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1. Introduction

Toric varieties are an ideal testing ground for conjectures: their theory is suf-
ficiently rich to reflect general phenomena and sufficiently rigid to allow explicit
combinatorial computations. In these notes | explain a conjecture in arithmetic ge-
ometry and describe its proof for toric varieties.

Acknowledgments. | would like to thank the organizers of the Summer School
for the invitation. The results concerning toric varieties were obtained in collabo-
ration with V. Batyrev. It has been a great pleasure and privilege to work with A.
Chambert-Loir, B. Hassett and M. Strauch - | am very much indebted to them. My
research was partially supported by the NSA.
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1.1. Counting problems

EXAMPLE 1.1.1 — Let X C P™ be a smooth hypersurface given as the zero set
of a homogeneous forrfi of degreed (with coefficients inZ). Let

N(X, B) = #{x| f(x) = 0, max(|z;|) < B}

(wherex = (zg,...,z,) € Z"™/(£1) with ged(x;) = 1) be the number of)-
rational points onX of “height” < B. Heuristically, the probability that rep-
resents 0 is abouB~¢ and the number of “events” abod"*'. Thus we expect
that

lim N(X,B) ~ B"=4,

B—oo

This can be proved by the circle method, at least when 2¢. The above heuristic
leads to a natural trichotomy, corresponding to the possibilities whenl — d
positive, zero or negative. In the first case we expect many rational points on
the third case very few and in the intermediate case we don’t form an opinion.

EXAMPLE 1.1.2 — Let X C P" x P" be a hypersurface given as the zero set of
a bihomogeneous diagonal form of bideg(ég ds):

n

f(X7y) = Zakle : ylcgba

k=0
with a;, € Z. Each pair of positive integet’s = (/;, l;) defines a counting function
on rational pointsX (Q) by
N(X,L,B) = #{(x,y)| f(x,y) = 0, max(|z;|)" - max(|y;|)"* < B}

(wherex,y € Z®+Y /(£1) with ged(x;) = ged(y;) = 1). Heuristics as above
predict that the asymptotic should depend on the vector

—K:(n+1—d1,n+1—d2)

and on the location of with respect to- K.

An interesting open problem is, for example, the case whenl,) = (1,2),n =
3andL = (3,2). Notice that this variety is a compactification of the affine space.
For appropriate, one expects- B log(B) rational points of height bounded 3.

Trying to systematize such examples one is naturally lead to the following prob-
lems:
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PROBLEM 1.1.3 — Let X C P" be an algebraic variety over a number field.
Relate the asymptotics of rational points of bounded height to geometric invariants
of X.

PrROBLEM 1.1.4 — Develop analytic techniques proving such asymptotics.

1.2. Zariski density

Obviously, not every variety is a hypersurface in a projective space or product
of projective spaces. To get some systematic understanding of the distribution of
rational points we need to use ideas from classification theories of algebraic vari-
eties. On a very basic level (smooth projective) algebraic varieties are distinguished
according to the ampleness of the canonical class: Fano varieties (big anticanonical
class), varieties of general type (big canonical class) and varieties of intermediate
type (neither). The conjectures of Bombieri-Lang-Vojta predict that on varieties of
general type the set of rational points is not Zariski dense (<@g Faltings proved
this for subvarieties of abelian varieties §]). It is natural to ask for a converse.

As the examples of Colliot-Télene, Swinnerton-Dyer and Skorobogatov suggest
(see [L1]), the most optimistic possibility would be: X does not have finitétale
covers which dominate a variety of general type then there exists a finite extension
E/F such thatX (E) is Zariski dense inX. In particular, this should hold for Fano
varieties. | have no idea how to prove this for a general smooth quintic hypersurface
in P°. Quartic hypersurfaces iPt* are treated in{”] (see also?3)).

Clearly, we need Zariski density of rational points &nbefore attempting to
establish a connection between the global geomet?y ahd X (F'). Therefore, we
will focus on varieties birational to the projective space or possessing a large group
of automorphisms so that rational points are a priori dense, at least after a finite
extension. In addition to allowing finite field extensions we will need to restrict to
some appropriate Zariski open subsets.

EXAMPLE 1.2.1 — Let X be the cubic surface’ + 23 + 23+ 23 = 0 overQ. We
expect~ B(log(B))?* rational points of heighmax(|z;|) < B. However, on the
lines likexy = —z; andx, = —x5 we already have- B? rational points. Numeri-
cal experiments in9 confirm the expected growth rate on the complement to the
lines; and Heath-Brown proved the upper bod@d3*/3+<) [24]. Thus the asymp-
totic of points on the wholeX will be dominated by the contribution from lines,
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and it is futile to try to read off geometric invariants &f from what is happening
on the lines.

