaces overK
with global monodromỹΓ.

REMARK 0.1. — Our method shows that many other classes of moduli of elliptic
surfaces overP1 with fixed monodromy are rational or unirational. However, we
cannot expect a similar result for all moduli spaces of elliptic surfaces over higher
genus curves, since the moduli space of higher genus curves itself is not uniruled
(by a result of Harris and Mumford [15]).

We proceed to give a more detailed description of our approach. First of all, we
can work not with the monodromy group̃Γ itself but rather with its image

Γ ⊂ PSL2(Z)

under the natural projectionSL2(Z) � PSL2(Z). Let

H = {z ∈ C | Im(z) > 0}
be the upper half-plane and

H = H ∪Q ∪ {∞}.
The naturalj-map

j : C → P1 = H/PSL2(Z)

decomposes as
j = jΓ ◦ jE ,

where
jE : C → MΓ = H/Γ
jΓ : MΓ → P1 = H/PSL2(Z).



4 FEDOR BOGOMOLOV, TIHOMIR PETROV and YURI TSCHINKEL

HereMΓ is thej-modular curvecorresponding toΓ; it is equipped with a special
triangulation, obtained as the pullback of the standard triangulation ofS2 = P1(C)
(by two triangles with vertices at0, 1 and∞) under the mapjΓ (which ramifies only
over0, 1 and∞). We call the obtained triangulation ofMΓ a jΓ-triangulation. Let
TΓ be the preimage inMΓ of the closed interval[0, 1] ⊂ P1. The graphTΓ is our
main tool in the combinatorial analysis ofΓ.

Denote byχ(E) the Euler characteristic ofE . It splits equivalence classes of
Jacobian elliptic surfaces (modulo fiberwise birational transformations) intoalge-
braic families. In particular, ifC = P1 then thealgebraic varietyFr parametrizing
(equivalence classes of) Jacobian elliptic surfaces with givenχ(E) is irreducible;
here we putr = χ(E)/12. Our goal is to analyze the birational type of (irreducible
components)

Fr,Γ̃ ⊂ Fr

parametrizing fibrations with fixed monodromy groupΓ̃. It suffices to study param-
eter spacesFr,Γ corresponding toΓ ⊂ PSL2(Z), since every irreducible component
of Fr,Γ̃ coincides with a component ofFr,Γ.

From now on we assume thatC = MΓ = P1. Denote byRd,Γ the space of
rational mapsP1 → P1 (of degreed) with prescribed ramification (encoded inTΓ).
The spacesFr,Γ are quotients, byPGL2 × HΓ, of fibrations overRd,Γ with fibers
(Zariski open subsets of)Sym`(P1) (for appropriated and `). HerePGL2 acts
(on the left) by changing the parameter on the baseC = P1 andHΓ is the group
of automorphisms ofMΓ = P1 stabilizing the embedded graphTΓ (acting on the
right). The nontriviality ofHΓ means that there is aΓ′ ⊂ PSL2(Z) containingΓ as
a normal subgroup withHΓ = Γ′/Γ. So in most cases in order to prove rationality
of Fr,Γ it is sufficient to establish it forPGL2\Rd,Γ, which can be deduced from
general rationality results forPGL2-quotients (see [9], [18]). To coverall cases we
need to set up a rather extensive combinatorial analysis.

Here is a roadmap of the paper. In Section1 we discuss finite coversMΓ →
P1 in the spirit of Grothendieck’s “Dessins d’Enfants” program (see [28],[34] and
the references therein) and introduce the invariantsGD(Γ), RD(Γ) andET(Γ). In
“ideal” casesET(Γ) coincides with the number of triangles in thejΓ-triangulation
of MΓ (the notationET(Γ) stands for “Effective Triangles”). In Section2 we recall
basic facts about elliptic fibrations and introduce the invariantET(E). For an “ideal”
elliptic fibration one hasET(Γ) = ET(E). In Section3 we discussmoduli of
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elliptic fibrations with fixed monodromy. In Sections7 and8 we formulate and
prove several rationality results forPGL2 and related quotients. In Section5 we
classify families of rational elliptic surfaces and elliptic K3 surfaces with different
monodromy groups. In Section4, we study relations between the combinatorics
of the graphΓ and the topology ofE . And finally, in Section10 we list (certain)
relevant subgroupsΓ ⊂ PSL2(Z) (represented by trivalent graphsTΓ). There are
too many monodromy groups of elliptic K3 surfaces to be drawn on paper, but we
show how to obtain them from our list by simple operations.

1. Finite covers

Let Γ be a subgroup of finite index inPSL2(Z). The latter is isomorphic to a free
productZ/3 ∗ Z/2. Consider the map

H/Γ = MΓ
jΓ−→ P1 = H/PSL2(Z),

ramified over the points0, 1,∞ ∈ P1. Denote their preimages inMΓ by A, B and
I, respectively. The possible ramification orders are3 or 1 for A-points, 2 or 1
for B-points and arbitrary forI-points. The points0, 1 and∞ subdivide the circle
P1(R) = S1 into three segments and, together with the upper and lower hemi-
sphere, define a decomposition ofP1(C) = S2 into three triangles. This induces
a special triangulation ofMΓ with vertices inA, B andI-points which we call the
jΓ-triangulation. The preimage of the segment[0, 1] ⊂ P1 defines a graphTΓ which
determines thejΓ-triangulation uniquely. Interior vertices ofTΓ are marked byA6

and ends are marked by eitherA2 or B2.

NOTATIONS 1.1. — Thegraph datumGD(Γ) of TΓ is the formal sum

GD(Γ) := [a6A6 + a2A2 + b2B2],

whereai (i = 6, 2) is the number ofAi vertices andb2 is the number ofB2-vertices.
Denote byτ 0 = τ 0(Γ) the number of vertices ofTΓ (including the ends), byτ 1 =
τ 1(Γ) the number of edges and byτ 2 = τ 2(Γ) = π0(MΓ \ TΓ).

REMARK 1.2. — For givena2, b2 there is a unique group with

GD(Γ) = [A6 + a2A2 + b2B2].
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Forgetting the markings ofTΓ we obtain a connected unmarkedtopologicalgraph
T u

Γ with (possibly some) ends and all interior vertices of valency3 — a trivalent
graph.

LEMMA 1.3. — Let X be a compact orientable Riemann surface of genusg(X)
andT u ⊂ X an embedding of a connected trivalent graph such that

– the setX \ T u is a disjoint union of topological cells;
– all interior vertices ofT u are trivalent;
– the ends ofT u are arbitrarily marked by two colorsA2 andB2.

Then there exist a subgroupΓ ⊂ PSL2(Z) and a unique complex structure onX
such thatX = MΓ andT u = T u

Γ .

Proof. — Assume that we have an embedded graphT u ⊂ X satisfying the condi-
tions above. Mark byA all trivalent vertices and enlarge the graphT u by putting
aB-vertex in the middle of any edge bounded by twoA-vertices. Put oneI-vertex
into every connected component ofX \ T u and connect allI-vertices withA and
B-vertices at the boundary of the corresponding domain. By assumption, every
connected component ofX \ T u is contractible. Consider the boundary of the in-
dividual cell. EveryA-vertex of the boundary is connected by edges toB-vertices
only. Similarly, theB-vertices are connected by edges only toA-vertices. Hence
every triangle of the induced triangulation has vertices colored by three colors:A, B
andI. This gives ajΓ-triangulation ofX. Following Alexander [1], we observe that
a jΓ-triangulation defines a map

h : X → P1

which is cyclically ramified overA, B andI (see [8]). The trivalence ofT u implies
that h has only3 or 1-ramifications over0 ∈ P1 and only2 or 1-ramifications
over 1 ∈ P1. SincePSL2(Z) = Z/3 ∗ Z/2 there is exactly one subgroupΓ ⊂
PSL2(Z) (of finite index) which corresponds to the coveringX → P1. Any graph
T u

Γ constructed via a subgroupΓ ⊂ PSL2(Z) satisfies the conditions above. Indeed,
we have already described thejΓ-triangulation onMΓ. Triangles adjacent to a given
I-vertex constitute a contractible cell and the division ofMΓ into neighborhoods of
I-vertices is a cellular decomposition ofMΓ. Hence after removingI-vertices with
open edges from them we obtain the preimage of[0, 1]. If we forget theB-vertices
which lie between twoA-vertices we obtain the graphT u

Γ . ThusT u
Γ ⊂ X = MΓ

is the boundary of this cellular decomposition andTΓ is simplyT u
Γ with anA, B-

marking of the ends.
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REMARK 1.4. — Graphs which are isotopic inX (modulo diffeomorphisms ofX
of degree1) define conjugated subgroups ofPSL2(Z).

REMARK 1.5. — Even if we omit the condition of compactness ofX we still get
a bijection between conjugacy classes of subgroups of finite index ofPSL2(Z) and
embedded trivalent graphs with marked ends.

REMARK 1.6. — The topology ofX restricts the topology ofT u
Γ . The graphT u

Γ

must contain some1-skeleton ofX. In particular, the mapπ1(T
u
Γ ) → π1(X) is

surjective. HenceT u
Γ can be a tree only ifX = S2.

ForX = P1 the connectedness ofT u guarantees that all the components ofX\T u

are contractible. Hence we can classify graphs inX = P1 by drawing them on the
plane. In general, connectedness ofT u is necessary but not sufficient.

DEFINITION 1.7. — Define

ET(Γ) := 6τ 0 = 6(a6 + a2 + b2)
∆(Γ) := 6a6 + 2a2

Thus bothET(Γ) and∆(Γ) depend only on the marking of the ends but not on
the embedding of the graph. Observe that∆(Γ) is thenumber of trianglesin the
correspondingjΓ-triangulation ofMΓ and that

[PSL2(Z) : Γ] = ∆(Γ)/2.

REMARK 1.8. — If MΓ arises from an elliptic fibration as in the Introduction then
∆(Γ)/2 equals the number ofDehn twistsin Γ around the multiplicative singular
fibers.

NOTATIONS 1.9. — Let f : C → P1 be a cover of degreed and p ∈ P1 a
ramification point off . The local ramification datumis anN-valued vectorv =
(vk), (

∑
vk = d), wherevk is the order of ramification off at a pointck ∈ f−1(p).

A reduced local ramification datumis a vectorv obtained fromv by omitting all
entriesvk = 1. The vectorv is defined up to permutation of the entries.

For f = jE : C → MΓ = P1 we have distinguished ramification points, namely
those overA- andB-vertices of the graphTΓ ⊂ MΓ. The (global)jE-ramification
datum is the vector

RD(jE) := [v1,A, . . . , vn,A, vn+1,B, . . . , vn′,B, vn′+1, . . . , vn′′ ],

where thevi,A are local ramification data overA-vertices fori = 1, . . . , n, (resp.
vi,B for B-vertices,i = n + 1, . . . , n′) andvi arereducedlocal ramification data for
unspecified other points inMΓ for i > n′ (distinct fromA- andB-vertices ofMΓ).
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For f = jΓ : MΓ → P1 the distinguished (and the only) ramification points are
0, 1,∞. We write

RD(jΓ) := [v0, v1, v∞]

for the globaljΓ-ramification datum.

EXAMPLE 1.10. — Assume thatGD(Γ) = [nA6 + A2 + B2] is the graph datum of
TΓ ⊂ MΓ and letjE : P1 → MΓ = P1 be a finite cover. Then thejE-ramification
datum

RD(jE) = [(2, 3)A, (2, 2, 1)B, (2), (2)]

means thatdeg(jE) = 5, thatjE has ramification points of order2 and3 over one
pointA2 ∈ TΓ and(2, 2, 1) over oneB2-point and ramifications of order2 over two
other unspecified points inMΓ.

2. Elliptic fibrations

In this section we briefly recall some basic facts of Kodaira’s theory [23] of elliptic
fibrations. For more details we refer to [3], [14] and [35]. Let

π : E → C

be a smooth nonisotrivial relatively minimal Jacobian elliptic fibration over a smooth
projective curveC. This means that:

– E is a smooth compact complex projective surface andπ is a proper holomor-
phic map;

– the generic fiber ofπ is a smooth curve of genus1;
– the fibers ofE do not contain exceptional curves of the first kind, i.e., rational

curvesF such that(F 2) = −1 (relative minimality);
– there exists a (global) zero sections : C → E (Jacobian elliptic fibration);
– the j-function which assigns to each smooth fiberπ−1(p) = Ep ⊂ E its j-

invariant is a nonconstant rational function onC (nonisotriviality).

It is well known thats2 < 0. We define

ET(E) := −24s2.

LEMMA 2.1. — We have

ET(E)/2 = −12s2 = χ(E) = c2(E).
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Proof. — Well known, but we decided to include an argument. SinceE is smooth
and relatively minimal its canonical bundleKE is induced from a one-dimensional
bundleK on the baseC. The sheafπ∗K(C) is a subsheaf ofKE . Since there are
singular fibers we have the following equality

h0(E , Ω1) = h1(E ,O) = g

whereg is the genus ofC. By Riemann-Roch we obtain

χ(O) = 1− g + h0(E , KE) = χ(E)/12.

We also know thats2 + sKE − 2g + 2 = 0 (genus formula). Therefore,

1− g + h0(E , KE) = deg(K)− 2g + 2 = χ(E)/12

sincedeg(K) > 2g − 2 and henceh1(C, K) = 0. Further,

sKE = deg(K).

Thuss2 + sKE − 2g + 2 = 0 transforms tos2 + χ(E)/12 = 0.

Let Csing = {p1, . . . , pk} ⊂ C be the set of points on the base corresponding
to singular fibers. The topological Euler characteristicχ(E) = c2(E) is equal to
the sum of Euler characteristics of the singular fibersEpi

= π−1(pi) (since every
generic fiber has Euler characteristic equal to0). Therefore,

ET(E) =
∑

pi∈Csing

ET(Epi
),

where the summation runs over all singular fibers ofE andET(Epi
) is the contri-

bution from the corresponding singular fiber. Since the fibration is Jacobian every
singular fiber has a unique representative from Kodaira’s list and it is defined by the
local monodromy. The possible types of singular fibers and theirET-contributions
are:

ET ET
I0 I∗0 12
In 2n I∗n 2n + 12
II 4 IV∗ 16
III 6 III∗ 18
IV 8 II∗ 20

HereI0 is a smooth fiber,In is a multiplicative fiber withn-irreducible components.
The typesII, III andIV correspond to the case of potentially good reduction. More
precisely, the neighborhood of such a fiber is a (desingularization of a) quotient
of a local fibration with smooth fibers by an automorphism of finite order. The
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corresponding order is4 for the caseIII and3 in the casesII, IV. The fibers of type
I∗0, (resp. I∗n, II

∗, III∗, IV∗) are obtained from fibersI0 (resp. In, IV, III, II) (after
changing the local automorphism by the involutionx 7→ −x in the local group
structure of the fibration). We shall call them∗-fibersin the sequel.

