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Abstract. We prove asymptotic formulas for the number of rational points
of bounded height on certain equivariant compactifications of the affine
space.
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Introduction

In the last decade, there has been much interest in establishing asymptotics
for the number of points of bounded height on algebraic varieties defined over
number fields. Yu. Manin and B. Batyrev [1] have formulated conjectures
describing such asymptotics in geometrical terms. These conjectures have
been further refined by E. Peyre in [8].

More precisely, let X be a smooth projective algebraic variety defined over
a number field F and H : X(F ) → R>0 an exponential height function on the
set of rational points of X defined by some metrized ample line bundle L .
One wants to relate the asymptotic behavior of the counting function

N(U,L , B) = #{x ∈ U(F ) ; H(x) 6 B}

to geometric invariants of X, such as the cone of effective line bundles and
the (anti)-canonical line bundle of X. Here, U is a sufficiently small Zariski
dense open subset; its presence is made necessary by possible “accumulating
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subvarieties”, which contain more rational points than their complement in X.
If X is a Fano variety and L = K−1

X , one expects that

N(U,K−1
X , B) ∼ Θ(X)

(r − 1)!
B(logB)r−1

where r = rk Pic(X) and Θ(X) is the product of three numbers: a Tama-
gawa constant which measures the volume of the closure of rational points in
the adelic points X(F ) ⊂ X(AF ) with respect to the metrization, a rational
number defined in terms of the cone of effective divisors and the order of the
non-trivial part of the Brauer group of X.

Such a description cannot hold universally (see the example by V. Batyrev
and Yu. Tschinkel [2]), but there are two classes of algebraic varieties where it
does hold: those for which the circle method in analytic number theory applies,
and those possessing many symmetries, such as an action (with a dense orbit)
of a linear algebraic group. The circle method is concerned with complete
intersections of small degree and small codimension in projective space. They
have moduli, but only few projective embeddings; the Picard group is Z. As
a reference, let us mention the papers by B. Birch [4] and W. Schmidt [9].
The other approach leads, via harmonic analysis on the adelic points of the
corresponding group, to a proof of conjectured asymptotic formulas for toric
varieties (see [3]) or for generalized flag varieties (using Langlands’ work on
Eisenstein’s series, see [6]). These have Picard groups of higher ranks, but no
deformations due to the rigidity of reductive groups.

In this paper we treat certain equivariant compactifications of vector groups.
In a previous paper [5], we had established asymptotic formulas for blow-ups
of P2 in any number of points on a line. Here we work out the case of blow-ups
of a projective space Pn of dimension at least 3 in a smooth codimension 2
subvariety contained in a hyperplane. It should be clear to the reader that
these varieties admit deformations (they are parametrized by an open subset
of an appropriate Hilbert scheme).

More precisely, let f ∈ Z[x1, . . . , xn] be a homogeneous polynomial of de-
gree d andX → Pn = Proj(Z[x0, . . . , xn]) be the blow-up of the ideal generated
by (x0, f). Suppose that the hypersurface defined by f in Pn−1

C is smooth and
let U ' An be the inverse image in X of An ⊂ Pn. Then, XC is a smooth
projective variety, with Picard group Z2 and trivial Brauer group. Moreover,
XC is an equivariant compactification of Gn

a . There is a natural metrization
on K−1

X (recalled below) which allows to define the height function and the
height zeta function

Z(U,K−1
X , s) =

∑
x∈U(Q)

HK−1
X

(x)−s,

The series converges absolutely for Re(s) � 0. Our main theorem is:
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Theorem 0.1. There exists a function h which is holomorphic in the domain
Re(s) > 1− 1

n
such that

Z(U,K−1
X , s) =

h(s)

(s− 1)2
and h(1) = Θ(X) 6= 0.

A standard Tauberian theorem implies that X satisfies Peyre’s refinement
of Manin’s conjecture:

Corollary 0.2. We have the following asymptotic formula:

N(U,K−1
X , B) ∼ Θ(X)B log(B)

as B tends to infinity.

