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Abstract

Given a variety over a number field, are its rational points po-
tentially dense, i.e., does there exist a finite extension over which ra-
tional points are Zariski dense? We study the question of potential
density for symmetric products of surfaces. Contrary to the situation
for curves, rational points are not necessarily potentially dense on a
sufficiently high symmetric product. Our main result is that rational
points are potentially dense for the Nth symmetric product of a K3
surface, where N is explicitly determined by the geometry of the sur-
face. The basic construction is that for some N , the Nth symmetric
power of a K3 surface is birational to an abelian fibration over PN . It
is an interesting geometric problem to find the smallest N with this
property.

1 Introduction

Let X be an algebraic variety defined over a number field K and X(K) its
set of K-rational points. We are interested in properties of X(K) imposed by
the global geometry of X. We say that rational points on X are potentially
dense if there exists a finite field extension L/K such that X(L) is Zariski
dense. It is expected - at least for surfaces - that if there are no finite
étale covers of X dominating a variety of general type then rational points
on X are potentially dense. This expectation complements the conjectures
of Bombieri, Lang and Vojta predicting that rational points on varieties of
general type are always contained in Zariski closed subsets. This dichotomy
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holds for curves: the nondensity for curves of genus ≥ 2 is a deep theorem
of Faltings and the potential density for curves of genus 0 and 1 is classical.

In higher dimensions there are at present no general techniques to prove
nondensity. Of course, potential density holds for abelian and unirational va-
rieties. Beyond this, density results rely on the classification and explicit pro-
jective geometry of the classes of varieties under consideration. In dimension
two potential density is unknown for K3 surfaces with finite automorphisms
and without elliptic fibrations (see [6]). In dimension 3 potential density is
unknown, for example, for double covers W2→P3 ramified in a smooth sur-
face of degree 6, for general conic bundles, as well as for Calabi-Yau varieties
(for density results see [12], [5]).

In this paper we study density properties of rational points on symmetric
products X(n) = Xn/Sn. If C is a curve of genus g and n > 2g − 2 the
symmetric product admits a bundle structure over the Jacobian Jac(C), with
fibers projective spaces Pn−g. We see that in this case rational points on
C(n) are potentially dense. Contrary to the situation for curves, we are
not guaranteed to find many rational points on sufficiently high symmetric
products of arbitrary surfaces. In Section 2 we show that if the Kodaira
dimension of a smooth surface X is equal to k then the Kodaira dimension
of X(n) is is equal to nk. This leads us to expect the behavior of rational
points on X(n) and X to be quite similar. At the same time we observe
that symmetric products of K3 surfaces admit (at least birationally) abelian
fibrations over projective spaces. In fact, even symmetric squares of certain
(nonelliptic) K3 surfaces have the structure of abelian surface fibrations over
P

2. This is the starting point for proofs of potential density of rational points.

Let us emphasize that if X is a variety over a number field K then Zariski
density of rational points on X defined over degree n field extensions of K
is not equivalent to Zariski density of K-rational points on X(n). Of course,
the first condition is weaker than the second. Furthermore, if rational points
on X are potentially dense then they are potential dense on X(n) as well.

This paper is organized as follows. In Section 2 we recall general prop-
erties of symmetric products and Hilbert schemes of surfaces. Section 3 sets
up generalities concerning abelian fibrations A→B. Potential density for A
follows once one can find a “nondegenerate” multisection for which potential
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density holds. In Section 4 we prove widely-known results concerning the
existence of elliptic curves on K3 surfaces. Then we turn to potential density
for symmetric products of K3 surfaces. First, in Sections 5 and 6, we prove
potential density for sufficiently high symmetric powers of arbitrary K3 sur-
faces. This is followed in Section 7 with more precise results for symmetric
squares of K3 surfaces of degree 2m2.

Throughout this paper, generic means ‘in a nonempty Zariski open sub-
set’ whereas general means ‘in the complement of a countable union of Zariski
closed proper subsets.’

