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1 Introduction

Let E → B be a non-isotrivial Jacobian elliptic fibration and Γ̃ its global
monodromy group. It is a subgroup of finite index in SL(2, Z). We will
assume that E is Jacobian. Denote by Γ the image of Γ̃ in PSL(2, Z) and by
H the upper half-plane completed by ∞ and by rational points in R ⊂ C.
The j-map B → P1 decomposes as jΓ ◦ jE , where

jE : B → MΓ = H/Γ

and jΓ : MΓ → P1 = H/PSL(2, Z). In an algebraic family of elliptic fi-
brations the degree of j is bounded by the degree of the generic element.
It follows that there is only a finite number of monodromy groups for each
family.

The number of subgroups of bounded index in SL(2, Z) grows superex-
ponentially [8], similarly to the case of a free group (since SL(2, Z) con-
tains a free subgroup of finite index). For Γ of large index, the number of
MΓ-representations of the sphere S2 is substantially smaller, however, still
superexponential (see 3.5).

Our goal is to introduce some combinatorial structure on the set of mon-
odromy groups of elliptic fibrations which would help to answer some natural
questions. Our original motivation was to describe the set of groups corre-
sponding to rational or K3 elliptic surfaces, explain how to compute the
dimensions of the spaces of moduli of surfaces in this class with given mon-
odromy group etc. As a direct application of the methods developed in the
present paper the authors and T. Petrov have obtained a proof of rationality
and stable rationality of many classes of moduli spaces of elliptic fibrations
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with given monodromy, including all such moduli spaces of rational and el-
liptic K3 surfaces (see [4]). Our approach is based on a detailed study of the
relation between special graphs on Riemann surfaces and subgroups of finite
index in PSL(2, Z).

To determine Γ̃ we first describe all possible groups Γ. In order to clas-
sify possible Γ we consider the corresponding oriented Riemann surface MΓ.
The map jΓ : MΓ → P1 provides a special triangulation of MΓ (induced
from the standard triangulation of P1 into two triangles with vertices in
0, 1,∞) (and vice versa). The preimages of 0, 1,∞ on MΓ will be called
A, B, I, respectively, and the triangulation will be called a j-triangulation.
The barycentric subdivision of any triangulation of an oriented Riemann sur-
face is a j-triangulation. However, not all j-triangulations arise in this way.
(In particular, we consider more general triangulations than just barycentric
subdivisions of “Belyi” triangulations.) Of course, the study of simplicial de-
compositions of oriented manifolds goes back at least to Alexander [1] (who
proves that in any dimension n the barycentric subdivision of a given sim-
plicial decomposition induces a simplicial map to the n-dimensional sphere,
with its standard simplicial decomposition into two simplices). More recently,
constructions of this type were rediscovered by many authors in connection
with Belyi’s theorem and Grothendieck’s “Dessins d’enfants” program ([3],
[9] and the references therein). A j-triangulation of a Riemann surface R in-
duces a graph GΓ on R, which is obtained by removing all AI- and BI-edges
from the graph given by the 1-skeleton of the j-triangulation (see [12], for ex-
ample). Thus we obtain a bijection between subgroups of PSL(2, Z) of finite
index (modulo conjugation) and trivalent graphs GΓ on a Riemann surface
R with a coloring of the ends of GΓ in two colors such that the complement
to GΓ is a (disjoint) union of (contractible) cells.

The plan of the paper is as follows. In section 2 we recall basic facts about
the local and global monodromy groups of elliptic fibrations due to Kodaira.
In section 3 we study j-modular curves MΓ and their relationship with j-
triangulations. In section 4 we give a modular construction of elliptic surfaces
over MΓ with prescribed monodromy groups. General elliptic fibrations over
B are obtained as simple modifications of pullbacks of these elliptic fibrations
from MΓ. Our construction allows a relatively transparent description of a
rather complicated set of global monodromy groups of elliptic surfaces. This
transforms the general results of Kodaira theory to a concrete computational
tool.
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Conventions. We write Fn for the free group on n generators. Throughout
the paper we work over C.
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2 Generalities

In this section we give a brief summary of Kodaira’s theory of elliptic fibra-
tions. We refer to the papers by Kodaira [7] and to [2] and [6] for proofs and
details.

