
Unramified correspondences

Fedor Bogomolov and Yuri Tschinkel

Abstract. We study correspondences between algebraic curves defined over
an algebraic closure of Q or Fp.

1. Introduction

A class C(Q) of complete algebraic curves over Q will be called dominating if
for every algebraic curve C ′ over Q there exist a curve C̃ ∈ C(Q) and a surjective
map C̃ → C ′. A curve C will be called universal if the class UC(Q) of its unramified
covers is dominating.

Theorem 1.1 (Belyi). Every algebraic curve C defined over a number field
admits a surjective map onto P1 which is unramified outside (0, 1,∞).

In 1978 Manin pointed out that Belyi’s theorem implies the following

Proposition 1.2. The class MU(Q) consisting of modular curves and their
unramified covers is dominating.

There are many other classes of curves with the same property, for example:
(1) hyperelliptic curves and their unramified coverings;
(2) the class CU(Q) := ∪n∈NCn(Q), with Cn(Q) consisting of curves with

function field Q(z, n
√

z(1− z)) and their unramified coverings.
(3) the class CN (Q) := ∪n∈NCNn(Q) where CNn(Q) consists of all unramified

covers of any curve Cn with the property that Cn → P1 is ramified in
(0, 1,∞) only and all local ramification indices of Cn over 0 are divisible
by 3, over 1 divisible by 2 and over ∞ divisible by n. In particular, we
could take Cn to be the modular curve X(n).

Proof. (Sketch) Let us consider the class of hyperelliptic curves and their
unramified covers. Let C ′ be an arbitrary curve and σ : C ′ → P1 a generic map,
branched over the points q1, ..., qn (generic means that there is only one ramification
point over each branch point and all local ramification indices are equal to 2).
Denote by C a hyperelliptic curve whose ramification contains q1, ..., qn. Then
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C̃ := C ×P1 C ′ is an unramified cover of C which surjects onto C ′. For the classes
CU(Q) and CN (Q) we use Belyi’s theorem. �

Question 1.3. Does there exist a universal algebraic curve C (over Q)?

Question 1.4. Does there exist a number n ∈ N such that every curve defined
over Q admits a surjective map onto P1 with ramification over (0, 1,∞) such that
all local ramification indices are ≤ n?

Question 1.5. Is every curve C (over Q) of genus g(C) ≥ 2 universal?

Remark 1.6. It is clear that an affirmative answer to Question 1.4 implies a
(constructive) affirmative answer to Question 1.3.

In this note we answer these questions in a simple model situation: instead of
Q we consider the (separable) closure Fp of the finite field Fp.

Theorem 1.7. Let p ≥ 5 be a prime and C a hyperelliptic curve over Fp of
genus g(C) ≥ 2. Then C is universal: for any projective curve C ′ there exist a
finite étale cover C̃ → C and a surjective regular map τ : C̃ → C ′.

In Section 4 we prove the following geometric fact (over arbitrary algebraically
closed fields of characteristic 6= 2, 3):

Proposition 1.8. Every hyperelliptic curve C of genus ≥ 2 has a finite étale
cover C̃ which surjects onto the genus 2 curve C0 given by 6

√
z(1− z). In particular,

if C0 is universal then every hyperelliptic curve of genus ≥ 2 is universal.

Remark 1.9. Applying the Chevalley-Weil theorem we conclude that the Mordell
conjecture (Faltings’ theorem) for C0 implies the Mordell conjecture for every hy-
perelliptic curve of genus ≥ 2.

The fact that there is some interaction between the arithmetic of different curves
has been noted previously. Moret-Bailly and Szpiro showed (see [6], [5]) that the
proof of an effective Mordell conjecture for one (hyperbolic) curve (for example, C0)
implies the ABC-conjecture, which in turn implies an effective Mordell conjecture
for all (hyperbolic) curves (Elkies [4]). Here effective means an explicit bound on
the height of a K-rational point on the curve for all number fields K. Here again,
Belyi’s theorem is used in an essential way.

Acknowledgments. We have benefited from conversations with B. Hassett and
A. Chambert-Loir.

2. Main construction

Notation 2.1. Let τ : C → C ′ be a surjective map of algebraic curves. We
denote by Ram(τ) ⊂ C the ramification locus of τ and by Bran(τ) = τ(Ram(C)) ⊂
C ′ the branch locus of τ . For a point q ∈ C we denote by eq(τ) the local ramification
index at q. We denote by

e(τ) := max
q∈C

eq(τ)

the maximum local ramification index of τ . We say that τ has simple ramification
if e(τ) ≤ 2 and that τ is generic if in addition there is only one ramification point
over each branch point.
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Remark 2.2. Every curve admits a generic map onto P1, at least after a
separable extension of the ground field.