Such Zariski closed subvarieties will be caleatumulating Notice that this notion
may depend on the projective embedding.

1.3. Results

Let X be a smooth projective algebraic variety over a number fielahd L a
very ample line bundle oX'. It defines an embedding — P". Fix a “height” on
the ambient projective space. For example, we may take

H(x) i= [ [ max(lz,l,)

wherex = (zo,...,z,) € P*(F) and the product is over all (normalized) valu-
ations of F. To highlight the choice of the height we will writé for the pair
(L-embedding, height). We get an induced (exponentieijyht function

Hp : X(F)— Ry

on the set of’-rational pointsX (F') (see4.1for more details). The set df-rational
points of height bounded b > 0 is finite and we can define tle®unting function

NU,L,B) :=#{x € U(F)| He(z) < B},
whereU C X is a Zariski open subset.

THEOREM1.3.1 — Let X/F be one of the following varieties:
toric variety[5];
equivariant compactification & [9];
flag variety[15];
equivariant compactification o& /U - horospherical variety (wheré& is a
semi-simple group an C G a maximal unipotent subgroup}1];
e smooth complete intersection of small degree (for examilg,
LetL be an appropriate height oX such that the class € Pic(.X) is contained
in the interior of the cone of effective divisors.
Then there exists a dense Zariski open subset X and constants

a(L),b(L),0(U,L) > 0

such that

BD(log(B))* D71 + o(1),
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asB — oo.

REMARK 1.3.2 — The constants(L) andb(L) depend only on the class éfin
Pic(X). The constan®(U, L) depends, of course, not only on the geometric data
(U, L) but also on the choice of the height. It is interpreted, in a general context, in

[5]

REMARK 1.3.3 — Notice that with the exception of complete intersections the
varieties from Theorem.3.1have a rather simple “cellular” structure. In particu-

lar, we can parametrize all rational points in some dense Zariski open subset. The
theorem is to be understood as a statement afbeights even the torusz?, has

very nontrivial embeddings into projective spaces and in each of these embeddings
we have a different counting problem.

1.4. Techniques

Let G be an algebraic torus or the gro@J. The study of height asymptotics in
these cases uses harmonic analysis on the adelic ge{zt$:

1. Define a height pairing
H=]]H, : Pic®(X)c x G(A) — C,

(where Pic®(X) is the group of isomorphism classes @flinearized line
bundles onX) such that its restriction td. € Pic(X) x G(F) is the usual
height L as before and such th&f is invariant under a standard compact
subgroupK C G(A).

2. Define the height zeta function

Z(G,s) = Z H(s;x)™ .
z€G(F)

The projectivity ofX implies that”Z (G, s) converges fo(s) in some (shifted)
open cone iPic®(X)g.
3. Apply the Poisson formula to obtain a representation

Z(G,s) = / H{(s; x)dx,
(G(4)/G(F)K)*

where the integral is over the group of unitary charactes§ G(A) which are
trivial on G(F)K anddy is an appropriate Haar measure.
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4. Compute the Fourier transfornis, at almost all nonarchimedean places and
find estimates at the remaining places.

5. Prove a meromorphic continuation 8f G, s) and identify the poles.

6. Apply a Tauberian theorem.

2. Algebraic tori

For simplicity, we will always assume thdt is a split algebraic torus over a
number fieldF, that is, a connected reductive group isomorphiGtQF, where
G,..r := Spec(Flz,z™ ).

2.1. Adelization. —

NOTATIONS 2.1.1 — (Fields) LetF" be a number field andisc(F') the discrimi-
nant of ' (overQ). The set of places af will be denoted byal(F'). We shall write
v|oo if v is archimedean and { o if v is nonarchimedean. For any placef I’
we denote by, the completion of” atv and by, the ring ofv-adic integers (for
v {1 00). Letgq, be the cardinality of the residue fiel) of F;, for nonarchimedean
valuations and put, = e for archimedean valuations. The local absolute valyg
on F, is the multiplier of the Haar measure, i.€(az,) = |a|,dx, for some Haar
measurelz, on F,. We denote byA = Ar = ] F, the adele ring of".

NOTATIONS 2.1.2 — (Groups) LetG be a connected reductive algebraic group
defined over a number fielfl. Denote byG (A) the adelic points o6&z and by

G'(A):={9cG@A)| ] Imlg)l=1VmeGr}

vEVal(F)

the kernel ofF-rational characteré » of G.