2.1 The setup

Let f : E → B be a smooth relatively minimal non-isotrivial Jacobian elliptic
fibration over a smooth curve B of genus g(B). This means that

• E is a smooth compact surface and f is holomorphic,

• the generic fiber of f is a smooth curve of genus 1 (elliptic fibration),

• the fibers of E do not contain smooth rational curves of self-intersection
−1 (relative minimality),

• we have a global zero section e : B → E (Jacobian elliptic fibration),

• the j-function which to each smooth fiber Eb ⊂ E assigns its j-invariant
is a non-constant rational function on B (non-isotrivial).

2.2 Topology

Denote by Bs = {b1, ..., bk} ⊂ B the set of points corresponding to singular
fibers of E , it is always non-empty. Let B0 = B\Bs be the open subset of B
where all fibers are smooth and f 0 : E0 → B0 the restriction of f . Topologi-
cally, f 0 is a smooth oriented fibration with fibers S1×S1, which is equipped
with a section. The equivalence class of E0 under global diffeomorphisms
inducing smooth isomorphisms on each fiber is determined by the topology
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of B0 and by the homomorphism (representation) of the fundamental group
π1(B

0) into the group of homotopy classes of orientation-preserving auto-
morphisms of the torus S1 × S1 (which is equal to SL(2, Z)). Thus we have
a homomorphism ρc

E : π1(B
0) → SL(2, Z). This homomorphism - well de-

fined modulo conjugation in SL(2, Z) - is called by Kodaira the homological
invariant of the elliptic fibration E .

Now we consider the local situation: according to Kodaira, the restriction
of f to a small punctured analytic neighborhood ∆∗

b of a point b ∈ B (disc
∆b minus the point b) for every point b ∈ Bs is also topologically non-
trivial. Thus we have a homomorphism ρc

b : Z → SL(2, Z) (where Z is the
fundamental group of the punctured disc with the standard generator tb).
Again, this homomorphism is defined modulo conjugation.

We can eliminate the ambiguity in the definitions above by the following
procedure: choose a point b0 ∈ B0 and a set of non-intersecting paths con-
necting b0 to the singular points bs ∈ Bs. This set admits a natural cyclic
order defined by the relative position of these paths in a small neighborhood
of b0.

A small neighborhood of this set is a disc inside B (with orientation).
Now we can choose small oriented loops around each singular point bs.

If we fix generators of π1(S1 × S1) for the fiber over b0 then we obtain
a system of elements Tb ∈ SL(2, Z) in the conjugacy class of tb as well as
a representation ρE : π1(B

0) → SL(2, Z). We call the elements Tb local
monodromies, the representation ρE the global monodromy representation
and the group Γ̃ = ρE(π1(B

0)) ⊂ SL(2, Z) the global monodromy group. The
global monodromy representation depends only on the basis of π1(S1 × S1)
at b0. The local monodromy elements depend on the choice of the system of
paths. Let Γ be the image of Γ̃ in PSL(2, Z) = SL(2, Z)/Z/2.

There is an important relation between local and global monodromy.

Lemma 2.1 Let E → P1 be an elliptic fibration. Then the product

P (E) :=
∏
b∈Bs

Tb ∈ SL(2, Z)

(taken in cyclic order) is equal to the identity.
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Proof. The product P (E) gives the monodromy transformation along the
boundary of the disc ∆. Our fibration is smooth on the complement B \∆.
Therefore, it is a topologically trivial fibration over a disc in the case of
B = P1 or a smooth S1 × S1 fibration over the Riemannian surface B of
genus g(B) minus a disc. Now the relations follow from similar relations in
π1(B \∆).

