HEIGHT ZETA FUNCTIONS OF EQUIVARIANT
COMPACTIFICATIONS OF THE HEISENBERG GROUP

by
Joseph Shalika and Yuri Tschinkel

ABSTRACT. — We study analytic properties of height zeta functions of equivariant com-
pactifications of the Heisenberg group.
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Introduction

Let G = G3 be the three-dimensional Heisenberg group:

1 = =z
G{gg(a?,z,y)(o 1 y)}-
00 1

Let X be a projective equivariant compactification @f(for exampleX = P3).
Thus X is a projective algebraic variety ov€, equipped with a (left) action d&
(and containingx as a dense Zariski open subset). Such varieties can be constructed
as follows: consider &-rational algebraic representatipn: G — PGL,,,; and
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take X C P to be the Zariski closure of an orbit (with trivial stabilizer). This
closure need not be smooth (or even normal). Applyingquivariant resolution of
singularities and passing to a desingularization, we may assumg tlsasmooth

and that the boundar® = X \ G consists of geometrically irreducible components
D = U,eaD,, intersecting transversally. In this paper, we will always assume that
X is a bi-equivariant compactification, that is, carries a left and right-action,
extending the left and right action 6f on itself. Equivalently,X is an equivariant
compactification of the homogeneous spéce G/G.

Let L be a very ample line bundle oXi. It defines an embedding of into some
projective spac@”. LetL = (L, || - ||») be a (smooth adelic) metrization 6fand

Hp X(Q) — Ry

the associated (exponential) height. Concretely, fix a Hg5is—o, .. ,, in the vector
space of global sections éfand put

Hmax |fi(x Zf] 212,

We are interested in the asymptotlcs of
N(B) = N(L,B) :={y € G(Q) | Hc(7) < B}
asB — oc.

The main result of this paper is the determination of the asymptotic behavior of
N(B) for arbitrary bi-equivariant compactificatiods of G and arbitrary projective
embeddings.

To describe this asymptotic behavior it is necessary to introduce some geometric
notions. Denote byic(X) the Picard group oX. For smooth equivariant com-
pactifications of unipotent groupBjc(X) is freely generated by the classes/af
(with o € A). We will use these classes as a basis. In this basis, the (closed) cone
of effective divisors/\eﬁc(X ) C Pic(X )r consists of classes

= 1a[Da] € Pic(X)g,

acA
with [, > 0 for all a. Let £ = (L, || - ||a) be a metrized line bundle o such

that its clasgL] is contained in the interior of.¢(X). Conjecturally, at least for
varieties with sufficiently positive anticanonical class, asymptotics of rational points
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of bounded height are related to the location of (the clasd.af) Pic(X) with
respect to the anticanonical cldssKx| = k = (k,) and the coné\.4(X) (see
[10], [20] and []). In the special case dk-compactificationsX as above and
[L] = (I,), define:

—a(L) :=inf{a | a[L] + [Kx] € Aeg(X)} = max,(ka/la);
= b(L) := #{a] ffa = a(L)la};
= C(L) :=A{a|ra # a(L)la};
(L) Ha%C( l g
Let

ZH,C ’

veG(Q

be theheight zeta functiofthe series converges a priori to a holomorphic function
for ample£ andR(s) > 0). The Tauberian theorems relate the asymptotics of
N(L, B) to analytic properties aE(s, L).

THEOREM. — Let X be a smooth projective bi-equivariant compactification of
the Heisenberg grougx and £ = (L, || - ||a) a line bundle (equipped with a smooth
adelic metrization) such that its clags] € Pic(X) is contained in the interior of
the cone of effective divisorsq(X). Then

c(L)T(L) h(s)
(s —a(L)"E) (s — a(L))HE)-1’

whereh(s) is a holomorphic function (foit(s) > a(L) — ¢, somes > 0) and (L)
is a positive real number. Consequently,

c(L)T(£)
a(L)(b(L) — 1)

Z(s,L) =

N(L,B) ~ B Jog(B)* )

asB — oo.

REMARK 0.1 — The constant(—Kx) is the Tamagawa number associated to the
metrization of the anticanonical line bundle (s€€]]. For arbitrary polarizations
7(L) has been defined ir].
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The paper is structured as follows: in Sectiowe describe the relevant geomet-
ric invariants of equivariant compactifications of unipotent groups. In Se2twa
introduce the height pairing

H=]]H, - Hx : Pic(X)c x G(A) — C,
p

between the complexified Picard group and the adelic points generalizing the
usual height, and the height zeta function

(0.2) Z(s,g9) = Z H(s,vg) "
1€G(Q)

By the projectivity of X, the series converges to a function which is continuous
and bounded iy and holomorphic irs, for R(s) contained in some (shifted) cone
A C Pic(X)r. Our goal is to obtain a meromorphic continuation®fs, g) to

the tube domairT over an open neighborhood pf Kx] = x € Pic(X)r and to
identify the poles.

The bi-equivariance o implies thatH is invariant under the actioan both
sidesof a compact open subgroupof the finite adele$s(Ag, ). Moreover,H, is
smooth. We observe that

£ € L3(G(Q)\G(A))X.

Next, we have, foft(s) contained in some shifted coneltic(X)g, an identity in
L2(G(Q)\G(A)) (Fourier expansion):

(0.2) Z(s,9) =Y Zo(s,9),

where the sum is over all irreducible unitary representatien®t,) of G(A) oc-
curing in the right regular representation@fA) in L?(G(Q)\G(A)) and having
K-fixed vectors. We recall the relevant results from representation theory in Sec-
tion 3.

We will establish the above identity as an identity of continuous functions by an-
alyzing the individual terms on the right. Thus we need to use the (well-known)
theory of irreducible unitary representations of the Heisenberg group. We will see
that for L = —Kx the pole of highest order of the height zeta function is sup-
plied by the trivial representation. This need not be the case for other line bundles.
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Depending on the geometry &f, it can happen that infinitely many non-trivial rep-
resentations contribute to the leading polezdk, £). In such cases the coefficient
at the pole of highest order is an infinite (convergent) sum of Euler products.

To analyze the contributions i0 @) from the various representations, we need to
compute locaheight integrals For example, for the trivial representation, we need
to compute the integral

]gb(sagp)ildgp
G(Qp)
for almost allp (see Sectiod). This has been done in][for equivariant compact-
ifications of additive group$z”; the same approach applies here. We regard the
height integrals as geometric versions of Igusa’s integrals. They are closely related
to “motivic” integrals of Batyrev, Kontsevich, Denef and Loeser (se&,[[9] and

[18].

