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Abstract. — We prove Manin’s conjecture concerning the distribution of rational points of

bounded height, and its refinement by Peyre, for wonderful compactifications of semi-simple
algebraic groups over number fields. The proof proceeds via the study of the associated height

zeta function and its spectral expansion.
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Introduction

Let F be a number field and G a connected linear algebraic group over F . We are
interested in distribution properties of rational points on smooth projective equivari-
ant compactifications X of G with respect to heights. More precisely, we assume that
X contains G as a Zariski open subset and that the left- and right action of G on itself
extends to X. Equivalently, X is an equivariant compactification of G×G/G. A split
over F semi-simple group G of adjoint type has a canonical (wonderful) compactifi-
cation, constructed over an algebraically closed field in [15] and over arbitrary fields
(and over Z) in [39] and [16]. In this paper we consider wonderful compactifications
of forms of such groups. One of our main results is a proof of Manin’s conjecture for
this class of varieties:

Theorem 1. — Let X be the wonderful compactification of a semi-simple group G
over F of adjoint type and L = (L, ‖ · ‖v) an adelically metrized line bundle such that
its class [L] in the Picard group Pic(X) of X is contained in the interior of the cone
of effective divisors Λeff(X) ⊂ Pic(X)R. Then

(0.1) Z(L, s) :=
∑

x∈G(F )

HL(x)−s =
c(L)

(s− a(L))b(L)
+

h(s)
(s− a(L))b(L)−1

and, consequently,

N (L, B) := #{x ∈ G(F ) |HL(x) ≤ B} ∼ c(L)
a(L)(b(L)− 1)!

Ba(L) log(B)b(L)−1

as B →∞. Here
– a(L) = inf{a | a[L] + [KX ] ∈ Λeff(X)} (where KX is the canonical line bundle

of X);
– b(L) is the (maximal) codimension of the face of Λeff(X) containing a(L)[L] +

[KX ];
– c(L) ∈ R>0 and
– h(s) is a holomorphic function (for <(s) > a(L)− ε, some ε > 0).

Moreover, c(−KX) is the constant defined in [29].

The proof is based on the study of analytic properties of the height zeta function
(0.1). The zeta function is first realized as a special value of an automorphic form on
the group G(A). Then we write down the automorphic Fourier expansion in terms
of a basis of automorphic forms. In general, we also have a contribution from the
continuous spectrum. The Fourier expansion gives an identity of continuous functions
which we use to prove a meromorphic extension of the height zeta function.

This paper is part of a program, initiated in [18] and developed in [4], [29], [7], to
relate asymptotics of points of bounded height to geometric and arithmetic invariants
of X. For further results and motivating examples we refer to the book [30] and the
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papers [6], [37], [14] and [31]. The recent preprint [20] gives an independent proof
of Theorem 1, based on adelic mixing.

The paper is organized as follows. In Part One we collect various results on alge-
braic groups and automorphic forms. Section 2 contains a theorem about transfer of
one-dimensional automorphic representations among inner forms of a group. Section
3.1 is concerned with Eisenstein series and automorphic Fourier expansions. The key
results are Lemma 3.1 and Proposition 3.5. In Section 4.1 we recall a theorem of Oh
(Theorem 4.2) which we use for estimates in the spectral expansion. In Part Two
we apply this theory to Manin’s conjecture. In Section 5 we review the construction
of wonderful compactifications and their geometric properties. In Section 6 we study
height functions and their integrals in the local situation. The problem of regularizing
global height integrals is considered in Section 7. In Section 8 we establish analytic
properties of height zeta functions in several complex variables. Tauberian theorems
imply asymptotics for the number of rational points of bounded height.

Acknowledgments. The authors wish to thank Erez Lapid, Hee Oh, and Peter
Sarnak for various useful discussions.

Part I. ALGEBRAIC GROUPS AND AUTOMORPHIC FORMS

1. Algebraic groups

1.1. Basic notation. — For a number field F , let Val(F ) be the set of all places
and S∞ = S∞(F ) the set of archimedean places. For v ∈ Val(F ), let Fv be the
completion of F with respect to v, OF (resp. Ov) the ring of integers in F (resp. Fv)
and q = qv the order of the residue field k = kv of Ov. For any finite set of places S
(containing S∞) we denote by OS the ring of S-integers of F . We denote by A the
ring of adeles, by AS =

∏′
v/∈S Fv and by Af = AS∞ . Let ΓF and Γv the Galois groups

of F̄ /F and F̄v/Fv, respectively. For L/F a Galois extension, with w ∈ Val(L) and
v ∈ Val(F ) satisfying w|v, set Γw/v = Gal(Lw/Fv).