Remark 2.2 Similarly, if the genus g(B) ≥ 1 then P (E) is a product of
g(B) commutators.

2.3 The j-function

Lemma 2.3 Let j be any nonconstant rational map B → P1. Then there
exists a unique subgroup of finite index Γ ⊂ PSL(2, Z) such that j decomposes
as

j : B → H/Γ → H/PSL(2, Z) = P1

(where H is the completed upper half-plane) with the following property: for
every Γ′ ⊂ PSL(2, Z) with the same decomposition as above there exists an
element g ∈ PSL(2, Z) such that gΓg−1 ⊂ Γ′.

Proof. First of all, Γ′ = PSL(2, Z) gives the required decomposition.
Next, pick two subgroups Γ, Γ′ ⊂ PSL(2, Z) such that the j-map decomposes
as above. Consider the map

B → H/Γ×H/Γ′ → H/PSL(2, Z)×H/PSL(2, Z).

Then the image of B lies in the diagonal

H/PSL(2, Z) → H/PSL(2, Z)×H/PSL(2, Z).

The preimage of the diagonal in

H/Γ×H/Γ′

decomposes into the union

∪g∈PSL(2,Z)H/gΓg−1 ∩ Γ′.

Since B is irreducible, it dominates exactly one of such curves. If for all g
the group gΓg−1 ∩ Γ′ 6= Γ then Γ is not minimal. Finally, the index of Γ in
PSL(2, Z) is bounded from above by the degree of j.
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The elliptic fibration E → B defines a rational function on B - the j-
function. There is a relationship between the j-function and local (resp.
global) monodromies. By Lemma 2.3 above, j determines the monodromy
invariant ρc

E (modulo conjugation in PSL(2, Z)).
Now consider the local situation: the restriction of j to the disc ∆b is

analytically equivalent to j(b)+zk if j(b) is finite or z−k if j(b) is infinite (k ∈
N). Here z is a local parameter. There are certain compatibility conditions
between the local monodromy ρb and k. Kodaira classifies all pairs (ρb, k)
which occur (see [2]). The types are labeled by In, II, III, IV, and I∗n, II∗,
III∗, IV∗). The local monodromy ρb around fibers of type In is unipotent.
The local monodromy around the fibers of type II, III and IV is finite. For
∗-fibers the local monodromy is multiplied by −1 (I0 is nonsingular, with
trivial monodromy).

Theorem 2.4 The pair (ρb, k) from Kodaira’s list defines a unique (in the
analytic category) relatively minimal Jacobian fibration over ∆b. Any two
Jacobian elliptic fibrations over an analytic disc ∆b with the same (ρb, k) are
fiberwise birationally isomorphic.

Theorem 2.5 For any nonconstant map j : P1 → P1 there exists an elliptic
fibration E → P1 with j-map j.

If E and E ′ are elliptic fibrations over P1 such that j = j′ then there exists
a function χ : P1 → Z/2 = ±1 of finite support such that

∏
b∈P1 χ(b) = 1

and ρb = χ(b)ρ′b for all b ∈ P1 (here ρb, resp. ρ′b are the local monodromies
for j, resp. j′). Conversely, for every such function χ there exists an elliptic
fibration E ′ such that ρb = χ(b)ρ′b (for all b ∈ P1) and j′ = j.

Remark 2.6 The theorem says that if ρc
E ′ = ρc

E ′ then

ρE = χ · ρE ′ .

In general, there are exactly 2g(B)+k−1 different liftings of the standard gen-
erators of π1(B

0) to SL(2, Z), (see part (a) of Theorem 11.1 p. 160 in [2]).