Acknowledgements. The first author was partially supported by an
NSF postdoctoral fellowship and the Institute of Mathematical Sciences of
the Chinese University of Hong Kong. The second author was partially sup-
ported by the NSA. We are very grateful to Joe Harris and Barry Mazur for
their help and encouragement. We thank D. Matsushita and Y. Namikawa
for sending us their preprints, M. Jarden for helpful comments on Propo-
sition 3.1, and K. O’Grady for emphasizing the role of the Fourier-Mukai
transform (see Remark 7.4).

2 Generalities on symmetric products

Let X be a smooth projective variety over a field K. Denote by Xn =
X ×K ... ×K X the n-fold product of X. The symmetric group Sn acts on
Xn. The quotient X(n) = Xn/Sn is a projective variety, called the symmetric
product.

If X has dimension one then X(n) is smooth and for n > 2g− 2 the sym-
metric product X(n) is a projective bundle over the Jacobian Jac(X), with
fibers projective spaces of dimension n − g (see [22], Ch. 4). In particular,
rational points on X(n) are potentially dense for n > 2g − 2.

If X has dimension two then X(n) is no longer smooth. It has Gorenstein
singularities since the group action factors through the special linear group
(see [31]), i.e., for any point with nontrivial stabilizer, the induced repre-
sentation of the stabilizer on the tangent space factors through the special
linear group. The Hilbert scheme of length n zero-dimensional subschemes
is a crepant resolution of X(n)

ϕ : X [n]→X(n)
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(see [2], Section 6 and the references therein). In particular, ϕ∗ωX(n) = ωX[n] .
The same holds for pluricanonical differentials. On the other hand, we have
the isomorphism

H0(Xn, ωmXn)Sn = H0(X(n), ωmX(n)).

We are using the fact that the quotient map Xn→X(n) is unramified away
from a codimension two subset and pluricanonical differentials extend over
codimension two subsets. We conclude that pluricanonical differentials on the
Hilbert scheme correspond to Sn-invariant differentials on the n-fold product
Xn:

H0(X [n], ωmX[n]) ' H0(Xn, ωmXn)Sn .

Since
H0(Xn, ωmXn)Sn ' SymnH0(X,ωmX )

we obtain the following:

Proposition 2.1 Let X be a smooth surface. If X has Kodaira dimension
k then X(n) has Kodaira dimension nk.

Remark 2.2 Arapura and Archava have recently proved a more general
statement [1].

If X is a K3 surface we can be more precise: X [n] is a holomorphic
symplectic manifold (see [2], Section 6). In particular, the canonical bundle
of X [n] remains trivial.

An important ingredient in the proofs of potential density is the construc-
tion of a multisection of the abelian fibration. The following proposition will
help us verify that certain subvarieties are multisections:

Proposition 2.3 Let X be a smooth projective surface and C1, ..., Cn distinct
irreducible curves. Consider the image Z of C1× ...×Cn under the quotient
map Xn→X(n). The scheme-theoretic preimage ϕ−1(Z) ⊂ X [n] has a unique
irreducible component of dimension ≥ n, denoted by C1∗...∗Cn. In particular,
the homology class of C1 ∗ ... ∗ Cn is uniquely determined by the homology
classes of C1, ..., Cn.

Proof. Let (a1, .., ak) be a partition of n and let Da1,...,ak be the cor-
responding stratum in X(n). In particular, the Da1,...,ak are disjoint. The
intersection of Z with Da1,...,ak has dimension at most #{aj | aj = 1}. Each
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fiber of ϕ over Da1,...,ak is irreducible of dimension
∑k

j=1(aj − 1) (see [7]). It
follows that the preimage of Z ∩ Da1,...,ak has dimension at most

#{aj | aj = 1}+
k∑
j=1

(aj − 1),

which is less than n, provided the aj are not all equal to 1. �

3 Generalities on abelian fibrations

Let A be an abelian variety defined over a field K (not necessarily a number
field). A point σ ∈ A(K) is nondegenerate if the subgroup generated by σ is
Zariski dense in A.

Proposition 3.1 Let A be an abelian variety over a number field K. Then
there exists a finite field extension L/K such that A(L) contains a nonde-
generate point.

Proof. We include an argument for completeness, since we could not find
a reference.

Lemma 3.2 Let A be an abelian variety of dimension dim(A) defined over
a number field K. Then there exists a finite field extension L/K such that
the rank of the Mordell-Weil group A(L) is strictly bigger than the rank of
A(K).