For X = XF an algebraic variety over F and L/F an extension write XL = X×F L
for the base-change to L and X(F ) for the set of F -rational points of X. For v ∈
Val(F ), we abbreviate Xv = XFv

. We typically identify Xv(Fv) and X(Fv).
We denote by Pic(X) the Picard group ofX and by Λeff(X) ⊂ Pic(X)R the (closed)

cone of effective divisors on X. We often identify line bundles, divisors and their
classes in Pic(X). If X has an action by an algebraic group H we write PicH(X) for
the group of isomorphism classes of H-linearized line bundles on X.

1.2. Setup. — Throughout this paper, G is a fixed connected semi-simple group
of adjoint type defined over a number field F and G′ a quasi-split group over F of
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which G is an inner form. The groups G and G′ have a unique split F -form Gsp. We
may assume that Gsp is obtained by base-change from a split group, again denoted
Gsp, over Q. We fix a Galois extension E/F such that G(E) = G′(E) = Gsp(E). Its
Galois group is denoted by Γ = Gal(E/F ). We denote the simply-connected cover
of G by Gsc. Let T be a maximal torus of G viewed as an algebraic group over F .
For each v ∈ Val(F ), we denote by Sv the maximal Fv-split subtorus of T considered
as an algebraic group over Fv. The corresponding objects for G′ and Gsp are written
T′, S′v, and Tsp, respectively; for Gsp, we make the choice in such a way that Tsp is
split. We choose maximal tori T,T′,Tsp in such a way that they have the same set
of rational points over E. In particular, T′ is split over E. We let S′ be the maximal
split torus in G′ contained in T′. We choose a finite set SE ⊂ Val(E) containing all
the archimedean places so that if w /∈ SE is non-archimedean then

– the extension Ew/Fv is unramified for all v ∈ Val(F ) with w|v;
– if v ∈ Val(F ) is not divisible by any w ∈ SE , then G is quasi-split over Fv and

G(Fv) = G′(Fv).
We will denote by SF the collection of all places of F which are divisible by some
w ∈ SE . Later, we will need to enlarge SE , and SF , to satisfy extra assumptions; c.f.
1.4. We have a standard and a twisted action of Γ = Gal(E/F ) on G′(E), denoted by

g 7→ σ(g), resp. g 7→ σ̃(g).

Here
σ̃ = c(σ) · σ,

where c ∈ Z1(Γ, Inn(G′)(E)) is a cocycle with values in the group of inner automor-
phisms of G′.

Pick a Borel subgroup Bsp in Gsp which contains T sp. As G′ is quasi-split it
contains a Borel subgroup B′, containing T′, which is defined over F . If v /∈ SF , then
by transfer of structure we obtain a Borel subgroup B(Fv) in G(Fv). If v ∈ SF , we pick
a minimal parabolic Fv-subgroup B(Fv) of G(Fv) containing S(Fv). For each place v,
denote by Φ̃(G(Fv),S(Fv)) the set of roots of S(Fv) in G(Fv) and by Φ(G(Fv),S(Fv))
the set of non-multipliable roots in Φ̃ with the ordering given by B(Fv). Let X∗(S(Fv))
denote the set of characters of S(Fv) defined over Fv. Denote by X+ (resp. Φ+) the set
of positive characters (resp. roots) in X∗(S(Fv)) (resp. Φ(G(Fv),S(Fv))) with respect
to that ordering. We also let ∆ = {α1, . . . , αr} be the set of simple roots of for the
pair (Gsp,Tsp) with respect to the ordering introduced by Bsp, and let ρ be half the
sum of the positive roots for the same pair. For any subset I ⊂ [1, . . . , r] we denote by
Psp

I the corresponding parabolic subgroup of Gsp and by Lsp
I its Levi subgroup. Let

W be the Weyl group of the pair (Gsp,Tsp). Denote by {s1, ..., sr} the set of simple
reflections, by ` the length function on W and by w0 ∈ W the longest element with
respect to `. We let {ω1, . . . , ωr} be the collection of the fundamental weights of the
simply-connected cover of Gsp. We will also occasionally speak of the root system of
the pair (G′,T′), the ordering given by the choice of B′, and the collection of simple
roots ∆(G′,T′); the collection of ΓF -orbits in ∆(G′,T′) is the same as ∆(G′,S′).