We are interested in classifying global monodromies in some restricted
class of surfaces, for example rational elliptic or elliptic K3 surfaces. For
each of these classes the degree of j is bounded. This implies a bound on the
index of the global monodromy group Γ̃ in SL(2, Z). Only a finite number of
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possible global monodromy groups Γ̃ and only few homological invariants can
occur if we fix the image of Γ̃ in PSL(2, Z). Elliptic surfaces with the same
j-invariant but different homological invariants are scattered through differ-
ent topological classes. Our point of departure was that Kodaira’s theory
does not provide a sufficiently simple combinatorial control over the topol-
ogy of the resulting surfaces. In the following sections we give some technical
improvements of Kodaira’s theory which lead to an effective algorithm.

3 j-modular curves

Let E → B be an elliptic fibration as above. By Lemma 2.3 j-map decom-
poses as a product j = jΓ ◦ jE where jE : B → H/Γ is a natural lifting of j
onto the modular curve MΓ = H/Γ corresponding to Γ and

jΓ : H/Γ → H/PSL(2, Z) = P1. (1)

The above decomposition shows that deg(j) = deg(jE)·deg(jΓ). In particular,
for any non-isotrivial elliptic surface the group Γ is a subgroup of finite index
in PSL(2, Z).

Definition 3.1 We call the pair (MΓ, jΓ) the j-modular curve corresponding
to the monodromy group Γ.

Remark 3.2 Usual modular curves are j−modular. A j−modular curve is
simply any curve defined over a number field together with a special rational
function on it (this follows from the theorem of Belyi [3], see 3.8). There is
a countable number of such functions for each curve.

Let us give a combinatorial description of j-modular curves. They corre-
spond to special triangulations of Riemann surfaces.

Definition 3.3 Let R be an oriented Riemann surface. A triangulation
τ(R) = (τ0, τ1, τ2) of R is a decomposition of R into a finite union of open
2-cells τ2 and a connected graph τ1 with vertices τ0 such that the complement
τ1 \ τ0 is a disjoint union of open segments and the closure of any open 2-cell
is isomorphic to the image of a triangle under a simplicial map.

The number of edges originating in a vertex x is called the valence at x
and is denoted by v(x).
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Definition 3.4 A j-triangulation of R is a triangulation together with a
coloring of vertices in three colors A, B and I such that

1. The colors of any two adjacent vertices are different.

2. There are 2 or 6 edges at vertices of color A and 2 or 4 edges at vertices
of color B.

We will refer to vertices of color A (resp. B) with valence j as Aj (resp.
Bj) vertices. If we delete the I-vertices from τ0 and all edges AI and BI from
τ1 then the remaining connected 3-valent graph on R with A- and B-ends
is called the j-graph associated to the j-triangulation. The complement to
this graph is a disjoint union of a finite number of cells (neighborhoods of
I-vertices). It might look as follows:

Here we use a small circle to indicate an A-vertex. The B-vertices are
placed on the edges between two A-vertices. A “loose” end represents a
B-vertex. A j-graph is called saturated if all A-vertices are A6-vertices.
Saturated graphs can be considered as arising from generalized triangulations
of P1. An arbitrary graph can be obtained from a saturated graph by addition
of trees.

Here are saturated graphs with a6 = 4:

A j-triangulation on R can be reconstructed from a j-graph by placing
one I-vertex into each connected component of R minus the j-graph and
by connecting (cyclically) the I-vertex with vertices on the boundary of the
corresponding connected component. The valences of A-vertices in an j-
graph are 1 or 3, the valences of B-vertices are 1 or 2 and vertices of the
same color are not connected by an edge.

Remark 3.5 The number of plane 3-valent graphs grows superexeponen-
tially with the number of vertices.
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The following well-known theorem forms the basis for our analysis of
monodromy groups.

Theorem 3.6 Let R be an oriented compact Riemann surface with a j-
triangulation. Then there exists a unique structure of a j-modular curve
on R. Conversely, every structure of a j-modular curve on R corresponds to
a j-triangulation.