NOTATIONS 2.1.3 — (Tori) Denote byM = T = Z? the group ofF-rational
characters ofl' and by N = Hom(M, Z) the dual group (as customary in toric
geometry). PutM, := M (resp. N, := N) for nonarchimedean valuations and
M, := M ® R for archimedean valuations.

Write K, C T(F,) for the maximal compact subgroup ©f 7,,) (after fixing an
integral model fofT we havek, = T(0,) for almost allv).

Choose a Haar measuig = [ [, du, on T(A) normalized byvol(K,) = 1 (for
nonarchimedean the induced measure &\ F,)/ K, is the discrete measure).
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The adelic picture of a split tordk is as follows:

o T(A)/T'(A) = (Gn(A)/G,,(A))! =R,

e TY(A)/T(F) = (Gl (A)/G,,(F))?%is compact;

* K= HvEVal(F) Ky,

e T!'(A)/T(F)K is a product of a finite group and a connected compact abelian
group;

e KN T(F) is a finite group of torsion elements.

e For allv the map

log, : T(F,)/K, — N,
t, —t, € N,
IS an isomorphism.

For more details the reader could consult Tate’s thesig)([

2.2. Hecke characters. —Let
Ar = (T(A)/T(F)K)*

be the group of (unitary) Hecke characters which are invariant under the closed
subgroupI'(F)K. The local components of a charactee Ar are given by

i(Mmy,ty)

Xo(ty) = Xo(ts) = q,

for somem, = m,(x) € M, (a charactey, trivial on K, is called unramified). We
have a homomorphism
-AT - MR,oo

X = mOO(X) = (mv<X))UIOO>
whereMp o := @yjc M,. We also have an embedding

MR — ‘ATa
mo (te J esimom),
vEVal(F)
We can choose a splitting
Ar = Mr ® Ur

where
Uy := (TY(A)/T(F)K)*.
We have a decomposition
Mp oo = Mg & Mg,
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WhereMﬂgOo contains the image dtr (under the maplyr — Mg ) as a lattice of
maximal rank. The kernel it — Mﬂém is a finite group.

2.3. Tamagawa numbers. —Let G be a connected linear algebraic group of di-
mensiond over F' and() a G-invariantF'-rational algebraic differential-form. One
can use this form to defineaadic measure,, on G(F,) for all v € Val(F') (see

[35], [47], Chapter 2, £7]). For almost allv we have

— _ #G(F,)
@)= /G(ov)% B a4

(to make sense d&(0O,) one fixes a model o& overSpec(Og) for some finite set

of valuationsS’). One introduces a set of convergence factors to obtain a measure
on the adelic spacé(A) as follows: Choose a finite sgtof valuations, including

the archimedean valuations, such that:fof,

Ao = Ly(1,G) # 0,

whereL, is the local factor of the Artin L-function associated to the Galois-module
G of characters ofz (see Sectior6.2). Forv € S put A, = 1. The measure on
G(A) associated with the séi, } is

wi=L5(1,G)7 - [dise(F)[™* ] A,

vEVal(F)

whereL¥(1, G) is the coefficient at the leading polesat= 1 of the (partial) Artin
L-function attached td= (see Sectior6.2). On the spacéz(A)/G!(A) = R’
(wherer = rk Gr) we have the standard Lebesgue measureormalized in such

a way that the covolume of the latti€er C Gr @R is equal to 1. There exists a
unique measure' on G!(A) such thatv = dx - w!. Use this measure to define

7(G) = / wh.
G!(A)/G(F)

REMARK 2.3.1 — The adelic integral defining(G) converges (see![],[33)]).
The definition does not depend on the choices made (splitting field, finitg,set
F-rational differentiaki-form).
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3. Toric varieties

3.1. Geometry

When we sayX is a (split), smooth, proped-dimensional toric variety oveF
we mean the following collection of data:

e T=GY ;, M =Hom(T,G,) = Z and the dualv;

e Y - a complete regulaf-dimensional fan: a collection of strictly convex poly-
hedral cones generated by vecteys...,e,, € N such that the set of generators of
every coner can be extended to a basis/ef

We denote by:(j) the set ofj-dimensional cones and h¥, the dimension of
the coner (3(1) = {ey, ..., e, }). Denote by

g={meM|{m,n) >0 VYneco}
the dual cone te. Then
X = Xy = UesSpec(F[M N a])

is the associated smooth complete toric variety dveA toric structure on a vari-
ety X is unique, up to automorphisms &f (this follows from the fact that maximal
tori in linear algebraic groups are conjugated; s&dg,[Section 2.1 for more de-
tails). The varietyX has a stratification as a disjoint union of tat, = G4 9 in
particular, Ty = T. Denote byPic*(X) the group of isomorphism classesBf
linearized line bundles. It is identified with the groBp. of (continuousyz-valued
functions onN which are additive on each € . Fory € PL we denote by,
the correspondin@-linearized line bundle oX. Since we will work withPL¢ it
will be convenient to introduce coordinates identifying the vestef (s, ..., s,)
with the functionys € PL¢ determined bypg(e;) = s, forj =1,...,n.