RATIONAL POINTS 5

If v is archimedean, we set

(1.1) F 0
v = {x ∈ R |x ≥ 0}

and

(1.2) F̂v = {x ∈ R |x ≥ 1}.

If v is non-archimedean, we fix a uniformizer $ of Fv, and set

(1.3) F 0
v = {$n |n ∈ Z}

and

(1.4) F̂v = {$−n |n ∈ N}.

We set

(1.5) Sv(Fv)0 = {a ∈ Sv(Fv) |α(a) ∈ F 0
v for each α ∈ X∗(S(Fv))}

and

(1.6) Sv(Fv)+ = {a ∈ S(Fv) |α(a) ∈ F̂v for each α ∈ Φ+}.

Similarly we may define S′v(Fv)+. We define constants κα for α ∈ ∆(Gsp,Tsp) by:

(1.7)
∑

α>0,α∈Φ(G,T)

α =
∑

α∈∆(G,T)

καα.

1.3. Integrality. — By assumption, G and G′ are of adjoint type and we can iden-
tify Inn(G′) = G′. Then, for g ∈ G′(E), we have

c(σ) · g = aσga
−1
σ

for a uniquely defined element aσ ∈ G′(E). For w ∈ Val(E) and v ∈ Val(F ) with w|v,
we have a restriction homomorphism

ιw : Z1(Γ,G′(E)) → Z1(Γw/v,G
′(Ew)),

c 7→ cw.

The group Gv = GFv
is obtained from the corresponding quasi-split group G′v by

twisting with cw. With our choice of the set SE from 1.1, the local cocycle cw splits
for w /∈ SE . Thus for w /∈ SE , σ ∈ Γw, we have

cw(σ) = aw · σ(a−1
w ) ,

for some element aw ∈ G′(Ew). Identifying G′(E) = G(E) we may regard

– G′(F ) as the Γ-fixed points of G′(E) for the standard action and
– G(F ) as the Γ-fixed points of G′(E) for the twisted action.
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Locally, we have a similar situation:

G(Ew) G′(Ew)

G(Fv)

OO

G′(Fv)

OO

and further
a−1

w G(Fv)aw = G′(Fv) .

Recall that the global group G′ splits over E and put

g′ = Lie(G′) and g′E = g′(E) .

Let T′ ⊂ G′ be a maximal split torus defined over E. Let

gsp = Lie(Gsp), gsp
Q = gsp(Q) .

Let ΛQ be a Chevalley lattice in gsp
Q adapted to Tsp. Set

Λ′E := ΛQ ⊗Z OE

and also set
Λ′w := Λ′E ⊗ oEOw.

Then Λ′w is a Chevalley lattice in g′w = g′(Ew). Moreover, Λ′w is adapted to the torus
T′w obtained from T′ by base extension to Ew. Let Kw be the stabilizer of Λw in
G(Ew) = G′(Ew). We have (see [22], Proposition 2.33):

Gw = Kw · B(Ew) = B(Ew) · Kw .

Proposition 1.1. — Let v be a finite place of F and Ew an unramified extension
of Fv. An element aw ∈ G(Ew) = G′(Ew) satisfies

awσ(aw)−1 ∈ Kw

if and only if it is of the form
aw = kw · γw,

with kw ∈ Kw and γw ∈ G′(Fv).

We first recall the following

Theorem 1.2 (see [32], p. 292). — Let Gv be a connected semi-simple group over
Fv. Suppose that Gv is defined over ov and that as a group scheme over ov, it has
a connected smooth reduction modulo pv. Let Ew be a finite unramified extension of
Fv. Then

H1(Γw,G(Ow)) = 1.
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Proof of Proposition 1.1. — Consider the exact sequence of (pointed) sets

1 → G′v(Ow) → G′v(Ew) → G′v(Ow)\G′v(Ew) → 1

and the corresponding exact sequence in cohomology

1 → G′v(Ov) → G′v(Fv) → (G′v(Ow)\G′v(Ew))Γw → H1(Γ,G′v(Ow)) = 1,

by Theorem 1.2. Consequently,

G′v(Ov)\G′v(Fv) = (G′v(Ow)\G′v(Ew))Γw ,

precisely the statement of Proposition 1.1.