Proof. Let us first show how jΓ defines a triangulation of MΓ. The map
j : H → H/PSL(2, Z) = P1 is ramified over three points 0 = A, 1 = B,∞ =
I. The ramification index at 0 is equal to 3, the ramification index at 1 is 2
and the ramification index at ∞ is infinite. Similar result is true for

jΓ : H/Γ = MΓ → H/PSL(2, Z) = P1.

Consider the standard triangulation τst(S2) of the sphere S2 = P1 into a union
of two triangles with vertices 0, 1 and ∞. The preimage of this triangulation
provides a triangulation of MΓ. If we color the preimages of the corresponding
vertices in A, B and I then we obtain a j-triangulation as wanted.

Conversely, starting with a j-triangulation τ we construct an algebraic
curve R together with a map R → S2 ramified in 0, 1,∞ as follows. We have
a map from the set of vertices to (A, B, I) (the color). Further, every edge
will be mapped into the edges of the standard triangulation of S2, respecting
the colors of the ends. This map is completed by the map of triangles, which
maps the triangles ABI (with orientation inherited from R) to one of the
triangles of τst(S2) and the triangles with the opposite R-orientation to the
other.

Thus we have constructed a simplicial map which is locally an isomor-
phism except in the neighborhood of vertices. Since triangles in R sharing
an edge are mapped into different triangles of S2 the above map is locally an
isomorphism outside of vertices and is equivalent to a map zn in the neigh-
borhood of each vertex in R. Thus it corresponds to a unique algebraic curve
R with a map R → P1 which is ramified over the points A, B, I.

In general, such curves are described by subgroups of finite index in the
free group on two generators F2. Our assumption on the ramification indices
at points A, B implies that the curve R corresponds to a subgroup of finite
index in the quotient Z/2∗Z/3 of F2. The group Z/2∗Z/3 equals PSL(2, Z).
Thus local monodromy groups over A-vertices can be either 1 or Z/3 and
over B either 1 or Z/2. This finishes the proof of the theorem.
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Corollary 3.7 The number of triangles in any j-triangulation is equal to
2 deg(jΓ). Moreover, 2 deg(jΓ) =

∑
i v(i), where the summation is over all

vertices i with color I.

Remark 3.8 It follows from Belyi’s theorem that every arithmetic curve (an
algebraic curve defined over a number field) can be realized as a j-modular
curve. Moreover, the corresponding triangulation of the curve is a barycentric
subdivision of an arbitrary triangulation the underlying Riemann surface.
In this case, Γ is torsion free and a subgroup of F2 ⊂ PSL(2, Z). The
corresponding j-graph is a trivalent graph without ends. These type of j-
graphs are called saturated. They correspond to a relatively small fraction of
possible monodromy groups.

Many properties of Γ as a subgroup of SL(2, Z) can be easily recovered
from the j-triangulation. For example, there is a bijection between the set
of B2-vertices and conjugacy classes of subgroups of order 2 in Γ. Similarly,
there is a bijection between A2-vertices and conjugacy classes of subgroups
of order 3 in Γ. Finally, there is a bijection between the I-vertices and
conjugacy classes of unipotent subgroups in Γ ⊂ PSL(2, Z). The generator

of the unipotent subgroup is given by

(
1 v(i)/2
0 1

)
, where v(i) is the valence

of the corresponding I-vertex i.

4 j-modular surfaces

In this section we study Jacobian elliptic surfaces such that the map jE has
degree 1. Here Γ̃ ⊂ SL(2, Z) is the global monodromy group of the elliptic
fibration E . We call such surfaces j-modular surfaces and denote them by
SΓ̃.

Consider the j-modular curve MΓ where Γ is the image of Γ̃ in PSL(2, Z)
under the natural projection. We want to solve the following problem: de-
scribe all surfaces SΓ̃ together with the structure of a Jacobian elliptic fi-
bration over the j-modular curve MΓ such that the monodromy group Γ̃
surjects onto Γ. We want to give a complete answer to this question using
the j-triangulation of MΓ.

