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Abstract. We give examples of non-isotrivial K3 surfaces over com-
plex function fields with Zariski-dense rational points and Néron-
Severi rank one.

1. Introduction

Let F be a number field or a function field of a curve over the complex
numbers. For each variety X defined over F , we can ask whether the ra-
tional points X(F ) are dense in X. We say that rational points of X are
potentially dense if there exists a finite extension E/F with X(E) dense
in X. Potential density of rational points is expected to be a geometric
property, depending (for smooth projective X) on the positivity of the
canonical class KX . For example, if X is a curve or a surface with KX

negative, rational points are potentially dense; indeed, such are known
to be rational over some finite extension of F . On the other hand, poten-
tial density fails for curves and for certain classes of higher-dimensional
varieties with KX positive, by a theorem of Faltings.

The intermediate case where KX = 0 remains mysterious. Already the
case of K3 surfaces is open, in general. Potential density has been proved
for abelian varieties, Enriques surfaces, and special classes of K3 surfaces,
e.g., those with an elliptic fibration or an infinite group of automorphisms
[8] [4] [3] [10]. However, all the existing examples of K3 surfaces with
dense rational points have (geometric) Néron-Severi rank at least two.

Our main result is:

Theorem 1. Let B be a complex curve and F = C(B) its function field.
There exist non-isotrivial K3 surfaces over F , with Néron-Severi rank
one and a Zariski dense set of F -rational points.

Over a number field, no examples of K3 surfaces with Néron-Severi
rank one and a dense set of rational points are known. Our method uses
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the fact that the ground field is uncountable (see Remark 11); we do not
have examples over Q(B) for any curve B defined over a number field.

Acknowledgments: The first author was supported by the Sloan Foun-
dation and NSF grant 0134259. We benefited from conversations with
Izzet Coskun, Aise Johan de Jong, Joe Harris, and Jason Starr. We are
grateful to Coskun and Starr for allowing us to include their results in
Section 9.

2. Deformation theory

In this section we recall basic facts from deformation theory used in
subsequent proofs. Throughout, we work over an algebraically closed
field k.

Let X be a smooth projective variety over k, C ⊂ X a closed sub-
scheme. The tangent space to the Hilbert scheme Hi lb(X) at [C] is

THi lb(X)|[C] = HomX(IC ,OC) = HomC(IC/I2
C ,OC).

We have an exact sequence

IC/I2
C → Ω1

X ⊗OX
OC → Ω1

C → 0;

when C is reduced, the left arrow is injective at generic points of C [14]
pp. 188, [9] II.8 Ex.1.

Assume now that C is a reduced local-complete-intersection subscheme
of X, so that IC/I2

C is a locally free OC-module. Since C is reduced, an
OC-linear homomorphism of locally-free modules is injective provided it
is injective at each generic point, and we obtain

0 → IC/I2
C → Ω1

X ⊗OX
OC → Ω1

C → 0.

Dualizing our exact sequence yields

0 → HomC(Ω1
C ,OC) → HomC(Ω1

X ,OC) → HomC(IC/I2
C ,OC) (†)

→ Ex t1C(Ω1
C ,OC) → 0

on the level of coherent sheaves and

0 → HomC(Ω1
C ,OC) → HomC(Ω1

X ,OC) → HomC(IC/I2
C ,OC)

→ Ext1
C(Ω1

C ,OC)

on cohomology. We write

TC = HomC(Ω1
C ,OC) TX |C = HomC(Ω1

X ,OC)NC/X = HomC(IC/I2
C ,OC);
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the last two of these are locally free. We can rewrite (†) as

(2.1) 0 → TC → TX |C → NC/X → Ex t1C(Ω1
C ,OC) → 0.

Moreover, we have

THi lb(X)|[C] = Γ(C,NC/X).

Assume that C is a nodal curve and fix p ∈ C a node. We can choose
local coordinates x1, . . . , xn for X centered about p so that

C = {x1x2 = x3 = . . . = xn = 0}.