1.4. Good primes. — To apply Proposition 1.1 we will enlarge SE , and SF , so
that for all v /∈ SF one has:

– G′ has a group-scheme structure via the Chevalley lattice ΛF ;
– G′ has a connected smooth reduction modulo pv;
– for all σ ∈ Γ

c(σ) ∈ G′(Ow) = K′w ;
– the local cocycle

cw ∈ Z1(Γw,G
′(Ew))

splits.
Under these assumptions, for σ ∈ Γw we may write

cw(σ) = aw · σ(a−1
w )

for some aw ∈ G′(Ew). Then, for w /∈ S,

aw · σ(a−1
w ) ∈ K′w .

By Proposition 1.1, we have aw = kw · γw, for some kw ∈ K′w, γw ∈ G′(Fv). Since
σ(γw) = γw for σ ∈ Γw, we may assume that

cw(σ) = aw · σ(a−1
w )

with aw ∈ K′w. Our main conclusion is

Corollary 1.3. — There is a unique element aw ∈ K′w such that

a−1
w G(Fv)aw = G′(Fv).

Proof. — We only need to prove uniqueness. Suppose that we have another element
b ∈ G(Ew) such that

b−1G(Fv)b = G′(Fv).
Let z = ba−1. Then

(1.8) zG(Fv)z−1 = G(Fv).

Next, let σ ∈ Gal(Ew/Fv). Then from (1.8) we have

σ̃(zgz−1) = zgz−1
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for all g ∈ G(Fv). Hence, z−1σ(z) belongs to the centralizer of G(Fv) in G(F̄v). But
then by a theorem of Rosenlicht, G(Fv) is Zariski dense in G(F̄v) (see [8], p. 11).
Thus z ∈ Z(F̄v) (the center of G(F̄v)). Since G is an adjoint group, we have then
z = 1 and a = b.

We set K′v = K′w∩G′(Fv). For v /∈ SF , this is a maximal compact subgroup in G′(Fv).
Put Kv = awK′va

−1
w . Then

Corollary 1.4 (Cartan Decomposition). — For v /∈ SF , we have

(1.9) G(Fv) = KvS(Fv)+Kv.

Remark 1.5. — If v ∈ SF , then there is a maximal compact subgroup Kv of G(Fv)
and a finite set Ωv ⊂ G(Fv) such that

(1.10) G(Fv) = KvS(Fv)+ΩvKv.

The set Ωv is trivial if v is archimedean, or G(Fv) is split, or G(Fv) quasi-split and
split over an unramified extension.

1.5. Galois cohomology of simply-connected groups. — Here we recall basics
facts about simply-connected semi-simple groups over the adeles.

Theorem 1.6 (Kneser). — Let H be a simply connected semi-simple group over F .
Then, for v - ∞,

H1(Γv,H(F̄v)) = 1

and the natural map

H1(Γ,Hsc(F )) →
∏
v|∞

H1(Γv,H(F̄v)

is a bijection.

It is useful to keep in mind the following:

Lemma 1.7 (Theorem 6.17 of [32]). — Let U be a connected compact algebraic group
over R. Then

H1(ΓR,U(C)) = A′/W

where

A′ := {t ∈ A | t2 = 1},

A ⊂ U is the maximal R-torus and W = NU(A)/A is the corresponding Weyl group.
Here, NU(A) is the normalizer of A in U.



RATIONAL POINTS 9

1.6. Norm maps. — Let T be an algebraic torus over F , splitting over a normal
extension E/F with Galois group Γ, v a place of F , w ∈ Val(E) a place over v,
and Γw/v the corresponding local Galois group. We have the following natural norm
homomorphisms:

T(Ew)
Nw/v−→ T(Fv), T(Ew) Nv−→ T(Fv)

tw 7→
∏

σ∈Γw/v
σ(tw), tw 7→

∏
w|v Nw/v(tw),

T(E)
NE/F−→ T(F ), T(AE)

NAE/AF−→ T(AF )
t 7→

∏
σ∈Γ σ(t), (tw)w 7→ (Nv(tw))v.

Lemma 1.8. — For t ∈ T(E) one has NE/F (t) = NAE/AF
(t).

Proof. — Let w be a place of E over v and Γw ⊂ Γ the fixer of w. For any σ ∈ Γ we
have σΓwσ

−1 = Γσ(w) and |x|w = |σ(x)|σ(w). For a fixed w write

Γ = ∪g
j=1σjΓw1 = ∪g

j=1Γw1σ
−1
j .

