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Abstract. We study the density of integral points on punctured abelian
surfaces. Linear growth rates are observed experimentally.

1 Introduction

Let V be a smooth projective algebraic variety over a number fieldK. We now
ask whether there exists a finite extension K ′ of K such that K ′-rational points
are Zariski dense. This property is called potential density of rational points,
and is known to hold, e.g., for abelian varieties, certain classes of Fano varieties,
and certain K3 surfaces (see [6], [1] and the references therein). Potential density
is conjecturally related to global geometric invariants of V , such as the Kodaira
dimension [10].

An analogous question can be asked about integral points. Let (V,Z) be a
projective variety and a proper subvariety, both defined over K. Choose models
(V,Z) over the ring of integers oK . Let S be a finite set of non-archimedean
places of K. A rational point Q on V determines a section sQ of the structure
map from V to Spec(oK). We say that the point Q is S-integral (with respect to
Z) if the section sQ does not meet Z outside S. We say that integral points are
potentially dense for the pair (V,Z) if there exists a finite extension K ′ of K, a
finite set S′ of non-archimedean places of K ′, and models (V ′,Z ′) over Spec(oK′)
of the base-changed (V ′, Z ′) such that S′-integral points on (V ′,Z ′) are Zariski
dense in V ′. Concretely, this means that after a finite extension of the base field,
and allowing for a finite set of bad places, a given system of integral equations
for V has a Zariski dense set of integral solutions such that their reductions,
outside the fixed bad places, are away from the reduction of Z (given also by
integral equations).

Conjecture 1 ([7]). Let V be a smooth algebraic variety whose rational points
are potentially dense. Then integral points are potentially dense with respect to
any codimension ≥ 2 subvariety Z ⊂ V .
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This conjecture holds, e.g., for toric varieties and Del Pezzo surfaces [7].
Conversely, knowing potential density of integral points for certain varieties, we
may deduce potential density of rational points in many new cases. For instance,
Conjecture 1 implies potential density for rational points on general K3 surfaces
(see [7]). An important test of the above conjecture is the case of punctured
abelian varieties (that is, pairs (J, Z), where J is an abelian variety and Z ⊂ J
a codimension ≥ 2 subvariety).

For punctured abelian surfaces potential density is only known when the
abelian surface is special (e.g., isogenous to products of elliptic curves, or ad-
mitting extra endomorphisms, see [7]). Here we study the case of simple abelian
surfaces J over Q, punctured at one rational point (which we may as well take
to be the identity) and having a point Q ∈ J(Q) of infinite order. We carry out
a simple numerical experiment which strongly suggests that integral points on
punctured abelian surfaces are not only Zariski dense, but moreover constitute
a positive proportion of the multiples of Q. It would be interesting to have a
conceptual interpretation of the proportionality constant.
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2 Divison polynomials in genus 2

Let f ∈ Z[X] be a polynomial of degree 2g + 1 with no multiple factors and C
the hyperelliptic curve (over Z), defined by the equation

Y 2 = f(X).

Let (x, y) be a Q-rational point on C, with y 6= 0, and let Q := [(x, y)−∞] be
the corresponding point on the Jacobian J = J(C). Denote by Θ = Θ(J) the Θ-
divisor. Cantor [2] has described a convenient algorithm for generating division
polynomials ψr(x) which vanish if and only if r ·Q ∈ Θ. Moreover, r ·Q = 0 in
J if and only if ψr′(x) = 0 for all r′ with |r′ − r| ≤ g − 1. These polynomials
give an efficient means of testing at which primes a given multiple of Q reduces
to the identity in (the reduction modulo some prime of) the Jacobian.

Before stating basic facts about division polynomials, let us recall how to
represent a point on a Jacobian. From now on we specialize to the case g = 2.
Every point on J is expressible in the form D − 2 · ∞ for an effective degree 2
cycle D on C, and D is unique except in the case of the zero element of J . The
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point r ·Q can be put into this form by solving for polynomials A(X) and B(X)
such that A(X) − B(X)y vanishes to order r at Q, subject to degree bounds
degA ≤ b(r+ 2)/2c and degB ≤ b(r−3)/2c. Then r ·Q ∈ Θ is equivalent to the
vanishing of the leading coefficient of A in the case r is even, or of B in the case
r is odd. Cantor shows that one can produce universal polynomials A and B,
whose coefficients are integer polynomials in the coefficients of f and in x (and
y).