PROPOSITION3.1.1 —

(3.1) 0 — M — PL % Pic(X) — 0

Ky =¢((1,...,1)).

Let o € PL be a piecewise linear function oN and L, the associated-
linearized line bundle. The space of global sectiéff§.X, L) is identified with
the set of lattice points in a polytope, C M:

me 0, <= ¢(e;) > (m,e;) Vjell,..n

(these characters are the weights of the representatiorilobn H°( X, L,,)).
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3.2. Digression: Characters. —Dualizing the sequence3 (1) we get a map of
tori T — T (whereT is dual toPL). Every charactex of T(A) gives rise to a
charactery of T(A). We have

T=G"
and every character determines charactexs (j = 1, ..., n) of G,,,(A). This gives
aninjectivehomomorphism

(T(A)/T(F)" = [T (Gm(A)/Gm(F))"

X > (X5)jet -
4. Heights
4.1. Metrizations of line bundles
DEFINITION 4.1.1 — Let X be an algebraic variety ovef’ and L a line bundle

on X. Awv-adic metric onL is a family (|| - ||;)zcx(r,) Of v-adic Banach norms on
L, such that for every Zariski opeli C X and every sectiog € H°(U, L) the
map

U(F,) = R, 2+ g,

is continuous in the-adic topology orlU (F,,).