We give local presentations for the terms in exact sequence (2.1). The
tangent bundle of X restricted to C is freely generated by

∂/∂x1, ∂/∂x2, . . . , ∂/∂xn.

The subsheaf TC is generated by x1∂/∂x1 − x2∂/∂x2 which induces the
relation

x1∂/∂x1 = x2∂/∂x2

in the quotient sheaf TX |C/TC . The sheaf Ex t1C(Ω1
C ,OC) has fiber at p

equal to the versal deformation space of the isolated singularity (C, p) ⊂
X, which in this case is one-dimensional. The normal bundle NC/X is an
extension of this Ext-group by the quotient TX |C/TC , with free generators

(2.2) x−1
2 ∂/∂x1 = x−1

1 ∂/∂x2, ∂/∂x3, . . . , ∂/∂xn.

Let ν : Cν → C denote the normalization of C at the point p, with
conductor ν−1(p) = {p′, p′′}. Consider the exact sequence

0 → TCν → TX |Cν → NCν/X → 0.

There is an induced extension (see [7]§2, [1]§25-27):

(2.3) 0 → NCν/X → ν∗NC/X → Q→ 0,

where Q is torsion, supported at {p′, p′′} with length one at each point.
We interpret ν∗NC/X in (2.3) as the sheaf of sections ofNCν/X with simple
poles at p′ (resp. p′′) in the direction TCν |p′′ (resp. TCν |p′ .) The elements
listed in (2.2) may be regarded as free generators for both ν∗NCν/X |p′

and ν∗NCν/X |p′′ ; the resulting identification expresses the compatibility
condition satisfied by sections of ν∗NC/X which descend to NC/X .
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3. K3 surfaces

In this section we work over C.
Let S0 be a smooth proper complex variety and D ⊂ S0 a smooth

divisor. There is a natural exact sequence

0 → TS0〈−D〉 → TS0 → ND/S0 → 0,

where the first term is derivations with logarithmic zeroes along D. This
induces a long exact sequence

→ H1(S0, TS0〈−D〉) → H1(S0, TS0)
φ→ H1(D,ND/S0) →

where the second term parametrizes the first order deformations of S0 and
the first term parametrizes first order deformations of the pair (S0, D)
(see [12]).

Let π : S → ∆ be a deformation of S0 over ∆ = Spec(C[[z]]), with
S0 = π−1(0). Consider the extension

(3.1) 0 → ND/S0 → ND/S → NS/S |D → 0

and the corresponding extension class

η ∈ Ext1
D(NS0/S |D,ND/S0) ' Ext1

D(OD,ND/S0) = H1(D,ND/S0).

Let

κ ∈ H1(S0, TS0)

be the Kodaira-Spencer class of d/dz; using the isomorphisms

H1(S0, TS0) ' Ext1
S0

(OS0 , TS0) NS0/S ' OS0

we see that κ classifies the extension

0 → TS0 → TS |S0 → NS0/S → 0.

Restricting this to D and taking quotients by TD, we obtain extension
(3.1). Thus we obtain:

Lemma 2. The classes φ(κ) and η are proportional by a non-zero con-
stant.

Proposition 3. Let π : S → ∆ be a deformation of a K3 surface S0,
containing a smooth rational curve `. Assume that the Kodaira-Spencer
class κ is not in the tangent space to the locus of K3 surfaces containing
some deformation of `. Then

N`/S ' OP1(−1)⊕OP1(−1).
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Proof. The moduli space of K3 surfaces is smooth, with tangent space
H1(S0, TS0) at S0; the subspace parametrizing surfaces containing a de-
formation of ` is also smooth with tangent space equal to the image of

H1(TS0〈−`〉) → H1(TS0).

Moreover, κ is not in this subspace precisely when φ(κ) 6= 0.
We have the extension

0 → N`/S0 → N`/S → NS0/S |` → 0

with N`/S0 ' OP1(−2) and NS0/S |` ' OP1 . The extension class η is in
the group

Ext1
`(NS0/S |`,N`/S0) ' H1(P1,OP1(−2)) ' C

hence

N`/S =

{
OP1(−1)⊕OP1(−1) if η 6= 0

OP1 ⊕OP1(−2) if η = 0
.