Proof. As pointed out to us by M. Jarden, this follows from Theorem 10.1
of [9] and the subsequent remark. We provide an alternate proof suggested
by B. Mazur.

We first assume dim(A) > 1. Let Γ be the saturation of A(K) in A(K̄)
(where K̄ is the algebraic closure of K). This means that Γ consists of
all points p such that a positive multiple of p lies in A(K); in particular it
contains all torsion points. Find a smooth curve C of genus ≥ 2 in A, defined
over a finite extension K1/K. By Raynaud’s version of the Manin-Mumford
conjecture (see [16], I 6.4 or [26] Theorem 1) we have that C ∩ Γ is finite.
There exists a L/K1 such that C(L) contains a point q outside C ∩ Γ. It
follows that A(L) has higher rank.

We now do the case of an elliptic curve E . Write A = E × E with
projections π1 and π2; we have A(K) = E(K)× E(K). The argument above
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gives a point q ∈ A(L) not contained in the saturation of A(K). It follows
that either π1(q) or π2(q) is not contained in the saturation of E(K). �

We prove the proposition. We may replace A with an isogenous abelian
variety, so we may assume that A is a product of geometrically simple abelian
varieties. Our proof proceeds by induction on the number of simple compo-
nents. Any nontorsion point p of a geometrically simple abelian variety is
nondegenerate. Indeed, the Zariski closure of Zp is a finite union of translates
of abelian subvarieties. Hence it suffices to prove the inductive step:

Lemma 3.3 Let A1 and A2 be abelian varieties over a number field K.
Assume that A2 is geometrically simple and A1 and A2 have nondegenerate
K-points p1 and p2. Then A1 × A2 has a nondegenerate point over some
finite extension L/K.

Proof. For any pair of abelian varieties A1,A2 the group of homomor-
phisms Hom(A1,A2) is finitely generated as a module over Z. After a finite
extension, we may assume these are all defined over K. We also consider
Hom0(A1,A2) := Hom(A1,A2) ⊗ Q, the group of homomorphisms defined
up to isogeny (see [25], p. 172-176).

Assume that (p1, p2) is contained in a proper abelian subvariety B (
A1 × A2. Note that the projections πi|B are surjective. Let K1 ⊂ B be
the kernel of π1|B, which may be regarded as an abelian subvariety of A2.
A dimension count shows that K1 ( A2, hence K1 is finite (because A2 is
simple). It follows that π1|B is an isogeny and we can regard B as an element
β ∈ Hom0(A1,A2). In particular, (dβ)(p1) = dp2 for some nonzero integer
d. We choose a Z-basis (Z1, ..., Zk) for Hom(A1,A2). There exist integers
b1, ..., bk, such that (b1Z1 + ... + bkZk)(p1) = dp2 in the Mordell-Weil group.
Hence p2 is contained in the saturation of the subgroup of A2(K) generated
by the images of p1 under the Zi. Conversely, if q is not contained in this
subgroup then (p1, q) is nondegenerate. Applying Lemma 3.2, we obtain a
finite field extension L/K and a point q ∈ A2(L) with the desired property.
�

Let T be an A-torsor defined over a field K, i.e., there is an action
A× T →T so that the induced map

A× T →T × T (a, t)→(at, t)
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is an isomorphism (here all morphisms and fiber products are defined over
K.) In particular, if M/K is a finite extension and p ∈ T (M) then the
induced map restricts to an isomorphism A(M)→T (M).

Consider the Albanese Alb(T ) (see, for example, [15] II. 3). It is an
abelian variety defined over K, such that there is a morphism T ×T →Alb(T )
corresponding to (t1, t2) → t1 − t2. For each zero-cycle of T , defined over
K and of degree zero, we obtain a point in Alb(T )(K). Interpret T as the
zero-cycles on T of degree one, so that the addition map Alb(T ) × T →T
makes T into an Alb(T )-torsor as well. In particular A and Alb(T ) are both
isomorphic over K to the identity component of the automorphism group of
T .