ExAMPLE 4.1.2 — Assume thatl is generated by global sections. Choose a

~~~~~

9j -
gl == maX(lj(l‘)lv) Y

0<j<n
otherwise||g||. := 0. This defines a-adic metric onL. Of course, this metric

.....

DEFINITION 4.1.3 — Assume thal is generated by global sections. An adelic
metric onL is a collection ofv-adic metrics (for every € Val(F')) such that forall
but finitely manyv € Val(F') thev-adic metric onL is defined by means of some

.....

We shall write(|| - ||,) for an adelic metric or. and call a pail = (L, (|| - ||.))
an adelically metrized line bundle. Metrizations extend naturally to tensor products
and duals of metrized line bundles. Take an arbitrary line buhdd®ad represent
tasL =1, ® L;l with very amplel; and L,. Assume that.,, L, are adelically
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metrized. An adelic metrization df is any metrization which for all but finitely
manywv is induced from the metrizations dn, L.

DEFINITION 4.1.4 — LetL = (L, || - ||,) be an adelically metrized line bundle
on X andg an F-rational local section ofL. LetU C X be the maximal Zariski
open subset oK whereg is defined and is£ 0. For all z = (z,), € U(A) we
define the local

Hego(2o) = llgll;,
and the globaheight function

Heg(x) = ] Hegolo).

vEVal(F)

By the product formula, the restriction of the global heightt6F') does not
depend on the choice gf

4.2. Heights on toric varieties. —We need explicit formulas for heights on toric
varieties.

DEFINITION 4.2.1 — For ¢ € PL the local height pairing is given by:
Hv((p7 tv) - ego(ﬂ,)log(qu).
Globally, forp € PL,

H(git):= ] Holpsto).
vEVal(F)

PROPOSITION4.2.2 — The pairing

e isinvariant underk, for all v;

e for ¢t € T(F) descends to the complexified Picard grdeip(.X )¢ (the value
of H(y;t) depends only o mod Mc);

e for ¢ € PL gives a classical height (with respect to some metrizatioh.on

Proof. — The first part is clear. The second claim follows from the product for-
mula. The third claim is verified on very ample,: recall that the global sections
H°(X, L,) are identified with monomials whose exponents are lattice points in the
polytopel],. For everyt, € K, and everym € M we havem(t,)| = 1. Finally,
p(ty) = max (|m(ty)ly)-
mell

)

For more details the reader could consgli][ O
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EXAMPLE 4.2.3 — LetX = P! = (2, : ;) andPic* (X) = Z?, spanned by the
classes 0f), oo andps(e1) = s1, ps(e2) = s2. Then

20 o1 it |2, >,
HU(SOS7£L'U) — { | | |$1|

|£2], %2 otherwise.
The following sections are devoted to the computation of the Fourier transforms
of H with respect to charactesse Ar. By definition,

/ H(g;t) = 11 / Hy (5 t0) X (t)dpto,

veVal(F)

wheredy is the normalized Haar measure apdare trivial onk, (unramified) for
all v (see Sectior2.1).

4.3. Height integrals - nonarchimedean valuations

Let X be a smoothi-dimensional equivariant compactification of a linear alge-
braic groupG over F' such that the boundary is a strict normal crossing divisor
consisting of (geometrically) irreducible divisors

77777

We putDy = G and define for every subsétc [1, ..., n]
DJ — ﬁ]EJD]
DY = D;\UyosDy.
Choose for each a Haar measurég, on G(F,) such that for almost all

/ dg, = 1.
G(0,)

As in Sectiord.1, one can define a pairing between
Dive :=CD; & ... #CD,,

andG(A). Inthe above basis, we have coordinates (s, ..., s,,) onDivc. Choose
an F-rational (bi-)invariant differential forma-form on G. Then it has poles along
each boundary component, and we denote: pthe corresponding multiplicities.
For all but finitely many nonarchimedean valuatiensne has (se€’)] and [L3])

4.1)

_ - #D
Hv(s;gv) lng:TU(G) ' Z H (5] n]—i-l)

JC,...,n] jeJ Qv

G(Fy) —1
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REMARK 4.3.1 — Notice that for almost al
_ #X (F)
(4.2) | Holo) g, = |
G(F) s (90) #G(IF,)
In particular, for somé(s) > 1 — § (and some > 0)
(4.3) 11 / ) H -y (90) g
veVal(F)

is an absolutely convergent Euler product (sgde$ection 7).
For toric varieties, we can compute the integrallf combinatorially.

EXAMPLE 4.3.2 — LetX = P!, H,(ys; x,) the local height as in Exampte2.3
anddy, the normalized Haar measure @p,(F,) asin2.1 ThenN, = Z and

1 1
(4.4) / H,(s;x,) 'dp, = g, ¥ = — + — —
m(Fy) ;E:Z l=q™ 1—-¢™
If X is asplit smooth (!) toric variety of dimensio#then
1
(4.5) / H,(s;2,) tdp, = Y (—1)%% —.
G, (Fy) ; 6!;[0 1—q”

REMARK 4.3.3 — As the formula{.5) and the Examplé.3.2suggest, the height