We have, for t ∈ T(E),

NE/F (t) =
g∏

j=1

∏
ρ∈Γw1

ρσ−1
j (t)

=
g∏

j=1

σ−1
j

∏
ρ∈Γw1

σjρσ
−1
j (t)

=
g∏

j=1

σ−1
j

∏
ρ∈Γwj

ρ(t).

We have the commutative diagram

E ιw

//

σ

��

Ew

σ∗

��

Fv
oo

id

��

Fιv

oo

E ισ(w)
// Eσ(w) Fv

oo

where ιv, ιw are the canonical maps and σ∗ is the continuous extension of σ.
For tw :=

∏
ρ∈Γw

ρ(t) we have

ιv(NE/F (t)) = ιw1(NE/F (t))

=
g∏

j=1

ιw1σ
−1
j (aj)

=
g∏

j=1

(σ∗j )−1 · ιwj
(aj).
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Next, let for each w,
Γ∗w := {ρ∗ | ρ ∈ Γw}.

If ρ ∈ Γwj then ρ(aj) = aj . Thus

ιwj (aj) = ιwjρ(aj) = ρ∗(ιwj (aj)).

Thus ιwj
(a) is fixed by Γ∗w and therefore belongs to Fv. But then

(σ∗j )−1(ιwj
(aj)) = ιwj

(aj).

Thus

ιv(NE/F (t)) =
g∏

j=1

ιwj
(aj).

On the other hand,

NAE/AF
(t) =

g∏
j=1

NEwj
/Fv

(ιwj
(t))

=
g∏

j=1

∏
ρ∗∈Γ∗wj

ρ∗ιwj
(t)

=
g∏

j=1

∏
ρ∈Γwj

ιwj (ρ(t))

=
g∏

j=1

ιwj
(aj).

This completes the proof.

2. One-dimensional automorphic representations

In this section we define a transfer associating to each one-dimensional automorphic
representation χ of G(A) a one-dimensional automorphic representation χ′ of G′(A)
in such a way that it respects local isomorphisms. The basic idea is to define a local
transfer, and then use invariance under G(F ) and weak approximation to extend the
definition to the entire G(A). We will also define certain Euler products that will later
be used to regularize height integrals.

2.1. Automorphic characters for simply-connected groups. —

Proposition 2.1. — Let F be a number field and H a connected simply-connected
semi-simple group over F . Let χ be a one-dimensional automorphic representation of
H(A). Then χ = 1.
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Proof. — Let E/F be a finite Galois extension splitting H. There are infinitely many
v ∈ Val(F ) which split completely in E. For such v the local group H(Fv) is split.
Since H is simply-connected, H(Fv), as an abstract group, is its own derived group
(see [9], esp. 3.3.5, p. A-16). Thus χ|H(Fv) = 1. Also, χ|H(F ) = 1. By strong
approximation (see Theorem 7.12, p. 427 of [32]), H(Fv)H(F ) is dense in H(A). It
follows that χ = 1.

2.2. The local transfer. — Let G be as in 1.2 and

jv : Gsc(Fv) → G(Fv)

be the canonical homomorphism from its simply-connected covering. Let v be a finite
place of F and Ĝv the group of characters χv of G(Fv) which are trivial on jv(Gsc(Fv)).

By Kneser’s theorem 1.6, H1(Fv,G
sc(F̄v)) = 1. We have an exact sequence

1 → Z(Fv) → Gsc(Fv)
jv−→ G(Fv) δv−→ H1(Fv,Z(F̄v)) → 1

and a similar sequence for G′. Here Z is the center of Gsc. We may identify

(2.1) Ĝv = H1(Fv,Z(F̄v))∨,

(the character group of H1(Fv,Z(F̄v)). Recall that G is obtained from G′ by re-
placing the standard Galois action by a twisted action, via some representative of
H1(Gal(F̄ /F ), Inn(G′(F̄ ))). Since inner automorphisms of G′(F̄ ) fix Z(F̄ ), these two
actions coincide on Z(F ), and similarly for Z(F̄v). By (2.1) we get then, for non-
archimedean v, a natural isomorphism

(2.2) trv : Ĝv → Ĝ′v.

Remark 2.2. — We observe that equation (2.1) implies that there is a number n,
independent of v, such that every occurring character of G(Fv) satisfies χn = 1. This
follows from a case-by-case analysis of H1(Fv, Z(F v)) as carried out in [32], Section
6.5. We will come back to this point in 8.8.