Let p ∈ T (M) where M/K is a finite extension of degree deg(M). Re-
garding Spec(M)→T as a morphism of K-schemes, we obtain a zero-cycle
on T of degree deg(M), defined over K. This pulls back to a zero-cycle on
T (M) denoted trM . The zero-cycle τM := deg(M)p − trM has degree zero
and thus gives an element of Alb(T )(M). We shall say that p ∈ T (M) is
nondegenerate if τM is nondegenerate.

Let π : T →B be an abelian fibration, that is: T and B are normal, B is
connected, and the fiber Tb over the generic point b is a torsor for an abelian
variety Ab over K(b). A multisection M of π is the closure of an M -valued
point of Tb, where M is a finite field extension of K(b) of degree deg(M). It
is nondegenerate if the corresponding M -valued point is nondegenerate.

Proposition 3.4 Let π : T →B be an abelian fibration with nondegenerate
multisectionM, both defined over a number field K. Assume that K-rational
points on M are Zariski dense. Then K-rational points on T are Zariski
dense.

Proof. We restrict to an open subset of B over which T andM are smooth
and the torsor action A×BT →T is well-defined. Let p :M→T ×BM be the
section induced by the multisection. Our assumptions mean that A ×BM
has a nondegenerate section τM. The translates (nτM)(p(M)) are defined
over K and are Zariski dense in T ×BM. Each translate has Zariski dense
K-rational points, so we find that rational points in T ×BM are also Zariski
dense. Since T ×BM dominates T , rational points are dense in T as well.
�

Remark 3.5 Our argument does not show that rational points are Zariski
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dense in any fiber Tx, where x is an K-rational point of B. However, when
the fibers are of dimension 1 there exists a nonempty open subset U ⊂ M
such that (T ×BM)x has dense rational points for each x ∈ U(K) (see [30]).
Moreover, by a result of Néron, the rank of the Mordell-Weil group of special
fibers of abelian fibrations does not drop outside a thin subset of points on
the base of the fibration [28].

4 Elliptic families on K3 surfaces

Throughout this section, we work over an algebraically closed field of char-
acteristic 0. An elliptic fibration is an abelian fibration of relative dimension
one. In the sequel an elliptic fibration dominating a K3 surface will be called
an elliptic family.

The following theorem is attributed to Bogomolov and Mumford (see
[23]). We include a detailed proof because it is crucial for our applications.

Theorem 4.1 Let S be K3 surface and f a divisor class on S such that
h0(OS(f)) > 1. Then there exists a smooth curve B and an elliptic fibration
E→B with the following properties:

1. E dominates S;

2. the generic fiber Eb is mapped birationally onto its image;

3. the class f − Eb is effective.

Proof. A genus one curve C ⊂ S is a curve whose normalization C̃ is a
connected curve of genus one. It suffices to prove the result for a singular
curve B; we can always pull back to the normalization B̃.

We may restrict to the case where S is not an elliptic K3 surface. We
assume that |f | has no fixed components (and thus no base points). Indeed,
if this is not the case then we extract the moving part of f . Since S is not
elliptic, we have f 2 > 0. We may also assume that the class f is primitive;
otherwise, take the primitive effective generator f ′ such that f ∈ Zf ′. We
still have h0(O(f ′)) > 1 and |f ′| basepoint free (again, using the fact that
S is not elliptic.) See [29] for basic results concerning linear series on K3
surfaces.

We shall use the following lemma, essentially proved in [23]:
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Lemma 4.2 For each n > 0, a generic polarized K3 surface (S1, f) of degree
2n contains a one-parameter family of irreducible curves with class f , such
that the generic member is nodal of genus one.

Proof. We first claim there exists a K3 surface S0 containing two smooth
rational curves D1 and D2 meeting transversally at n + 2 points. Let S0 be
the Kummer surface associated to the product of elliptic curves E1 and E2,
such that there exists an isogeny E1→E2 of degree 2n + 5. Let Γ be the
graph of this isogeny and p ∈ E2 a 2-torsion point. Now Γ intersects E1 × p
transversally in 2n+ 5 points, one of which is 2-torsion in E1 ×E2. We take
D1 to be the image of Γ and D2 to be the image of E1 × p; D1 and D2 are
smooth, rational, and intersect transversally in n+2 points. The line bundle
O(f) := OS0(D1 +D2) is big and nef and thus has no higher cohomology (by
Kawamata-Viehweg vanishing).