integral is an alternating sum of (sums of) geometric progressions, labeled by cones
o € X (which are, of course, in bijection with tori forming the boundary stratifica-
tion by disjoint locally closed subvarieties). The smoothness of the toric variety is
crucial - we need to know that the set of generators of each cone can be extended to
abasisof N,.

PROPOSITION4.3.4 — There exists am > 0 such that for alls € PL with
R(s;) > 1 — ¢ (for all 5)

H, (s t0) " X(to)dpe = Qu(siX) - [ [ Crolsi: Xi):
T(Fy) j=1

wherey; is as in SectiorB.2, (,(s;, x;) is the local factor of the Hecke L-function
of F" with charactery; and @, (s, x) is a holomorphic function of*Lc. Moreover,
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for s in this domain the Euler product
X) = H Qv(s; Xv)
vtoo

is absolutely and uniformly convergent and there exist positive constants,
such that for ally one has

C1 < [Q(s; x)| < Ca.
Proof. — This is Theorem 3.1.3. ir’]. O

4.4. Height integrals - archimedean valuations. —Similarly to the combina-
torics in Examplet.3.20ne obtains

(4'6) / H’U((p7 tv)_IXv(tv)de = / e_go(n)_“mﬂ,%n)dn —
T(F,)/ KK, R

Z /egpn) zmvtv

ceX(d

wherem, = m,(x) asin Sect|0r6.1 anddn is the Lebesgue measure 6 nor-
malized by/N. Using the regularity of the fal we have

4.7) H(—¢six0) = > ]I ]Hmme]>

O'EZ eJ co

EXAMPLE 4.4.1 — ForP! we get (keeping the notations of Exampl&.3

.8) o~ psiy) = — !

s1+im sy —im’

In the next section we will need to integreft¢, . H, over Mg ... Notice that

each term in Equation4(7) decreases dgn, ||~ and is not integrable. However,
some cancelations help.

LEMMA 4.4.2 — Foreverys > 0 and every compadt’ in the domairiR(s;) > ¢
(for all 5) there exists a constandt(K’) such that

|H( Psy Xv |<C Z H —|—|m ¢ |)1+1/d'

ceX(d) ej€o

This is Proposition 2.3.2 in?]. One uses integration by parts.
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REMARK 4.4.3 — In particular, Lemmat.4.2implies that for allm € Mg one
has

c€eX(d) €; EU

5. Height zeta functions

5.1. X-functions

Let (A, A) be a pair consisting of a lattice and a strictly convex (closed) cone in
Ag and(A, A) the pair consisting of the dual lattice and the dual cone. The lattice
A determines the normalization of the Lebesgue measuom A (covolume =1).

Fora € Ac define
Xa(a) := / e~ v g,
A

REMARK 5.1.1 — The integral converges absolutely and uniformly &) in
compacts contained in the interiaf of A.

EXAMPLE 5.1.2 — ConsidenZ",R%;). Then

1

DCA(al,...,an) = a---a s
n

where(a,) are the standard coordinatesRf.

REMARK 5.1.3 — The X-functions of cones appeared in the work obdter
[2€], Vinberg [43], and others (seel]], [1] pp. 57-78, [L7]).

5.2. Iterated residues. —Let (A, A) be a pair as above with C Ay generated
by finitely many vectors imM. SuchA are called (rational) polyhedral cones. It will
be convenient to fix a basis ia.

REMARK 5.2.1 — To computeX, (a) explicitly one could decompose the dual
coneA into simplicial subcones and then apply Example.2 Thus there is a finite
setA such that

(5.1) X, .
a; T, (5(a) 1f (a)’

wheren = dim Ag andX, = det((§) ((¢3) aren-tuples of linearly independent
linear forms onAy with coefficients inR).
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REMARK 5.2.2 — Using this decomposition one can show tbhat has simple
poles along the hyperplanes definiigThe terms in the sunb(1) may have poles
in the domairnRk(a) € A°, but these must cancel (by Rema&rk..J).

PROPOSITION5.2.3 — Let (A4, A) be a pair as above angg : A — A a sur-
jective homomorphism of lattices with kernel. Let A = ¢(A) C Ag be the
image ofA - it is obtained by projecting\ along the linear subspacély C Ag
(Mg N A = 0). Letdm be the Lebesgue measure bfx normalized by the lattice
M. Then for alla with (a) € A° one has

X (0(0) = g [ Xla-+ im)am.

whered = dim M.

Proof. — First one verifies thal(,(a) is integrable ovei Mg (and the integral
descends tolc, by the Cauchy-Riemann equations). The formula is a consequence
of Theorem6.3.1 ]

EXAMPLE 5.2.4 — The coneR>, C R is the image of the cong?, C R* under
the projection(a;, as) — a; + as (with kernel{(m, —m)} C R?). According to
Proposition5.2.3we have

1 1 1
P . —dm = :
27 Jr (81 +1im)(sq — im) 51+ S2
EXAMPLE 5.2.5 — Similarly, consider

:X:(S) = i/ k ! K/ dm
2 R Hj:l(sj + 'lm) Hj’:l(sj’ — Zm)

We can deform the contour of integration to the left or to the right. In the first case,
we get

K 1

) = Z [L;(s5 4 85) Thjoseye (s = 50)