REMARK 2.2. — The invariantET(Ep) has a monodromy interpretation. Namely,
every element of a local monodromy atp ∈ Csing has a minimal representation as a
product of elements conjugated to( 1 1

0 1 ) in SL2(Z). The length of this representation
equalsET(Ep)/2. This explains the equalityET(E∗p ) = ET(Ep)+12 — the element( −1 0

0 −1

)
∈ SL2(Z) is a product of6 elements conjugated to( 1 1

0 1 ) (elementary Dehn
twists).

3. Moduli spaces

Every Jacobian elliptic fibrationE → P1 admits aWeierstrass model̄E . Its geomet-
ric realization is given as follows: there exists a pair of sections

g2 ∈ H0(P1,OP1(4r)),
g3 ∈ H0(P1,OP1(6r))

such thatE is given by

(3.1) y2z = 4x3 − g2xz2 − g3z
3,

insideP(OP1 ⊕OP1(2r)⊕OP1(3r)), subject to conditions

– the discriminant∆ = g3
2 − 27g2

3 is not identically0;
– for every pointp ∈ P1 we have

(3.2) min(3νp(g2), 2νp(g3)) < 12,

whereνp is the valuation corresponding top ∈ P1

(see [14] or [13], Section 7).

Two pairs(g2, g3) and(g′2, g
′
3) define isomorphic Jacobian elliptic surfaces(E , s)

and(E ′, s′) iff there exits anh ∈ GL2(C) transforming(g2, g3) into (g′2, g
′
3) under

the natural action ofGL2 on (theGL2-linearized)OP1(r). We defineFr as the set
of isomorphism classes of pairs(g2, g3) subject to the conditions above.

The parameter spaceFr has a natural structure of a (categorical) quotient of some
open subvarietyUr of the sum of two linearGL2-representations

H0(P1,OP1(4r))⊕H0(P1,OP1(6r))
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by the action ofGL2. Equivalently,Fr is a (categorical) quotient of the open sub-
varietyU ′

r = Ur/Gm of the weighted projective space

P4r,6r(4r + 1, 6r + 1)

by the action ofPGL2.

LEMMA 3.1. — The varietyU ′
r is a disjoint union of locally closed subvarieties

U ′
r,Γ̃

, each preserved under the action ofPGL2, such that for everyu ∈ U ′
r,Γ̃

one

hasΓ̃(Eu) = Γ̃.

Proof. — The monodromy group of an elliptic fibration does not change under
deformations preserving the topological type of singular fibers (it is encoded in the
topology of the smooth part). Thus it can change only on algebraic subvarieties
where the topological type of singular fibers changes. The monodromy group ofEu

is upper-semicontinuous under changes ofu - it can only drop on a closed subset
of the parameter space. Foru ∈ U ′

r the correspondingj-map has a decomposition
ju = jΓ ◦ jE . By (3.1),(3.2), ju is nonconstant of degree≤ 12r. Thus

[PSL2(Z) : Γ] = deg(jΓ) ≤ 12r

and the set of possibleΓ is finite. Similarly, there are finitely manỹΓ ⊂ SL2(Z)
which can appear as monodromy groups of elliptic fibrations parametrized byU ′

r.
SinceΓ definesjΓ there are only finitely many possiblejΓ which can appear for
u ∈ U ′

r. For every fixedjΓ, a decomposition ofju = jΓ ◦ s, u ∈ Ur, wheres is
a rational maps : P1 → P1, deg(s) ≥ 1, determines aGm-homogeneous set of
algebraic equations on the pair(g2, g3) defining the pointu ∈ Ur. Thus there is a
closed algebraic subvarietyUr,Γ whereju = jΓ ◦s. The monodromy of the fibration
Eu for u ∈ Ur,Γ surjects ontoΓ unlessu is in Ur,Γ′, whereΓ′ ⊂ Γ. There are finitely
many suchΓ′ (with the above degree bound) and hence finitely many algebraic
varietiesUr,Γ′ such that for everyu ∈ Ur,Γ −

⋃
Ur,Γ′ the monodromy group ofEu

surjects ontoΓ ⊂ PSL2(Z).
Let M be an irreducible component ofU ′

r,Γ −
⋃

U ′
r,Γ′. The monodromy group of

Eu, u ∈ M is either constant onM or drops when the topology of singular fibers
changes. This can occur only on a finite number of closed algebraic irreducible
subvarietiesMi in M . Since the monodromy group surjects ontoΓ it can only drop
from the groupΓ̃ at a generic point if the map̃Γ → Γ has a kernel of order2. If
the above map is an isomorphism then the monodormy group is constant onM . If
the monodromy group onM does change onMi thenΓ̃i (for a genericu ∈ Mi) is
isomoprphic toΓ and hence does not change onMi. The varietiesM andMi are
all preserved under thePGL2-action. Thus there is one monodromy groupΓ̃ for a
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generic point ofM . RenamingM −
⋂

Mi asU ′
r,Γ̃

andMi asU ′
r,Γ̃i

we obtain the
algebraic stratification of the lemma.

The unstable points of thePGL2-action on the weighted projective space cor-
respond to sectionsg2, g3 with high order of vanishing at some pointp. Namely
νp(g2) > 2r, νp(g3) > 3r. However, the inequality (3.2) implies that6r < 12.
Thus, forr ≥ 2, Fr is aPGL2-quotient of some open subvariety of the semistable
locus

Pss
4r,6r(4r + 1, 6r + 1) ⊂ P4r,6r(4r + 1, 6r + 1).

It follows that Fr is a quasi-projective algebraic variety. This variety is clearly
unirational and in fact rational by [18].

Moreover, forr ≥ 2 we can define a set ofsubvarietiesFr,Γ̃ ⊂ Fr such that
for every b ∈ Fr,Γ̃ the corresponding Jacobian elliptic surface(Eb, s) has global

monodromy group̃Γ.

REMARK 3.2. — Notice that the mapsjE for elliptic fibrations corresponding
to different points of the same irreducible component ofFr,Γ̃ can have different
RD(jE), even over theA2 or B2-ends ofTΓ ⊂ MΓ. Thus, for a given irreducible
component, we have the notion of ageneric ramification datumRD(jE) and its
degenerations.

The caser = 1, corresponding to rational elliptic surfaces, is more subtle - the
subvarietyU ′

1 contains unstable points. The quasi-projective locus of semistable
pointsU ss

r
′ is a disjoint union of locally closedPGL2-semistable subsetsU ss

r,Γ̃
; tak-

ing quotients we obtain varietiesF1,Γ̃ parametrizing rational elliptic fibrations with

global monodromỹΓ.
Let W ′

1 = U ′
1 − U ss

1
′ be the complement. It consists of pairs(g2, g3) with

g2 = l3f2, g3 = l4f3,

wherel is a linear form (vanishing at a pointp and) coprime tof2, f3 anddeg(f2) =
1, deg(f3) = 2. For w ∈ W ′

1 we havedeg(j) ≤ 4. The case of̃Γ 6= SL2(Z)
corresponds todeg(jΓ) ≥ 2. Thus we have to consider two cases:

– deg(jΓ) = deg(jE) = 2;
– deg(jΓ) ≤ 4, deg(jE) = 1.
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The first case does not occur sincej−1(0) has ramification of type(3, 1) (by the
assumption thatf2 is coprime tol and that3νp(g2) < 12). Thus thej-map cannot
be decomposed even locally into a product of two maps. The second case leads to

LEMMA 3.3. — If w ∈ W ′
1 and Γ̃(Ew) 6= SL2(Z) thendeg(jE) = 1 and one has

one of the following graph and ramification data:

GD(Γ) RD(jΓ)
[A6 + A2] [(3, 1)0, (2, 2)1, (3, 1)∞]
[A6 + A2 + 2B2] [(3, 1)0, (2, 1, 1)1, (4)∞]
[A6 + 3B2] [(3)0, (1, 1, 1)1, (3)∞]
[A6 + B2] [(3)0, (2, 1)1, (2, 1)∞]

Proof. — The formulaj = lf3
2 /(lf3

2 − f 2
3 ) shows thatjΓ has a point with local

ramification datum(3, 1) or (3), corresponding to

[PSL2(Z) : Γ(E)] = 4 or 3.

Since only two more branch points are allowed and one of them is1 (with local
ramifications 1 or 2), the Euler characteristic computation gives the ramification
data listed in the statement plus one more:

[(3, 1)0, (2, 2)1, (2, 2)∞].

However, this datum is impossible for topological reasons (the only possible graph
datum is[A6 + A2] and there is a unique embedded graphTΓ with this datum).

If deg(j) = 3 then one has a cyclic point of order3, leading to the data above.

COROLLARY 3.4. — Every irreducible componentW ′
1,Γ̃
⊂ W ′

1 such that̃Γ(Ew) 6=
SL2(Z) for w ∈ W ′

1,Γ̃
is rational.

Consider an irreducible componentFr,Γ̃ and the corresponding decomposition
j = jΓ ◦ jE . Here

jE = (jE,2, jE,3) : P1 → MΓ = P1

is a pair of homogeneous polynomials in 2 variables. Let

G = {(g2, g3)} ⊂ H0(P1,OP1(4r))⊕H0(P1,OP1(6r))

be the subset corresponding to smooth elliptic fibrations. Put

JΓ := {j | ∃jE : P1 → MΓ s.t. j = jΓ ◦ jE}.

LEMMA 3.5. — If j ∈ JΓ ∩ JΓ′ with Γ 6= Γ′ then there exist anh ∈ PSL2(Z), a
groupΓ′′ ⊂ Γ ∩ hΓ′h−1 and a mapj′′E : P1 → MΓ′′ such thatj = jE ′′ ◦ jΓ′′.
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Proof. — The monodromy group and its image inPSL2(Z) are uniquely deter-
mined by the smooth part of the elliptic fibration. Therefore, in any smooth family
of elliptic surfaces

Γ(generic fiber) ⊇ Γ(special fiber).

SinceΓ is defined modulo conjugation by elements inSL2(Z) the claim follows.

COROLLARY 3.6. — We have a decompositionG =
⊔
GΓ into a finite (disjoint)

union of algebraicGL2-stable subvarieties such that for allg = (g2, g3) ∈ GΓ the
monodromy group̃Γ(Eg) ⊂ SL2(Z) is a subgroup of a centralZ/2-extension ofΓ.

REMARK 3.7. — For a giveng ∈ GΓ the mapjE is not unique. LetjE andj′E be
two such maps. ThenjE = hΓ ◦ j′E , wherehΓ ∈ Aut(TΓ) is an automorphism of
MΓ, preservingTΓ.

LEMMA 3.8. — We have a decomposition

GΓ =
⊔
k

GΓ̃,k

into a finite union of algebraicirreducibleGL2-stable subvarieties such thatΓ̃(Eg) =

Γ̃ for all g ∈ GΓ̃,k.

Proof. — Assume that someg ∈ GΓ belongs toGΓ̃,1 ∩ GΓ̃,2, whereGΓ̃,1,GΓ̃,2 are
different (nonconjugated) lifts ofΓ intoSL2(Z). Lemma3.5implies that there exists
apropersubgroupΓ′′ ⊂ Γ such thatg belongs toGΓ′′, contradiction.

Let GΓ̃ = GΓ̃,k be an irreducible component ofGΓ as in Lemma3.8 andg ∈ GΓ̃

its generic point. It determines a set of∗-fibers on the baseP1. We denote their
number bỳ . Choose (one of) thejEg , with ramification datumRD = RD(jEg). We
get a map

φU : Ug → Ujg × (P1)`,

whereUg ⊂ GΓ̃ is a neighborhood ofg andUjg ⊂ R(RD) is a neighborhood of the
mapjg = jEg in the space

R(RD) := {j : P1 → P1 | RD(j) = RD}

of rational maps with ramification datumRD.

LEMMA 3.9. — The mapφU is a local (complex analytic) surjection.
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Proof. — It suffices to show that the variation ofj in the space of maps with
RD(j) = RD(jEg) lifts to a variation of the elliptic fibrationEg. Observe thatMΓ

minus the preimages of{0, 1,∞} carries a natural “projective” local systemPLΓ

with fiber Z ⊕ Z modulo±1. This local system lifts onto a similar local system
j∗PLΓ on P1. Since the fundamental group ofP1 minusj−1({0, 1,∞}) is a free
group the projective local systemj∗PLΓ can be lifted to a linear local system with
fiberZ⊕ Z.

By a theorem of Kodaira, a nonisotrivial elliptic fibration overB is uniquely
determined by the nonconstant mapj : B → P1 = H/Γ and the lifting of the
induced projective monodromy onP1 \ j−1({0, 1,∞}) with (Z ⊕ Z)/(Z/2) as a
fiber to the linear monodromy withZ⊕ Z as a fiber. Therefore it suffices to lift the
variation ofjE to a variation of the corresponding local system with fiber

H1(Et) = Z⊕ Z, t ∈ P1 − j−1
E ({0, 1,∞}).

Any such lifting corresponds to an elliptic fibration with Jacobian mapjE . However,
its topological type depends on the lifting.

A linear lifting is defined by the choice of local monodromy elements inSL2(Z)
at every point in the preimage of the corresponding projective monodromyg ∈
PSL2(Z). Namely, for every local projective monodromyg ∈ PSL2(Z) we have
a choicegm,−gm wheregm corresponds to the minimal lifting - the lifting with
a minimal Betti number for the corresponding singular fiber (see the next section
for a more detailed discussion or [23]). The topological typer(Eg) is a function of
RD(E) and the number of nonminimal liftingsl . The existence of a lifting depends
only on the product of local liftings (1 or−1), which can be calculated usingRD(j)
andl. In particular, since it is1 for Eg the same holds for a variationj of jEg (with
constantl).

According to Kodaira, a simultaneous lifting of the variation ofjE and the varia-
tion of the linear system forEg as above is equivalent to the existence of a variation
of the elliptic surfaceEg. This completes the proof of the lemma.