2.3. Weak approximation. — We now apply weak approximation (Theorem 7.7,
p. 415 of [32]):

Theorem 2.3. — The group G(F ) is dense in G∞ :=
∏

v|∞ G(Fv).

For v|∞, the map jv : Gsc(Fv) → G(Fv) is submersive. Write G∗∞ ⊂ G∞ for the
image of

∏
v|∞ Gsc(Fv) under

∏
v|∞ jv, it is an open subgroup. Thus pr∞(G(F ))·G∗∞ =

G∞ and

G(A) = G(F ) · G0 · G∗∞.

Here pr∞ is the product of the projection maps prv : G(F ) → G(Fv) for v|∞.
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2.4. Global transfer. — Let χ =
∏

v χv be a one-dimensional automorphic rep-
resentation of G(A) such that χv is trivial on jv(Gsc(Fv)), for all v ∈ Val(F ). In
particular, χ∞ :=

∏
v|∞ χv is trivial on G∗∞. Using (2.2) we define

χ′0 =
∏
v-∞

trv(χv).

We also have
G′(A) = G′(F ) · G′0 · (G′∞)∗.

We extend χ′0 to a character χ′ of G′(A) by setting χ′ = 1 on G′(F ) · (G′∞)∗. Then χ′

is well-defined since it is trivial on the intersection

G′0 ∩ G′(F ) · (G′∞)∗.

Indeed, write G(F )∗ := {γ ∈ G(F ) | pr∞(γ) ∈ G∗∞}, and similarly for G′. Note that

pr0(G(F )∗) = G(Af ) ∩ G(F ) · G∗∞,

and similarly for G′. It suffices to check that

(2.3) δ0(pr0(G(F )∗) = δ′0(pr0(G
′(F )∗)),

where δ0 :=
∏

v-∞ δv and similarly, δ′0 =
∏

v-∞ δ′v. In fact, the character χ is trivial
on G(F ) · G∗∞.

Next, the sequence

(2.4) Gsc(Fv)
jv−→ G(Fv) δv−→ H1(Fv,Z(F̄v))

is exact for all v. Set δ∞ =
∏

v|∞ δv. Then in particular, δ∞(G∗∞) = {e}. We also set
δA = δ0 × δ∞ =

∏
v δv. Then (2.3) is equivalent to

(2.5) δA(G(F )∗) = δ′A(G′(F )∗).

Let pv be the canonical map

pv : H1(F,Z(F̄ )) → H1(Fv,Z(F̄v))

and
p : H1(F,Z(F̄ )) →

∏
v

H1(Fv,Z(F̄v))

the corresponding global map. We have p◦ δF = δA, where δF is the coboundary map
G(F ) → H1(F,Z(F̄ )).

Proposition 2.4. — Let c ∈ H1(F,Z(F̄ )). Then c ∈ δF (G(F )∗) if and only if

pv(c) = cv = 0 for all v | ∞.
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Proof. — We have a diagram

G(F )
δF //

��

H1(F,Z(F̄ ))

z

��

kF // H1(F,Gsc(F̄ ))

g

��
G(A)

δA // ∏
v H

1(Fv,Z(F̄v))
kA //

∏
v-∞H1(Fv,G

sc(F̄v)).

where g is bijective (see Th. 6.6, p. 286 of [32]), both squares are commutative and
the top row is exact. Recall also that H1(Fv,G

sc(F̄v)) = {e}, if v is finite.
Suppose that cv = zv(c) = 0 for v infinite, c ∈ H1(F,Z(F̄ ). Then kA((cv)v) = e.

Consequently, kA · z(c) = g · kF (c) = e. Since g is bijective, we have kF (c) = 0 and
consequently

c = δF (γ)
for some γ ∈ G(F ). We prove that γ ∈ G(F )∗. In fact, we have

cv = δv(γv) = e, for v | ∞.

But then, by the exactness of the sequence (2.4), γv ∈ Im(jv), for any infinite v.
Therefore, γ ∈ G∗∞. The converse assertion also follows from the exactness of (2.4).

Corollary 2.5. — As before, let

δF : G(F ) → H1(F,Z(F̄ ))

and similarly δ′F be the respective co-boundary maps. Then

δF (G(F )∗) = δ′F (G′(F )∗).