In fact, we will prove asymptotics for every L on X such that its class
is contained in the interior of the effective cone Λeff(X). Moreover, we will
prove estimates for the growth of Z(s) in vertical strips in the neighborhood of
Re(s) = 1. It is well known that this implies a more precise asymptotic expan-
sion for the counting function N(U,L , B), see Theorem 4.4 and its corollary
at the end of the paper.
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1. Geometry, heights

Let f ∈ Z[x1, . . . , xn] be a homogeneous polynomial of degree d with co-
prime coefficients and π : X → Pn the blow-up of the ideal (x0, f) in Pn =
Proj(Z[x0, . . . , xn]). We denote by Zf the hypersurface defined by f in Pn−1.
Throughout the paper, we assume that Zf,C is smooth, irreducible and that
it doesn’t contain any hyperplane. In other words, n > 3 and d > 2. The
universal property of blowing up implies that the scheme X is an equivariant
compactification of the additive group Gn

a = Spec(Z[x1, . . . , xn]).
Denote by D1 the exceptional divisor in X and by D0 the strict transform

of the divisor x0 = 0 in Pn. Let U ' Gn
a be the inverse image of Gn

a under π.
We identify rational points in U with their image in the affine space Gn

a ⊂ Pn.
If s ∈ C2, denote D(s) = s0[D0] + s1[D1] ∈ Pic(X)⊗Z C.
The following proposition summarizes the geometric facts needed in the

sequel.

Proposition 1.1. The classes of the divisors D0 and D1 form a basis of
Pic(X). For s = (s0, s1) ∈ Z2, the divisor class D(s) is effective iff s0 > 0
and s1 > 0. The variety XQ is smooth; its anticanonical line bundle has class
D(n+ 1, n).

Proof. See [5], Prop. 1.3 and Prop. 1.6 or [7], chap. II, § 8. �

We now define height functions on X. We denote by Val(Q) = {2, 3, . . . ,∞}
the set of places of Q. If p is a prime number and x ∈ Gn

a(Qp), let ‖x‖p =

max(|x1|p , . . . , |xn|p) and define the functions HD1,p and HD0,p by

HD1,p(x)−1 = max
( 1

max(1, ‖x‖p)
,

|f(x)|p
max(1, ‖x‖p)

d

)
(1.2)

HD0,p(x)−1 =
HD1,p(x)

max(1, ‖x‖)
.(1.3)

At the archimedian place of Q, define the local height functions by replacing
maximums by the square root of the sum of squares. For any place v of Q and
any s = (s0, s1) ∈ C2, we set

(1.4) Hv(s;x) = HD0,v(x)s0HD1,v(x)s1 .

Finally, we define a global height pairing

(1.5) H : Pic(X)C ×Gn
a(AQ) → C∗, H(s;x) =

∏
v∈Val(Q)

Hv(s;xv).

Proposition 1.6. If L ∈ Pic(X), the function x 7→ H(L ;x) on Gn
a(Q) is

an exponential height in the sense of Weil.

Proof. See [5], (1.12), (1.13) and (2.2). �
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The height zeta function is then defined by the series

(1.7) Z(s) =
∑

x∈Gn
a (Q)

H(s;x)−1.

It converges a priori for all s ∈ C2 such that D(s) is sufficiently ample, i.e. if
Re(s0 − s1) and Re(s0) are big enough.

Let ψ =
∏

v ψv : Ga(AQ) → C∗ be the standard additive character of AQ.
If a ∈ Qn, we define

ψa(x) = ψ(〈a,x〉).
We use the standard self-dual Haar measure dx on Gn

a(AQ). For any a ∈ Qn,
define the Fourier transform

Ĥ(s;ψa) =

∫
Gn

a (AQ)

H(s;x)−1 dx.

It is the product of the local Fourier transforms Ĥv(s;ψa).
For s ∈ C2 such that both sides converge absolutely, we have the following

identity:

(1.8) Z(s) =
∑
a∈Zn

Ĥ(s;ψa).

This is a consequence of the usual Poisson formula, see [5], end of § 2.
In the following sections we determine the domain of absolute convergence

of the right hand side and prove that Z(s) admits a meromorphic continuation
beyond this domain.

2. The local Fourier transform at the trivial character

We denote by S the minimal set of primes such that Zf ⊂ Pn−1
Z is smooth

over SpecZ[S−1]. Let p be a prime number.

2.1. Decomposition of the domain. We define subsets of Qn
p as follows:

• U(0) = Zn
p ;

• if 0 6 β < α, U1(α, β) is the set of x ∈ Qn
p such that ‖x‖ = pα and

|f(x)| = pdα−β;
• if α > 1, U1(α) is the set of x ∈ Qn

p such that ‖x‖ = pα and |f(x)| 6
p(d−1)α;

• if α > 1, U(α) is the set of x ∈ Qn
p such that ‖x‖ = pα and |f(x)| = pdα.