Lemma 2 and the hypothesis guarantee that η 6= 0. �

For each g ≥ 2, let K2g−2 denote the moduli space of polarized K3
surfaces (S, f) of degree 2g − 2. For each d > 0, let Dg,d denote the
moduli space of triples (S, f, `), where (S, f) ∈ K2g−2 and

Λg,d := 〈f, `〉 = Zf + Z` ⊂ NS(S)

is a saturated sublattice with intersection form

f `
f 2g − 2 d
` d −2

.

Let ι : Dg,d → K2g−2 be the induced projection, which is finite onto its
image.

Each Dg,d is an open subspace of the moduli spaces of lattice-polarized
K3 surfaces of Nikulin [16] (see [6] for detailed discussion). Now Λg,d

admits a primitive imbedding into the cohomology lattice of a K3 surface,
which is unique up to conjugation by automorphisms of the cohomology
lattice [17] 1.14.4. Surjectivity of the period map and the global Torelli
theorem [2] Exposés X,IX guarantee Dg,d is nonempty and irreducible.

Proposition 4. Given (S, f, `) ∈ Dg,d such that NS(S) = 〈f, `〉, which
is the case for a very general such triple. Then there is a smooth rational
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curve in S with divisor class `. Moreover, f is very ample if g > 2 and
induces a branched double cover S → P2 if g = 2.

Proof. The assertions of the last sentence are applications of results on
linear series of K3 surfaces by Mayer and Saint-Donat:

(1) complete linear series have no isolated basepoints [18] 3.1;
(2) an ample divisor f has fixed components only when there is an

irreducible curve E ⊂ S of arithmetic genus one and a smooth
rational curve Γ ⊂ S so that f = gE + Γ [18] 8.1;

(3) f is hyperelliptic only when f 2 = 2 (in which case S is a double
cover of P2 branched over a sextic) or there exists an irreducible
curve E ⊂ S of arithmetic genus one with f · E = 2 [18] 5.2;

(4) except in the special cases listed above, f is very ample [18] 6.1.

Recall the description of the semi-group of effective classes of a polar-
ized K3 surface (S, f) [13] 1.6: It is generated by

(1) D ∈ NS(S) with D2 ≥ 0 and D · f > 0;
(2) Γ ∈ NS(S) with Γ2 = −2 and Γ · f > 0.

Moreover, indecomposable effective classes Γ with Γ2 = −2 represent
smooth rational curves. Thus ` is effective, and represents a smooth
rational curve if it is indecomposable.

Assume the contrary, so there exists an indecomposable effective class
m with ` ∈ Cone(f,m). We can therefore write m = a`− bf for suitable
positive integers a, b. Since m is indecomposable we have m·m ≥ −2. We
claim f ·` > f ·m; indeed, if this were not the case then b(2g−2) ≤ d(a−1)
and

−2 ≤ m2 = −2a2 − 2abd+ b2(2g − 2) ≤ −2a2 − abd− bd ≤ −4.

The discriminants satisfy

Disc 〈f,m〉 = −(f ·f)(m·m)+(f ·m)2 < −(f ·f)(`·`)+(f ·`)2 = Disc 〈f, `〉 .

However, since 〈f,m〉 ⊂ 〈f, `〉 we have

Disc 〈f,m〉 ≥ Disc 〈f, `〉 ,

a contradiction. �

4. Pencils of K3 surfaces

Definition 5. A pencil of K3 surfaces consists of

(1) a projective irreducible threefold Y ⊂ PN ;
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(2) a codimension-two linear subspace Λ ⊂ PN meeting Y transver-
sally along a smooth curve Z, so that a generic hyperplane Λ ⊂
H ⊂ PN intersects Y in a K3 surface.