Proof. — By the Proposition, each of the sets δF (G(F )∗) and δ′F (G(F )∗) coincides
with the set of c ∈ H1(F,Z(F̄ )) satisfying cv = e for v | ∞. Our assertion is now an
immediate consequence.

2.5. Compatibility. — The following lemma shows that the above definition of
transfer is the correct one:

Lemma 2.6. — Let v /∈ SF and w ∈ Val(E) be such that w | v. Let aw be as in
Corollary 1.3. Then for all x ∈ G(Fv) one has

χ′v(a−1
w xaw) = χv(x).

Proof. — In this proof, we write a for aw. There is a character ξ of the discrete group
H1(Fv,Z(F̄v)) such that

χ(x) = ξ(δv(x)), x ∈ G(Fv) and χ′(x) = ξ(δ′v(x)), x ∈ G′(Fv).

It suffices to prove that δ′v(a−1xa) = δv(x). We calculate the two co-boundary maps,
δv and δ′v. Choose x̃ ∈ Gsc(F̄v) such that jv(x̃) = x. Then

δv(x) = x̃−1σ(x̃) = x̃−1c(σ) ◦ σ′(x̃) = x̃−1ãσ′(ã)−1σ′(x̃)σ′(ã)ã−1.
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Recall that, for v /∈ SF ,
cv(σ) = a−1σ′(a).

We calculate δ′v(a−1xa), for x ∈ G(Fv). Choose ã ∈ Gsc(F̄v) such that Ad(ã) = a.
We have then

δ′v(a−1xa) = (ã1x̃ã)−1σ′(ã−1x̃ã) = ã1x̃−1ãσ′(ã−1)σ′(x̃)σ′(ã).

Since δ′v(x) ∈ Z(F̄v), we have
aδ′v(x) = δ′v(x)a,

or
ãδ′v(x)ã−1 = δ′v(x).

Thus
δ′v(a−1xa) = x̃−1ãσ′(ã−1)σ′(x̃−1)σ′(ã)ã−1 = δv(x),

as claimed.

2.6. Continuity. — Since Z is commutative, H1(Fv,Z(F̄v)) is a (discrete) group
and the co-boundary map

δv : G(Fv) → H1(Fv,Z(F̄v))

is a group homomorphism.

Lemma 2.7. — The map δv is continuous.

Proof. — The map
jv : Gsc(Fv) → G(Fv)

is a submersion of v-adic Lie groups (the differential of jv is the identity on the Lie
algebra Lie(Gsc(Fv) = Lie(G(Fv)). Hence, Im(jv) = Ker(δv) is an open subgroup of
G(Fv) and the claim follows.

In any case, if χv : G(Fv) → C∗ is a homomorphism of groups which is trivial on
the image of jv, then χv is automatically continuous.

2.7. Automorphy. — We have associated to each one-dimensional automorphic
representation χ of G(A), trivial on j(Gsc(A)), a “formal” automorphic character

χ′ : G′(A) → C×,
i.e., a homomorphism, trivial on G′(F ).

Theorem 2.8. — The character χ′ is an automorphic character.

Proof. — We need to show that χ′ is continuous. Since the map

δ′v : G′(Fv) → H1(Fv,Z(F̄v))

is continuous, each χ′v is also continuous, for v finite. By construction, χ′∞ =
∏

v|∞ χ′v
is trivial on the open subgroup (G′∞)∗ ⊂ G′∞. Thus, χ′∞ is continuous. The character
χv is trivial on Kv, for almost all v. We claim that χ′ is trivial on K′v for almost
all v. This immediately follows from Lemma 2.6 and considerations of Section 1.4.
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We have already noted that χ′v is continuous for all v. It follows finally that χ′ is
continuous.

2.8. Hecke characters. — We now associate to χ′ a function L(s, χ′), a product
of Hecke L-functions. This function will later be used to regularize Fourier transforms
of global height functions.

Suppose first that G′F = Gsp is split. Let Tsp ⊂ Bsp ⊂ Gsp be a maximal split torus
(over F ), and a Borel subgroup containing T. Let ∆ = {α} be the associated set of
simple roots and {α̌} the dual basis of the co-characters X∗(Tsp). For λ ∈ Gm(A)
and α ∈ ∆ define

ξα(λ) = χ′(α̌(λ)).
This ξα is a character of Gm(A)/Gm(F ) (Hecke-character). We define

L(s, χ′) =
∏
α∈∆

L(s, ξα).