COROLLARY 3.10. — LetF ′
r,Γ̃
⊂ Fr,Γ̃ be an (irreducible) component with generic

ramification datumRD. ThenF ′
r,Γ̃

surjects (rationally) onto the quotient of the

variety of rational mapsR(RD) byHΓ.

Proof. — Since bothF ′
r,Γ̃

andR(RD) are algebraic varieties the local complex
analytic surjection from Lemma3.9extends to an algebraic correspondence. More-
over, two decompositions of the mapj asj = jΓ ◦ jE differ by an element inHΓ.
This gives a map to the quotient space, which is a (global) rational surjection.
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PROPOSITION3.11. — Every irreducible componentFr,Γ̃ contains an open part
F ′

r,Γ̃
with the following properties:

– F ′
r,Γ̃

is a quotient of an algebraic varietyU ′
r,Γ̃,`

by the (left) action ofPGL2

and (right) action of a subgroupHΓ of Aut(TΓ);
– U ′

r,Γ̃,`
admits a fibration with fiber (an open subset of)Sym`(P1) and base the

varietyRr,Γ of mapsf : P1 → MΓ with fixed local ramification data overA2

andB2-points ofTΓ ⊂ MΓ;
– the action ofPGL2 onU ′

r,Γ̃,`
is induced from the standardPGL2-action onP1;

– the groupAut(TΓ) is a subgroup ofPGL2 (acting onMΓ).

Proof. — Elliptic surfaces parametrized by a smooth irreducible variety have the
sameET(E), which depends on the number` of ∗-fibers inE , on the degree ofjE
and on the ramification properties over the ends ofTΓ. Oncè is fixed, for any given
jE , the∗-mark can be placed over arbitrary`-points ofP1. Their position defines a
unique surfaceE . This implies thatU ′

r,Γ̃,`
is fibered with fibers (birationally) isomor-

phic toSym`(P1) = P`. The ramification properties ofjE remain the same on the
open part ofU ′

r,Γ̃,`
(since the number of∗-fibers remains the same). Thus the base

of the above fibration is the space of rational mapsf : P1 → P1 = MΓ with fixed
ramification locus. Any such map defines an elliptic surfaceE with given Γ (see
[8]). ThePGL2-action onU ′

r,Γ̃,`
identifies points corresponding to isomorphic sur-

facesE . Additional nontrivial isomorphisms correspond to exterior automorphisms
of Γ, coming from the action onMΓ, i.e., automorphisms of the graphTΓ.

REMARK 3.12. — If the PGL2 × Aut(TΓ)-action onU ′
r,Γ̃,`

is almost free then
the rationality ofPGL2\U ′

r,Γ̃,0
/Aut(TΓ) implies the rationality the corresponding

quotients for all̀ . In the other cases the degree ofjE is small and they are handled
separately (see Section9).

Most of the graphsTΓ have trivial automorphisms. In particular, any nontrivial
automorphism acts on the ends of the graph. In general, automorphisms of the
pair (MΓ, TΓ) correspond to elements ofΓ′/Γ whereΓ′ ⊂ PSL2(Z) is a maximal
subgroup with the property thatΓ is a normal subgroup ofΓ′.

LEMMA 3.13. — The groupAut(TΓ) acts freely on the set of ends and end-loops.

Proof. — ConsiderjΓ : MΓ → P1. Thenh ∈ Aut(TΓ) is any element inPGL2(C)
such thatjΓ(hz) = jΓ(z) for all z ∈ TΓ ⊂ MΓ. If h stabilizes an end or an end-loop
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of TΓ then it stabilizes the unique adjacent vertex and its other end. Any element of
PGL2(C) preserving a closed interval is the identity.

COROLLARY 3.14. — For r ≤ 2, the only possible groupsAut(TΓ) are cyclic,
dihedral or subgroups ofS4. More precisely, for graphs with one endAut(TΓ) = 1
and graphs with two endsAut(TΓ) is a subgroup ofZ/2.

LEMMA 3.15. — Let
R := {f : P1 → P1}

be the space of rational maps with ramifications over exactly0 and∞. ThenR is a
Gm-fibration over the product of symmetric spacesSymmi(P1).

Proof. — Indeed any two cyclesc1 and c2 of fixed degree are equivalent onP1.
Therefore, there is a rational functionf onP1 with c1 = f−1(0) andc2 = f−1(∞).
If c1, c2 do not intersect thendeg(f) = deg(c1) = deg(c2). The functionf is
defined modulo multiplication by a constant. The space of cyclesc1 =

∑
i nipi is a

product of symmetric powersSymm(P1) wherem is the number of equalni.

4. Combinatorics

In this section we investigate relations betweenET(E) andET(Γ). We keep the
notations of the previous sections.

LEMMA 4.1. — Let j : E → C be an elliptic fibration. Then

ET(E) = deg(jE)∆(Γ) + 8α2 + 4α1 + 6β1 + 12`.(4.1)

Hereα1 andα2 equal the number of points overA2-ends ofTΓ with ramification
multiplicity 1 (mod 3) and2 (mod 3), respectively,β1 is the number of odd ramifi-
cation points over theB2-ends and̀ is the number of∗-fibers ofE .

Proof. — The summanddeg(jE)∆(Γ) corresponds to multiplicative fibers ofE .
The next summands are the contributions of those singular fibers ofE which are in
the preimage ofA2 orB2-ends ofTΓ. If the ramification order at a pointp over aB2-
end is even then the corresponding fiber with minimalET is smooth and hence does
not contribute toET(E). If it is odd then the fiber with minimalET is of typeIII
and we have to add6β1. Similarly, for the preimages ofA2-ends and∗-twists.

COROLLARY 4.2. — In particular,

ET(E) ≤ deg(jE) ET(Γ) + 12`,
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with equality if
2α2 + α1 = a2 · deg(jE)

β1 = b2 · deg(jE).

DEFINITION 4.3. — We callTΓ saturatedif all vertices ofT u
Γ are trivalent and a

treeif it is contractible.

REMARK 4.4. — For saturated graphs∆(Γ) = 12rk π1(TΓ), where

rk π1(TΓ) = rk H1(TΓ)

is the number of independent closed loops ofTΓ ⊂ MΓ.

The following simple procedures produce new graphs:

– If T1 andT2 are (unmarked) trivalent graphs we can joinT1 andT2 along two
edges. For the resulting graphT ′ we have

ET(T ′) = ET(T1) + ET(T2) + 12.

If Ti are marked and the marking of the ends ofT ′ is induced from the marking
of the corresponding ends ofT1 andT2 then

∆(T ′) = ∆(T1) + ∆(T2) + 12.

– We can glue an endp of T1 to an edge ofT2. In this case

ET(T ′) = ET(T1) + ET(T2).

The change of∆ depends on the marking of the end:

∆(T ′) =

{
∆(T1) + ∆(T2) + 6 if p = B2

∆(T1) + ∆(T2) + 4 if p = A2.

REMARK 4.5. — Any connected graphT can be uniquely decomposed into a union
of a saturated graph and a union of trees.

LEMMA 4.6. — ET(Γ) is divisible by12.

Proof. — Every vertex ofTΓ has either one or three incoming edges. Therefore,
the number of edges

τ 1 =
1

2
(τ 0

1 + τ 0
3 ),

(τ 0
i is the number of vertices withi-edges). Thusτ 0 = τ 0

1 + τ 0
3 is even and since

ET(Γ) = 6τ 0 we are done.
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EXAMPLE 4.7. — If TΓ is a tree withk + 2 vertices then

ET(Γ) = 12k + 12

∆(Γ)

{
= 6k if all ends are B2,
> 6k otherwise.

LEMMA 4.8. — For all Γ one has

∆(Γ) ≥ ET(Γ)/2 + 6(rk H1(TΓ)− 1).

Proof. — A direct computation shows that for saturated graphs one has an equality.
Suppose thatTΓ is a concatenation of a saturated graphTsat and a treeTtree. The
number of ends drops by one and the number ofA6 vertices increases by1. Thus
the tree will add12k + 12 to ET(Γ) but ∆(Γ) will change by6k + 6. Finally, the
ratio∆(Γ)/ET(Γ) only increases if we changeB2- to A2-markings for some ends.
Indeed,∆(Γ) increases without changingET(Γ).

COROLLARY 4.9. — If ∆(Γ) = ET(Γ)/2 thenTΓ is a concatenation of a loopL
and some trees. Moreover, all the ends ofTΓ are of typeB2.

PROPOSITION4.10. — LetE → C be an elliptic fibration withET(E) < ET(Γ).
Then:

– MΓ = P1 andTΓ is a tree withoutA2-ends and withET(Γ) > 24;
– deg(jE) = 2 and it is ramified in all (B2) ends ofTΓ (and, possibly, some other

points);
– E has1 or 2 singular fibers of typeIn.

Proof. — From 4.1 and4.8 we conclude thatrk H1(TΓ) = 0 which implies that
TΓ is a tree andMΓ = P1. By Lemma2.1 and our assumption,ET(Γ) > 24,
which implies thatdeg(jE) ≤ 2. If deg(jE) = 1, we apply Corollary4.2and get a
contradiction to the assumption. Fordeg(jE) = 2 combine Definition1.7and (4.1):

ET(E) = ET(Γ) + 4a2 + 4α1 + 8α2 + 6β1 − 12.

Sinceα1, resp.β1 is twice the number of unramifiedA2, resp.B2-ends, andα2 is
the number of ramifiedA2-ends we see that if at least one of them is not zero, then
ET(E) ≥ ET(Γ). The claim follows.

COROLLARY 4.11. — For every elliptic fibrationE → P1 one has

ET(E) ≥ ET(Γ).

Further, if deg(jE) = 2 andjE is ramified over only oneB2-point then

ET(E) ≥ 2 ET(Γ)− 12.
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Proof. — If deg(jE) = 2 andC = P1 thenjE ramifies in two points. If neither
of these points isB2 then, by Lemma4.1, ET(E) ≥ 2 ET(Γ). If both of these
points areB2-points then the coveringjE corresponds to a subgroupΓ′ of index 2
in Γ andC = MΓ′, contradiction. Otherwise, the claimed inequality follows from
Lemma4.1.

5. Elliptic K3 surfaces with deg(jE) > 1

In this section we assume thatC = P1, thatjE > 1 and thatΓ is a proper subgroup
of PSL2(Z). We consider

general families : ET(E)− 12` = deg(jE) ET(Γ),
special families : ET(E)− 12` < deg(jE) ET(Γ).

In Section3 we showed that the main building block in the construction of moduli
space of elliptic surfaces with fixedΓ is the space of rational mapsjE : C → MΓ of
fixed degree and ramification restrictions over certain points. For ageneralfamily
there are no such restrictions and the corresponding moduli spaces are rational by
classical results of invariant theory for actions ofPGL2 and its algebraic subgroups
(see Section7). For specialfamilies the corresponding space of rational maps is
more complicated.

LEMMA 5.1. — There are no special families of ellipticK3 surfaces with

ET(Γ) = 48, 36.

Proof. —
– If ET(Γ) = 48 then∆(Γ) ≥ 18 anddeg(jE) ≤ 2. However,deg(jE) = 2

contradicts Corollary4.11(ET(E) ≥ 96− 24 > 48).
– If ET(Γ) = 36 and ∆(Γ) > 16 then deg(jE) = 2, contradicting to4.11.

We are left with∆(Γ) = 16, 14, 12 for deg(jE) = 3 and ∆(Γ) = 12 for
deg(jE) = 4.

– If deg(jE) = 4 thenTΓ is a tree withGD(Γ) = [2A6+4B2]. By Lemma4.1, all
ramifications over theB2-ends are even, which contradictsC = P1 (compute
χ(C)).

– If deg(jE) = 3 thenTΓ is a tree (by4.8) and

GD(Γ) = [2A6 + a2A2 + (4− a2)B2]

with a2 ≤ 2. We have

48 ≥ ET(E) ≥ 3(12 + 2a2) + 4α1 + 8α2 + 6β1,



RATIONALITY OF MODULI 21

whereβ1 ≥ 2 (sincedeg(jE) is odd there is odd ramification over someB2-
end). Therefore,a2 = 0 and consequently,β1 ≥ 4, contradiction.

LEMMA 5.2. — If TΓ is not a tree andjE is special (and generic for the corre-
sponding irreducible component ofF2,Γ̃) then

ET(Γ) deg(jE) GD(Γ) RD(jE)
24 4 [2A6 + 2B2] [(2, 2)B, (2, 2)B, (2), (2)]
24 3 [2A6 + 2B2] [(2, 1)B, (2, 1)B, (2), (2)]
24 3 [2A6 + A2 + B2] [(3)A, (2, 1)B, (2)]
12 6 [A6 + A2] [(3, 3)A, (3, 3)A, (2), (2)]
12 5 [A6 + A2] [(3, 1, 1)A]
12 5 ≤ d ≤ 8 [A6 + B2] [β = (βi)B, (2)d′

B ],

where

βi ∈ N,
∑

βi = d, #odd βi ≤ 8− d

and

d′ = 2d−#nonzero βi.

Proof. — Follows from Lemma4.1. First observe that∆(Γ) ≤ 16, which implies
thata6 = 2 anda2 ≤ 2. If a2 = 2 then∆(Γ) = 16 and

α1 = α2 = β1 = 0.