Projection from Λ
pΛ : BlΛPN → P1

induces a flat morphism

π : S := BlZY → P1

with generic fiber a K3 surface.

Let E denote the exceptional divisor of the blow-up β : BlZY → Y .

(1) Since Z is a complete intersection in Y we have

E ' P(NZ/Y ) ' P(OZ(1)⊕OZ(1)) ' P1 × Z;

projection onto the first factor coincides with π|E. Moreover, for
each p ∈ P1 and fiber Sp = π−1(p) meets E along Z.

(2) For each z ∈ Z, the fiber Ez := β−1(z) meets each member of the
pencil in one point and thus yields a section sz : P1 → S of π.

(3) The normal bundle of this section is computed by the exact se-
quence

0 → NEz/E → NEz/S → NE/S |Ez → 0
0 → OP1 → OP1 ⊕OP1(−1) → OP1(−1) → 0.

(4) For each smooth fiber Sp and each curve ` ⊂ Sp, the intersection
Z ∩ ` 6= ∅. Given z ∈ Z ∩ `, Ez meets ` transversally at z, i.e.,
the tangent spaces of ` and Ez at z are transverse.

Example 6. Let Y ⊂ PN be a threefold with isolated singularities and
ωY = OY (−1); if Y is smooth then it is a Fano threefold. We can choose
Λ so that it meets Y along a smooth curve, which yields a pencil of K3
surfaces as in Definition 5.

Proposition 7. Fix 2 ≤ g ≤ 10. There exists a projective variety X ⊂
PM so that the generic K3 surface of degree 2g − 2 can be realized as an
intersection of X with a linear subspace of codimension dim(X)− 2, and
thus as a member of a pencil of K3 surfaces.

Proof. The generic K3 surface of degree 2 is a hypersurface of degree 6
in weighted projective space P(1, 1, 1, 2), which has isolated singularities.
Imbed

X := P(1, 1, 1, 2) ↪→ PM
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using weighted-homogeneous forms of degree six. Smooth hyperplane
sections are degree 2 K3 surfaces.

For g = 3, 4, 5, 6, 7, 8, 9, 10, the generic K3 surface of degree 2g − 2 is
a complete intersection in a generalized flag variety [15]. We extract the
variety X in each case:

• g = 3 quartic hypersurface in P3: takeX to be the 4-fold Veronese
reimbedding of P3;

• g = 4 complete intersection of a quadric and a cubic in P4: take
X to be the 3-fold Veronese reimbedding of a smooth quadric
hypersurface Q ⊂ P4;

• g = 5 a generic complete intersection of three quadrics: take X
to be the 2-fold Veronese reimbedding of P5;

• g = 6 a complete intersection of Gr(2, 5) with a quadric and a
codimension-three linear space: take X to be the 2-fold Veronese
reimbedding of the generic codimension-three linear section of
Gr(2, 5);

• g = 7 a codimension-eight linear section of the isotropic Grass-
mannian IGr(5, 10) ⊂ P15;

• g = 8 a codimension-six linear section of the Grassmainnian
Gr(2, 6) ⊂ P14;

• g = 9 a codimension-four linear section of the Lagrangian Grass-
mannian LGr(3, 6) ⊂ P13;

• g = 10 a codimension-three linear section of the flag variety of
dimension five, associated with the adjoint representation of G2,
imbedded in P13.

We obtain pencils of K3 surfaces of degree 2g − 2 as follows: Taking
generic subspaces

ΛN−2 ⊂ ΛN ⊂ PM

of codimensions dim(X)−1 and dim(X)−3 respectively, there is a pencil

ΛN−2 ⊂ ΛN−1(p) ⊂ ΛN , p ∈ P1

of (N − 1)-dimensional linear spaces. Taking Y = ΛN ∩ X and Z =
ΛN−2 ∩X, we obtain a pencil as in Definition 5. �

5. Deforming sections in pencils

Proposition 8. Let π : S → P1 be a pencil of K3 surfaces. Suppose
there exists a point p ∈ P1 so that Sp is smooth and contains a smooth
rational curve ` with normal bundle N`/S ' OP1(−1) ⊕ OP1(−1). Then
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there exists a one-parameter family of sections of π, the closure of which
contains `.