J'=1

In the second expansion,
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Of course, both formulas define the same function. The two expansions correspond
to two different subdivisions of the image cone into simplicial subcones.

EXAMPLE 5.2.6 — The faninN = Z2 spanned by the vectors
€1 = (1,0)7 €y = (]_, 1), €3 = (0, ].), €4 = (—1,0), €5 = (—17 —1), €g — (O, —].)

defines a Del Pezzo surfa¢éof degree 6 - a blowup of 3 (non-collinear) points in
P2 Let A = Az(X) C R* be the cone of effective divisors of. In the proof of
our main theorem foX we encounter an integral similar to

1 6 1

X(sl,...,S(g) = W/N[Rgmdm

(whereMy = R?). Choosing a generic path in the spadg and shifting the con-
tour of integration we can reduce this integral to a sum of 1-dimensional integrals
of type5.2.5 Then we use the previous example and, finally, collect the terms. The
result is

S1+ S22+ S3+ 5S4+ S5+ Sg
S1 + 84)(82 + S5>(83 + 86)(81 + S3 + 35)(82 + Sq -+ 86).

X(Sl, ceey 86) = (

DEFINITION 5.2.7 — Let(A,A) and (A, A) be as above. We say that a function
f onAc hasA-poles if:

e fis holomorphic forR(a) € A°;

e there existam > 0 and afinite se#l of n-tuples of linearly independent linear
forms(¢§)aca, functionsf, and a constant # 0 such that

OEDSEAAOR | et

acA g=1 B

where

LR |
Zxo‘ ﬁl_‘[:lgg(a) - xA(a)

acA

(as in5.2.1) and for everya € A the functionf, is holomorphic in the domain
|R(a)|| < e with f,(0) = ¢ (compare with Remark.2.7).

The main technical result is
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THEOREM5.2.8 — Let(A4, A) be as above and a function onA¢ with A-poles.
Assume that there exists an> 0 such that for every compadt in the domain
|R(a)|| < e there exist positive constartsand C'(K') such that

e forallbe Ag, a € Aanda € K one has

[fala+ib)] < CE)(L+ [1bl)7;
e for a € K and every subspace/, C My of dimension/

) —
If(aﬂm)ggg(iﬁ\ < C(K)(1+ [l )@+

for all m' € M}, and some > 0.

Then .
f((a)) = 2 o

is a function ond¢ with ) (A)-poles.

fla+im)dm

Proof. — Decompose the projection with respectlta into a sequence of (appro-
priate) 1-dimensional projections and apply the residue theorem. A refined state-
ment with a detailed proof is ir], Section 3. O

COROLLARY 5.2.9 — For fasin Theorend.2.8anda € A° C Ar we have

lim M = lim f(sa)
s—0t DCA(@b(sa)) s—0t fJCA(sa) ’

5.3. Meromorphic continuation. —

PROPOSITIONS.3.1 — For R(s;) > 1 (for all j) one has
Z(s)= Y Hist)'= [ H(=s;)dx=(x) [ f(s+im)dm,
teT(F) Ar My,
where

f(s) =Y H(=sx)
x€Ur
and (x) is an appropriate constant (comparison between the measures).

Proof. — Application of the general Poisson formu#a3.1 The integrability of
both sides of the equation follows from estimates similad .2 (see Theorem
3.2.5in [2]). Then we use the decomposition of characters as in Segtion [
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Now we are in the situation of Theorem2.8 From the computations in Sec-
tions4.3and4.4we know that

X):HH SXU HQUSX’U HLSJ7X]

v]oo vfoo

whereQ(s; x) = [[, Q.(s;x) is a holomorphic bounded function in the domain
R(s;) > 1— 6 (for somes > 0). The poles ofﬁ(—s; x) come from the poles of the
HeckeL-functionsL(s;, x) (that is from trivial characterg; and ats; = 1). Using

uniform estimates from Theorefl.1and bounds o, for v € S we see that the
function

I -1)
j=1
is holomorphic forR(s;) > 1 — § (for somes > 0) and satisfies the growth condi-
tions of Theoren®b.2.8 Once we know that

n

& =l [[(s; ~1)- /() #0

we can apply that theorem.
THEOREMb5.3.2 — The function? (s+ K x ) hasA.« (X )-poles. The 1-parameter
functionZ(s(—K)) has a representation
O(T,—Kx) h(s)
(S _ 1)nfd (S _ 1)n7d71’

whereh(s) is a holomorphic function foft(s) > 1 — ¢ (for someé > 0) and
O(T,—Kx) > 0 (interpreted in[5]).

Z(s(~Fx)) =

Proof. — (Sketch) We need to identif. First of all,
@—hms—l ZH —s1;x),
where the summation is over alle U such that the corresponding componepts

are trivial for allj = 1, ..., n. There is only one such character - the trivial character.
We obtain

@—hms—l / H(—s1;t)dp.

The nonvanishing follows from4(3.7). O
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5.4. Digression on cones. —tet (A, A, —K) be a triple consisting of a (torsion
free) latticeA = Z", a (closed) strictly convex polyhedral conedR generated by
finitely many vectors il and a vector- K C A° (the interior ofA). ForL € A we
define

a(A, L) =inf{a|al + K € A}