The local height function is constant on each of these subsets. Namely, if
x ∈ U(0), HD0,p = HD1,p = 1. If x ∈ U1(α, β), HD0,p = pα−β and HD1,p = pβ.
On U(α), HD0,p = pα and HD1,p = 1. Finally, if x ∈ U(α), then HD0,p = 1 and
HD1,p = pα.
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2.2. Volumes. Denote by

τp(f) =
(
1− 1

p

)#Zf (Fp)

pn−2
.

The Weil conjectures proved by Deligne imply that τp(f) = 1 + O(1/p). In
a much more elementary way, it follows from Lemma 3.9 below that τp(f) is
bounded as p varies.

Lemma 2.3. For p 6∈ S, we have

vol(U(0)) = 1(2.3a)

vol(U1(α, β)) =
p− 1

p
τp(f)pnα−β(2.3b)

vol(U1(α)) = τp(f)p(n−1)α(2.3c)

vol(U(α)) =
(
1− p−n − p−1τp(f)

)
pnα.(2.3d)

Proof. For β > 1, let Ω(β) be the set of x ∈ Zn
p such that ‖x‖ = 1 and

|f(x)| 6 p−β. By definition,

vol(Ω(β)) = p−nβpβ−1(p− 1)#Zf (Z/p
βZ).

As Zf is smooth of pure dimension n− 2 over Zp, Hensel’s lemma implies that

#Zf (Z/p
βZ) = p(β−1)(n−2)#Zf (Fp).

Consequently,

vol(Ω(β)) = (p− 1)p−β−1 #Zf (Fp)

pn−2
= τp(f)p−β.

As U1(α) = p−αΩ(α), we have

vol(U1(α)) = τp(f)p(n−1)α.

Now,

U1(α, β) = p−αU1(0, β) = p−α
(
Ω(β)− Ω(β + 1)

)
,

therefore

vol(U1(α, β)) =
p− 1

p
τp(f)pnα−β.

Finally, U(α) = p−α(Zn
p \ (pZn

p ∪ Ω(1))), hence

vol(U(α)) =
(
1− p−n − p−1τp(f)

)
pnα.

�

Proposition 2.4. Assume that p 6∈ S. Then,

Ĥp(s;ψ0) = ĤPn,p(s0) + τp(f)
ps0−n − ps1−n

(ps0−n − 1)(ps1−n+1 − 1)
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where

ĤPn,p(s0) =
1− p−s0

1− pn−s0

denotes the Fourier transform (with respect to the trivial character ψ0) of the
local height function of Pn for the tautological line bundle at s0.

Proof. By definition,

Ĥp(s;ψ0) =

∫
Qn

p

H(s;x)−1 dx

=

∫
U(0)

+
∑

16β<α

∫
U1(α,β)

+
∑
16α

∫
U1(α)

+
∑
16α

∫
U(α)

.

We compute these sums separately. The integral over U(0) is equal to 1. Then∑
16β<α

∫
U1(α,β)

=
p− 1

p
τp(f)

∑
16β<α

p−αs0p−β(s1−s0)pαn−β

=
p− 1

p
τp(f)

∞∑
β=1

p−β(s1−s0+1)

∞∑
α=β+1

p−α(s0−n)

=
p− 1

p
τp(f)

∞∑
β=1

p−β(s1−s0+1)p−β(s0−n) 1

ps0−n − 1

=
p− 1

p
τp(f)

1

ps0−n − 1

∞∑
β=1

p−β(s1−n+1)

=
p− 1

p
τp(f)

1

ps0−n − 1

1

ps1−n+1 − 1
.

Concerning the integrals over U1(α), we have

∑
16α

∫
U1(α)

= τp(f)
∞∑

α=1

p−αs1p(n−1)α = τp(f)
1

ps1−n+1 − 1
.