Hence bothA2-ends have a 3-cyclic ramification and the cover corresponds to a sub-
groupΓ′ ⊂ Γ of index 3. This excludesGD(Γ) = [2A6 +2A2]. If deg(jE) = 4 then
∆(Γ) = 12 which implies that all preimages ofB2-ends have even ramification.
The description of all other ramification data follows similarly from Lemma4.1.
Notice that the (omitted) possibilities

ET(Γ) deg(jE) GD(Γ) RD(jE)
12 6 [A6 + A2] [(6)A, (3, 3)A]
12 5 [A6 + A2] [(3, 2)A]

are degenerations of the listed cases (see Remark3.2).
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LEMMA 5.3. — If TΓ is a tree andjE is special (and generic for the corresponding
irreducible component ofF2,Γ̃) then

deg(jE) GD(Γ) RD(jE)
j1 4 [A6 + A2 + 2B2] [(1, 1, 1, 1)A, (2, 2)B, (2, 2)B, (2), (2)]
j2 4 [A6 + A2 + 2B2] [(3, 1)A, (2, 2)B, (2, 2)B] + ∗
j3 4 [A6 + A2 + 2B2] [(3, 1)A, (2, 2)B, (2, 1, 1)B, (2)]
j4 3 [A6 + 2A2 + B2] [(3)A, (1, 1, 1)A, (2, 1)B]
j5 3 [A6 + A2 + 2B2] [(1, 1, 1)A, (2, 1)B, (2, 1)B, (2), (2)]
j6 3 [A6 + A2 + 2B2] [(3)A, (1, 1, 1)B, (2, 1)B, (2)]

or GD(Γ) = [A6 + 3B2] and

deg(jE) RD(jE)
j7 8 [(2, 2, 2, 2)B, (2, 2, 2, 2)B, (2, 2, 2, 2)B, (2), (2)]
j8 6 [(2, 2, 2)B, (2, 2, 2)B, (2, 2, 1, 1)B, (2), (2)]
j9 6 [(2, 2, 2)B, (2, 2, 2)B, (2, 2, 2)B, (2)] + ∗
j10 5 [(2, 2, 1)B, (2, 2, 1)B, (2, 2, 1)B, (2), (2)]
j11 4 [(2, 1, 1)B, (2, 1, 1)B, (2, 2)B, (2), (2)]
j12 4 [(2, 1, 1)B, (2, 2)B, (2, 2)B, (2)] + ∗
j13 3 [(1, 1, 1)B, (2, 1)B, (2, 1)B]
j14 3 [(2, 1)B, (2, 1)B, (2, 1)B, (2)] + ∗

or ET(Γ) = 12 andGD(Γ) = [2A2] with deg(jE) = 4− 10, 12.
(In the above tables,+∗means that there exists a moduli space of elliptic surfaces

with the sameRD(jE) and with an additional∗-fiber over an unspecified point.)

Proof. — Assume thatET(Γ) = 24 andTΓ is a tree with

GD(Γ) 6= [A6 + 3B2].

First observe thatdeg(jE) ≤ 6, since∆(Γ) ≥ 8. If deg(jE) ≥ 5 then, by4.1,
GD(Γ) = [A6+A2+2B2]. If deg(jE) = 6 thenjE has to be completely ramified over
all ends and no other ramifications are allowed by Euler characteristic computation.
Therefore, it is a group-covering and can’t bejE . If deg(jE) = 5 then there are two
odd ramifications overB2-ends, and by4.1, ET(Γ) > 48.

We are left with
GD(Γ) = [A6 + 3A2],

= [A6 + 2A2 + B2],
= [A6 + A2 + 2B2]

and3 ≤ deg(jE) ≤ 4. If there are at least twoA2-ends without3-cyclic ramification
points over them thenET(E) > 48 (see4.1). The first case is impossible:deg(jE) =
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4 does not occur (the degree is not divisible by 3), ifdeg(jE) = 3 and there is at most
one3-cyclic ramification over anA2-end then, by4.1, ET(E) > 48, contradiction.
Consider the second case anddeg(jE) = 4. Then∆(Γ) = 10 and4α1+8α2+6β1 ≤
8. Sinceα1 ≥ 2 we haveα2 = β1 = 0 andα1 = 2. The only possible

RD(jE) = [(3, 1)A, (3, 1)A, (2, 2)B],

which corresponds to a group covering, contradiction.
Similarly, if GD(Γ) = [A6 + A2 + 2B2] anddeg(jE) = 4 then∆(Γ) = 8 and

4α1 + 8α2 + 6β1 ≤ 16. We haveα1 ≥ 1 and 8α2 + 4α1 = 16 or 4. In the
first case, bothB2-ends are completely ramified, and we getj1. The second case
splits into subcases:β1 = 0 or 2, leading toj2, resp. j3. If deg(jE) = 3, then if
GD(Γ) = [A6 + 2A2 + B2] then exactly one of theA2-ends has cyclic ramification.
It follows that β1 = 1, which leads toj4. If GD(Γ) = [A6 + A2 + 2B2] there
are two subcases: there is cyclic ramification over theA2-end or not. In the first
subcase, possibleRD(jE) include[(2, 1)B, (2, 1)B], which is excluded as it gives a
group covering. The other case leads toj6. In the second subcase, we getj5.

Consider the caseTΓ = A6 + 3B2. Here∆(Γ) = 6 and

ET(E) ≥ 6 deg(jE) + 6n,

wheren is a number of points with odd ramification overB2-vertices. It follows
that

48 ≥ 6 deg(jE) + 6β1

andβ1 ≥ 3 if deg(jE) is odd and the number of odd ramifications overeachB2-end
is congruent todeg(jE) modulo 2.

If deg(jE) = 8 then all preimages ofB2-vertices are2n-ramified. If deg(jΓ) is
odd thenET(E) ≥ 6 deg(jΓ) + 18, which excludesdeg(jΓ) = 7. Now assume
deg(jΓ) = 6. The number of possible odd ramifications over anyB2-end is even
by 4.1 and it cannot exceed2. There are two possibilities listed above. Assume
thatdeg(jE) = 5. The minimal possible ramifications are(2, 2, 1) over allB2-ends.
Since10− 6 = 4 we can add two more points.

In deg(jE) = 4 we could have furtherRD:

RD(jE) = [(2, 2)B, (2, 1, 1)B, (2, 2)B, (2)],
= [(2, 2)B, (2, 1, 1)B, (2, 1, 1)B, (2), (2)],
= [(2, 2)B, (2, 1, 1)B, (2, 1, 1)B, (3)]

but they are obtained as degenerations ofj12 andj13.
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The onlyGD(Γ) which allowdeg(jE) ≥ 12 are[A2+B2] and[2A2]. The first case
corresponds toPSL2(Z) (which we don’t consider). The second case corresponds
to subgroupsΓ ⊂ PSL2(Z) of index2. For a genericE in each moduli space the
ramification datumRD(jE) is one of the following:

RD(jE) = [(3, . . . , 3n1 , 1, . . . , 1)A, (3, . . . , 3n1 , 1, . . . , 1)A, (2)d] + ∗,

wheren1, n2, d are nonnegative integers such that

deg(jE)− (n1 + n2) ≤ 4,

3n1, 3n2 ≤ deg(jE) and, d ≤ 2(deg(jE − (n1 + n2 + 1))).

(In particular,d ≤ 4).

6. Rational elliptic surfaces withdeg(jE) > 1

LEMMA 6.1. — There are no special families of rational elliptic surfaces with
ET(Γ) = 24.

Proof. — If deg(jE) = 2 thenjE cannot be ramified over more than oneB2-end
(otherwise it is a group covering). Therefore, we can apply Corollary4.11and get
ET(E) > 2 · 24 − 12 > 24, contradiction (to2.1). Thusdeg(jE) = 3 or 4 and
a6 = 1. Moreover,∆(Γ) ≤ 8. This leaves the cases:

GD(Γ) = [A6 + 3B2],
= [A6 + A2 + 2B2].

In the first casedeg(jE) = 3 is impossible, anddeg(jE) = 4 leads to

RD(jE) = [(2, 2)B, (2, 2)B, (2, 2)B, (2, 2)B]

which corresponds to a group covering. In the second casedeg(jE) 6= 4 (since
∆(Γ) = 8) anddeg(jE) = 3 implies thatβ1 ≥ 2 andET(E) ≥ 36, contradiction.
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LEMMA 6.2. — If jE is special (and generic for the corresponding irreducible
component ofF1,Γ̃) then

deg(jE) GD(Γ) RD(jE)
j15 6 [2A2] [(3, 3)A, (3, 3)A, (2), (2)]
j16 4 [2A2] [(3, 1)A, (3, 1)A, (2), (2)]
j17 3 [2A2] [(3)A, (1, 1, 1)A, (2), (2)]
j18 4 [A6 + B2] [(2, 2)B, (2), (2), (2), (2)]
j19 3 [A6 + B2] [(2, 1)B, (2), (2)]
j20 3 [A6 + A2] [(3)A, (2), (2)]

Proof. — If a6 ≥ 1 thendeg(jE) = 4 or 3. In the first casea2 = 0 andGD(Γ) =
[A6 +B2] and we have complete ramification over theB2-end. This givesj18. In the
second case the ramification overB2 is (2, 1)B and we getj19. If GD(Γ) = [A6+A2]
thendeg(jE) = 3 andα1 = α2 = 0, leadingj20.

It remains to considerGD(Γ) = [2A2]. We apply the same formulas as in the
proof of Lemma5.3, with the inequality

deg(jE)− n1 − n2 ≤ 2.

We havedeg(jE) ≤ 6 andα1 = α2 = 0. Notice thatdeg(jE) = 5 is impossible.

7. General rationality results

NOTATIONS 7.1. — We will denote bySn the symmetric group onn letters, by
An the alternating group, byDn the dihedral group and byCn = Z/n the cyclic
group. In particular,S2 = C2 = Z/2 and D2 = Z/2 × Z/2 (sometimes we
prefer the notationS2 overC2 to stress that the action is by permutation). We write
Gr(k, n) for the Grassmannian ofk-planes in a vector space of dimensionn and
Vd for the space of binary forms of degreed. We will denote byGL2, PGL2, Gm

etc. the correspondingcomplexalgebraic groups. For a groupG, we denote byZg

the centralizer ofg ∈ G and byZG its center. We denote byM2 = V1 ⊕ V1 the

space of2 × 2-matrices. We writeV V−→ X or simply
V−→ X for a locally trivial

(in Zariski topology) fibrationV overX with generic fiberV . We will often write
G-map (etc.), instead ofG-equivariant map.

We say that two algebraic varietiesX andX ′ are birational, and writeX ∼ X ′,
if C(X) = C(X ′). A variety X of dimensionn is rational if X ∼ An, k-stably
rational if X ×Ak ∼ An+k andstably rationalif there exists such ak ∈ N. We say
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thatX is unirational if X is dominated byAn. The first basic result, a theorem of
Castelnuovo from 1894, is:

THEOREM 7.2. — A unirational surface is rational.

Already in dimension three, one has strict inclusions

rational ( stably rational ( unirational

(see the counterexamples in [16], [2],[10],[6]). There is a very extensive literature
on rationality for various classes of varieties. We will use the following facts:

LEMMA 7.3. — Let S → B be a ruled surface with baseB andπ : C → S a
conic bundle overS. Assume that the restriction ofπ to a genericP1 ⊂ S is a conic
bundle with at most three singular fibers. ThenC ∼ A2 ×B.

LEMMA 7.4. — Let π : C → S be a conic bundle over an irreducible varietyS
andY ⊂ C a subvariety such that the restriction ofπ to Y is a surjective finite map
of odd degree. ThenC has a section andC ∼ S × A1.

Let G be an algebraic group. A (good)rational actionof G is a homomorphism

ρrat : G → Bir(X)

such that there exists a birational modelX ′ of X with the property thatρrat extends
to a (regular) morphismG×X ′ → X ′. We consider only rational actions. We write
X ∼G Y for a G-birational (= G-equivariant birational) isomorphism betweenX
andY . We will denote byG\X a model for the field of invariantsC(X)G.

Let E → X be a vector bundle. Alinear action ofG on E is a rational action
which preserves the subspace of fiberwise linear functions onE. In particular, there
is a linearG-action on regular and rational sections ofE.

We are interested in rationality properties of quotient spaces for the actions of
PGL2, its subgroups and products ofPGL2 with finite groups. The finite subgroups
of PGL2 are

Cn, Dn, A4, S4, A5.
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We denote bỹCn, D̃n etc. their lifts toGL2 (as centralC2-extensions). We denote
by

B, T = C∗, NT

the upper-triangular group, the standard maximal torus and the normalizer of this
torus inPGL2 and by

B̃, T̃, NT̃

the corresponding subgroups inGL2 (or SL2).

Let V be ann-dimensional vector space,̃G ⊂ GL(V ) a subgroup andG its
projection toPGL(V ), acting naturally onP(V ). Determining the rationality of
quotientsG\P(V ) (at least for finite groups) is known as Noether’s problem.

COROLLARY 7.5 (of Theorem7.2). — For all n ≤ 3 the spaceG\P(V ) is ratio-
nal.

THEOREM 7.6. — [29],[36] A quotient ofP(V ) by a (projective) action of a con-
nected solvable group, a torus or a finite abelian subgroup of a torus is rational.

A fundamental rationality result is the following theorem of Katsylo:

THEOREM 7.7. — [17] For any representationV of GL2 or PGL2 the quotient
PGL2\P(V ) is rational.

In general, the quotients need not be rational (see Saltman’s counterexamples in
[30]). We now describe some partial results forn = 4, which we will use later on.

DEFINITION 7.8. — A finite groupG̃ ⊂ GLn = GL(V ) is called imprimitive if
there exists a decompositionV = ⊕αV α such that for allα and g̃ ∈ G̃ there is an
α′ with g̃V α = V α′

. Otherwise,G is calledprimitive.

REMARK 7.9. — There are 29 types of primitive subgroups ofGL4. For some of
them, like

A6, A7, PSL2(F7), S6,

rationality of the quotient is still unknown.
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THEOREM 7.10. — [26] For every primitive solvable subgroupG ⊂ PGL4 the
quotientG\P3 is rational.

REMARK 7.11. — In [26] it is shown that

G\P3 ∼G G′\X3,

whereX3 is the Segre cubic threefold andG′ is a quotient ofG. The problem is
then reduced to the (easy) case of imprimitive actions.

We will also need to consider quotients bynonlinearactions.

LEMMA 7.12. — The quotient ofGL2 (or PGL2) by the involutioni : x 7→ x−1

is rational.

Proof. — The involution decomposes as a producti = i1 ◦ i2, where

i1 : x :=

(
a b
c −a + d

)
7→

(
−a + d −b
−c a

)
and

i2 : y 7→ y · det(y)−1.

are two commuting involutions. Another set of independent generators ofC(a, b, c, d)
is given by{a, b, c, det(x)} (write d = (det(x) + bc + a2)/a). Now the involutions
take the form

i1 : (a, b, c) → (−a,−b,−c)

and

i2 : det(x) → det(x)−1

and we can write down independent generators of the field of invariants. If

D :=
det(x) + 1

det(x)− 1

then
i2 : D 7→ −D
i1 : (a, b, c, D) 7→ (−a,−b,−c,−D).

This finishes the proof.