The above integral is in fact equal to:

(0.3) p~ im0 (Z #D5%(F,) 1] psa-pma;i_J )

ACA acA
where
D@ = G, Dy = ﬂaeADon D% =Dy \ UA/;ADA/,
andF, is the finite fieldZ/pZ. The resulting Euler product has a pole of order
rk Pic(X) ats = x and also the expected leading coefficient at this pole.

The biK-invariance of the height insures us that the trivial representation is “iso-
lated” (c.f. especially Propositiof.9). Using “motivic” integration as above, we
prove thateachof the terms on the right side iQ (2) admits a meromorphic contin-
uation. We will identify the poles o, for non-trivial representations: fare T
they are contained in the real hyperplargs= x,, and the order of the pole at= x
is strictly smaller thank Pic(X). Finally, it will suffice to prove the convergence
of the series(.2), for s in the appropriate domain. This is done in Section

This paper is part of a program initiated in(] to relate asymptotics of ratio-
nal points of bounded height to geometric invariants. It continues the work of
Chambert-Loir and the second author on compactifications of additive grolups [
Many statements are direct generalizations from that paper. In this paper we explore
the interplay between the theory of infinite-dimensional representations of adelic
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groups and the theory of height zeta functions of algebraic varieties. The main the-
orem holds for bi-equivariant compactifications of arbitrary unipotent groups. We
decided to explain in detail, in a somewhat expository fashion, our approach in the
simplest possible case of the Heisenberg group @vand to postpone the treat-
ment of the general case to a subsequent publication. We have also included the
example ofP® in which most of the technicalities are absent.

Acknowledgements. The second author was partially supported by the NSA,
NSF and the Clay Foundation.

1. Geometry

NOTATIONS 1.1 — Let X be a smooth projective algebraic variety. We denote
by Pic(X) the Picard group, byi.4(X) the (closed) cone of effective divisors and
by Kx the canonical class ok. If X admits an action by a groud, we write
Pic%(X) for the group of (classes of}-linearized line bundles o .

DEFINITION 1.2 — Let X be a smooth projective algebraic variety. Assume that
A (X) is a finitely generated polyhedral cone. Lebe a line bundle such that its
class[L] is contained in the interior ol .¢(X). Define

a(L) = inf{a|alL] + [Kx]| € Aegr(X)}
andb(L) as the codimension of the face/af: (X)) containinga(L)[L] + [Kx].

NOTATIONS 1.3 — Let G be a linear algebraic group over a number figldAn
algebraic varietyX (over F) will be called agoodcompactification of5 if:

— X is smooth and projective;

— X containsG as a dense Zariski open subset and the actidm on itself (by
left translations) extends t&;

— the boundaryX \ G is a union of smooth geometrically irreducible divisors
intersecting transversally (a divisor with strict normal crossings).

REMARK 1.4 — Equivariant resolution of singularities (over a field of charac-
teristic zero) implies that foany equivariant compactificatiotX' there exists an
equivariant desingularization (a composition of equivariant blowpps)X — X
such thatX is a good compactification. By the functoriality of heights, the counting
problem for a metrized line bundlé on X can then be transferred to a counting
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problem forp*(£) on X. Thus it suffices to prove Theorefior good compactifica-
tions (the answer, of course, does not depend on the chosen desingularization).

PROPOSITION1.5. — Let X be a good compactification of a unipotent algebraic
groupG. LetD := X \ G be the boundary an¢lD,, } .c 4 the set of its irreducible
components. Then:

— Pic%(X)g = Pic(X)g;

— Pic(X) is freely generated by the clasgés,|;

— At (X) = ®aR>0[ D0

— [-Kx| =), ka[Ds] With s, > 2 for all a € A.

Proof. — Analogous to the proofs in Section 2 df]]. In particular, it suffices to
assume thak carries only a one-sided action Gf O

NOTATIONS 1.6. — Introduce coordinates dpic(X) using the basi$D,}.c4: @
vectors = (s,) corresponds tQ s, D.

COROLLARY 1.7. — The divisor of every non-constant functipre F'[G| can be
written as

div(f) = E(f) = ) da(f)Das

where E(f) is the unique irreducible component pf = 0} in G andd,(f) > 0
for all . Moreover, there is at least ore< A such thatd,(f) > 0.

2. Height zeta function

NOTATIONS 2.1 — For a number field”, we denote bwal(F') the set of all places
of F', by S, the set of archimedean and By, the set of non-archimedean places.
For any finite sef of places containing..,, we denote by the ring of S-integers.
We denote byA (resp.Ag,) the ring of adeles (resp. finite adeles).

DEFINITION 2.2 — Let X be a smooth projective algebraic variety over a number
field F. A smooth adelic metrization of a line bundleon X is a family|| - ||, of
v-adic norms| - ||, on L @ F,, for all v € Val(F), such that:

— forv € S, the norm|| - ||, is C*;
— for v € Sg,, the norm of every local section éf is locally constant in the
v-adic topology;
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— there exist a finite st C Val(F'), a flat projective scheme (an integral model)
X over Spec(og) with generic fiberX together with a line bundl&€ on X,
such that for allv ¢ S, thev-adic metric is given by the integral model.

PROPOSITION2.3. — LetG be a unipotent algebraic group defined over a number
field FF and X a good bi-equivariant compactification €f. Then there exists a
height pairing
H= H H, : Pic(X)c x G(A) - C
veVal(F)

such that:

— for all [L] € Pic(X), the restriction ofH to [L] x G(F) is a height corre-

sponding to some smooth adelic metrizatiord. pf
— the pairing is exponential in thBic(X') component:

H,(s+5s',9) = H,(s,9)H,(s, g),

forall s, s’ € Pic(X)c, all g € G(A) and allv € Val(F);
— there exists a compact open subgroup (depending pn

K=K(H)=]]Ko C G(Ag)

such that, for allv € Sg,, one hasH,(s,kgk') = H,(s,g) for all s €
Pic(X)c, k, k' € K, andg € G(F,).

Proof. — For G = G the Proposition is proved irc], Lemma 3.2. The same
proof applies to any unipotent group. O

NOTATIONS 2.4 — For§ € R, we denote byls C Pic(X)c the tube domain
R(sq) — ko > 0 (forall a € A).