Finally,

∑
16α

∫
U(α)

= (1− p−n − p−1τp(f))
∞∑

α=1

p−s0αpnα

=
(
1− p−n − p−1τp(f)

) 1

ps0−n − 1
.
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Adding all these terms gives

Ĥp(s;ψ0) = 1 + (1− p−1)τp(f)
1

ps0−n − 1

1

ps1−n+1 − 1

+ τp(f)
1

ps1−n+1 − 1
+

(
1− p−n − p−1τp(f)

) 1

ps0−n − 1

= 1 + (1− p−n)
1

ps0−n − 1

+ τp(f)

(
(1− p−1)

1

ps0−n − 1

1

ps1−n+1 − 1
+

1

ps1−n+1 − 1

− p−1 1

ps0−n − 1

)
= ĤPn,p(s0) + p−1τp(f)

p− 1 + ps0−n+1 − p− ps1−n+1

(ps0−n − 1)(ps1−n+1 − 1)

= ĤPn,p(s0) + p−1τp(f)
ps0−n+1 − ps1−n+1

(ps0−n − 1)(ps1−n+1 − 1)

= ĤPn,p(s0) + τp(f)pn−1 p−s1 − p−s0

(1− pn−s0)(1− pn−1−s1)

�

3. The local Fourier transform at a non-trivial character

In this subsection we evaluate the local Fourier transform at p for a non-
trivial character ψa. We still assume that p 6∈ S and we suppose moreover that
p is such that a ∈ Zn doesn’t belong to pZn.

Recall that Zf ⊂ Pn−1
Z denotes the subscheme defined by f and define

Zf,a = Zf ∩Ha, where Ha is the hyperplane of Pn−1 defined by a. Finally, let
Zt

f,a (resp. Znt
f,a) be the locus of points in Zf,a where the intersection Zf ∩Ha

is transverse (resp. is not transverse). By assumption, Zf and Ha are smooth
over Zp.

Let I(α, β) be the integral of ψa over the set of x ∈ Qn
p such that ‖x‖ = pα

and |f(x)| 6 pdα−β. Then, according to our partition of Qn
p , we have

Ĥp(s;ψa) = 1 +
∞∑

α=1

α−1∑
β=0

p−αs0p−β(s1−s0)

∫
‖x‖=pα

|f(x)|=pdα−β

ψa

+
∞∑

α=1

p−αs1

∫
‖x‖=pα

|f(x)|6p−α(d−1)

ψa
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= 1 +
∞∑

α=1

α−1∑
β=0

p−αs0p−β(s1−s0)
(
I(α, β)− I(α, β + 1)

)
+

∞∑
α=1

p−αs1I(α, α).

= 1 +
∞∑

α=1

p−αs0I(α, 0)− (ps1−s0 − 1)
∞∑

α=1

α∑
β=1

p−αs0p−β(s1−s0)I(α, β)

Lemma 3.1. If t ∈ Qp, the mean value over Z∗
p of ψ(t·) is equal to∫

Z∗p
ψ(tu) du∫
Z∗p
du

=


1 if t ∈ Zp;

−1/(p− 1) if vp(t) = −1;

0 if vp(t) 6 −2.

Proof. Indeed, we have∫
Z∗p

ψ(tu) du =

∫
Zp

ψ(tu) du−
∫

pZp

ψ(tu) du

=

∫
Zp

ψ(tu) du− 1

p

∫
Zp

ψ(ptu) du.

The integral of a non-trivial character over a compact group is 0, hence this
integral equals 0 if t 6∈ p−1Zp, equals −1

p
if t ∈ p−1Zp \ Zp and equals 1− 1

p
if

t ∈ Zp. This proves the lemma. �

Using the change of variables x = p−αy, this implies the following formula:

(3.2) I(α, β) = pnα

(
p

p− 1
vol

(
‖x‖ = 1; pβ|f(x); pα|〈a,x〉

)
− 1

p− 1
vol

(
‖x‖ = 1; pβ|f(x); pα−1|〈a,x〉

))
.

Lemma 3.3. If 1 6 β 6 α, one has

vol
(
‖x‖ = 1; pβ|f(x); pα|〈a,x〉

)
= p−αp(2−n)β

(
1− 1

p

)
#Zf,a(Z/p

βZ).

In particular,

(3.4) I(α, β) = 0 if 1 6 β < α.

Moreover, if α > 2,

vol
(
‖x‖ = 1; pα|f(x); pα−1|〈a,x〉

)
=

1

p
vol

(
‖x‖ = 1; pα−1|f(x); pα−1|〈a,x〉

)
=

1

p
p(1−α)(n−1)

(
1− 1

p
)#Zf,a(Z/p

α−1).
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If α = 1, one has

vol
(
‖x‖ = 1; p|f(x)

)
=

(
1− 1

p

)
p1−n#Zf (Z/pZ).