We have an exact sequence

0 → Z/2 → SL(2, Z) → PSL(2, Z) → 1 (2)
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which induces a sequence

0 → Z/2 → Γ′ → Γ → 1, (3)

where Γ′ ⊂ SL(2, Z).

Lemma 4.1 If Γ does not contain elements of order 2 then the exact se-
quence (3) splits. Equivalently, the j-triangulation of MΓ does not contain
B2-vertices.

Proof. The group PSL(2, Z) = Z/2∗Z/3. Any subgroup of finite index is
a finite free product of groups isomorphic to Z, Z/2, Z/3. Assuming that Γ
has no elements of order 2 we have a representation of Γ as a free product of
groups Z, Z/3. If we lift the generators of these free generating subgroups to
elements of the same order in Γ′ we obtain a subgroup of Γ′ which projects
isomorphically onto Γ, in other words, a splitting of the exact sequence 3.

Remark 4.2 All splittings differ by Z/2-characters of Γ (H1(Γ, Z/2)) and
the one we obtain may not be the best (this will be specified in section 5).
Namely, the preimages of unipotent generators can be products of unipo-
tent elements by the central element in SL(2, Z). There may be no natural
splitting.

We have to consider the following 3 cases:

Case 1. Γ̃ ' Γ. There are finitely many such Γ̃ and they differ by a
character of Γ. For each such character there exists a unique (up to birational
morphisms) j-modular SΓ̃. Indeed, take the quotient V o → H/Γ of the
universal elliptic curve Eu → H by Γ̃. It has the structure of a fibration with
a section and with generic fibers smooth elliptic curves. The monodromy
of this fibration (over the open curve B = H/Γ) is Γ̃ ' Γ. Compactify V o

keeping the structure of an elliptic fibration (over MΓ = H/Γ) and the zero
section as above. It is clear that this construction is birationally universal.
Indeed, if there is a Jacobian elliptic fibration V ′ with the given monodromy
group Γ̃ then there is a rational fiberwise map V → V ′ which is regular on
the grouplike parts of V and V ′.

Case 2. There exists a lifting Γ′ ' Γ but Γ′ 6' Γ̃. The corresponding
surfaces SΓ̃ are obtained from surfaces in Case 1 by an even number of twists.
Thus the set of such surfaces is parametrized by a symmetric power of P1
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(modulo the action of the finite group of automorphisms of the embedded
j-graph).

Case 3. The general case. Consider the universal elliptic curve Eu → H
given as a quotient of C×H by Ze1⊕Ze2. The action of Ze1⊕Ze2 on C×λ
is given by

e1(z, λ) = (z + 1, λ),
e2(z, λ) = (z + λ, λ)

(here (z, λ) ∈ C×H). The group SL(2, Z) acts on Eu, stabilizing the section
(0, λ). Consider the quotient of the universal elliptic curve Eu → H by Γ′.
We get an open surface V ′ admitting a fibration (with a section) over the
open curve B′ = H/Γ′, whose generic fiber is a smooth rational curve. The
map Eu → V ′ is ramified over a divisor D which has at least two horizontal
components: D0 (which is a smooth zero-section of V ′ → B′) and D1 which
projects to B′ with degree 3 and is smooth and unramified over B′ in the
complement of singular fibers. Denote by V o the open surface obtained by
removing from V ′ the singular fibers. The surface V o is fibered over an open
curve Bo with fibers P1. The intersection of the divisor D with each fiber
consists of exactly 4 points and D is unramified over Bo.

We want to define a double covering of V o which is ramified on every
component of D. There is a correspondence between such double coverings
and special characters

χ ∈ Hom(π1(V
o \D), Z/2).