DEFINITION 2.5. — The height zeta function dric(X)c x G(A) is defined as
Z(s,9)= Y His,vg) ™"

vEG(F)

PROPOSITION2.6. — There exists @ > 0 such that, for alls € Tsand allg €
G(A), the series defining the height zeta functi®s, ¢g) converges normally (fog
ands contained in compacts i6(A), resp.T;) to a function which is holomorphic
in s and continuous .

Proof. — The proof is essentially analogous to the proof of Proposition 4.5]in |
(and follows from the projectivity o). ]
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COROLLARY 2.7. — For s € T4 one has an identity in?(G(F)\G(A)), as
above:

(2.1) Z(s,9) = ) Z(s.9).

The sumis over all irreducible unitary representatierns G(A) occuringL?(G(F)\G(A))
and having aK-fixed vector (cf. PropositioB.3).

3. Representations

3.1. — From now on, for the sake of simplicity, we suppdse= Q. Denote by
Z = G, the one-dimensional center and@§® = G/Z = G? the abelianization of
G. LetU C G be the subgroup

Ui={ueGlu=(0,21y)}
and
W:={we Glw=(z,0,0)}.

We haveG = W - U = U - W. We may assume that the compact open subgroup

K=]]X, C G(Au)

p

of Proposition2.3is given by
(3.2) K=[] ¢@)- ] ¢z,

p¢SH pESH

where Sy is a finite set of primes and the, are positive integers. We denote
by K K, etc. the corresponding compact subgroups of the (finite) adeles of
G Z,U, W, respectively, and put

n(K) = H prr.
PESH
We denote bylg = Hp dg, - dg~. the Haar measure ad(A), where we have set
dg, = dx,dy,dz, with the normalizationfzp dx, = 1 etc. (similarly at the real

place). We writedu, = dz,dy, (resp. du, du) for the Haar measure ot(Q,)
(resp.U(R), U(A)). We letdk, be the Haar measure &), obtained by restriction
of dg, to K,. Further, our normalization of measures implies tﬁ@tdkp = 1.
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As usual, a choice of a measure on the local (or global) points ahd of a sub-
groupH C G determines a unique measure on the local (resp. global) points of the
homogeneous space/H.

LEMMA 3.2 — One has:
— G(Zy) = (G(Zp) NU(Qy)) - (G(Zp) NW(Qp));
- U(Q,) - W(Z,) is a subgroup of5(Q,);
- G(A) =G(Q) - G(R) - K;
— there exists a subgroup C G(Z) (of finite index) such that
G(Q\G(A)/K =T\G(R);
— the quotient™\ G(R) is compact.

These statements are well-known and easily verified.

We now recall the well-known representation theory of the Heisenberg group in
an adele setting {[]). Denote byp the right regular representation G{ A) on the
Hilbert space

H = L*(G(Q)\G(A)).

Consider the action of the compact grdli@\) /Z(Q) onH (recall thatZ = G,).

By the Peter-Weyl theorem, we obtain a decomposition

H = DH,y
and corresponding representatidng, H,,) of G(A). Here

Hy = {p e H|o(2)(p)(g) = ¥(2)p(9)}

and+ runs over the set of (unitary) charactersZgf\) which are trivial onZ(Q).
For non-trivialy, the corresponding representatiar,, /) of G(A) is non-trivial,
irreducible and unitary. On the other hand, wheis the trivial character, the corre-
sponding representatiq decomposes further as a direct sum of one-dimensional
representations,:

Ho = @ H,y.
Heren runs once over all (unitary) characters of the graiip(Q)\G2*(A). Itis
convenient to considey as a function orG(A), trivial on theZ(A)-cosets. Pre-
cisely, lety; = Hp Y1, - 1.0 De the Tate-character (which has exponent zero at
each finite prime, see’[] and [2€]). Fora = (a;,a2) € A @ A, consider the
corresponding linear form on

GPA)=ADA
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given by
9(r,2,y) = a1z + azy
and denote by = 7, (a = (a4, a2)) the corresponding adelic character
n 9@, z,y) = (e + azy)
of G(A). Fora € A, we will denote by, the adelic character af(A) given by

z 1y (az).

As in Section2, the starting point of our analysis of the height zeta function is
the spectral decomposition @f. A more detailed version of Corollard.7 is the
following Proposition.

PROPOSITION3.3. — There exists @ > 0 such that, for alls € Ts, one has an
identity ofL2-functions

(32) Z(S7g) :ZO<Svg)+Zl<Svg)+ZQ<Svg)7
where
(3.3) Zofs.id) = | His.g) dg
G(A)
(3.4) Zi(s,9) = > _nlg) - Z(s,m),
and
(3.5) Zy(s,9) =Y > w(g)- Z(s,w”).
Y w¥

Here we have set

Z(s,) = (2(s,)om) = / 0 (o).
Z(s,0%) = (Z(s,g), w") = / e, 2697 g =

= H(s,9)"'w"(g)dy,
G(A)

n ranges over all non-trivial characters of
G™(Q) - K™\G™(A),
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1 ranges over all non-trivial characters of

andw? ranges over a fixed orthonormal basis’df; (for eachy).
In particular, forn = n, andy = 1, occuring in this decomposition, we have

—7.
ai,az,a € n(K)
Proof. — We use the (rightK-invariance of the height for the last statement (for
n). Foriy see also Lemma.11as well as PropositioA.6. O

REMARK 3.4 — The desired meromorphic properties®f and Z, have, in fact,
already been established i#][ The height integrals are computed as in the abelian
case and the convergence of the sefigsis proved in the same way as ia]{

In particular, 8.4) is an identity of continuous functions. The novelty here is the
treatment of2;.

We now proceed to describe the various standard models of infinite-dimensional
representations of the Heisenberg group.

3.5. — Locally: Lety = 1, (resp.y = 1,) be alocal non-trivial character of),
(resp.R). Extendy to U(Q,) by setting

¥((0,2,9)) = ¥(2).

The one-dimensional representation(dfQ,) thus obtained induces a represen-
tation r, = my, of G(Q,). The representation, acts on the Hilbert space of
measurable functions

¢ G(Q,) —C
which satisfy the conditions:

— ¢(ug) = ¥(u)g(yg) for all u € U(Q,) andg € G(Qy);
— [lo]I? := fU(Qp)\G(Qp) ¢(g)|*dg < o0.
The action is given by

mu(9)o(9) = d(99'), 9" € G(Qy).