We had computed in [5], proof of Lemma 3.5, the integral∫
‖x‖=pα

ψa =

{
−1 if α = 1;

0 if α > 2.

so that

(3.5) Ĥ(s;ψa) = 1− p−s0 +
ps1−s0 − 1

p− 1
p−s1#Zf (Fp)

− ps1−s0 − 1

p− 1
(1− pn−s1−2)

∞∑
α=1

p−α(s1−1)#Zf,a(Z/p
αZ).

Lemma 3.6. For all α > 1,

#Zf,a(Z/p
αZ) 6 p(n−3)(α−1)#Zt

f,a(Z/pZ) + p(n−2)(α−1)#Znt
f,a(Z/pZ).

Proof. The inequality is trivially true for α = 1. We prove it for any α by
induction: to lift a point from Zf,a(Z/p

α
Z) to a point in Zf,a(Z/p

α+1Z), one
essentially needs to solve two equations in u ∈ Fn

p :

〈∇f(x),u〉 = p−αf(x), 〈a,u〉 = p−α〈a,x〉.

A point in Zf,a(Z/p
αZ) which reduces to a point in Zt

f,a modulo p has pn−3

lifts in Zf,a(Z/p
α+1Z). On the other hand, a point reducing to a point in Znt

f,a

has pn−2 or 0 lifts according to the two linear equations being compatible or
not. This implies the lemma. �

Proposition 3.7. If not empty, the set Znt
f,a is a closed subscheme of bounded

degree of Zf,a and of dimension 0. There exist a constant C, independent of a
and p such that

#Zt
f,a(Z/pZ) 6 Cpn−3, #Znt

f,a(Z/pZ) 6 C.

As a corollary, one gets:

Corollary 3.8. There exist a constant C such that for all α and p 6∈ S(a),

#Zf,a(Z/p
αZ) 6 Cp(n−3)α + Cp(n−2)(α−1).

Proof of Prop. 3.7. The set Zf,a is defined by the two equations f(x) = 〈a,x〉 =
0. Fix the coordinates x1, . . . , xn so that a is the first vector. Up to a constant,
one may write

f(x) = xd
1 + g1(x2, . . . , xn)xd−1

1 + · · ·+ gd1x1 + gd(x2, . . . , xn)
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for some homogeneous polynomials gi of degree i. Then, denoting x = (x1,x
′),

Zf,a is defined by the equations

x1 = gd(x
′) = ∂2gd(x

′) = · · · = ∂ngd(x
′) = 0.

On Zf,a, ∂1f(0,x′) = gd−1(x
′) and on Znt

f,a ⊂ Zf,a, ∂if(0,x′) = ∂igd(x
′). As

Zf is smooth, gd−1(x
′) doesn’t vanish on Znt

f,a which must therefore be either

empty or of dimension 0. Its degree cannot exceed d(d− 1)n−1. The bound on
the number of Fp-rational points are a consequence of the following (certainly
well-known) easy lemma. �

Lemma 3.9. Let k = Fq be a finite field, X a closed subscheme of Pn
k of

dimension d. Then

#X(Fq) 6 Pd(Fq) degX.

Proof. We prove this by induction on d. If d = 0, the result is clear. Then, one
can assume thatX is reduced, irreducible and not contained in any hyperplane.
For any hyperplane H ⊂ Pn which is rational over k, X ∩ H is a closed
subscheme of H of dimension d − 1 and of degree degX. By induction, we
have

#(X ∩H)(Fq) 6 #Pd−1(Fq) degX.

Finally, any point of X(Fq) is contained in exactly #Pn−1(Fq) rational hyper-
planes in Pn, so that

#X(Fq)#Pn−1(Fq) 6 #Pd−1(Fq)#Pn(Fq) degX.

As n > d, this implies

#X(Fq) 6
qn+1 − 1

qn − 1

qd − 1

q − 1
degX 6 Pd(Fq) degX.

�

4. The height zeta function

From now on, we fix some ε > 0 and consider only s in the subset Ω of C2

defined by the inequalities Re(s0) > n+ ε and Re(s1) > n− 1 + ε.

Proposition 4.1. There exist a holomorphic function g on Ω which has poly-
nomial growth in vertical strips such that

Ĥ(s, ψ0) = g(s)
1

(s0 − n− 1)(s1 − n)
.