Let p ≥ 5 be a prime number. In this section we work over an algebraic closure
Fp of the finite field Fp. First we show that there exists at least one curve satisfying
the conclusion of Theorem 1.7.

Let π0 : E0 → P1 be the elliptic curve given by

3
√

z(z − 1).

Let σ0 : C0 → P1 be the genus 2 curve given by

6
√

z(z − 1),

and ι0 : C0 → E0 the corresponding 2-cover. Clearly, ι0 has simple ramifications
over the preimages of 0, 1. Let C be an arbitrary curve. Choosing a generic function
on C we get a generic covering σ : C → P1 (such covering is defined over Fp).
Assume further that Bran(σ) ⊂ P1 does not contain (0, 1,∞).

Consider the diagram

C

σ

��

C1
oo

��

C2
oo

��

P1 E0
oo

ϕ

��
E0 C0

oo

Here C1 = C ×P1 E0 (it is irreducible since E0 → P1 is a 2-cover). Then
C1 → E0 has simple ramification over a finite number of points in E0. Recall that
E0 has a group scheme structure, and all Fp-points of E0 are torsion points. This
implies that there exists an étale map E0 → E0 such that all ramification points
of C1 over E0 are mapped to 0. More precisely, any finite set of Fp-points of E0

is contained in the group subscheme Eet
0 [n] ⊂ E0 - the maximal étale subgroup of

the multiplication by n-kernel E0[n] (for some n ∈ N). For every positive integer n
there exists a positive multiple of m of n and an étale map E0 → E0 with kernel
Eet

0 [m].

Taking the composition of C1 → E0 with the multiplication by a suitable m, we
get a (possibly new) surjective regular map C1 → E0 which is ramified only over
the zero point in E0 and has the property that all the local ramification indices
are at most 2. Using this map let us define C2 := C0 ×E0 C1. Consequently,
any component of C2 surjects onto C1 and is an étale covering of C0 (ramification
cancels ramification). This component satisfies the conclusion of Theorem 1.7.

Lemma 2.3. Let C be any smooth complete algebraic curve and E any curve
of genus 1. There exists a curve C1 which surjects onto C and E such that the
ramification of the map C1 → E lies entirely over a single point of E and its local
ramification indices are all equal to 2.
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Proof. Consider a generic map σ : C → P1 with e(σ) ≤ 2. Choose a double
cover π : E → P1 such that the branch loci Bran(σ) and Bran(π) on P1 are disjoint.
Then the product C1 := C ×P1 E is an irreducible curve which is a double cover of
C. The curve admits a surjective map ι1 : C1 → E with e(ι1) ≤ 2. Similarly to
the previous construction we can find an unramified cover ϕ : E → E such that
the composition ϕ ◦ ι1 : C1 → E is ramified only over one point in E and the local
ramification indices are still equal to 2. �

Corollary 2.4. Assume that some unramified covering C̃ of C surjects onto
an elliptic curve E. Assume further that there exists a point q on E such that all
local ramification indices of the map C̃ → E over q are divisible by 2. Then C is
universal.

Proof. It is sufficient to take the product of C̃ ×E C1. Any irreducible com-
ponent of the resulting curve will be an unramified covering of C̃ (and hence C)
and will admit a surjective map onto C1 and C. �

Corollary 2.5 (Theorem 1.7). Every hyperelliptic curve C over Fp (with
p ≥ 5) of genus ≥ 2 is universal.

Proof. Consider the standard projection σ : C → P1 (of degree 2). Its
branch locus Bran(σ) consists of 2g + 2 points. Let π : E → P1 be a double cover
such that Bran(π) is contained in Bran(σ). Then the product C̃ = C ×P1 E is an
unramified double cover of C. Moreover, C̃ is a double cover of E with ramification
at most over the preimages in E of the points in Bran(σ) \Bran(π). We now apply
Corollary 2.4. �

In finite characteristic, there are many other (classes of) universal curves. For
example, cyclic coverings with ramification in 3 points, hyperbolic modular curves,
etc.

Conjecture 2.6. Every smooth complete curve C of genus g(C) ≥ 2 defined
over Fp (for p ≥ 2) is universal.

3. The case of characteristic 0

In this section we work over Q. We show that the method outlined in Section 2
can be employed in characteristic zero to produce natural infinite sets of algebraic
points on P1 which occur as ramification points of surjective maps from P1

2 to P1
1

branched over (0, 1,∞) ∈ P1
1 only and having an a priori bound on the ramification

index (here P1
1 and P1

2 are two different copies of the projective line P1).