Let ∆ be the spectrum of a discrete valuation ring with closed point 0
and generic point η. Let S → ∆ be a deformation of S0 such that f remains
algebraic. We assume further that the class f is ample and indecomposible
in the monoid of effective curves in a (geometric) generic fiber S1. These
conditions are satisfied away from a finite union of irreducible divisors. Since
f has no higher cohomology, D1∪D2 is a specialization of curves in the generic
fiber and the deformation space Def(D1 ∪D2) is smooth of dimension n+ 2.
Consider the locus in Def(D1 ∪ D2) parametrizing curves with at least ν
nodes; this has dimension ≥ n + 2 − ν. When ν = n + 1 the corresponding
curves are necessarily rational. Each fiber of S → ∆ is not uniruled, and thus
contains a finite number of these curves. In each fiber, the rational curves
with n + 1 nodes deform to positive-dimensional families of curves with n
nodes. Hence S1 contains a family of nodal curves of genus one with the
desired properties. �

To complete the proof, we use a proposition suggested by Joe Harris:

Proposition 4.3 Let S→D be a projective morphism. Then there exists a
scheme Kg(S/D) such that each connected component is projective over D
and the fiber over each d ∈ D is isomorphic to the corresponding moduli space
of stable maps Kg(Sd).

Proof. We refer to Kontsevich’s moduli space of stable maps constructed
in [14],[10]. We first consider the special case when S = PnD. Then

Kg(PnD/D) = Kg(Pn)×D
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More generally, given an embedding S→PnD over D, we define Kg(S/D) as
those elements of Kg(PnD/D) which factor through S. Since it is a closed
subscheme it is projective over D. �

We finish the proof of Theorem 4.1. There exists a projective family of
K3 surfaces S→∆ equipped with a divisor class f , such that the (geometric)
generic fiber satisfies the conditions of Lemma 4.2 and the special fiber is
(S, f). Consider the component K1(S/∆, f) of K1(S/∆) consisting of maps
with image in the class f . After a finite base change ∆′→∆, there exists a
geometrically irreducible curve Cη ⊂ K1(S/∆, f) corresponding to an elliptic
fibration dominating the generic fiber Sη. Let C ⊂ K1(S/∆, f) be the flat
extension over ∆ and C0 the corresponding flat limit.

There may not be a ‘universal stable map’ defined over C0 ⊂ K1(S, f).
However, for each irreducible reduced component Ci ⊂ C0, a universal stable
map exists after a finite cover Bi→Ci. (This follows from the existence of a
universal stable map over the associated moduli stack.) For some such Bi,
the resulting family of stable maps E ′i → Bi dominates S. The image of the
generic fiber contains a component of genus one because no K3 surface is
uniruled. �

5 Density of rational points

In this section S denotes a K3 surface defined over a number field K. Po-
tential density holds for elliptic K3 surfaces and for all but finitely many
families of K3 surfaces with Picard group of rank ≥ 3, and consequently for
their symmetric products (see [6]). However, a general K3 surface has Picard
group of rank 1. In the following sections we will prove density results for
symmetric products of general K3 surfaces.

By Theorem 4.1, there is a family of elliptic curves E dominating S. Let
E1, . . . , En be generic curves in the fibration and assume that g = [Ei] is big;
in particular, E is not an elliptic fibration on S. It follows that the generic
member of g is an irreducible curve of genus > 1. Note that we have a well
defined class g ∗ ... ∗ g in the homology of S[n], equal to the homology class
of C1 ∗ ... ∗Cn, where the Ci are irreducible curves in g (see Proposition 2.3).

Theorem 5.1 Let S be a K3 surface satisfying the conditions of the previous
paragraph. Assume that either
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1. S[n] admits an abelian fibration T →B and g∗ ...∗g intersects the proper
transform of the generic fiber positively, or

2. S[n] is birational to an abelian fibration, and E1∗...∗En is a multisection.

Then rational points on S[n] are potentially dense.