RATIONALITY OF MODULI 29

A (rational) slicefor the action ofG is a subvarietyS ⊂ X such that the general
G-orbit intersectsS in exactly one point. (The sliceS need not be a rational variety.
To avoid confusion, we will always refer toS as a slice.) A subvarietyY ⊂ X is
called a(G, H)-slice(whereH ⊂ G is a subgroup) ifG·Y ∼ X andgy ∈ Y implies
thatg ∈ H. Clearly,G\X ∼ H\Y . Moreover, iff : X → X ′ is aG-equivariant
morphism andY ′ is a(G, H)-slice inX ′ thenf−1(Y ′) is a(G, H)-slice inX.

NOTATIONS 7.13. — For (a reductive group)G acting (rationally) onX we denote
by

Stgen = Stgen(G, X)

the generic stabilizer (defined up to conjugacy). The action is called anaf -action
(almost free) if Stgen is trivial.

We use a more precise version of Theorem7.7:

THEOREM 7.14. — [17] Let ρ : PGL2 → PGL(V ) be a representation and̃ρ a
lifting of ρ to a representation ofGL2 → GL(V ). Let

G′′ := Stgen(GL2, V ) and G := GL2/G
′′.

If the centralC2 6⊂ G′′ then
P(V ) ∼G G× S,

whereS is a rational variety (with trivialG-action).
If C2 ⊂ G′′ then

– either thePGL2-action onP(V ) hasnoslice andG\P(V ) is rational
– or

P(V ) ∼G G× S,

where the sliceS is a rational variety (with trivialG-action).

We now explain some general techniques in the study of rationality of quotient
varieties.

LEMMA 7.15. — LetE → X be a vector bundle of rankr = rk (E). LetG be an
(affine) reductive group acting onE such that the generic orbit ofG in E projects
isomorphically onto a generic orbit ofG in X. Then

E ∼G X × Ar
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with trivial G-action on the affine spaceAr.

Proof. — Denote byO theG-orbit through a generic point inE. Shrinking (equiv-
ariantly)X, if necessary, we may assume that the map

π : H0(X,E) → H0(O,E|O)

is surjective. With our assumptions, there exists a basiss1, ..., sr such that for each
j, the G-orbit of sj projects isomorphically onto its image inX and generates a
trivial 1-dimensionalG-equivariant sub-bundle of the restrictionE|O of E to the
orbit O. It follows thatE|O = ⊕r

j=1G · sj. In particular,H0(O,E) contains the
trivial G-moduleM generated bys1, ..., sr. Moreover,M generatesH0(O,E|O)
over every point ofO. Sinceπ is a map ofG-modules andG is reductiveH0(X, E)
contains a submoduleM ′ such thatπ(M ′) = M (asG-modules). The elements of
M ′ generateE over a generic point ofX. A basiss′1, ..., s

′
r of M ′ gives the desired

splitting of the action.

COROLLARY 7.16. — LetG be a reductive group and

E ′′ → E ′ → X

a G-equivariant sequence of vector bundles such that the genericG-orbit of E ′

projects isomorphically onto its image. Choose a genericG-equivariant sections′

of E ′ → X and denote byE ′′
s′ the restriction ofE ′′ to this section. Then

E ′′ ∼G E ′′
s′ × Ar′

(wherer′ = rk E ′), with trivial G-action onAr′.

PROPOSITION7.17. — LetX be a variety with an actionρ : G → X of a linear
algebraic groupG. Let E → X be a vector bundle and̃ρ : G̃ → E a G̃-action
lifting ρ. Consider a generic orbitG · x ⊂ X and the linear action of̃G on the
space of sectionsH0(X, E).

Assume that̃G is reductive andV is a linear representation of̃G which is con-
tained inH0(X, E). Then there exists an affine openX ′ ⊂ X such that the vector
bundleE → X ′ admits aG̃-map onto aG̃-representationV ∗.

If the action ofG on X is almost free we may think ofX as being (birational
to) a principal fibration over the quotientG\X with fiber G. If G is affine we
may assume thatX andG\X are also affine. Let us also recall a standard general
construction ofG-maps: if the ringC[X] is a direct sum ofG-modules then any
G-submoduleV ⊂ C[X] defines aG-mapX → Spec(V ). We also have a vector
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bundle version of the above construction: letE → X be aG-vector bundle andO a
G-orbit through a generic point. Assume thatH0(O,E) (the restriction of the space
of sections toO) containsV as a submodule. We obtain aG-map

v : H0(O,E) → V ∗

(the dual module, considered as a vector bundle over a point).

LEMMA 7.18. — There exists aG-stable Zariski openU ⊂ X and a rational
G-map ofH0(U,E) → V ∗ extendingv.

Proof. — A generic orbitO has aG-equivariant neighborhoodU , with U/G affine,
such that

H0(U,E) // // H0(O,E).

The moduleH0(U,E) is a direct sum of finite dimensional irreducibleG-modules.
We can now take any submoduleV ⊂ H0(U,E) which surjects isomorphically
onto a submodule inH0(O,E).

LEMMA 7.19. — If X has anaf -action ofPGL2 then

X × P(V2d) ∼PGL2 X × P(V2d),

with diagonalPGL2-action on the left and trivialPGL2-action onP(V2d) on the
right.

Proof. — We know thatC[PGL2], as aPGL2-module, is sum of all even modules
V2d. This gives aPGL2-maps : X → P(V2d). The quotient

PGL2\X × P(V2d)

is a projective bundle over the quotientPGL2\X, with a section obtained from
s. Therefore, it is birational to the product(PGL2\X) × P(V2d), which gives the
claimedPGL2-isomorphism.

COROLLARY 7.20. — Let X be a variety with anaf -action ofPGL2. ThenX is
a (PGL2, NT)-slice in

X × P(V2)

(with diagonalPGL2-action).
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LEMMA 7.21. — Assume thatX has anaf -actionρ of PGL2. LetV V−→ X be
a vector bundle overX with an actionρ̃ of GL2 lifting ρ. Assume thatX contains
a PGL2-orbit Y ∼ PGL2 such that theGL2-moduleH0(Y,VY ) containsVd, for
some oddd. Then

P(V) ∼PGL2 PGL2 × S,

(with trivial PGL2-action onS). Otherwise,V is induced from aGL2-vector bundle
onPGL2\X.

Proof. — Let Y be an orbit such thatH0(Y,VY ) containsVd, for some oddd.
ShrinkingX, if necessary, gives a surjective map ofGL2-modules

H0(X,V) // // H0(Y,VY ).

SinceH0(Y,VY ) is an algebra overH0(Y,OY ) = ⊕d≥0V2d, it containsV1 as a
submodule. We obtain aPGL2-equivariant surjective map

P(V) → P(V1) = P1.

Since the stabilizer of a point inP1 is solvable, we get a sliceS ⊂ P(V), as claimed.
Assume that there is an orbitY ∼ PGL2 such thatVY contains only even weight

GL2-submodules. Then the centralC2 ⊂ GL2 acts trivially onVY . If follows that
VY is a trivial PGL2-bundle, andH0(Y,VY ) a trivial PGL2-module. The semi-
simplicity of thePGL2-action implies thatH0(X,V) containsH0(Y,VY ) as a sub-
module. ShrinkingX if necessary, we can find linearly independentPGL2-invariant
sections, whose specializations toY generateH0(Y, PGL2). Therefore,V is lifted
from the quotientPGL2\X.

LEMMA 7.22. — LetV be a representation ofG of dimension≥ 2 (with G acting
on the left). ThenV ⊕ V is aG×GL2-space (with rightGL2-action) and

V ⊕ V ∼G×GL2 V
M2=V1⊕V1

��
Gr(2, V ),

a vector bundle with fibers2× 2-matrices (with rightGL2-action).

Proof. — Consider the map

V ⊕ V → Gr(2, V )
(v, v′) 7→ 〈v, v′〉,
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defined on the open,G×GL2-invariant subset of noncollinear pairs(v, v′) ∈ V ⊕V
(with fibers consisting of pairs spanning the same 2-space). TheGL2-action on the
fibers is the right multiplication on matrices:

(v, v′) 7→ (av + bv′, cv + dv′).

Assume thatG is reductive and denote byG′′ := Stgen(G, Gr(2, V )) and by
G′ := G/G′′ the quotient group ofG which acts effectively onGr(2, V ).

COROLLARY 7.23. — Assume that the action ofG′ on Gr(2, V ) has a sliceS so
that Gr(2, V ) ∼ S × G′. LetVS be the restriction ofV to S (this makes sense by
Corollary 7.16). Then

G\V/GL2 ∼ G′\VS.

REMARK 7.24. — The groupG′′ acts as scalars onV = V1 ⊕ V1 (it commutes
with GL2).

LEMMA 7.25. — Assume that we are in the situation of Corollary7.23, G = GL2

andH ⊂ GL2 has finite image inPGL2. ThenG\V/H is rational.

Proof. — By Corollary7.24, the sliceS is 3-stably rational, since

S × PGL2 ∼ Gr(2, V )

andGr(2, V ) is rational. The quotient ofVS by a fiberwise linear action is birational
to (M2/H)× S (every vector bundle admits anH-equivariant trivialization over an
open subset ofS). There is a left action ofG2

m ⊂ GL2 on M2 = V1 ⊕ V1 which
commutes withH. ThusM2/H is (birationally) a three-dimensional variety with
an af -action of Gm. The quotient (a surface) is unirational, hence rational (by
Theorem7.2), and

G\(V ⊕ V )/H ∼ S × (V1 ⊕ V1)/H ∼ S × C3.

The groupPGL2 acts onP(M2) on both sides. We will need an explicit descrip-
tion of the action for some of its subgroups.
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LEMMA 7.26. — We have

Stgen(NT × NT, P(M2)) = C2.

Proof. — IndeedNT contains

Gm = {t} : (x, y) 7→ (tx, t−1y),
i : (x, y) 7→ (y, x).

The corresponding actions onP(M2) are

(a, b, c, d) 7→ (t1t2a, t−1
1 t2b, t1t

−1
2 c, t−1

1 t−1
2 d)

and
i1 : a → c, b → d
i2 : a → b, c → d,

respectively. A matrix(a, b, c, d) ∈ M2 can be transformed to(1, 1, 1, d) by a unique
element ofGm × Gm, theS2 × S2-orbit of which consists of two elements (for
d, d−1).

COROLLARY 7.27. — The groupNT × C∗ acts almost freely onP(M2). There is
an open,NT × NT-stable subvarietyU ⊂ P(M2) such that

U

C∗×C∗

��
C∗ ⊂ P1,

with a transitive action ofC∗×C∗ ⊂ NT×NT on the fibers. The diagonal subgroup

S∆
2 ⊂ S2 ×S2 = (NT × NT)/(C∗ × C∗)

acts on each fiber as an involutionx 7→ x−1. The factorS2 = (S2 ×S2)/S
∆
2 acts

on the baseC∗ ⊂ P1 as an involution without fixed points, on the first factor in the
fiber asx → x−1, and as identity on the second factor.

COROLLARY 7.28. — LetD ⊂ NT be a dihedral subgroup such thatD\NT = C∗.
Then theC∗-bundle

C = D\P(M2) → NT\P(M2)

is induced from theC∗-bundle

D\P(M2)/NT → NT\P(M2)/NT = P1
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and is hence birationally trivial.

Proof. — Indeed, the left and the right actions ofNT commute. By Lemma7.26,
Stgen(NT × NT, P(M2)) = C2, which implies that the bundle is induced.

LEMMA 7.29. — For every dihedral groupD and everyH ⊂ NT the conic bundle

CH = D\P(M2)/H → NT\P(M2)/H,

has a section.

Proof. — The quotientD\U/H from Corollary7.27admits a fibration

D\U/H

C∗
D×C∗

H/S2

��
P1/S2.

HereC∗
D × C∗

H is the quotient of the fiberC∗ × C∗ of U → C∗ by the intersection
of D, H with the diagonalC∗

∆ ⊂ C∗ × C∗. IsomorphismsC∗
H → C∗ andC∗

D → C∗

induce a birational fiberwise isomorphism

CH = D\P(M2)/H

��
NT\P(M2)/H

∼ S2\P(M2)/S2

��

= C0

NT\P(M2)/S2

and it suffices to considerD = S2, H = S2. In this case, an alternative equivariant
completion ofU is given by

U ⊂ P1
1 × P1

2 × P1
3

��
P1

3

,

with an action ofS2 ×S2, where the firstS2 acts as an involution on the first two
factors and identity on the base while the complementaryS2 acts only on the base.
Thus the quotient is a conic bundle over the complement in

P1 × P1/S2 ×S2 = P1 × P1

to the branch locus of the quotient map. Here the left (resp. right)S2 acts as an
involution on the left (resp. right)P1 and the branch locus is exactly the union of
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four lines. By Lemma7.3, this conic bundle has a section (it is nonsingular on a
pencil of lines minus at most two points).

LEMMA 7.30. — Let G be a subgroup ofSL2, not equal toÃ5, andV a linear
representation ofG. ThenG\P(V ) is rational.

Proof. — ForG = SL2 this is a theorem of Katsylo [17]. We now consider proper
subgroupsG ( SL2. If G is solvable and connected then rationality for the quotient
follows from a theorem of Vinberg [36]. For compactG the proof is similar to the
dihedral case described below. Assume now thatG is finite and not equal tõA5.
ThenG is either

1. a finite subgroup ofC∗,
2. a dihedral group or
3. Ã4, S̃4.

The first case is easy. For dihedral groups all irreducible representations ofG
have dimension≤ 2 and the corresponding quotients are rational by Theorem7.2.
Let V be a faithful representation of a dihedral groupD (otherwise, we are reduced
to a quotient group). ThusV = W ⊕ W ′, wheredim W = 2 anddim W ′ ≥ 1.
Denote byG′ = G/C′ the quotient acting faithfully onW ′ (C′ is a cyclic group).
We haveW ∼D C∗ × P1, with trivial action ofD on C∗ and trivial action ofC′ on
P1. By Lemma7.15,

C∗ × P1 ×W ′ ∼G′ (C∗ × P1)×W ′,

with trivial action ofG′ onC∗ × P1. Thus

D\V ∼ (D′\W ′)× (C∗ × P1)

and we can apply induction.
We turn to the last case. An irreducible representation ofÃ4 is either a character,

or a faithful two-dimensional representation, or a three-dimensional representation,
trivial on the center (a faithful representation ofA4). An irreducible representation
of S̃4 is either a faithful two-dimensional representation, a faithful four-dimensional
representationW := Sym3(V1) or a representation ofS4 (of dimension≤ 3).