On the other hand, we have a representatipn- 7, , (the oscillator representa-
tion) on

LA(W(Qp)) = L*(Qy),
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where the action ofs(Q,) on a functiony € L*(Q,) is given by

(3.6) Tp(9(2',0,0))p(x) = p(z + ')
7(9(0,0,))p(x) = U(y - 2)p(x)

my(9(0,2,0))(x) = ¥(2)p(2).
It is easy to see that the representatiopsandr,, are unitarily equivalent. We
will identify the unitary representations; andm;, in what follows.

Globally: In the adelic situation, to each non-trivial charaateof Z(A) we can
associate a representatiop of G(A), wherer, = ®,my,, ® Ty~ and the action
onL?(U(A)\G(A)) = L*(A), is given by the formulas3(6) (with ¢, replaced by
Y). The representations, andp,, are equivalent irreducible unitary representations
of G(A). We will recall the explicit intertwining map between, and g, (c.f.
Lemma3.1]).

We also recall that the spacdA) C L?(A) of Schwartz-Bruhat functions coin-
cides with the space of smooth vectorsmof (for the real place, see the Appendix
in [7]) and note that*(Q,)%» = S(Q,)*».

For a character)(z) = 1.(z) = e?™* (with a # 0) consider the following
operators on the subspace of Schwartz functi®f®) c L*(R):

0e(x) = Lo(x)
0, 0(x) = 2miarp(x)
Ay = (05)*+ (0y)%
We have
Ayp(z) = ¢ (x) — (2mazx)p(x)
(harmonic oscillator). The eigenvaluesAf, are given by
A\ = —21(2n + 1)|al

(with n = 0,1,2,...). They have multiplicity one. Denote by’ (x) the n-th Her-
mite polynomial:

hy(x) = 1
W (x) = Anl|alz

h(z) = —Anla|(l — 4rlalz?)
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and, in general,
dn
%Q—Qﬂa\ﬁ _ (—1)nh;€(l’>6_2w|a‘$2.
The (essentially unique) eigenfunctigf] corresponding ta? is given by
0¥ = cpe TN Y (1),
Here we choose the constants so that theL2-norm of ¥ is 1.

LEMMA 3.6. — The setB (7)) := {¢}} is a complete orthonormal basis of
L2(R).

Proof. — For details see, for exampley][ Chapter 13, ord]. O

3.7. —

NOTATIONS 3.8. — Forn = 1, With a = (ay,a) anday, ay € ﬁz, denote by
S, the set of primeg dividing eithern(K)a, or n(K)a,. Similarly, fory = v, with
a € g2, denote byS,, the set of primes dividing(K)a.

LEMMA 3.9. — Lety = ¢, be a non-trivial character oZ(Q)\Z(A) and g, =
®p0yp @ 04,00 the corresponding infinite-dimensional automorphic representation.
Suppose,, contains ak-fixed vector (folk as in 3.1)). Then:

—a € ;gL (for n(K) = [],cq, P™):

— dim gg”; =1forp ¢ Sy;

— dim g”, = |n(K)%al, ! for p € Sy, providedp™ - n(K) € Z,.
Proof. — We need only use the explicit form of the representatignp given in
(3.6). Suppose first that,, ,, has a non-zer&,-fixed vectory. Takingz € p™ - Z,,
we get

bp(p"rr) = rplap™r) =1
for all r € Z,. Since the exponent af, , is zero, we have
a-p" € Ly,

from which the first assertion follows.
Let us assume then thaltr - n(K) € Z,. Then the space df,-fixed vectorsp in
L?(Q,) is precisely the set af satisfying

1. o(u+p"r) = p(u);
2. p(u) = Y(prrau)p(u)
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forall ri,ry € Z,,u € Q,. The first identity implies thap is a continuous function
and the second th&upp(y) C a~'p~"™ - Z,. The second and the third assertions
of the Lemma follow at once. ]

NOTATIONS 3.10 — LetV,,, be the space of the induced representation,gf.

Denote byV the space of smooth vectors I, ,. ThusV;S is the set of all
v € V,,, fixed by some open compact subgrougfQ,). Note thatV/7? is stable
under the action of:(Q,). Note also that in the explicit realization of, ,, given in
(3.6), L*(Q,)™® = S(Q,) (see the proof of Lemma.9).

Fory € S(A) define the theta-distribution

O(p) ==Y ().

z€Q
Clearly,© is aG(Q)-invariant linear functional o5 (A). This gives a map

Ju o S(A) — LA(G(QN\G(A))
Jule)lg) = O(my(g)e)-

LEMMA 3.11 — The mapj, extends to an isometry
Ju o LP(A) = Hy C L(G(Q)\G(A)),
intertwining,, and go,,. Moreover,
gy o LA = HY

Let us recall the definition of a restricted algebraic tensor product: for all primes
p, let'V, be a (pre-unitary) representation space@gf,). Let (e,), be a family
of vectorse, € V), defined for all primeg outside a finite sef,. Suppose that,
for almost allp, e, is fixed by K,. We will also assume that the norm ef is
equal tol. Let .S be a finite set of primes containirffy. A puretensor is a vector,
v =vg®e”, wheree® = ®,¢5¢, andug is a pure tensor in the finite tensor product
®pesVp. The restricted algebraic tensor prodiict= ®,V, is generated by finite
linear combinations of pure tensors (s&é€][for more details).

EXAMPLE 3.12 — Consider the representation, of G(A) on the Schwartz-
Bruhat spaceS(As,) = ®,5(Q,) and the corresponding representatioy) of
G(Q,) onS(Q,). Inthis case, for all primeg ¢ Sy, e, is unique (up to scalars) and
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may be taken to be the characteristic functiopfWe havej, (S(Aq,) ® S(R)) =
Hmo (by [7).

We now fix an orthonormal basi8, () for the spaceS(As,)X as follows.
We let Bsn (1) = ®@pB,(my,), Where, forp € Sy = S = Sy, B,(my,) is any
fixed orthonormal basis faf(Q,)*» and, forp ¢ S, B,(my,) = ¢,. Thus any
¢ € Ban(my) has the form

Y =ps® esa
with e¥ = ®,¢ge,, as above. We have then the following Lemma:
LEMMA 3.13 — The set

B(oy) = jy(Ban(my) @ Boo(my))

is a complete orthonormal basis &f,;. The number of elements € B(o,) (c.f.
Lemma3.9) with given eigenvalugy, is [n(K)?a| if a € - 1 a5 Z (and zero otherwise).