Proof. Throughout the proof, L/K is some finite field extension, which
we will enlarge as necessary. We want to show that L-rational points are
Zariski dense on S[n].

Under the first assumption, for any irreducible curves C1, ..., Cn in g,
C1 ∗ ... ∗ Cn ⊂ S[n] gives a multisection of T →B. In particular, E1 ∗ ... ∗ En
is a multisection.

Choose a point x ∈ B(L) corresponding to a smooth fiber Tx of T . Choose
a nondegenerate cycle in Tx of length n, represented by s1 + ... + sn ∈ S[n]

(see Proposition 3.1). We may assume the si are distinct, that each si lies in
a smooth fiber Ei of our elliptic family, that si and Ei are defined over L, and
that L-rational points of Ei are Zariski dense. Then we have a multisection
M for T given as (the proper transform of) E1∗ ...∗En. Note that L-rational
points on M are Zariski dense.

It follows thatM satisfies the nondegeneracy assumptions of Proposition
3.4. Therefore, L-rational points are Zariski dense in S[n]. �

We employed two parallel sets of hypotheses because in some applications
the abelian fibration is only described over the generic point of B, which
makes intersection computations difficult. In other applications, the abelian
fibration is given by an explicit linear series, but the multisection is difficult
to control.

Remark 5.2 Matsushita has proved a structure theorem for irreducible holo-
morphic symplectic manifolds of dimension 2n admitting a fibration struc-
ture. In particular, he proved that the base has dimension n, is Fano, has
Picard group of rank 1, and log-terminal singularities. Furthermore, the
fibers admit finite étale covers which are abelian varieties (see [19]).

Remark 5.3 We do not know how to produce abelian fibrations on sym-
metric products of Calabi-Yau varieties of dimension ≥ 3. For example, do
they exist for quintic threefolds?
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6 Potential density on S [n]

In this section we exhibit K3 surfaces S defined over a number field K and
satisfying the assumptions of Theorem 5.1.

Theorem 6.1 Let S be a K3 surface defined over a number field K. Let
g be a big line bundle on S of degree 2(n − 1). Assume that |g| contains
the class of an irreducible elliptic curve. Then there exists a finite extension
L/K such that L-rational points on S[n] are Zariski dense.

Proof. Under our hypothesis g is basepoint free; the base locus of any
linear series on a K3 surface has pure dimension one (see [29]). We obtain
a morphism S→Pn which is generically finite onto its image. Furthermore,
the generic member of |g| is smooth of genus n.

There is an abelian fibration over B ⊂ Pn, where B corresponds to the
locus of smooth curves in |g|. Indeed, T →B is the degree n component of
the relative Picard fibration. We claim that S[n] is birational to T . Given
generic points s1, ..., sn on S there is a smooth curve C ∈ |g| passing through
those points. The line bundle OC(s1 + ...+ sn) is a generic point of Picn(C),
and such a line bundle has a unique representation as an effective divisor.
We are using the fact that C [n] is birational to Picn(C). (This idea can also
be found in the work of Yau-Zaslow [32] and Beauville [4].)

To apply Theorem 5.1 we must verify that (the proper transform of)
E1 ∗ ... ∗ En is a multisection for T . A generic curve C ∈ |g| intersects the
union of the Ei transversally in n(2n− 2) points. Under these assumptions,
every subscheme parametrized by C [n] ∩ (E1 ∗ ... ∗ En) is reduced and there
are finitely many such subschemes. It particular, C [n] intersects E1 ∗ ... ∗En
in finitely many points. �

Theorem 6.2 Let S be a K3 surface defined over a number field K and
admitting a polarization f of degree 2(N − 1). Then there exist a positive
integer n ≤ N and a finite extension L/K such that the L-rational points of
S[n] are Zariski dense.

Proof. By Theorem 4.1 S is dominated by an elliptic fibration E→B,
with 〈Eb, Eb〉 ≤ 〈f, f〉 = 2(N−1). Theorem 6.1 gives the result when g = [Eb]
is big. If the class of the fiber is not big it has self-intersection zero, which
implies that S is an elliptic K3 surface. In this case, the main theorem of [6]
proves our claim with n = 1. �
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Example 6.3 Let S be a K3 surface of degree 2. Then rational points on
S[2] are potentially dense.