For irreducible representations of dimension≤ 3 rationality for the quotient fol-
lows from Theorem7.2. We turn toW . Recall that

W = Sym3(V1) = V χ
1 ⊕ V −χ

1 ,
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as aÃ4-representation, whereV χ
1 = V1 ⊗ χ, V −χ = V1 ⊗ χ−1 and

χ : A4 → Z/3 ⊂ C∗

is the cubic character. A pair of (generic) points

pχ ∈ P1 = P(V χ), p−χ ∈ P1 = P(V −χ)

defines a lineP1 ⊂ P(W ). This shows that

P(W ) ∼S̃4

L
��

P1 × P1

,

whereS4 acts on the base,A4 acts linearly on the fiberL andS2 = S̃4/S4 acts
as an involution on the fiberL. ThusS̃4\P(W ) is a conic bundle over the rational
surfaceS4\(P1 × P1). We now analyze the geometry of this bundle in more detail.
Consider the actionD2 ⊂ S4 onP1 × P1 and onP2 = Sym2(P1). Every involution
i ∈ D2 has two invariant pointsxi, yi. Consider the graphsP1 connecting the points
(xi, yi)− (yi, xi). Their set is equal toP1 and there is a graph:

li : (xi, yi)− (yi, xi) ⊂ P1 × P1

consisting of points(x, i(x)). The lineli is exactly the subset ofi-invariant points
in P1 × P1. The action ofD2 is free outside the three linesli, i ∈ D2, i 6= 1. There
are exactly6 points which are invariant underD2.

The corresponding action onP2 can be described as follows. There are three
points corresponding to(xi, yi) which are stable underD2 and three lines (images
of li) so that the action is free on the torusC∗ × C∗ (the complement inP2 to the
union of li). The groupD2 acts onC∗ × C∗ as a translation by the subgroup of
points of order2.

The quotientP2
q := D2\P2 is a nonsingular variety isomorphic toP2 (indeed the

only possible singularities come from the threeD2-invariant points inP2 but the
quotient by the local action is nonsingular). The diagonalP1

∆ ⊂ P1 × P1 projects
onto a conicC ⊂ P2, which is invariant underD2. The conicC intersects the
“vertical” and “horizontal” subgroups inC∗ × C∗ ⊂ P2 in two points and does not
intersect the line at infinity.

Thus inP2
q = D2\P2, the image ofP1

∆ intersectsC∗ in one point. Therefore, the
images ofP1

∆ and ofli are lines (since pairwise intersections of theli are equal to
1) and the(C2)

3-coveringP1 × P1 → P2
q is ramified exactly over a union of four

lines. If suffices to observe that every conic bundle overP2
q has a section. Indeed,

let p be the intersection point of two linesli andli′ and consider the pencil of lines
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in P2
q throughp. Each line in this pencil intersects the ramification locus in at most

three points and we can apply Lemma7.3.

Now we turn to reducible representationsV = ⊕α∈AV α of Ã4. If V is faithful for
Ã4 then there is anα0 ∈ A such thatV α0 is a three-dimensional irreduciblefaithful
representation of̃A4 and

V ∼Ã4
V α0 × (⊕α 6=α0V

α)

with trivial action of Ã4 on ⊕α 6=α0V
α (by Lemma7.15). If V is faithful for A4

thenV contains a faithful irreducible three-dimensional representation ofA4 and
we can apply the same argument. In all other casesV is a sum of one-dimensional
representations and we are reduced to Case 1.

Finally, consider reducible representationsV of S̃4. If V is faithful then it con-
tains either a faithful irreducible two-dimensional representation or the faithful rep-
resentationW . Again, we apply Lemma7.15as before. IfV is faithful for S4 then
it contains a faithful irreducible representation of dimension≤ 3 and we conclude
as above. In all other casesV is a sum of one-dimensional representations.

LEMMA 7.31. — Let V be a representation ofG ( SL2, with G 6= Ã5. Then
G\Gr(2, V ) is rational.

Proof. — The relevant groupsG can be subdivided as follows:

1. G is a subgroup of the normalizer of a maximal torus;
2. G an infinite subgroup of a Borel subgroup;
3. G = A4, Ã4;
4. G = S4, S̃4.

Let V = W ⊕W ′ be a reducible representation ofG. Then (birationally)

Gr(2, V )

Hom(C2
x,W )

��
Gr(2, W )

(wherex is a point on the base). In particular, ifdim W ≤ 2 then

Gr(2, V ) ∼G Hom(W ′, W ),
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with linearG-action onHom(W ′, W ). This reduction suffices for the relevant in-
finite groups (for example, for connected solvableG we can apply Lemma7.6).
Further,

– if Stgen(G, Gr(2, V )) = 1 then (birationally)

G\Gr(2, V ) → G\Gr(2, W ),

a vector bundle.
– if Stgen(G, Gr(2, V )) = C ⊂ ZG (a cyclic subgroup) then (birationally)

G\Gr(2, V )

C\Hom(C2
x,W )

��
G\Gr(2, W ).

We now considerA4, Ã4, S4. The rationality ofG\Gr(2, V ) for irreduciblerep-
resentations of these groups follows from the fact that all of them have dimension
≤ 3. Assume now thatV = W ⊕ W ′, with W irreducible of dimension3. The
classification of these representations implies that the action of the center must be
trivial. Then, birationally,

Gr(2, V )

Hom(C2
x,W ′)

��
P2 = P(W ∗).

TheG-action is equivalent to aG-action on a vector bundle

G\Gr(2, V )

��
G\Gr(2, W ) = G\P2.

Finally, let us consider the case ofS̃4. Let W be its unique irreducible repre-
sentation of dimension four (as in Lemma7.30). We claim thatS̃4\Gr(2, W ) is
rational. Indeed, as̃A4-modules, we have

W = W χ ⊕W−χ,

whereW χ, W−χ are two copies of the standard representation ofÃ4 of dimension2
andχ (resp.−χ) indicates the eigenspace decomposition for the nontrivial character

χ : A4 → Z/3 ⊂ C∗.
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Further,

Gr(2, W ) ∼ Hom(W χ, W−χ),

with a linearA4-action (since the center acts trivially) and a permutationS2 invert-
ing the mapw ∈ Hom(W χ, W−χ). More precisely,W−χ = (W χ)∗ and

Hom(W χ, W−χ) = Sym2(W−χ)⊕ C1,

whereC1 corresponds to skew symmetric maps andA4 acts onC1 by χ. The invo-
lution S2 = S4/A4 acts onC1 and onSym2(W−χ) ast 7→ t−1. In particular, if
C∗ × C∗ is the diagonal group acting onSym2(W−χ)⊕ C1 thenS2 acts as

X → s−1X,

wheres ∈ C∗ × C∗ andX ∈ Sym2(W−χ)⊕ C1. There is an equivariant map

f : Hom(W χ, W−χ) → C1,
s 7→ (x, s(y))− (s(x), y),

with an effective action ofS3 = S4/D2 on the targetC1, which to a subspace
s ∈ C2 ⊂ W χ ⊕ W−χ assigns the value of the2-form (x, s(y)) − (s(x), y). The
fiber of f is D2-birational toSym2(W χ) = P2. We have already seen in the proof
of Lemma7.30 that D2\P2 = P2. Thus S̃4\Gr(2, W ) is a C∗- bundle over a
P2-fibration overS2\C1. It is clear that thisP2-fibration is trivial. The quotient
conic bundle is nondegenerate over a product ofP2 with an open subvariety in
C1/S3. Hence it has a section. Rationality ofS̃4\Gr(2, W ), and more generally,
S̃4\Gr(2, W ⊕ · · · ⊕W ), follows (the latter is a vector bundle over the former).

Assume now thatV = nW ⊕ V ′, wheredim V ′ ≥ 1, andn ∈ N. Since the
S4-action onGr(2, nW ) is af there is aS̃4-equivariant homogeneous rational map
f : Gr(2, nW ) → V ′ sending the generic̃S4-orbit in W to the generic̃S4-orbit in
V ′. Notice that the centerC2 acts as a scalar onHom(W, V ′). We have (birationally)

(7.1) S̃4\Gr(2, V )

S2\Hom(C2
x,V ′)

��

∼ C∗×

P(Hom(C2
x,V ′))

��
S̃4\Gr(2, nW ) S4\Gr(2, nW )
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(with rational bases). The projective bundle on the right has a section. Indeed,

(7.2)

Hom(C2
x,V ′)

��
Gr(2, nW )

is an equivariant quotient bundle of the trivial bundle with fiberHom(W, V ′). The
mapf defines anS4-equivariant sections(f) in the projective bundle in (7.1). The
(equivariant) linear projection

Hom(W, V ′) → Hom(C2
x, V

′)

mapss(f) to an equivariant section of the bundle in (7.2). Thuss(f) projects onto
a section of the bundle on the right in (7.1), making it birationally trivial.

We proceed to describe possibleSL2, resp. PGL2-actions on Grassmannians.
(If all weights inV are of the same parity thenGr(2, V ) carries thePGL2-action,
otherwise theSL2-action.)

LEMMA 7.32. — LetV be a faithfulSL2-representation of dimension≥ 3. Then

V Stgen

dim ≥ 5 1
V4 C2

V3 D2

V2 ⊕ V0 C2

V2 NT

V1 ⊕ V1 C∗

V1 ⊕ V0 B̃

Further,

– Gr(2, V4) has a(PGL2, NT)-sliceS = Sym2(P2) with anaf -action ofNT/C2,
(whereC2 is the center ofNT);

– Gr(2, V3) has a(PGL2, A4)-slice birational toP1, withA4 acting onP1 asC3.

Proof. — Consider first irreducible representationsV = Vd = Symd(V1) and as-
sume that the stabilizer of a generic lineP1 ⊂ P(V ) contains a nontrivial cyclic
groupC. ThenC fixes at least two points in thisP1. Any orbit of C onP1 is a union
of a zero-cycleC · x and a zero-cycle supported in the fixed points. In particular,
the subvariety of points inP(Vd) which are fixed byC has dimension≤ d/|C|. The



42 FEDOR BOGOMOLOV, TIHOMIR PETROV and YURI TSCHINKEL

dimension of the variety ofC-fixed lines inP(V ) is therefore≤ 2d/|C|. The subva-
riety of distinct cyclic subgroupsC ⊂ PGL2 has dimension2 anddim Gr(2, Vd) =
2d− 2. Sinced/|C| ≤ d/2 the inequalities

2d− 4 > 2d/2 and d− 4 > 0

imply the result.
Assume thatV = ⊕j∈JVdj

, |J | ≥ 2 and thatStgen 6= 1. Thendj ≤ 2, for all
j ∈ J . Indeed, the stabilizer of a genericP1 through a generic pointp ∈ P(Vd) is
a subgroup of the stabilizer ofp, which stabilizes some generic line in the tangent
space atp. This group is trivial ford > 2 and equal toC2 for d = 2.

If V = V2 ⊕ V ′, with dim V ′ > 2, thenGr(2, V ) is (birationally) a fibration
over Gr(2, V2), with fibers Hom(C2, V ′) so thatStgen = 1 if dim V ′ > 3. If
V = V2 ⊕ V1 thenStgen is the same as the (generic) stabilizer of theNT̃-action
onHom(V ′, V1), V

′ ∈ Gr(2, V2) = P2, hence trivial. ForV = V2⊕ V0, Stgen = C2.
In the remaining casesdj = 0 or 1, for all j ∈ J . If V contains at least three

copies ofV1 then the argument above shows that the action isaf . Similarly, if
V = V1 ⊕ V1 thenStgen = C∗ and if V = V1 ⊕ V1 ⊕ V0 thenStgen = 1. For
V1 ⊕ 3V0, the generic stabilizer is the same as for three linear functionals - which is
zero.

LEMMA 7.33. — The quotientPGL2\Gr(2, V ) is 2-stably rational.

REMARK 7.34. — For evend ≥ 10, PGL2\Gr(2, Vd) is rational by [32].

Proof. — By Lemma7.32, if dim V ≥ 5 then theStgen = 1 and we can apply
Lemma7.19and Corollary7.20to conclude that

PGL2\Gr(2, V )× C2 ∼G NT\Gr(2, V ).

The claim follows from Lemma7.31. It remains to consider:

1. Gr(2, V4),
2. Gr(2, V3),
3. reducibleV .

In the first case,Stgen(PGL2, Gr(2, V4)) = S2, with normalizerNT ⊂ PGL2.
We claim that the subsetX ⊂ Gr(2, V4) of S2-invariant points is a(PGL2, NT)-
slice. Indeed, there is a Zariski open subsetU ⊂ X such that the stabilizer of each
point inU is exactlyS2. In particular,g · U intersectsU only if g ∈ NT. Consider
the P2 ⊂ P(V4) consisting ofS2-invariant subschemes containing4 points. Any
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line in U joins a pair of points in thisP2. Therefore, we have a (birational)NT-
isomorphism ofU andSym2(P2). The stabilizer of a generic point inX is a central
subgroup inNT whose action onP2 is equivalent to a linear action onC2. (Indeed,
Sym2(V1) = C⊕W2, whereC is the trivial representation - the invariant symmetric
form - andW2 is a faithful two-dimensional representation ofNT/S2). Thus instead
of X with theNT-action we can considerC2 × C2 with the(NT/S2) ×S2-action
(where the secondS2 interchanges the factors). In particular, (by linearity)

NT\X ∼ C∗ × NT\P3,

and is hence rational.
In the second case,Gr(2, V3) has a surjection of degree 2 ontoP(V4). The

connected component of the preimage of the(PGL2, S4)-slice P1 in P(V4) is a
(PGL2, A4)-slice, isomorphic toP1. The quotient is rational.

If V is reducible and thePGL2-action on the Grassmannian has nontrivial stabi-
lizer thendim V < 5. Rationality follows sincedim Gr(2, V ) ≤ 4 and the generic
orbit has dimension at least2.

PROPOSITION7.35. — LetG, H be finite solvable subgroups ofPGL2. Then

G\PGL2/H

is rational.

Proof. — The action is birational to the (projective) action ofG × H on P(M2),
whereG acts on the right andH on the left. The groupsG, H are either:

– cyclic;
– dihedral or
– A4, S4.