Proof. Let Z be the base locus of the pencil. Choose a point z ∈ `∩Z ⊂
Sp and consider the nodal curve

C = ` ∪z Ez
with normalization ν : Cν → C. Consider the exact sequence

0 → NCν/S → ν∗NC/S → Q→ 0

with Q a torsion sheaf, of length one at each of the points {z′, z′′} over
z.

It suffices to show that NC/S has no higher cohomology and admits
a global section not mapping to zero in Q (see Section 2): Then the
Hilbert scheme is smooth at C and contains deformations of C smoothing
the node z (cf. [11], proof of Proposition 24 and [7] §2). Moreover,
these deformations meet the generic fiber of π at one point, and thus are
sections of π not contained in Z. Finally, since ` is a component of a
degeneration of these sections, it lies in the closure of the surface traced
out by these sections.

We evaluate NC/S on each component of C: On Ez we have

(5.1) 0 → NEz/S → NC/S |Ez → Q(Ez) → 0

with Q(Ez) of length one at z; furthermore, NEz/S ' OP1(−1) ⊕ OP1

with the non-negative summand corresponding to the normal direction
to Ez in E. Since the tangent vector to ` is not contained in E, the
OP1 component is saturated in the extension (5.1), and the OP1(−1)
component is not saturated ([11] Proposition 23, cf. Sublemma 27). In
particular, we conclude

NC/S |Ez ' OP1 ⊕OP1 .

As for `, we have N`/S ' OP1(−1)⊕2 and an extension

0 → N`/S → NC/S |` → Q(`) → 0

with Q(`) of length one. In this case, the only possibility is

NC/S |` ' OP1 ⊕OP1(−1).

We observe that

(1) NC/S |Ez is globally generated and has no higher cohomology;
(2) NC/S |` has no higher cohomology and each nonzero global section

is nonzero in Q(`).
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Since C is obtained by gluing Ez and ` at a single point, NC/S also has no
higher cohomology [11], Lemma 21. Fixing a nonzero section t of NC/S |`,
we can find a section of NC/S |Ez agreeing with t at z. �

6. Construction of the examples

Theorem 9. Let π : S → P1 be a pencil of K3 surfaces of degree 2g −
2 with base locus Z. Assume that there exists an infinite sequence of
positive integers

d1 < d2 < . . .

such that P1 intersects Dg,dj
transversally at some point pj and the class

`j ∈ Λg,dj
is represented by a smooth rational curve `j ⊂ Spj

. Then S
has a Zariski dense set of sections of π.

Proof. We have
N`j/S ' OP1(−1)⊕OP1(−1)

by Proposition 3. Proposition 8 gives a one-parameter family of sections

Σj
σj→ S

ψj ↓
Rj

,

with σj : ψ−1
j (r) → S a section for r ∈ Rj generic, and σj(ψ

−1
j (r0)) ⊃ `j

for the distinguished point r0 ∈ Rj around which the deformation was

produced. It follows that the irreducible surface Σ̃j := σj(Σj) contains
`j.

We claim that ∪jΣ̃j is dense in S. Let Ξ denote the closure of all
these surfaces. If Ξ ( S then Ξ is a union of irreducible surfaces, each
dominating P1. Thus the degree Ξ ∩ Sp ⊂ Sp is bounded; In particular,
Ξ cannot contain `j when dj � 0, a contradiction. �

Corollary 10. Let S → P1 be a very general pencil of degree 2g− 2, for
2 ≤ g ≤ 10. Then the hypothesis of Theorem 9 are satisfied, and sections
are Zariski dense.