7 Potential density on S [2]

Given a fixed K3 surface it is a natural problem to determine the smallest
possible n for which the theorem holds. (Of course, we expect that we can
always take n = 1!) As we have seen, the key to proving potential density is
the existence of abelian fibrations on S[n].

The intersection form on the Picard group of S is an integer-valued non-
degenerate quadratic form, denoted 〈, 〉. We recall that the Picard group of
S[n] is also equipped with a natural integer-valued nondegenerate quadratic
form (, ), the Beauville form [2]. With respect to this form, we have an
orthogonal direct sum decomposition

Pic(S[n]) = Pic(S)⊕⊥ Ze,

where (e, e) = −2(n− 1) and 2e is the class of the diagonal (more precisely,
the nonreduced subchemes in S[n].)

On the K3 surface S, the Picard group together with the quadratic form
control much of the geometry of S. For example, if the quadratic form
represents zero, then S admits an elliptic fibration over P1. A naive question
would be whether the analog holds for S[n] with n ≥ 2. More precisely, if the
Beauville form represents zero, is S[n] birational to an abelian fibration over
P
n (see [13])? Note that the Beauville form of S[2] represents zero if and only

if the intersection form on Pic(S) represents 2m2 for some m ∈ Z.

Proposition 7.1 Let S be a generic K3 surface of degree 2m2 with m > 1.
Then S[2] is isomorphic to an abelian surface fibration over P2.

Proof. We first consider the casem = 2. We asssume that the polarization
on S is very ample and that S does not contain a line or a cubic plane curve.
Then S can be represented as a complete intersection of a three-dimensional
space IS(2) of quadrics in P5. An element of S[2] spans a line ` ∈ P5 and
a two dimensional subspace of IS(2) contains `. In this way, we obtain a
morphism

a : S[2]→P2 ' P(IS(2)∗).

The generic fiber of a is an abelian surface; the variety of lines on a smooth
complete intersection of two quadrics in P5 is a principally polarized abelian
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surface (see [11], p. 779). Notice that a is induced by the sections of f8− 2e,
where f8 is the polarization of degree 8.

When m > 2 the proof consists of three steps:

1. construct special K3 surfaces S so that S[2] admits a natural involution;

2. show directly that some of these special K3 surfaces admit an abelian
surface fibration and a polarization of degree 2m2;

3. verify that this abelian surface fibration deforms to the Hilbert scheme
of a generic K3 surface of degree 2m2.

We begin with a construction of Beauville and Debarre [8]. Let S ⊂
P

3 be a smooth quartic hypersurface; in particular, S is a K3 surface and
the corresponding polarization is denoted f4. Then there is a birational
involution

j : S[2] 99K S[2]

defined on an open subset of S[2] by the rule j(p1 + p2) = p3 + p4, where
p1, p2, p3, and p4 are collinear points on S. This is a morphism provided that
S does not contain a line. The action of j on the Picard group of S[2] is given
by

j∗x = −x+ (f4 − e, x) (f4 − e).

Next, we consider some special quartic K3 surfaces. Let S be a K3 surface
with Picard group generated by the ample class f4 and a second class f8

satisfying
f4 f8

f4 4 k
f8 k 8

where k > 7. Such K3 surfaces are parametrized by a nonempty analytic
open subset of an irreducible variety of dimension 18. This follows from the
Torelli theorem, surjectivity of Torelli, and the structure of the cohomology
lattice of K3 surfaces (see [17] Theorem 2.4 and [3]). Note that f4 is very
ample and that the image is a smooth quartic surface not containing a line
[29]; here we are using the fact that k 6= 6. Furthermore, the same reasoning
shows that f8 is very ample and the image does not contain a line, provided
that f8 is ample. (Here we are using the fact that k 6= 7.) If f8 were not ample
then 〈f8, C〉 ≤ 0 for some (−2)-curve C (see [17] 1.6). Clearly 〈f8, C〉 6= 0
and if 〈f8, C〉 < 0 then the Picard-Lefschetz reflection ρ(f8) = f8 + 〈f8, C〉C
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and f4 generate a sublattice with discriminant greater than 32 − k2, which
is impossible. Our argument in the m = 2 case shows that the S[2] admits
an abelian surface fibration, induced by the line bundle f8 − 2e. Composing
with the involution j, we obtain a second abelian fibration, induced by

j∗(f8 − 2e) = 2e− f8 + (f8 − 2e, f4 − e) (f4 − e) = (k − 4)f4 − f8 − (k − 6)e.