The case ofprimitive solvable groups is covered by Theorem7.10, [26]. If V is re-
ducible then there is a nontrivial action ofC∗ onG\P(V )/H, leading to rationality.
This covers the case when eitherG or H is cyclic.

We claim that ifV is irreducible and imprimitive (for theG×H-action) then either
G or H is dihedral. By definition,V := M2 = ⊕αV α, such that̃gV α = V α′

for
all g̃ ∈ G × H. Moreover, by irreducibility, allV α must have the same dimension,
= 1 or 2. Notice that imprimitivity for an action of a groupG′ implies imprimitivity
for the induced action of every subgroupG′′ ⊂ G′ (with the same decomposition of
V ). We now claim that the actions ofA4 × A4, and consequently ofA4 ×S4 and
S4 ×S4 are primitive. Indeed,A4 × A4 containsD2 ×D2 as a normal subgroup,
for which the imprimitive structure is either a sum of two subspaces of dimension
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2 or four subspaces of dimension1, corresponding to the choice of a subgroup
S2 ⊂ D2. The first possible imprimitive structure forD2 × D2 does not extend
to one forA4 × A4 (which has no index2 subgroups). The second structure is
also impossible:A4 rotates the subgroupsS2 ⊂ D2, hence there is noA4-invariant
imprimitive structures forD2 ×D2.

It remains to consider the case when bothG andH are dihedral. OnV1 there
is a unique imprimitive structure, corresponding to the eigenspacesC1, C2 of the
elements ofG. In particular, there is an imprimitive structure on

M2 = V1 ⊕ V ′
1 = (C1 ⊕ C ′

1)⊕ (C2 ⊕ C2)
′.

We claim that (birationally)

G\P(M2)/H

��

P2 = G\Sym2(P1)

is a conic bundle degenerating precisely over the image of the diagonal and the
subvarieties inP2 with nontrivial stabilizers.

Indeed, sinceH ⊂ NT (aC2-extension ofC∗), (birationally)

G\P(M2)/H

C∗=NT/H
��

NT\P(M2)/H.

The quotientC∗\P(M2) is (birationally) a fibration overP1 × P1, with S2 act-
ing by permutation, where the coordinateP1s are the projectivizations of the two-
dimensional eigenspaces for theC∗-action onM2. Thus

P(M2)/H

��
P2 = P1 × P1/S2

is a conic bundle nondegenerate outside a conic (the image of the diagonal inP1 ×
P1). TheG-action commutes with theNT-action and is effective on the base. This
proves the claim.
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We haveG ⊂ NT and

G\P2 → NT\P2

is a conic bundle. Since the left and right actions ofNT commute,G\P2 contains an
open subvarietyU ×C∗ where the restriction of the conic bundle is nondegenerate.
HereC∗ = G\NT andU is a subset ofP1 = NT\P2. Therefore the conic bundle has
at most2 singular fibers on any completion of the fiberC∗ ⊂ U × C∗. Rationality
follows.

We can now describe some open subvariety in the quotientG\P(M2)/H explic-
itly. Consider the action ofC∗ ⊂ NT on both sidesC∗\P(M2)/C∗. With respect to
this actionP(M2) is birationally equivalent to a trivialC∗ × C∗-fibration overP1.
Now we add the action ofS2 on both sides. The productS2 ×S2 acts on the base
P1. The groupS4 contains a normal subgroupD2 ⊂ NT and the action of each
S2 ⊂ D2 inverts the respectiveC∗ action. Thus (birationally)

NT\P(M2)/NT

NT×NT

��
P1 − 3 pts,

where the deleted points are the ramification points of the mapP1 → P1/D2. In
particular, there is an openU such that

G\P(M2)/H

C∗

��
U

C∗

��
P1 − 3 pts.

By Lemma7.3, the conic bundles are trivial.

Finally, the conic bundles onP2/S4 andP2/A4 have sections. Indeed, bothA4

andS4 contain dihedral subgroups of index 3 (D2, resp. D4). The image of the
section in the conic bundle overD2\P2 (resp.D4\P2), has odd degree in the conic
bundles overA4\P2 andS4\P2, respectively. We apply Lemma7.4.
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PROPOSITION7.36. — LetV be an irreducibleGL2-representation andH ⊂ SL2

a finite group, not equal tõA5. Then

GL2\(V ⊕ V )/H

is rational.

Proof. — First of all,V1 ⊕ V1/H is rational. Next, by Lemma7.22,

V ⊕ V ∼GL2×GL2 V
M2=V1⊕V1

��
Gr(2, V ).

First we assume thatV has odd weight. The GrassmannianGr(2, V ) carries
the action ofPGL2. If we restrict the bundleV to a genericPGL2-orbit O in
Gr(2, V ) then the corresponding moduleH0(O,VO) containsV1 as a submodule.
By Lemma7.18, this gives an equivariant map

V → V1 ⊕ V1

with a1-transitive action ofGL2 on the target. Thus

(7.3) GL2\V/H ∼ H\Gr(2, V )

(with the samesubgroupH ⊂ GL2 appearing on the left). Indeed,GL2 ⊂ (V1 ⊕
V1) = M2 and multiplication byH on the right gives an orbitx · H. This orbit is a
(GL2×H, Hx×H)-slice (withHx = xHx−1) and it is stabilized exactly byHx×H,
acting doubly transitively on the setHx ·x. It follows that every pointx′ ∈ x ·H is a
(Hx ×H, Hx)-slice of the orbitx ·H. The quotientH\Gr(2, V ) is rational by7.31.

Assume thatV has even weight. If thePGL2-action isaf then

GL2\V/H ∼ (PGL2\Gr(2, V ))× (C∗\(V1 ⊕ V1)/H).

If it is not af , then, by Lemma7.32, V = V4 or V2.
For V = V4 we have the(PGL2, NT)-sliceX = Sym2(P2) with theNT-action

which we can replace byC2 ×C2 with a (NT/C2)× C2-linear action. In particular,
we identify the quotient with a quotient ofC2 ⊕ C2 ⊕ V1 ⊕ V1 by a linear action of
NT̃ × S2 × H (whereNT̃ ⊂ GL2). The action ofNT̃ × H on V1 is transitive with
stabilizerC2 × H. Hence it is equivalent to the action ofD2 × H onC2 ⊕ C2 ⊕ V1,
which is aC2-vector bundle (permutation of the anti-invariant part ofS2-action)
overC2 × V1, with D2 × H action. The latter quotient is rational. ForV = V2 the
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action is transitive onGr(2, V ) = P2 and the quotient has dimension2 - rationality
follows.

We will also need a more general result forH = S2.

PROPOSITION7.37. — Let

X
L−→ Y =

∏
j∈J

P(Vdj
)

be aGL2-homogeneous line bundle. If at least onedj 6= 2 thenGL2\X ×X/S2 is
rational.

Proof. — Case 1.|J | = 1. If d = d1 is even or ifd is odd and the line bundle has
odd degree onP(Vd) then

X ×X ∼GL2×S2 Vd ⊕ Vd

and we apply Proposition7.36. If the line bundle has even degree then it is trivial
andGL2 acts asPGL2 × C∗. If the PGL2-action onP(Vd) is af we have

P(Vd) ∼PGL2 S × PGL2,

for a rational sliceS (with trivial PGL2-action). We have aPGL2×C∗×S2-action
on

C× PGL2 × S × C× PGL2 × S.

The quotient variety is a vector bundle overPGL2\PGL2 × PGL2/S2 (rational by
Lemma7.12). The claim follows. If thePGL2-action is notaf , thenV = V3 or V1.
ForV1 the quotient is rational by dimensional reasons. ForV3 we have a projection

C× P3 × C× P3

P1×P1

��
Gr(2, V3)

commuting with both actions. Recall thatGr(2, V3) hasP1 as a(PGL2, A4)-slice,
with A4 effectively acting as a cyclic groupC3 = A4/D2 on P1 (the groupD2

acts trivially on the(PGL2, A4)-slice P1 ⊂ P4 and similarly forGr(2, V3), see
Lemma7.32). Thus the quotient is the same as for the bundle

P1×C×P1×C
��

P1
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under the action ofA4×S2. In particular, it is a vector bundle over aP2 = D2\P1×
P1/S2-fibration overP1 = P1/C3, hence is rational.

Case 2.|J | ≥ 2. If at least onedj is odd and> 1 or if all dj = 1 and|J | > 2,
then there is a sliceS and thePGL2-action isaf . We can writeY as (the total space
of the) line bundle:

X

L
��

S × PGL2

and, using Lemma7.21, reduce to either a vector bundle over

PGL2\PGL2 × PGL2/S2,

whenL is trivial onPGL2, or to

GL2\GL2 ×GL2/S2

otherwise. In both cases the base is rational by Lemma7.12.
If dj = 1 for everyj ∈ J and|J | = 2 then the there is a map

(P1)4 → P(V4) = Sym4(P1) = P4

(of degree24, mapping4 points to a form of degree4). The preimage in(P1)4 of
the (PGL2, S4)-slice P1

s = P1 of P4, will be a set of six linesP1
g,h, labeled by a

pair of generatorsg, h ∈ D2 (which act trivially onP1
s ⊂ P4). More precisely, the

line P1
g,h is the set given by(x : gx : hx : ghx) ∈ (P1)4, for x ∈ P1. The map

P1
g,h → P1

s = P1
t,s/D2 has degree4. ThusP1

g,h is a (PGL2, D2)-slice of (P1)4 and

the quotient of a vector bundle
L⊕L−→ P1 by a linear action ofD2 is rational.

Assume that alldi are even. ThenL is (birationally) trivial. Unless|J | = 2 and
d1 = d2 = 2, there is a decomposition of

Y × Y = P(Vd)× Y ′ × P(Vd)× Y ′

such that thePGL2-action isaf and

P(Vd)× Y ′ × P(Vd)× Y ′ ∼PGL2×S2 (Y ′ × Y ′)× (P(Vd)× P(Vd))

(with trivial PGL2-action onP(Vd)), by Lemma7.19. The quotient is birational to
a vector bundle overPGL2 × C∗\X ′ ×X ′/S2, whereX ′ is the trivial line bundle
overY ′.

We have reduced to|J | = 1 treated in Case 1 or to|J | = 2 andd1 = d2 = 2,
treated in Lemma7.38.
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LEMMA 7.38. — The quotient

X := PGL2\(P1(V2)× P2(V2)× P1(V2)× P2(V2))/S2

is rational, whereP1(V2) and P2(V2) are different copies ofP2 = P(V2) and S2

acts by permutation.

Proof. — Consider the projection

X → PGL2\P1(V2)× P1(V2)/S2

and thePGL2 ×S2-equivariant map of degree6

pr : P(V2)× P(V2) → P(V4)
(Q1, Q2) 7→ Q1 ·Q2.

The spaceP(V4) has a(PGL2, S4)-slice P1
s (the D2-invariant polynomials). The

zeroes of a (polynomial)p ∈ P1
s form an orbit underD2. The preimagepr−1(P1

s) ⊂
P2 × P2 consists of3 lines, each invariant underD2. Indeed, the ordered pair
(Q1, Q2) corresponds to a choice of a generatorg ∈ D2 such thatx, g(x) are zeroes
of Q1 and h(x), hg(x) are zeroes ofQ2. Thus the lineP1

g ⊂ P2 × P2 consists
of tupels{(x, gx), (hx, ghx)}, wherex is an arbitrary point inP1 and (x, gx) =
Q1, (hx, ghx) = Q2. The mapP1

g → P1
s has degree two and its fibers coincide with

orbits ofh (sinceg acts trivially onP1
g). The action ofh is given by

h : {(x, gx), (hx, ghx)} 7→ {(hx, ghx), (x, gx)}.
Thush(Q1, Q2) = (Q2, Q1) and the action ofh coincides with the restriction of
the permutation action onP2 × P2 to P1

g. The lineP1
g is invariant underD4 × S2

(considered as a subgroup of(PGL2 × S2)). The groupS4 permutes the lines in
pr−1(P1

s). EachP1
g is a(PGL2 ×S2, D4 ×S2)-slice ofP2 × P2. Therefore,

X ∼ D4\P1 × P2 × P2/S2.

The spaceP2 × P2 contains a subspaceC2 × C2 with a linear action ofD4 ×S2.
Indeed, the action ofD4 on P1 corresponds to the irreducible representation ofD̃4

on C2 = V . Under theD4-action, one has a decompositionSym2(V ) = V ′ ⊕ V ′′,
wheredim V ′ = 2, dim V ′′ = 1 and the action ofD4 onP2 is equivalent to the linear
action onV ′. The additionalS2 permutes theP2 and hence acts by permutation on
V ′ ⊕ V ′. Thus

P1 × P2 × P2 ∼D4×S2

V ′⊕V ′
��

P1
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(a vector bundle).
Consider the effective action of (the nonabelian group)D4 ×S2 on P1. It has a

normal subgroupD2 × S2 with generatorsg, h, k and an elementi, i2 = 1 which
commutes withg, k and acts onh as ihi = gh. The stabilizer of a generic point
on P1

g is a normal abelian subgroup generated byg, hk. ThusD4 × S2 acts onP1

effectively through the quotientD4/〈g, hk〉 = D2. The action of thisD2 on P1 is
almost free. Indeed, the action ofk coincides with the action ofh and permutes
Q1, Q2. Thus the orbits ofh andk on P1

g coincide with fibers of the mapP1
g → P1

s.
On the other hand,i acts nontrivially onP1

s. We claim that

D4\(V ′ ⊕ V ′)× P1/S2

��
D4\(V ′ × P1)

is a vector bundle. Indeed, consider the subspaceV ′
inv ⊂ V ′⊕V ′ of invariant vectors

(under the permutation). The action ofD4×S2 on ((V ′⊕V ′)/V ′
inv)×P1 is almost

free. Hence
D4\(V ′ ⊕ V ′)× P1/S2

��
D4\((V ′ ⊕ V ′)/V ′

inv)× P1/S2

is a vector bundle with base a quotient of the vector bundle(V ′ ⊕ V ′/V ′
inv) → P1

g

by D4 × S2. The variety(V ′ ⊕ V ′/V ′
inv) × P1 has a fiberwise (scalar)C∗-action

commuting with theD4 ×S2-action. Since everyC∗-action has a slice,

X ′ := D4\((V ′ ⊕ V ′)/V ′
inv)× P1/S2,

is rational by dimensional reasons:X ′/C∗ is a unirational, therefore, rational sur-
face and

X ′ ∼ (X ′/C∗)× C∗.