andb(A, L) as the codimension of the minimal fatéL) of A containinga(A, L)L+
K. Obviously, forL = —K we geta(A, —K) = 1 andb(A, K) = n.

5.5. GeneralL. — Let L be an adelically metrized line bundle &f such that
is contained iM\2;(X). The 1-parameter height zeta function

Z(sL)= > H(sL;jt)™
tET(F)
is absolutely convergent foR(s) > a(Aez(X), L) and, by Theorenb.2.8§ has
an isolated pole at = a(A.z(X), L) of orderat mostb(A.s(X), L). Denote by
Y (L) C PL the set of generators projecting onto the fA¢é ) (undery). Let

Mg :={m € Mg|(m,e;) =0 Ve; ¢ X(L)}

and M’ := My N M. ThenM” = M/M’ is torsion free. Again, we are in the
situation of Theoren’.2.§ this time withPLg /M, projecting with kernel\/”. We
need to compute

lim [T (s, —1)- fGs),

T e
where

£6)= () [ {3 Aa(s + im0t
M
the summation is over all characterdig such thaty; = 1if e; ¢ X(L) and(x) is
an appropriate constant. We apply the Poisson forfitdaland convertf(s) into
a sum of adelic integrals off (s, t) (up to rational factors) over the set of certain
fibers of a natural fibration induced by the exact sequence of tori

1 -T -T—-T — 1,

whereT’ := Spec(F[M’]). The regularized adelic integrals over the fibers are
Tamagawa type numbers similar to those encountered in Theafegh However,

even if X is smooth - the compactifications of these fibers need not be! This explains
the technical setup iro].
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6. Appendix: Facts from algebra and analysis

6.1. Hecke L-functions
Lety : G, (A)/G,.(F) — S* be an unramified (unitary) character agpdits
components o, (F,). For allv € Val(F') there exists am, € R such that
Xv(mv) — qf}mv log(\xvh,).

Put

Xow = ()0 € R0 and. [xec]) = max(m,]).

THEOREMG6.1.1 — For everye > 0 there exist @ > 0 and a constant(c) > 0
such that for alls with R(s) > 1 — § and all unramified Hecke charactegswhich
are nontrivial onG! (A) one has

(6.1) [L(s,x)] < e(e)(1+[S(s)] + [[xeoll)"-
For the trivial charactery = 1 one has

1+s -
(62) (s, D] < cle) |7—| L+ I3(s)])
6.2. Artin L-functions. — Let E//F be a Galois extension of number fields with

Galois groupl’, M a torsion free finitely generated-module andM?! its sub-
module ofl-invariants. We have an integral representatioh’ @n Aut(M). Let
S C Val(F) be a finite set including alt which ramify in £ and all archimedean
valuations. Fow ¢ S define

1
Ly(s, M) = )
(5 M) = G d = =)
whered, is the image imMAut(M/) of a local Frobenius element (this is well defined
since the characteristic polynomial of the matbix only depends on its conjugacy
class). The partial Artin L-function is

Ls(s, M) := [ [ Lo(s, M).
vgS

The Euler product converges fé(s) > 1. The functionLg(s, M) has a mero-
morphic continuation with an isolated polesat= 1 of orderr = rk M'. Denote
by

Ly(1,M) =lim(s — 1)"Lg(s, M)

s—1

the leading coefficient at this pole.
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6.3. Poisson formula

THEOREM6.3.1 — LetG be a locally compact abelian group with Haar mea-
suredg. For f € LY(G) andy : G — S! a unitary character ofG define the
Fourier transform

Fo0) = /G F(9)x(9)dg.

Let H C G be a closed subgroup with Haar measudreand

H*={x:G— S'|x(h)=1Vh e H}.
Then there exists a unique Haar measudgeon H+ such that for allf € L'(G)
with f € L'(H*) one has

[ raan= [ fooax

6.4. Convexity. — LetU C R? be any subset. A tube domdiiiU) C C¢is
T(U) :={z € C*|RN(2) CU}.

THEOREMG6.4.1 — LetU C R? be a connected open subset ahd> 2. Any
holomophic function i (U) extends to a holomophic functiondiU) wherelU is
the convex hull of/.

Proof. — See Proposition 6, p. 122 iR ]]. O

6.5. Tauberian theorem

THEOREMG6.5.1 — Let (h,)en and (c,)nen be two sequences of positive real
numbers. Assume that the first sequence is strictly increasing and consider

]
C

f&)=) 7%
n=0 hn

Assume further that

1. the series defining(s) converges foiR(s) > a > 0;

2. it admits meromorphic continuation tB(s) > a — § > 0 (for somed > 0)
with a unique pole at = «a of orderb € N;

3. there exist a real number > 0 and a constank such that

f(s)(s —a)’

& < E(14S(s))"

for R(s) > a — 0.
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Then there exist a polynomidt of degreeb — 1 with leading coefficient 1 and a
constanty’ > 0 such that

NB)= > ¢ = ﬁB“F(Iog(B)) +0(B*7),

hn<B
for B — oo, where
O = lim(s — a)’f(s) > 0.

S—a

This is a standard Tauberian theorem, seg ¢r the Appendix to §].
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