Let g = (k − 4)f4 − f8 and m = k − 6 so that 〈g, g〉 = 2(k − 6)2 = 2m2 and
j∗(f8 − 2e) = g −me. Note that g is effective on S.

We turn to the last step. Let S→∆ be a general deformation of S for
which g remains algebraic. The class g restricts to a polarization on the
generic fiber, since it has Picard group of rank one. The class g − me is
algebraic (and nef) on the generic fiber of S [2]→∆. Using deformation theory
(see [13] and [27] Cor. 3.4), we find that the generic fiber also admits an
abelian fibration with base P2, induced by the sections of the line bundle
g − me. We are using the fact that the abelian surface fibration on S[2] is
Lagrangian; see [13] for the fourfold case and [20] more generally. �

Remark 7.2 Unfortunately, our argument gives little information about
how the abelian fibration degenerates for nongeneric K3 surfaces of degree
2m2 with m > 2. A more precise description would follow from the conjec-
tures of [13].

Remark 7.3 Proposition 7.1 gives a counterexample to the theorem in Sec-
tion 2, p. 463 of [18]. There it is claimed that S[2] of a K3 surface S admits
a (Lagrangian) abelian surface fibration if and only if S is elliptic.

Remark 7.4 We expect the arguments of Proposition 7.1 to generalize to
higher symmetric products. More precisely, if S is generic of degree 2nm2

then S[n+1] should be birational to an abelian fibration over Pn+1. As K.
O’Grady pointed out, this is best understood as an application of the Fourier-
Mukai transform (see [24]). Essentially, S is isogenous to a K3 surface Ŝ of
degree 2n, i.e., Ŝ may be interpretted as a moduli space of vector bundles on
S. Applying the Fourier-Mukai transform to ideal sheaves of length (n + 1)
subschemes of S, one should obtain sheaves supported on hyperplane sections
of Ŝ which are invertible along their support. We have already seen that the
relative Jacobian of Ŝ is birational to an abelian fibration over Pn+1.
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Theorem 7.5 Let S8 be a K3 surface of degree 8, defined over a number field
K, embedded in projective space P5 as a complete intersection of 3 quadrics
and not containing a line. Then rational points on S

[2]
8 are potentially dense.

The same result holds for a generic K3 surface of degree 2m2.

Proof. We apply Theorem 5.1, using the first set of assumptions. We use
the abelian fibrations constructed in Proposition 7.1.

Let g be the homology class of an irreducible elliptic curve (see Theorem
4.1). We verify that g ∗ g intersects the class of a fiber positively.

We need to compute the intersection on S[2] of (f−me) · (f−me) · (g ∗g),
where f and g are divisor classes on S. Let Σ be the class of subschemes
containing a fixed point p ∈ S; note that these subschemes are parametrized
by the blow-up of S at p. In particular, (f −me) · (f −me) ·Σ = 〈f, f〉−m2

(because e restricts to the exceptional divisor of the blown-up K3 surface).
We also have

g ∗ g = g · g − 〈g, g〉Σ,
f · f · g · g = 〈f, f〉〈g, g〉+ 2〈f, g〉2,
f · e · g · g = 0,

e · e · g · g = −2〈g, g〉.

Finally, we obtain

(f −me) · (f −me) · (g ∗ g) = 2〈f, g〉2 −m2〈g, g〉.

In our case, f = f2m2 , g is the class of the elliptic curve. To verify the hy-
pothesis of the Theorem 5.1, we need 2〈f2m2 , g〉2 > m2〈g, g〉. Since 〈g, g〉 > 0
we are done by the Hodge index theorem, which implies that the determinant
of the matrix (

2m2 〈f2m2 , g〉
〈f2m2 , g〉 〈g, g〉

)
is negative. �
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