PROPOSITION7.39. — Let X beV ⊕ V , whereV = Vd is an irreducibleGL2-
representation,̀ > 0 andH ⊂ SL2 with H 6= Ã5. Then

GL2\X × P(V`)/H

is rational (whereH acts trivially onP(V`)).
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Proof. — If ` is even and the action ofGL2 or a quotient ofGL2 by a central
subgroup isaf then we apply Lemma7.19combined with Proposition7.36, resp.
7.37.

If ` is odd and the action isaf then there exists a slice, which is a rational variety,
by Lemma7.31resp.7.30. Rationality follows.

Now we assume that the action is notaf . This means thatd ≤ 4. The subcases
with d ≤ 2 are trivial since the action on the corresponding Grassmannian is transi-
tive. If ` is odd, then thePGL2-action onGr(2, V )× P(V`) has a rational slice and
our claim follows.

If d = 3, the action ofPGL2 on Gr(2, V3) has a(PGL2, A4)-sliceP1. For even
` > 0 the action ofA4 onP` is faithful and it lifts to a linear representation of ofA4.
Further,A4-acts onP1 is through a cyclic quotient. Thus

(P1 × P(V`) ∼A4 P1 × P(V`)

with trivial A4-action on theP1 on the right. This implies that the quotient is equiv-
alent to

P1 × (P`/A4)× (V1 ⊕ V1)/C∗ × H,

a product of rational varieties.
If d = 4, the action ofPGL2 onGr(2, V4) has a(PGL2, NT)-sliceX ′. The action

of NT on P(V`) is linear and the quotient ofX × P` is a vector bundle over the
quotient ofX, which is rational.

PROPOSITION7.40. — Let X = (
L−→ Y )2, whereY =

∏
j∈J P(Vdj

) and` > 0.
Then

GL2\X × P(V`)/S2

is rational (whereS2 acts trivially onP(V`) and by permutation onX).

Proof. — The same argument as in the proof of Proposition7.39 shows that it
suffices to assume that the action onX is notaf . This happens only ifY = P2 or
P1. The caseY = P2 reduces to Proposition7.39(Grassmannian). IfY = P1 then
the action ofPGL2 onP1 × P1 is transitive and

GL2\X × P(V`)/S2 ∼ (C∗\P(V`))× (C2/C∗ ×S2),

a rational variety.
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8. Special rationality results

In this section we collect rationality results for spaces of rational mapsP1 →
P1 with prescribed (special) ramification over exactly three distinguished points
(0, 1,∞) and unspecified ramifications over other points.

LetR(r0, r1, r∞) be the space of rational mapsf : P1 → P1 with local ramifi-
cation data (vectors)r0, r1, r∞ over the points0, 1,∞.

PROPOSITION8.1. — Assume that(r0, r1, r∞) satisfies one of the following:

– all entries of the vectorsr0, r∞ are even and some fixed number of entries of
r1 is even;

– all entries of the vectorsr0, r∞ are even and a fixed number of entries ofr1 is
divisible by3;

– all entries of the vectorsr0, r∞ are divisible by3 and all entries ofr1 are even.

ThenR(r0, r1, r∞) is a finite union of irreducible rational varieties.

Proof. — In these cases the mapf = f0/f∞ is given by coprime polynomials
satisfying the equations:

– f 2
0 − f 2

∞ = g2
1g
′
1;

– f 2
0 − f 2

∞ = g3
1g
′
1;

– f 3
0 − f 3

∞ = g2
1g
′
1,

whereg′1 is an arbitrary polynomial. The first equation leads to

(f0 − f∞)(f0 + f∞) = g2
1g
′
1

and, by coprimality, to
f0 − f∞ = g2

11g
′
11,

f0 + f∞ = g2
12g

′
12,

with arbitraryg11, g
′
11, g12, g

′
12 (satisfying the obvious degree conditions) — a union

of rational varieties.
The second case is analogous. Consider the third case: sincef 3

0 − f 3
∞ is a square

we obtain
f0 − f∞ = g2

1

f0 − ζf∞ = g2
2

f0 − ζ2f∞ = g2
3

(whereζ3 = 1) and we need to solve

2ζ

1 + ζ
g2
1 +

1− ζ

1 + ζ
g2
2 = g2

3.

Now we apply the parametrization as above.
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COROLLARY 8.2. — LetR(r0, r1, r∞) be as in8.1. Then

PGL2\R(r0, r1, r∞)

is rational.

Proof. — We have established an explicit parametrization ofR(r0, r1, r∞) as a
direct sum of spaces of polynomials (with different weights as irreducibleGL2-
representations). By the theorem of Katsylo7.14, the corresponding quotients are
rational.

REMARK 8.3. — Only the first case withg′1 = 1 can admit a nontrivial action of
HΓ (which necessarily isZ/3). But even in this case the action ofZ/3 is linear and
it commutes with the action ofGL2 on pairs of polynomials. Lemma7.31implies
rationality.

LEMMA 8.4. — Every irreducible component of the varietyR of rational maps
f : P1 → P1 of degree5 and prescribed global ramification datum

RD(f) = [(2, 2, 1)0, (2, 2, 1)1, (2, 2, 1)∞, (2), (2)]

is rational.

Proof. — Changing the variables (fixing two ramification points over1 ∈ P1 as
0,∞), we can writef = F1/F2 where

F1(x) = f̂1(x)2â1(x)2b̂1(x)

F2(x) = f̂2(x)2â2(x)2b̂2(x)

wheref̂1, f̂2, â1, â2, b̂1, b̂2 are linear forms inx. Since the leading coefficients ofF1

andF2 are equal we can assume that they are both equal to1 and writef̂1(x) =

x + f1, . . . , b̂2(x) = x + b2, with some nonzero constantsf1, . . . , b2. Since we have
one free parameter (under the action ofPGL2) we can assume thatb1 = 1. Thus

f̂1(x)2â1(x)2â2(x)− f̂2(x)2b̂1(x)2b̂2(x) =
∑

i

gix
i = c1x

2(x + c2)

with arbitrary constantsc1, c2. We get a system of equations on the coefficientsgj:

g4 = 0, g1 = 0, g0 = 0.

Remark that the coefficients ofg are symmetric functions on pairs(f1, a1) and
(f2, a2). To parametrizeR we introduce the following variables:

X1 = a1 + f1, Y1 = a1f1, X2 = f2 + a2, Y2 = f2a2, b1, b2.
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Write the equations on the coefficientsgj as

2X1 + b1 = 2X2 + b2

Y 2
1 b1 = Y 2

2 b2

Y 2
1 + 2X1Y1b1 = Y 2

2 + 2X2Y2b2.

Sinceb1 = 1, for a fixedb2 we get

2X1 + 1 = 2X2 + b2

Y1 = ±
√

b2Y2

b2Y2 + 2
√

b2X1 = Y2 + 2X2b2.

This is a union of two (affine) lines. After a rational covering(
√

b2) our surface is
(rationally) aP1-bundle overP1, a rational surface.

LEMMA 8.5. — Every irreducible component of the varietyR of rational maps
f : P1 → P1 of degree4 and ramification datum

RD(f) = [(2, 2)0, (2, 1, 1)1, (2, 1, 1)∞]

is a rational surface.

Proof. — Using thePGL2-action on the preimageP1 we can assume that the points
(2, 2) are+1,−1, respectively, and that the point of degree2 (in the local ramifica-
tion datum(2, 1, 1)) over0 is∞. Thus we can write

(x2 − 1)2 − c(x + c1)(x + c2)(x + c3)
2 = g2(x),

whereg2 is an arbitrary polynomial of degree 2 andc is some constant. We get two
equations

c = 1,

c1 + c2 + 2c3 = 0.

Thus we have a (rational) surjection ofP2 ontoR.

LEMMA 8.6. — Every irreducible component of the varietyR of rational maps
f : P1 → P1 of degree4 with ramification datum

RD(f) = [(2, 2)0, (3, 1)1, (2, 1, 1)∞, (2), (2)]

is a rational curve.

Proof. — A generic map with this ramification datum is given by the equation
f = f1/f2, where

f1 = (x2 − 1)2, f2 = (x + c1)(x + c2)(x + c3)
2
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and
f1 − f2 = (x2 − 1)2 − c(x + c1)(x + c2)(x + c3)

2 = g1(x),

whereg1(x) is linear. Thusc = 1 and

c1 + c2 + 2c3 = 0,

c1c2 + 2c1c3 + 2c2c3 + c2
3 = 0,

clearly rational.

LEMMA 8.7. — The irreducible component of the varietyR of rational mapsf :
P1 → P1 of degree3 with ramification datum

RD(f) = [(2, 1)0, (2, 1)1, (2, 1)∞, (2)]

is a rational curve.

Proof. — Reduces easily to the rationality of a cuspidal cubic curve.

9. Rationality of moduli

THEOREM 9.1. — Any connected component of a moduli space of rational or K3
elliptic surfaces with fixed monodromy group is rational.

Proof. — In Proposition3.11we have identified (Zariski open subsets of) the cor-
responding moduli spacesFr,Γ̃ as quotients (by the leftPGL2 and rightHΓ-action)

PGL2\U ′r,Γ̃,`
/HΓ.

Here
U ′

r,Γ̃,`
∼PGL2×HΓ

Sym`(P1)×RΓ

and
RΓ = {f : P1 → P1}

is the space of rational maps (with prescribed ramification). For elliptic rational or
K3 surfaces̀ ≤ 3 andHΓ is either trivial, cyclic, dihedral or a subgroup ofS4 (see
Corollary3.14). The actions ifPGL2 andHΓ commute andHΓ acts only onRΓ.

First we considergeneral families:

ET(E)− 12` = deg(jE) ET(Γ).
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Ford = (d1, ..., dk) ∈ Nk we put

Pd :=
k∏

j=1

P(Vdj
).

Recall thatRΓ is (birationally) the total space of a line bundle over the space

Pd × Pd′
,

where
∑k

j=1 dj =
∑k′

j=1 d′j.

Case 1. d 6= d′. Then, by3.14, HΓ = 1 and rationality ofPGL2\RΓ (in all
cases) follows from the rationality of

PGL2\Pd × Pd′
,

which is the theorem of Katsylo7.14.

Case 2.d = d′ andk ≥ 2. By Corollary3.14, HΓ = S2 (permutation of the
factors). This case is covered by Proposition7.37.

Case 3.d = d′ = (d). This case is covered by Proposition7.36.

Now we discuss thespecial families:

ET(E)− 12` < deg(jE) ET(Γ).

We use the classification of these families established in Section5. All families
listed in Lemma5.2are covered by Propositions7.37and the Theorem7.14. Con-
sider the families listed in Lemma5.3: Lemma7.30covers the casesj1, j4, j5, j6, j13.
The casej2, j8 andj12 are covered by Proposition8.1, j3 by Lemma8.6, j7, j9, j10

by 8.1and8.3, j11 by Lemma8.5. The casej14 is covered by Lemma8.7. Finally,
the familiesj15 andj16 (listed in Lemma6.2) are covered by Proposition7.37and
the remaining familiesj17 − j20 by Theorem7.14.

REMARK 9.2. — Our methods extend to some moduli spaces of elliptic surfaces
with higher Euler characteristic. In particular, the results of Section8 imply that
any moduli space of Jacobian elliptic surfaces overP1 such that a generic surface
in this space has only singular fibers of multiplicative type is rational. However, we
expect that there are nonrational moduli spaces already for Euler characteristic 36.
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10. Pictures

In this section we give a combinatorial description of monodromy groups of el-
liptic K3 surfaces. More precisely, we describe a simple procedure which allows to
enumerate all the possible graphsΓ with givenET(Γ). Let E → P1 be an elliptic
K3 surface. We have shown in Section4 that

48 = ET(E) ≥ ET(Γ)

and thatET(Γ) is divisible by 12. ThusET(Γ) equals12, 24, 36 or 48 and all
possibleΓ ⊂ PSL2(Z) are described by connected trivalent graphsTΓ with ≤ 8
edges embedded intoS2, with an arbitrary bicoloring of the ends.

CaseET(Γ) = 12 : There is only one treeT12 with ET(T12) = 12

FIGURE 1. The treeT12.

The ends ofT12 can be eitherA or B-vertices. To obtain all possible graphsTΓ

with ET(Γ) = 12 we just need to attach toT12 a single loopL.

FIGURE 2. The loopL.

This gives the following list of graphs:

FIGURE 3. The caseET(Γ) = 12.

There is only one saturated graph from the list above which has no outer loops
(Figure4).
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1 2 3

FIGURE 4.

This graph will be a basic building block in the construction of graphs with
ET(Γ) > 12 - we will attach trees and loops to its edges. The edges are numbered
to simplify the count of all possible outcomes.
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CaseET(Γ) = 24: Again, we have only one topological treeT24 with ET(T ) = 24:

FIGURE 5. The treeT24.

CaseET(Γ) = 36: There are only3 saturated graphs without end-loops (modulo
equivalent embedding into the sphere):

FIGURE 6. The caseET(Γ) = 36.

Any other graph is either a tree or a sum of a saturated graphT ′ with ET(T ′) =
0, 12, 24 with trees (with complementaryET). There is only one topological tree
T36 with ET(T36) = 36.

FIGURE 7.

The number of possible markings of the tree or loops at the ends is81 but due to
the symmetry of the graph the actual number of graphsTΓ corresponding to different
placement of loops at the end and markings is smaller: there are34 differentTΓ of
this type.

The number of markings ofT36 is16 but due to its symmetry the number of differ-
ent graphsTΓ is 7. (Recall that two graphsTΓ give the sameΓ modulo conjugation
if they are isotopic in aS2).

The graphs of tree type with one end loop are topologically equivalent to:
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There are8 possible markings of the above graph and they all give differentTΓ

with ET(Γ) = 36. We have12 differentTΓ with 2 end-loops,6 with 3 end-loops
and one with4 end-loops.

All topological graphs which are sums of a loop and a tree can be obtained by
placing a loop into a tree. Thus there are two types:

FIGURE 8.

This gives8 graphsTΓ in the first case and4 in the second case.

CaseET(Γ) = 48: We have one treeT48 with ET(Γ) = 48:

FIGURE 9. The treeT48.

Here is the list of all saturated graphs withET(Γ) = 48.

FIGURE 10. Saturated graphs in the caseET(Γ) = 48.
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