Notice that, in principle, it is easy to produce some sets of points (of any finite
cardinality) with this property: Take an n ≥ 6 and any triangulation of P1

2 with
vertices of index ≤ n. A barycentric subdivision of each such triangulation defines
a function from P1

2 to P1
1 with local ramification indices ≤ 2n (for more details see

[3]). Therefore, any curve with bounded ramification over this set of vertices will
have bounded ramification over P1

1. However, we have no explicit control over the
coordinates of the ramification points on P1

2.

An (obvious) analogous way to control ramification indices is to consider the
following diagram
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E

φn

��

π // P1
2

ϕn,E

��
E π

// P1
1,

where the map φn is the quotient by the subscheme of n-torsion points and the maps
E → P1 are the standard double covers, ramified over (0, 1,∞, λ). Clearly, all the
ramification points of ϕn,E (in P1

2) are over 0, 1,∞ and λ (in P1
1) and e(ϕn,E) = 2.

Belyi’s theorem gives a map β : P1
1 → P1

0, which ramifies only over the points
(0, 1,∞) ∈ P1

0, maps {0, 1,∞, λ} ⊂ P1
1 into {0, 1,∞} ⊂ P1

0 and has local ramification
indices ≤ n. Moreover, it provides an explicit bound on deg(β) and, consequently,
on e(β) (in terms of the absolute height of λ). Let βλ : P1

1 → P1
0 be a map such

that
e(βλ) = inf

β
{eβ}

over the set of all maps as above. Then the map βλ ◦ϕn,E : P1
2 → P1

0 ramifies over
three points only and has index e(βλ ◦ ϕn,E) ≤ 2n. Let

RE := π(E(Q)tors) ⊂ P1
2(Q)

be the image of the torsion points of E. Let σ : C → P1
2 be any map ramified only

in a subset of RE . Let π := βλ ◦ ϕn,E ◦ σ. Then

e(π) ≤ 2e(σ) · e(βλ).

A natural application of the construction in Section 2 is as follows:

Example 3.1. Let π : E → P1 be a triple cover with Bran(π) = {0, 1,∞} (E
is a CM elliptic curve with j-invariant 0). Consider the following diagram

E

φn

��

π // P1
2

ϕn,E

��
C0

// E π
// P1

1,

where C0 is a curve of genus g(C0) = 2 given by 6
√

z(z − 1), φn is the quotient map
by the subscheme of torsion points of order n, and ϕn,E the corresponding map
from P1

2 to P1
1 ramified only over (0, 1,∞). Let Xg = {X} be the subset of curves

of genus g admitting a map σX : X → P1
2 such that

• e(σX) = 2;
• Bran(σX) ⊆ π(E(Q)tors).

Then, for any X ∈ Xg the map

ϕn,E ◦ σX : X → P1
1

has index e(ϕn,E ◦σX) ≤ 6 and there exists an unramified cover C̃ → C0 surjecting
onto X. Moreover, Xg is dense (in real and p-adic topologies) in the natural Hurwitz
scheme Hg parametrizing curves of genus g.
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The set of curves dominated by unramified covers of C0 is much larger than
Xg. Indeed, consider any 4-tuple of points in

π(E(Q)tors) ⊆ P1
2

and an elliptic curve E′ obtained as a double cover of P1
2 ramified in those 4 points.

Then E′ is also dominated by unramified covers of C0 and we can iterate the above
construction for E′.

4. Geometric constructions

Let (E, q0) be an elliptic curve, q1 a torsion point of order two on E and
π : E → P1 the quotient with respect to the involution induced by q1. Let n be an
odd positive integer and ϕn,E : P1

2 → P1
1 the map induced by

E

φn

��

π // P1
2

ϕn,E

��
E π

// P1
1.

Any quadruple r = {r1, ..., r4} of four distinct points in ϕ−1
n,E(π(q0)) defines a genus

1 curve Er (the double cover of P1 ramified in these four points).

Proposition 4.1. Let ι : C → E be any finite cover such that all local ramifi-
cation indices over q0 are even. Then there exists an unramified cover τr : Cr → C
which dominates Er and has only even local ramification indices over some point
in Er.