Proof. Indeed, we see from 2.3 that for p 6∈ S,

Ĥp(s, ψ0) = 1 + pn−s0 + pn−s1−1 +O(p−1−ε),
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the O being uniform in p. Consequently,∏
p6∈S

Ĥp(s, ψ0)(1− pn−s0)(1− pn−1−s1)

converges to a holomorphic bounded function on Ω. As the finite number
of remaining factors converge uniformly in Ω, the existence of g is proven.
The growth of g in vertical strips follows from Rademacher’s estimates for the
Riemann zeta function. �

Lemma 4.2. There exist a constant C > 0 such that for all a ∈ Zn \ {0}, all
p 6∈ S(a) and all (s0, s1) ∈ Ω, one has∣∣∣Ĥp(s, ψa)− 1

∣∣∣ 6 Cp−1−ε.

Proof. Recall the formula 3.5:

Ĥp(s, ψa)− 1 = −p−s0 +
p−s0 − p−s1

p− 1
pn−2(1− 1

p
)−1τp(f)

− ps1−s0 − 1

p− 1
(1− pn−s1−2)

∞∑
α=1

p−α(s1−1)#Zf,a(Z/p
αZ)

the right hand side of which we have to estimate all terms. The first one is
p−s0 = O(p−1−ε). Then, as τp(f) is bounded, the second one is

O(pn−3−Re(s0)) +O(pn−3−Re(s1)) = O(p−2).

For the last term T3, we use lemma 3.8 so that, denoting σ1 = Re(s1),

∞∑
α=1

p−α(s1−1)#Zf,a(Z/p
αZ)

6 C
∞∑

α=1

p−α(σ1−1)p(n−3)α + C
∞∑

α=1

p−α(σ1−1)p(n−2)(α−1)

6 C
1

pσ1−n+2 − 1
+ Cp2−n 1

pσ1−n+1 − 1
.

Moreover, ∣∣1− pn−s1−2
∣∣ 6 2

so that

|T3| �
1

p− 1

pσ1−σ0 + 1

pσ1−n+2 − 1
+ 2C

p2−n

p− 1

pσ1−σ0 + 1

pσ1−n+1 − 1

� 1

p

(
pn−2−σ0 + pn−2−σ1

)
+ p1−n

(
pn−1−σ0 + pn−1−σ1

)
� p−2.

The lemma is proved. �
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Proposition 4.3. For each a ∈ Zn \ {0}, Ĥ(s, ψa) is a holomorphic function
on Ω. Moreover, there exist constants C > 0 and ν (independent of s and a)
such that ∣∣∣Ĥ(s, ψa)

∣∣∣ 6 C(1 + ‖=(s)‖)ν(1 + ‖a‖)−n−1.

Proof. Write

Ĥ(s, ψa) =
∏

p6∈S(a)

Ĥp ×
∏

p∈S(a)

Ĥp × Ĥ∞.

The convergence of the first infinite product to a bounded holomorphic function
follows from the preceding lemma. As in Lemma 3.7 of [5], there exists a
constant κ > 0 such that∣∣∣∣∣∣

∏
p∈S(a)

Ĥp(s, ψa)

∣∣∣∣∣∣ � (1 + ‖a‖)κ.

Using the rapidly decreasing behavior of Ĥ∞ as a function of a∣∣∣Ĥ∞(s, ψa)
∣∣∣ � (1 + ‖a‖)−n−κ−1

established in Prop. 2.13 of loc. cit., the proposition is proved. �

Theorem 4.4. The height zeta function converges in the domain Re(s0) >
n + 1, Re(s1) > n. Moreover, there exists a holomorphic function g in the
domain Re(s0) > n, Re(s1) > n− 1 such that

Z(s) = g(s)
1

(s0 − n− 1)(s1 − n)
.

The function g has polynomial growth in vertical strips and g(n+ 1, n) 6= 0.

Specializing to s = s(n+1, n) and using a standard Tauberian theorem, one
obtains the following corollary.

Corollary 4.5. There exist a polynomial PX of degree 1 and a real number
α > 0 such that the number of points of U(Q) ⊂ X(Q) of anticanonical height
6 B satisfies

N(U,K−1
X , B) = BPX(logB) +O(B1−α).

Moreover, if τ(KX) denotes the Tamagawa number, the leading coefficient of
PX is equal to

τ(KX)

(n+ 1)n
,

as predicted by Peyre’s refinement of Manin’s conjecture.
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