The group π1(V
o \D) has a quotient which is a central Z/2-extension of the

free group π1(B
o). This extension has a section (since the fibration V o → Bo

has a section) and therefore it splits into a product Z/2×π1(B
o). A character

χ defining a double cover of V o \ D is a character which is induced from
Z/2 × π1(B

o) and which is an isomorphism on the central subgroup Z/2 in
Z/2× π1(B

o).
In other words, the restriction of χ to the subgroup π1(P1 \ 4 points) (for

every fiber P1 of the fibration V o → Bo) is equal to the standard character
of F3 (realized as π1(P1 \ 4 points)) which sends the standard generators of
F3 into the non-zero element of Z/2.
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We summarize this in the diagram:

F3 −→ π1(V
o \D)

↓ ↓
Z/2 × π1(B

o) → Z2

↑ ↓
Ker(χ) −→ Γ′

The group Ker(χ) is a subgroup of Z/2×π1(B
o) of index 2 and it is isomorphic

to π1(B
o). This induces a map Ker(χ) → Γ′.

The character χ defines a double cover W o(χ) of V o. The preimage of
every fiber P1 of V o → Bo is an elliptic curve realized as a standard double
cover of this P1. Thus we obtain an open surface W o(χ) with a structure of
an elliptic fibration over Bo. All fibers are smooth. The monodromy Γ̃ of
this elliptic fibration coincides with the image of Ker(χ) in Γ′. If Γ̃ is not
equal to the whole of Γ′ then the sequence 3 splits. This also means that the
character χ is induced from Γ′.

The character χ completely defines the local monodromy around the
points in MΓ \Bo. Now we compactify V o keeping the structure of an elliptic
fibration over MΓ and keeping the zero section. Locally, in the neighborhood
of b ∈ MΓ corresponding to singular fibers our elliptic fibration is birationally
isomorphic to a standard fibration from the Kodaira list. The corresponding
birational isomorphism is biregular on the complement to the singular fiber.
The zero section is preserved under this birational isomorphism. Now we can
modify our initial fibration via this fiberwise transformation along neighbor-
hoods of singular fibers. The resulting surface V is smooth and it admits a
structure of a Jacobian elliptic fibration with the same monodromy group Γ̃.

Now consider the diagram

E SΓ̃

↓ ↓
B → MΓ → P1

Let Bo = B \ j−1{0, 1,∞} and M o
Γ = MΓ \ j−1

Γ {0, 1,∞} (the points deleted
from MΓ are the A, B and I -vertices of the j-triangulation). There is a
natural map π1(B

o) → π1(M
o
Γ) and a commutative diagram of monodromy
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homomorphisms:
π1(B

o) −→ Γ′

↓ ↓
π1(M

o
Γ) −→ Γ

and a monodromy homomorphism π1(M
o
Γ) → Γ′, compatible with the pro-

jection Γ′ → Γ.

Finally, we want to compare the lifting of the elliptic fibration SΓ̃ to B
and E .

Case A. Γ̃ ' Γ. Then E is (fiberwise birationally) isomorphic to one of
the j-modular surfaces constructed in Case 1 above, namely to the surface
corresponding to the section Γ → SL(2, Z).

Case B. The general case. Then E is (fiberwise birationally) obtained as
a composition of a pullback of a corresponding SΓ̃ to B followed by an even
number of twists.

5 The topological type of j-modular surfaces

In this section we determine j-modular surfaces of smallest possible χ(E)
among all SΓ̃ with fixed Γ. For simplicity we assume that B = P1. Similar
techniques work for any base MΓ.