DEFINITION 3.14 — Suppose ¢ S,. The normalized spherical functiofy on
G(Q,) is defined by

folgp) = (T, (gp)ep, €p)-
Here (-, -) is the standard inner product dr¥ (Q,)).

LEMMA 3.15 (Factorization)— Forw € B(p,) andS = S, U {oo}, we have an

identity
[ =T
K pgs
HereK® = [Lgs, Kpog= g° - gs, with g (resp.gs) in G(A%) (resp.G(Ag)).

Proof. — Define a linear form. onV = S(A) by setting

o) i= [ )n)ans

(Wherep € S(A)). Set
VZ = ®p55(Qp)
and
Vs 1= ®pes, S(Qp) @ S(R),
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so thatV = Vs ® V9. Then from Lemma.9we have, forp® € V¥, with 7 =
®pegsTyp, @n equality of the form

/KS o (%) dk> = 1% (p") - ¢

for a unique linear form® on VV°. Note thatv®(¢®) = (p°,e”), for ¢° € V¥,
Now we have, forp of the formy = g ® ©°, with g € Vg andy® € V¥,
wlps @ i (k%)%) = ulps @ %),
from which it follows at once that
p(ps ® ©°) = ps(ps) - v° (%),
for some linear formugs on Vs. From this we obtain in turn, fap = ¢4 ® e, the
identity
Jxs i(@) (K g)dk> = p(my(g)p)

= ps(mys(gs)ps) - v3(n5(g%)es)

= ps(my.s(9s)es) - Hp¢s fo(9p)

for g € G(A). Heremy s = ®pesmy . Takingw = j(p), with p = o5 ® €°, g €
Vs as above, we arrive next at the equality

| w5 9ak® = (gs) - T solon)

K p¢S

for some functions’ on G(Ag). Finally, if g = g5 € G(Ag), we obtain from the
last expression

W'(gs) = /KS w(k®gg)dk® = /sz(ggks)dk:s = w(gs),

since, in factw is K-invariant on the right. This completes the proof of the Lemma.
O

COROLLARY 3.16 — Lety = ¢, be as above (with € Q*) and g, the associ-
ated irreducible unitary automorphic representation®fA ). Suppose thag, has
a K-fixed vector. Then, fof = Sy U {oo}, all w € B(py), all primesp ¢ S,, and
all (integrable) functiond? on G(A) such that

Hy(kpgp) = Hp(gpky) = Hp(gp),
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for all k, € K, andg, € G(Q,), one has

@1 [ H@e@a=T] [ @b [ Hswslesds
G(A) pgS G(Qp) G(As)

wherews is the restriction ofv to G(Ag).

LEMMA 3.17. — Forall ¢ and allp ¢ S, one has, forH, as above,

Hp(gp)fp(gp)dgp = Hp(“p)wp(up)dup’
G(Qp) U(Qp)

Proof. — Suppose ¢ S5y. Letx, be the characteristic function &f,. Define a
function, on G(Q,) by setting

Vp(gp) = / Xp (Upgp)gp (up)duy
U(Qp)

(with g, € G(Q,)). Clearly,s, belongs to the spadé, , of the induced representa-
tion 7, ,; moreovery, is K,-invariant (on the right).
Next we have, with our normalization of Haar measures,

7;17 (9p) = Vp(up)

providedg, = u,k,, with v, € U(Q,), k, € K,,, and zero otherwise. In particular,

|7;p(gp)|2 = / Xp(Upgp)duy,
U(Qp)

from which it follows that

150 = [ laPde = [ xladds = [ dg=1
U(Qp)\G(Qp) G(Qp) K

P

(Hered*g, is normalized so thalg, = du,d*g, as in Sectior8.1) Next, forv e
V5o we have, withr, = 7,

/ (k) vy = ().
Kp

for a unique linear form: on V2. Note thatu(v) = (v, v,). We have then, using

&p(e) =1,

folgp) = <7Tp(9p)1/~’p71;p> = /K Vp(kpgp)dky.

P
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To complete the proof, we note first, from the I&ft-invariance off,, that

Hp(gp)fp(gp)dgp = / Hp(gp)@zp(gp)dgp'

G(Qp) G(Qp)

In turn, the last integral is

- fU(Qp) Ep(“l’) fG(Qp) Hyp(9p)Xp(upgp)dgp
= fU(Qp) Up(up) fG(@p) Hy(upgp) xp(9p)dgp

= fu(Qp) Hy (up )y (up)duy,
the last equality from the righ-invariance ofH,,.

4. Euler Products

In this section we show that each summand inlthexpansion of the height zeta
function in PropositiorB.3 is regularized by an explicit Euler product. First we
record the integrability of local heights:

LEMMA 4.1 — For all compactsK € T_; and all primesp, there exists a con-
stantc,(K) such that, for alls € K, one has:

| (500 g < ()
G(Qp)

Moreover, for allo in the universal enveloping algebtf g) of G and all compacts
K C T_4, there exists a constantK, 0) such that, for alk € K,

/ OH (5, go) " |dgoo < (K, D).
G(R)

Proof. — This is Lemma 8.2 and Proposition 8.4 6f.[ O

NOTATIONS 4.2 — Denote bySy the set of all primes such that one of the fol-
lowing holds:
—pis2or3;
- Kp 7é G(Zp);
— overZ,, the unionJ, D, is not a union of smooth relative divisors with strict
normal crossings.
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REMARK 4.3, — For allp ¢ Sx, the heightH,, is invariant with respect to the
right and leftG(Z,)-action.

PROPOSITION4.4 — For all primesp ¢ Sx and alls € T_;, one has

_ _: p—1
H(s,g,) 'dg, =p~* #DY(F —_— |,
/G o Hls0) g > #D4F) [] A

ACA acA
where X = LIDY is the stratification ofX by locally closed subvarieties as in the
Introduction andF,, = Z/pZ is the finite field withp elements.