Proof. Assume that n ≥ 3 and consider the following diagram

C

ι

��

C2
τ2oo

ι2

��

Cr
τroo

ιr

��
E

π

��

E
ϕnoo

π

��

Er

πr

��
P1

1 P1
2

φn,Eoo P1
2,

where Er is a double cover of P1
2 ramified in any quadruple of points in the preimage

φ−1
n,E(π(q0)) and Cr is any irreducible component of C2 ×P1

2
Er. Any point qr ∈ Er

such that qr /∈ Ram(πr) (that is, its image in P1
2 is distinct from r1, ..., r4) has the

claimed property. �

Remark 4.2. Iterating this procedure (and adding isogenies) we obtain many
elliptic curves E′ which are dominated by curves having an unramified cover onto
E. It would be interesting to know if for any two elliptic curves over Q there exists
a (directed) cycle connecting them (at least modulo isogenies). We will now show
that any elliptic curve can be connected in this way to E0.

Let E0 ⊂ P2 = {(x : y : z)} be the elliptic curve

x3 + y3 + z3 = 0,
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and

E0[3] = T :=

 (1 : 0 : 1), (1 : 0 : −ζ), (1 : 0 : −ζ2),
(0 : 1 : 1), (0 : 1 : −ζ), (0 : 1 : −ζ2),
(1 : 1 : 0), (1 : −ζ : 0), (1 : −ζ2 : 0)


its set of 3-torsion points (where ζ is a primitive cubic root of 1). Denote by
Eλ = {Eλ} the family of elliptic curves on P2 passing through T given by

Eλ : x3 + y3 + z3 + λxyz = 0.

It is easy to see that for each λ the set Eλ[3] of 3-torsion points of Eλ is precisely
T. Let

π : P2 → P1

(x : y : z) 7→ (x + z : y)

be the projection respecting the involution x → z on P2. Denote by πλ the restric-
tion of π to Eλ. Clearly, πλ exhibits each Eλ as a double cover of P1 and πλ has
only simple double points for all λ. Moreover,

π(T) = {(0 : 1), (1 : −ζ), (1 : −ζ2), (1 : −1), (1 : 0)}

and for all λ there exists a (non-empty) set Sλ ⊂ Bran(πλ) ⊂ P1 such that
π−1

λ (Sλ) ⊂ T. Let π′0 : E′
0 → P1 be a double cover ramified in 4 points in π(T).

Lemma 4.3. Let ι : C → Eλ be a double cover such that over at least one point
in Bran(ι) the local ramification indices are even. Then there exists an unramified
cover C̃ → C and a surjective morphism ι̃ : C̃ → E′

0 such that over at least one
point in Bran(ι̃) ⊂ E′

0 all local ramification indices of ι̃ are even.

Proof. Consider the diagram

Eλ

ϕ3

��

C1ι
oo

��
Eλ

πλ

��

Coo

P1

Then C1 → P1 has even local ramification indices over all points in π(T). It
follows that

C̃ := C1 ×P1 E′
0 → E′

0

has even local ramification indices over the preimages of the fifth point in π(T), as
claimed. �

Notation 4.4. Let C be the class of curves such that there exists an elliptic
curve E, a surjective map ι : C → E and a point q ∈ Bran(ι) such that all local
ramification indices at points in ι−1(q) are even.

Example 4.5. Any hyperelliptic curve of genus ≥ 2 belongs to C. More gener-
ally, C contains any curve C admitting a map C → P1 with even local ramification
indices over at least 5 points in P1.
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Proposition 4.6. For any C ∈ C there exists an unramified cover C̃ → C
surjecting onto C0 (with C0 → P1 given by 6

√
z(1− z)).

Proof. Consider C1 = C ∈ C with ι1 : C1 → E = Eλ as in 4.4. Define C2 as
an irreducible component of C1 ×E E:

C1

ι1

��

C2
τ2oo

ι2

��
E Eϕ3

oo

πλ

��
P1

Define C3 := C2 ×P1 E0 by the diagram

C2

σ2

��

C3
τ3oo

ι3

��
P1 E0.π0

oo

Observe that for q ∈ Bran(π0) the local ramification indices in the preimage (πλ ◦
ι2)−1(q) are all even. It follows that the map τ3 : C3 → C2 is unramified and
that ι3 : C3 → E0 has even local ramification indices over (the preimage of)
q5 ∈ {π(T) \ Bran(π0)} (the 5th point). Define C4 as an irreducible component of
C3 ×E0 E0 in the diagram

C3

ι3

��

C4
τ4oo

ι4

��
E0 E0.ϕ3

oo

The map ι4 is ramified over the preimages (π0 ◦ ϕ3)−1(q5), with even local ramifi-
cation indices. Finally, C5 = C4 ×E0 C0 from the diagram

C4

ι4

��

C5
τ5oo

��
E0 C0.

ι0oo

has a dominant map onto C0 and is unramified over C4 (and consequently, C1). �
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