Jacobian elliptic fibrations over P1 arise in families, defined (in Weier-
strass form) as follows. Denote by U0 = A1 a chart of P1 obtained by deleting
(0 : 1) and by U∞ = A1 the chart obtained by deleting (1 : 0). On U0 we use
the coordinate t and on U∞ the coordinate s = 1/t. Consider a hypersurface
in P2 × U0 given by

zy2 = x3 + p0(t)xz2 + q0(t)z
3

where p (resp. q) is a polynomial of degree 4r (resp. 6r). In U∞ the equation
is similar, with p∞(s) = p0(1/s)s

4r and q∞(s) = q0(1/s)s
6r. We get elliptic

fibrations over U0, U∞ which we can glue to an elliptic surface E → B. The j-
function (on U0) is given by p0(t)

3/(4p0(t)
3+27q0(t)

2). The obtained fibration
can be singular in fibers corresponding to b ∈ B where 4p0(t)

3 + 27q0(t)
2 =

0 and the singularities can be resolved by a sequence of blow-ups. The
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outcome is a (unique) smooth relatively minimal Jacobian elliptic fibration.
Thus we get a family Fr of such elliptic fibrations. Notice that 12r = χ(E).
Conversely, a simply connected, compact, minimal Jacobian elliptic fibration
with χ(E) = 12r belongs to Fr. The family Fr is parametrized by the
coefficients of p0, q0 (subject to certain constrains) - it is a smooth irreducible
variety. Every Jacobian elliptic fibration is birational to a minimal elliptic
fibration and the j-map for both fibrations is the same.

On the other hand, the Euler characteristic χ(E) can be computed as a
sum of contributions from singular fibers:

χb χb

I0 I∗0 6
In n I∗n n + 6
II 2 IV∗ 8
III 3 III∗ 9
IV 4 II∗ 10.

Here I0 is a smooth fiber, In is a multiplicative fiber with n-irreducible com-
ponents. The types II, III and IV correspond to the case of potentially good
reduction. More precisely, the neighborhood of such a fiber is a (desingu-
larization of a) quotient of a local fibration with smooth fibers by an au-
tomorphism of finite order. The corresponding order is 4 for the case III
and 3 in the cases II, IV. The fibers of type I∗0, (resp. I∗n, II

∗, III∗, IV∗) are
obtained from fibers I0 (resp. In, IV, III, II) by twisting (changing the local
automorphism by the involution x 7→ −x in the local group structure of the
fibration). We shall call them ∗-fibers in the sequel.

Remark 5.1 The local invariant χb has a monodromy interpretation. Any
element of a local monodromy at b ∈ Bs has a minimal representation as
a product of elements conjugated to ( 1 1

0 1 ) in SL(2, Z). The length of this
representation equals χb. This explains the equality χb∗ = χb + 6 — the
element

( −1 0
0 −1

)
∈ SL2(Z) is a product of 6 elements conjugated to ( 1 1

0 1 )
(elementary Dehn twists).

Proposition 5.2 Fix Γ and assume that the number of vertices v0 in the
associated j-modular graph is divisible by 4. Then there exists a unique (up
to birational transformations) j-modular surface with (minimal)

χ(SΓ̃) = 3v0.
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If v0 is not divisible by 4 then the set of j-modular surfaces with (minimal)

χ(SΓ̃) = 3(v0 + 2)

forms a 1-parameter family.

Proof. First of all observe that v0 is always even. Let SΓ̃ → MΓ be a
j-modular surface with given Γ and singular fibers exactly over the vertices
of the j-modular triangulation. Then

χ(SΓ̃) =
∑

b

χb ≥ 2a2 + 3b2 +
∑

I

χb.

At the same time
2
∑

I

χb = 2(3a6 + a2)

equals the number of triangles in the j-modular triangulation: every triangle
contains exactly one A-vertex, A2-vertices are contained in two triangles and
A6-vertices in 6 triangles. Therefore,

χ(SΓ̃) ≥ 3a6 + a2 + 2a2 + 3b2 = 3v0.

The difference
χ(SΓ̃)− 3v0

is equal to 6 times the number of ∗-fibers. Twisting an even number of ∗-
fibers we can diminish this difference – either to zero (when v0 is divisible by
4) or to 6 (otherwise). In the latter case the ∗-fiber can be chosen freely on
Bo.
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