Proof. — This is Theorem 9.1 ind]. The proof proceeds as follows: fpr¢ Sx
there is agoodmodel X’ of X overZ,: all boundary component®, (andG) are
defined overZ, and form a strict normal crossing divisor. We can consider the
reduction map

red : X(Q,) = X(Z,) — X(F,) = Uaca DY(F,).
The main observation is that, in a neighborhood of the preimagé(i@,) of the

.....

such that

HP(Sug) = H |xa|;a'

a€A
Now it suffices to keep track of the change of the measgyse

dg, = H dx,, - H |xa|];“‘dxa,
agA acA

wheredz,, are standard Haar measures@n The integrals obtained are elemen-
tary:

red~1(zp) ag¢A PZyp ey pZyp

(wherew,(z) = log,(|z|,) is the ordinal ofr atp). Summing over ali, € X (F)),
we obtain the proof (see] for more details.) O

COROLLARY 4.5. — For all primesp one has the identity

/ Hy(s,9p) "' dg, = H Cp(Sa = Ka + 1)+ fop(s),
G(Qp)

acA
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wheref ,(s) is a holomorphic function i _; .. Moreover, there exist&> 0 and
a functionfy (s, g) which is holomorphic inl _s and continuous iy € G(A), such
that

20(879) = fO(Sag) ' H C(sa — Ko + 1)7
acA
moreover,

ggggﬂyfﬂ%—mg:ﬂxg¢o
acA

wherer(Kx) is the Tamagawa number defined i].

Proof. — Apply Corollary 9.6 in []. O]

NOTATIONS 4.6. — Leta = (a1, a) € Q% and letf, be theQ-rational linear form
(z,y) — a17 + azy.
The linear formf, defines an adelic character= 7, of G(A):
n(g(z, 2,y)) = i(az + azy),
where again/, is the Tate-character @f/Q. Write

div(n) = E(n) = ) da(n)Da

acA

for the divisor of the functiory, on the compactificatioiX (by Corollaryl1.7, d, >
0 for all « € A andd,, > 0 for at least onex € A). Denote by

Ao(n) = {alda(n) =0}.

LetV C X be the induced equivariant compactificationlot- G.

ASSUMPTION4.7. — From now on we will assume that the boundafy, U is a
strict normal crossing divisor whose components are obtained by intersecting the
boundary components of with V'

Vv \ U= UO&EAV‘D(‘I/ = UOcE.ADOc N ‘/7
(with AV C A).

REMARK 4.8. — The general case can be reduced to this situation by (equivariant)
resolution of singularities.
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By Lemma 7.3 of {], we have
~Ky = > kiDY,
acAY

with k! < k, (for all ) and equality holding for in a propersubset ofA.

Denote byf, theQ-rational linear form on the cent&rof G
ZHa-z.

The linear formf, defines an adelic character= ¢, of U(A)/U(Q):
1/Ja<g<07 2 y)) - 77D1(CLZ)'

div(y)) — > dal

ac AV
for the divisor of the functiory, on V" and denote by

Ao(¥) = {alda(y) =0}

We note that bothd,(n) and.Ay(v) arepropersubsets ofd. A precise formu-
lation of the statement that the trivial representatiorGof\) is “isolated” in the
automorphic spectrum is the following Proposition.

Write

PROPOSITION4.9. — Letn =1, andz/; 1, be the non-trivial adelic characters
occuring in Propositior8.3 (a1, az, a € - Z) For anye > 0 there exist a constant

c(e) and holomorphic bounded functlom§( ), pu(a,-) onT_y 54 Such that, for
anys € Ty, one has

Hy(s, gp)_lﬁp(gp)dgp = ¢y(a,s) H (S0 — Ko+ 1);

¢Sy G(Qp) a€Ag(n)
H / (8, up) ™'y (up)duy, = 9y (a,s) H ¢ (80 — Ko + 1),
PESy acAo(¥)

where(?(s) = [Tes(1— p~*)~! is the incomplete Riemann zeta function. More-
over,

|on(a,s)|
|ou(as)]

IAIA
(@]
6
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Proof. — The integrals can be computed as in Propositioh They are regu-
larized by the indicated products of (partial) zeta functions. The remaining Eu-
ler products are expressions involving the numbeF gpoints for boundary strata
(and their intersections witthiv(n), resp.div(¢)). In particular, they are uniformly
bounded on compactsin_; »,.. For details we refer tad], Proposition 5.5 (which
follows from Proposition 10.2 itoc. cit.). O]

COROLLARY 4.10 — In particular, each term in the sumsZ, (s, g) and Z5(s, g)
has a meromorphic continuation to the domain, /.

LEMMA 4.11 — For anye > 0 and any compadK in T_; 5., there exist con-
stantsc(K) andn’ = n’(K) > 0, such that

| HpESn fG(@p) Hy(s, gp)71d9p|
| HpESw fG(Qp) Hy(s, gp) " dgy|

for all s € K.

c(K) - (1 + [lal)™

<
< e(K)- (1+[a])"”

Proof. — Forp € Sx we use the bound from Lemmal. Forp € S, \ Sx (resp.
Sy \ Sx) we apply Propositiod.4: there is a constant> 0 (depending only ot
andK) such that

C
| Hy(s,gp) " 'dgy| < (1+—2)
G(Qp) p p p \/2—)
for all p. Using the bound
C /
[[a+—=) <,
plb VP

(for b = a - n(K) and somey’ = n’(K) > 0) we conclude the proof. O

PROPOSITION4.12 — Foranyn > 0 and any compadf C T_, 5., there exists
a constant(K, n) such that, for anyg € K, and anya = (ay, az) anda as above,
one has the estimates

| Jam) Hoo(S: 9o0) "Moo (90)dgec] - < (K, n)(1 + [fa])) ™",

| Jans Hs(s,95) "' @s(gs)dgs] < (K n)(1+ [A)™"(1+ |a)",

wheren’ = n’(K) is the bound from Lemm&all, S = Sy U {oo}, A = A(w) is the
eigenvalue ofus € Bs(o,) (with respect to the elliptic operatak).
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Proof. — We use Lemmad.1and integration by parts. Fgrwe apply the operator
0 = 92+ 92 (asin p]) and fory the elliptic operato\ = 92492+ 0? (and use the
eigenfunction property abg, or, what amounts to the same,wfc B(p,)). More
precisely, the second integral is majorized by

AL [ AmHGs.g9) sl - sup sl
G(As) 9s€G(As)
Using the class number one property
G(A)=G(Q)-G(R)-K
and the invariance af underG(Q) andK, we obtain the estimates

(4.1) sup  |ws(gs)| < sup |w(g)| = sup |we(g)|
95€G(Ag) geG(A) geT\G(R)

Further we have

(4.2) sup |weo (@) <A™ - [wlleemam) = AT - lwllzeonan) = (AT
9€T\G(R)

for some constant’ (see [L1], [23], p. 22, and P5] for the comparison between
the L? and theL> norms of an eigenfunction of an elliptic operator on a compact
manifold and other applications of this inequality). The rest of the proof follows
at once from Lemmal.1 and Lemma4.11 (Notice that the implied constants,
includingm’, in the above inequalities depend only on the choicE 9f O

Before continuing to the proof of the main theorem, we discuss the individual
inner products

2(5777) = <Z(S’ ')777>>
Z(s,ww) = (Z(s, -),ww).
Let us first set

Cn(s) = H C(Sa — Ko + 1)7

We have then the following Corollary.