Proof. By Proposition 7, the moduli space K2g−2 is dominated by an open
subset of the Grassmannian Gr(N,M + 1) parametrizing the (N − 1)-
dimensional linear subspsaces in PM . For d � 0, Dg,d determines a
nonempty divisor in Gr(N,M + 1), which is necessarily ample. Each
pencil determines a P1 ⊂ Gr(N,M + 1), so the pencils are parametrized
by a suitable Hilbert scheme. By Proposition 4, for a generic pencil P1

is transversal to Dg,d at some point and the corresponding fiber contains
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a smooth rational curve of degree d. Take the countable intersection of
these open subsets in the space of all pencils; applying the Baire category
theorem, we are left with a nonempty dense subset of the space of all
pencils. �

Remark 11. Our argument does not preclude the (unlikely) possibility
that every pencil defined over Q is tangent to Dg,d for each d� 0.

We complete the argument for Theorem 1:

Proof. Corollary 10 gives pencils of K3 surfaces with dense rational points.
Proposition 7 implies that the generic K3 surface of degree 2g−2, 2 ≤ g ≤
10 arises in such a pencil; in particular, K3 surfaces with Néron-Severi
rank one occur as fibers.

For simplicity, we will only discuss non-isotriviality in the degree four
case: Any pair of quartic surfaces

Si = {fi(w, x, y, z) = 0} ⊂ P3, i = 1, 2

are contained in a pencil, e.g.,

S = {s1f1 + s2f2 = 0} ⊂ P3 × P1.

This is non-isotrivial whenever S1 6' S2, and completes the proof when
B = P1.

For an arbitrary smooth complex curve B, we can express C(B) as
a finite extension of C(P1). Any K3 surface with dense C(P1)-rational
points a fortiori has dense C(B)-rational points. �

7. Limitations

In this section, we discuss constraints to deforming sections in K3 fi-
brations. These help explain why pencils are a natural source of examples
of K3 surfaces with potentially-dense rational points.

Let π : S → B be a fibration satisfying the following

(1) S is smooth and the generic fiber is a K3 surface;
(2) the singular fibers have at worst rational double points;
(3) π is non-isotrivial and projective.

Let µ : B → K2g−2 be the classifying map into the Baily-Borel com-
pactification of the corresponding moduli space of polarized K3 surfaces.
Recall that the automorphic factor pulls back to L := π∗ωπ, which is the
pull-back of the natural polarization on the Baily-Borel compactification
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by µ. Since the fibers of π have trivial dualizing sheaf, ωπ is the pull-
back of a line bundle from B, which is necessarily L (by the projection
formula).

Suppose we have a section σ : B → S. Consider the exact sequence

0 → Tσ(B) → TS |σ(B) → Nσ(B)/S → 0.

It follows that

c1(Nσ(B)/S) = c1(TS)− c1(Tσ(B)) = −c1(ωπ),

whence

deg(Nσ(B)/S) = − deg(µ(B)) < 0.

(For pencils of quartic surfaces the degree is −1, the smallest possible
value.) Hence Nσ(B)/S cannot be globally generated at the generic point:
If it were then det(Nσ(B)/S) would have a nonvanishing section, con-
tradicting our degree computation. In particular, we cannot deform a
section in a two-parameter family sweeping out a dense subset of S.

8. Projective geometry of pencils of quartic surfaces

Corollary 10 says that a very general pencil of quartic surfaces has a
Zariski-dense set of sections. Here we interpret these in terms of classical
projective geometry.

Recall the set-up of Theorem 9:

S π→ P1

β ↓
P3

where β is the blowup along the base locus Z of the pencil. We analyze
the proper transforms in P3 of the sections of π produced by Proposi-
tion 8.

Let `1 be a line in some fiber of π; β(`1) is a four-secant line to Z. If
z ∈ Z ∩ β(`1) and Ez := β−1(z) then β(`1) ∪z Ez deforms to a 3-secant
line to Z. These 3-secants move in a 1-parameter family. Similarly, if
`d is a smooth rational curve of degree d in some fiber of π then β(`d)
is a rational curve of degree d meeting Z in 4d points. The nodal curve
β(`d) ∪z Ez deforms to a 1-parameter family of rational curves in P3 of
degree d meeting Z in 4d− 1 points.