Concretely, let us continue to assume that f has coefficients in Z. Cantor’s
algorithm generates polynomials Pr(x) and ψr(x) such that:

(i) Pr(x) = 0 if and only if r · Q ∈ Θ (for all x in the algebraic closure Q of
Q), degPr = r2 − 4 when r is even, and degPr = r2 − 9 when r is odd (this
specifies Pr uniquely, up to a scalar multiple).

(ii) Define ψr(x) to be proportional to Pr(x) when r is even and to f(x)Pr(x)
when r is odd, and to have leading coefficient

(
r+1

3

)
; then ψr(x) is an integer-

coefficient polynomial of degree r2 − 4.
(iii) The ψr satisfy the following recurrence relation:

ψrψsψs+rψs−r = det

 ψs−2ψr ψs−1ψr+1 ψsψr+2

ψs−1ψr−1 ψsψr ψs+1ψr+1

ψsψr−2 ψs+1ψr−1 ψs+2ψr

 (1)

for any s ≥ r.

The recurrence (1) determines ψr for all r ≥ 8, given ψ1 = 0, ψ2 = 1, . . . , ψ7.
One can effectively determine the universal polynomials ψ3, . . . , ψ7 by solving
for the coefficients of the polynomials A(X) and B(X) mentioned previously,
for each r ≤ 7. This is achieved economically by introducing a new variable v
given by vf(x) = x−X. Then

√
f(X)/f(x) is a power series in v which is easily

computed (for reason of convention, the branch −1 + · · · of the square root is
chosen for g = 2). Then one is reduced to solving

vr | a(v)− b(v)
√
f(X)/f(x) (2)

for polynomials a(v) and b(v) satisfying the same degree bounds as above (a
differs from A by the change of variable, and b differs from B by the change of
variable and multiplication by y). In particular, a(0)+b(0) = 0. We have a(0) = 0
for given x ∈ Q if and only if Pr−1(x) = 0, and we can take −a(0) = b(0) = Pr−1.
This means that for r ≤ 6, (2) reduces to solving at most one equation for one
unknown coefficient, and this is easily solved. For instance, ψ4 is displayed in
Table 1. For r = 7, the two unknown coefficients of the quadratic polynomial
b(v) must be solved for.

3 Results

We performed the following numerical experiment. Start with a curve C of genus
2 defined by Y 2 = f(X), where f(X) is a monic degree-5 polynomial with
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f(X) = X5 + αX4 + βX3 + γX2 + δX + ε,

ψ4(x) = 10x12 + 24αx11 + (26β + 16α2)x10 + 20(2αβ + γ)x9

+ 10(4αγ + 3β2 − δ)x8 + 80(βγ − ε)x7

+ (−112αε+ 68βδ + 64γ2 + 8αβγ − 2β3 − 16α2δ)x6

+ (−4β2γ − 8βε− 64α2ε− 8αβδ + 16αγ2 + 152γδ)x5

+ 10(−8αβε+ 4αγδ + 11δ2 + 12γε− β2δ)x4

+ 40(αδ2 − β2ε+ 6δε)x3 + 10(βδ2 + 16ε2 − 4βγε+ 8αδε)x2

+ (8βδε− 16γ2ε+ 64αε2 + 4γδ2)x+ 16βε2 − 8δγε+ 2δ3.

Table 1. The universal ψ4(x)

integral coefficients. Assume that the Jacobian J is simple, has Mordell-Weil rank
1 (over Q), and that there is an integral point (x, y) such that Q = [(x, y)−∞]
has infinite order in J .

Let S be the set of prime divisors of 2 y disc(f). Now the curve reduces well
modulo all primes not in S, and we have an integral model for J over Spec(Z)rS,
with an S-integral point Q disjoint from the zero section. We count positive
integers r such that r · Q is as well disjoint from the zero section (again, over
the complement of S); such r will be called good. For r · Q to be disjoint from
zero outside S is equivalent to ψr−1(x), ψr(x), and ψr+1(x) having no common
prime factors outside S. A table is made of the density of the good integers r.
Amazingly, we observe linear growth.

Remark 1. The significance of any sort of growth is that the set of good integers
being infinite implies Zariski density of S-integral points on the punctured J
(here we use the fact that J is simple).

We describe the procedure in detail for one curve, and then present tables
giving the data from several curves.