COROLLARY 4.13 — The functions

Go(s) ™+ Z(s,m)
and
Cw(s)_l ’ Z(S’ w¢)7
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initially defined fors € T (c.f. 2.4), have an analytic continuation to the domain
T_1/24. (for all e > 0).

Proof. — We will consider the functiod,(s)~" - Z(s,w?) and leave the first case
to the reader. We start by observing that,da T, we have

(4.3) / |H(s,g)| 'dg < oo
cn)

(this follows from Propositior?.6 together with the compactness@fQ)\G(A)).
Consequently,

Z(s,w") = [ H(s,9)"'w"(9)dy,
G(A)
again fors € T4. Using the leftK, and in particular, the lefkK®-invariance ofH,
we have, fos € T,

Z(s, %) = / H(s,g)_l/ w¥ (k% g)dkdyg.
G(A) KS
Then, from Lemma3.15(factorization), we have (with in the same domain),

@8 265 = [ g0 o oy [ B0 e

where we have set
(g% = H fo(gp)
pEs
(recall thatS = S, U {o0}). Both integrals above are convergent $oe T, by
(4.3). By Lemma4.1, the first integral on the right in(4) is absolutely convergent
for s € T_;. Next it follows from Propositiont.9 that the second integral above

actually converges fog € T,. Moreover, we have for that integral the product
expression

~1
H /G(Qp) Hy(s, gp) " f(9p)dgp-

PESy
As we have noted in Propositiah9, the infinite product is convergent to a holo-
morphic function, fors € T,. Further, we then have for this infinite product the
expression

90¢<avs)' H H C(Sa—lia—Fl)'Q/,(S),

a€Ao(Y) PESy



26 JOSEPH SHALIKA AND YURI TSCHINKEL

fors € Ty. It follows, again from Proposition.9, that

Cu(s) - Z(s,@")
can be continued holomorphically to the domain, »,.. (Note that we have used
the meromorphic continuation gfs) to R(s) > 1/2 + ¢.) O

Moreover, we have the following Lemma:

LEMMA 4.14 — For anye,n > 0 and any compacK C T_,/, there is a
constantc(K, n) and an integem’ > 0 such that, for any € K anda as above
(v = 1,), we have

[Co(s) ™+ Z(5.0")] < c(Kyn)(L+ [IA) (L + |al)".
Proof. — We have from the preceeding (proof of Corollary.3
CGu(s) - 2(s,w") =

polas)- [ RCYERRCST | B IO

a€Ao(¥) PESy
fors € T_;/24.. Our conclusion follows from Propositich9 and Propositiod.12
and, for example, the elementary inequality

1 /
[Ta+—=) <-pr
plb VP
applied tob = an(K) (for somen’ > 0, independent of). O

THEOREM4.15 — The height zeta functioZ(s) is holomorphic fors € T.

Moreover,
H (Sa = Ka) + Z(s)

acA
admits a holomorphic continuation b_; (for somey > 0) and

lim [ (50 = ka) - 2(s) = 7(Kx).

acA
Proof — Set

We prove first that both series

(4.5) > z(s)- Z(s,m) - nlg)

n#l
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and
(4.6) Y. > s Z(sw”)-w(g)
w?él wwEB(gw)
are normally convergent farin a compact subset af_, »,. andg in a compact
subset ofG(A). We note that, by Propositich12, the products
2(s)Z(s,n) and z(s)Z(s,w?)

are defined fos € T_, /... We will prove our assertion for the second series; the
proof for the first is entirely similar.

We have a map from the set of non-trivial charactgrg of A/Q to the set of
subsets of4 given by

Y= Ao(¥).
It suffices to prove our assertion for each subsefigof Z, corresponding ta)
with Ay (1) = A (for A C A). From Lemma4.14we have a uniform majoration
(for reals)
2(s) - Z(s,0") < 2(8) - Gu(s) - (L+ A"+ (L +[a])"

By definition, the functior(, is the same for all fog) occuring inZ4. It remains
then to prove the assertion for the series

(4.7) > > Wl

Y w¥eB(oy)
where we have used the estimatés)and @.2) (and the sum is over all characters
1 occuring inZ,). We recall that = \(wV) is theA-eigenvalue ofo¥ andy) = 1),.
We also recall (Lemma&.13 that (with.S = Sy)

W = j(ps ® e® @ p}),

forn = 0,1,2, ..., wherepg varies over an orthonormal basis 8fAs)¥s. Thus
our series4.7) is bounded from above by

SN Pl " ()2
a€Z,a#0 n
(see Lemma&.9). Our claim now follows upon remarking that
A = (=27(n 4 1)|a| — 47%a?).
At this point we may conclude that the serids5f and @.7) converge as stated.
It now follows that, fors € Ty,

Z(S7g> = Z()(S:g) + Zl(s7g) + 22(579)7
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as an equality of continuous functions @GifA). In particular, we have
(4.8) z(s)Z(s) = z(s)(Zy(s, id) + Z1(s,id) + Z5(s, id)),
again fors € T;. Finally, we obtain, from4.8), Corollary4.5 and the preceding,
the meromorphic continuation & (s) to the domainl _; /2.