Essentially, the proof of Proposition 8 shows that the space of rational
curves of degree d in P3 meeting Z in at least 4d−1 points (counted with
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multiplicities) has at least one irreducible component of the expected
dimension and the generic such curve meets Z in 4d− 1 points.

9. Higher-dimensional Calabi-Yau hypersurfaces

We have seen in Corollary 10 that a very general pencil of quartic
surfaces has a Zariski-dense set of sections. The following generalization
is due to Coskun and Starr:

Theorem 12. Let π : X → P1 be a very general pencil of hypersurfaces
of degree n+ 1 in Pn, with n ≥ 4. Then sections of π are Zariski dense.

The first step is the following extension of Proposition 8 to higher-
dimensional pencils (which has an analogous proof):

Proposition 13. Let π : X → P1 be a pencil of hypersurfaces of degree
n+1 in Pn. Suppose there exists a point p ∈ P1 so that Xp is smooth and
contains a smooth rational curve ` with normal bundle

N`/X ' On−3
P1 ⊕OP1(−1)⊕OP1(−1).

Then there exists an (n−2)-parameter family of sections of π; its closure
contains the deformations of ` in Xp.

Just as in Theorem 9, Proposition 13 reduces Theorem 12 to the fol-
lowing result, which is a natural extension of Theorem 1.27 of [5] for
quintic threefolds:

Theorem 14. Let X be a very general hypersurface of degree n + 1 in
Pn. Then there exists an infinite sequence of integers

d1 < d2 < . . .

such that X contains a rational curve ` of degree dj with

N`/X ' On−3
P1 ⊕OP1(−1)⊕OP1(−1).

Furthermore, deformations of these curves are Zariski dense in X.

It suffices to produce one hypersurface X with the desired properties;
even a singular X will work, as long as it smooth along each `.

The proof proceeds by induction, following [5]. Consider a reducible
hypersurface of degree n + 1, consisting of a hyperplane H = {x0 = 0}
and a hypersurface W = {fn(x0, . . . , xn−1) = 0} of degree n. We assume
that W satisfies the inductive hypothesis and that H ∩W is smooth. In
particular, there is an infinite sequence of integers

0 < d1 < d2 < . . .
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so that W contains a rational curve `j of degree dj with normal bundle

N`j/W ' On−4
P1 ⊕OP1(−1)⊕OP1(−1).

Moreover, the deformations of each `j sweep out a divisor in W ; the
union of these divisors is dense in W .

Consider a hypersurface

X = {x0fn(x0, . . . , xn−1) + xngn(x0, . . . , xn) = 0} ⊂ Pn

such that X ∩ {xn = 0} = W ∪ H. Note that X is singular along the
locus

Σ = {x0 = xn = fn = gn = 0}.
We choose gn generically so that these are the only singularities and Σ
is smooth. By the Bertini theorem, for each `j there exists a gn so that
Σ ∩ `j = ∅. Hence for a very general choice of gn, Σ is disjoint from `j
for each j.

Thus we can compute the normal bundle N`j/X using the extension

0 → N`j/W → N`j/X → NW/X |`j → 0.

We have

NW∪H/X = OW∩H(+1)

and since H is Cartier away from Σ

NW/X |`j = NW∪H/X |`j(−H) = O`j .

The extension

0 → On−4
P1 ⊕OP1(−1)2 → N`j/X → OP1 → 0

is necessarily trivial and

N`j/X ' On−3
P1 ⊕OP1(−1)2,

as desired.
It remains to check that the deformations of the `j are dense in X.

Each `j has deformations in X which are not contained in W . Indeed,
we have shown that `j admits infinitesimal deformations that are nonzero
in NW/X |`j . In particular, deformations of `j sweep out an irreducible
divisor Dj ⊂ X not equal to W . If the union ∪∞j=1Dj were a proper
subvariety Ξ ( X, then Ξ ∩W would not be dense in W , contradicting
the inductive hypothesis.
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