The curve C1 given by

y2 = x5 − 14x4 + 65x3 − 112x2 + 60x

has rational point (3, 6), and its Jacobian J1 satisfies J1(Q) = Z⊕ (Z/2Z)4 (see
[4]). Here S = {2, 3, 5}. Then we have (at x = 3)

ψ3 = 144, ψ4 = −41472, ψ5 = 585252864,
ψ6 = −35588725014528, ψ7 = 5004999490025816064.

Notice that 7 is a common factor of ψ5, ψ6, and ψ7, so that 6 · Q is not S-
integral on the punctured J1. Hence 6 and all its multiples are not good. The
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next integer, besides multiples of 6, which fails to be good is 22. The third is 38:

gcd(ψ37, ψ38, ψ39) = 2854 · 3344 · 17.

The first two columns of Table 2 show integer ranges (1–100, . . . , 901–1000) and
the density of good r in each range.

range of r density(J1) density(J2) density(J3) density(J4)

1– 100 0.77 0.62 0.74 0.67
101– 200 0.69 0.63 0.70 0.67
201– 300 0.71 0.61 0.74 0.66
301– 400 0.74 0.62 0.69 0.70
401– 500 0.72 0.62 0.69 0.68
501– 600 0.72 0.63 0.74 0.67
601– 700 0.73 0.60 0.70 0.64
701– 800 0.70 0.64 0.72 0.70
801– 900 0.72 0.59 0.73 0.68
901–1000 0.72 0.63 0.69 0.67

Table 2. Densities of S-integral points on Ji

We performed a similar experiment with the following curves:

C2 : f(X) = X5 + 9X4 + 14X3 − 18X2 − 15X + 9, (x, y) = (0, 3),
C3 : f(X) = X5 + 2X4 − 3X3 − 2X2 + 2X, (x, y) = (2, 6),
C4 : f(X) = X5 + 11X4 + 7X3 − 89X2 + 2X + 88, (x, y) = (−7, 54).

By a computation in [3], these are curves having Jacobians of Mordell-Weil rank
1 over Q. It is easy to see that the Jacobians we are considering are simple over
Q (e.g., by factoring the number of Fp-points for suitable p). The correspond-
ing columns of Table 2 indicate the experimentally observed densities for these
Jacobians.

4 Heuristics

Let J be an abelian variety over Q, and let Γ be the Mordell-Weil group J(Q).
Fix an integral model of J , and let S be the set of primes of bad reduction.
Then, for p a prime not in S, let us denote by gp the order of the subgroup of
J(Fp) generated by Γ . The quantity

ρ(J) =
∏
p/∈S

(1− 1/gp). (3)

is a lower bound for the density of S-integral points on the punctured Jacobian.
We do not know whether this product converges.
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Conjecture 2. If J is simple of dimension ≥ 2 and has positive Mordell-Weil
rank, then the product (3) converges.

Remark 2. Replacing Γ by a finite-index subgroup does not change the con-
vergence of (3). Also, note that the conclusion of Conjecture 2 may fail if J is
isogenous to a product of elliptic curves.

We computed the Euler products using the first 400 primes of good reduction,
for the Jacobians J considered above. In our computation we used the subgroup
generated by our point Q in place of the full Mordell-Weil group to obtain a
quantity ρ̃(J) for each Jacobian J . Numerically we observe convergence. The
results are presented in Table 3.

J1 J2 J3 J4

ρ̃(J) 0.576 0.404 0.538 0.516

Table 3. Values of Euler products for Ji

Remark 3. For J of dimension 2, a positive answer to Conjecture 2 would imply
the density of integral points.

One can ask, for some abelian variety, how often the reduction of the cyclic
group generated by a given point is the full group J(Fp); for elliptic curves,
this question was raised by Lang and Trotter in [8]. Assuming the Generalized
Riemann Hypothesis (GRH), Serre showed that for elliptic curves E, the number
of primes p ≤ B such that E(Z/pZ) is cyclic is ∼ cB/log(B) (as B → ∞ and
for some c). Again, under GRH, the density is∑

n≥1

µ(n)/[Kn : Q],

where µ(n) is the Möbius function and Kn is the field generated by n-torsion
points on E (see [9]). An unconditional lower bound � B/log(B)2 (for elliptic
curves with no rational 2-torsion points) has been proved by Gupta and Murty
[5].
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