Further, since for non-triviap the set4,(¢) is apropersubset of4, we also see
that the function

z(s)(Z1(s, id) + Z5(s, id))
vanishes fos = «. Thus we have finally
Z(S)Z(S7 Zd) |S:K - Z(S)ZO(Sv Zd) |S:m-

Applying Corollary4.5we conclude the proof. O

REMARK 4.16 — Theoremd.15implies that for eact in the interior ofAqg(X)

the (one-parameter) height zeta functiBfs, £) is holomorphic forR(s) > a(L)

and admits a meromorphic continuation®@s) > a(L) — ¢ (for somee > 0) with

an isolated pole at = a(L) of orderat mostb(L). The proof that the order is
exactlyb(L) and that the leading coefficient &f(s, £) at this pole is:(L) - 7(£) is
analogous to the proof of the corresponding statement for height zeta functions of
equivariant compactifications of additive groups (see Section @)n [

5. Example: P3

A standard bi-equivariant compactification of the Heisenberg gfeup the 3-
dimensional projective spacé = P2. The boundarnp = X\ G consists of a single
irreducible divisor (the hyperplane section). The class of this divisor generates the
Picard groupPic(X). The anticanonical class|[Kx| = 4[D] and the cone of
effective divisorsA.(X) = Rx¢[D]. The height pairing is given by

(5.1) H(s,g) = [ [ Hp(s,9p) - Hoo[$. goo):
p

whereg € G(A),

(5.2) Hy(s, gp) = max{1, ||y, [ylp, |2]p}"

and

(5.3) Hoo(s,900) = (1 + 2%+ y2 + 22)5/2.
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The heights,, are invariant with respect to the action@fZ,,) (on both sides). We
are interested in the analytic properties of the height zeta function

(5.4) Z(s,9)= Y, H(s,v9)™

v=(2,2,y)€Q?

As above, we consider the Fourier expansioZ¢f, g). Each term in this expan-
sion will be regularized by an explicit Euler product of height integrals. We need to
compute these height integrals at good primes and estimate them at bad primes and
at the real place.

LEMMA 5.1 — For R(s) > 4, one has
- G
H(s,g)'dg =
Fry H19 )

LEMMA 5.2 — For R(s) > 3andallp ¢ S,, one has

| o) o, = )
G(Qp)

Proof. — Both Lemmas may be proved by direct computation using the definition

of H, in (5.2). O]
LEMMA 5.3 — For R(s) > 3, all v =1, and allp ¢ S,,, one has
Hp(svgp)ilfp(gp)dgp = Hy(s, Up)ilwa(up)dup = 451(5)7
G(Qp) U(Qp)

(wheref,, is the local normalized spherical function).

Proof. — Direct computation. Note that the second integral is similar to the inte-
gral in Lemméb.2for the varietyP? C P? (the induced equivariant compactification
of U). O]

LEMMA 5.4 — Forall e > 0, n > 0 and all compacts in the domainR(s) >
3 + ¢, there exists a constantn, K) such that, for alls € K and alln = 7, (with
a € Z?), the finite product

IH/ Hp(&gp)‘lﬁ(gp)dgp/ Hoo (8, goo) ' T1(go0) 9|
G(Q) G(R)

PESy
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is bounded by
c(n, K)(1 + |as| + |az]) ™"

Proof. — We replace) by 1, H,(s, g,) by H,(R(s), g) and obtain

Hy(s, g,) " dgy| < .
o )l <

Fora € Z, we have
[[a+p) < +a)”
(for some positive integen’)[.) Using the definition ofd.:
| 3(1 + 2% 4y + 22) et @rtaw) qodydz| < c(n, K)(1 =+ |ay| + |ag]) ™"
for aHTI n (this is an easy consequence of integration by parts). O

LEMMA 5.5 — Forall e > 0, n > 0 and all compactK in the domainR(s) >
3 + ¢, there exists a constantn, K) such that, for alls € K, all ¢y = v, (with
a€Z,a#0),S=>95,U{co}andallws € Bs(gy), the expression

| / H(s,gs) 'ws(gs)dys|
G(Ag)

is bounded by
c(K,n)|an|™",

(where the real component @Jl(ws) is equal toc, ¢, cf. LemmaB.13).

Proof. — Let \ be theA-eigenvalue ofu. Here

A=02+0;+02
is an elliptic differential operator o (Z)\G(R) andd, (resp.d,, d) is the invari-
ant vector field corresponding tdz, 0, 0) (resp.g(0, 0,y) andg(0, z,0)). On each
subspace

My C LA(G(Q)\G(A)" = L*(G(Z2)\G(R)),
we have
O,w = (2mia)w

(here we used the,, realization). It follows that

Q*w = —4r1%a* - w,

and
Aw = (\Y — 47%a®)w,
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where\Y = —27(2n + 1)]a| is the A, -eigenvalue ofy¥, the real component of
1
Jy (ws)-

After these preparations we can assume thatreal. Using repeated integration
by parts, we find the following estimate for the above integral:

AT fJwlfeee - H /G(Q )Hp(sagp)ildgp : /R3 A1+ 22 + o + 2°) " dxdydsz.
7 »

Here we have again used the estimate$)(@nd @.2). Continuing, we estimate the
finite product ofp-adic integrals as in the proof of Lemrbal. Finally, we find from
Lemma4.1that the integral

/ A1 4 22 + o + %) dedydz
R3
is convergent fos € K and further is bounded on the same region. O

PROPOSITIONS.6. — The height zeta functiof(s) defined in Equations.4)

— is holomorphic fofR(s) > 4;
— admits a meromorphic continuation ¥#(s) > 3 + ¢ (for anye > 0) and
— has a simple pole in this domain at= 4 with residue

7T2

O}

Proof. — Using the estimates of Lemnia5, and ¢.1) and @.2), we see, as in the
proof of Theorem4.15 that the series fog,(s, ¢g) in Proposition3.3 is normally
convergent foi in a compact se of #(s) > 3 and forg € G(A). It now follows
(as in the proof of Theorem. 15 that, forR(s) > 4,

2(87 g) = ZO(Sa g) + Zl(sa g) + 22(87 g)v
as an equality of continuous functions GttA). In particular,
(5.5) Z(s,id) = Zo(s,id) + Z1(s,1d) + Z5(s,id),

again forR(s) > 4. We obtain then, as in the proof of Theorém5 the meromor-
phic continuation of£(s) to R(s) > 3 + € (see esp. Lemma 1for Z;). Finally,

7.‘.2

(s —4)Z(8)|s=1 = (s — 4)Z¢(s,1d)|s=4 = @

C(4)™ /3(1 + 22 + oy + ) dadydz =
R
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