In general, when G′ is quasi-split, and not necessarily split over F , we have

Φ(G′,T′) ⊂ X∗E(T′) = X∗(T′) and Φ(G′,S′) ⊂ X∗F (T′).

Then the restriction map

(2.6) r : Φ(G′,T′) → Φ(G′,S′)

is surjective, and
r(∆(G′,T′)) = ∆(G′,S′).

The Galois group Γ acts transitively on the fibers of

r : ∆(G′,T′) → ∆(G′,S′).

Fix a simple root α and let Γα be the stabilizer of α in Γ. Let Eα be the fixed field
of Γα. Since G is adjoint, for each α ∈ ∆(G′,T′) we have an associated co-root α̌
uniquely characterized by

(α̌, β) = 1αβ

where ( , ) is the natural Γ-equivariant pairing

X∗(T′)× X∗(T′) → Z

(and 1 is the delta function).
Since α is defined over K := Eα, so is α̌. We have then a morphism

α̌ : Gm → T′,

defined over K and consequently a continuous homomorphism

α̌A : Gm(AK) → T′(AK).

Let φα be the composite

φα : Gm(AK) α̌A−→ T′(AK)
NAK /AF−→ T′(AF ).
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By Section 1.6,
φα : Gm(K) → T′(F ).

Thus, if χ is a character of T′(AF )/T′(F ) then ξα = χ◦φα is an automorphic character
of Gm over K, i.e., a Hecke character. Write ξα =

∏
w∈Val(K) ξα,w.

Let v be a place of F , w a place of K lying over v and u a place of E lying over
w. Let Fv ⊂ Kw ⊂ Eu be the corresponding completions and ιw, ιw, ιu the respective
embeddings, with ιu|K = ιw, ιw|F = ιv. Write X∗Eu

(T′(Fv)) = X∗(T′(Fv)) and let

ι∗ : X∗(T′) ∼−→ X∗(T′(Fv))

be the isomorphism induced by ιu. As above, we have a restriction map

rv : Φ(G′(Fv),T′(Fv)) → Φ(G′(Fv),S′v(Fv))

mapping ∆(G′(Fv),T′(Fv)) to ∆(G′(Fv),S′v(Fv)). The local Galois group Γu/v acts
transitively on the fibers of

rv : ∆(G′(Fv),T′(Fv)) → ∆(G′(Fv),S′v(Fv)).

Next suppose that Kw/Fv is unramified. Suppose also that ξα,w is unramified. Let

Lw(s, ξα,w) = (1− ξα,w($w)q−s
w )−1

where $w is a prime element for Kw. Let

αu = ι∗u(α), ϑv = rv(αu) ∈ ∆(G′(Fv),S′v(Fv)).

Let ϑ̌v ∈ X∗(S′v(Fv)) be the associated co-character. Let

`(ϑv) := #{β ∈ ∆(G′(Fv),T′(Fv)) with ru(β) = ϑu}
= #{Γu/v − orbit of αu in ∆(G′(Fv),T′(Fv))}

Proposition 2.9. — With the above notations, we have

Lw(s, ξα,w) = (1− χv(ϑ̌v($)) · q−`(ϑv)s
v )−1.

Proof. — It suffices to prove
– `(ϑu) = [Kw : Fv];
– ξα,w($w) = χv(ϑ̌u($w)).

let Γu/w = Gal(Eu/Kw). Then the fixer of αu in ∆(G′(Fv),T′(Fv)) is Γu/w. Thus

`(ϑu) = [Γu/v : Γu/w] = [Kw : Fv].

For the the second assertion if suffices to prove that

NKw/Fv
(α̌w(λ)) = ϑ̌u(λ), λ ∈ F×v .

The map ιu induces an isomorphism

ι∗u : X∗(T′)
∼−→ X∗(T′(Fv)).
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Then ι∗u preserves the natural pairing of roots and co-characters. The co-character
α̌w is obtained from α̌ by base extension to Kw:

α̌ : Gm/K → T′/K

α̌w : Gm/Kw → T′/Kw

We have for λ ∈ F ∗v
c = NKw/Fv

(α̌w(λ))

=
∏

σ∈Γu/v

σ(α̌w(σ−1(λ)))

=
∏

σ∈Γu/v/Γu/w

σ ◦ (α̌w(λ))

Here we regard α̌w ∈ X∗(T′(Fv)) and σ◦ is the natural action of Γu/v on X∗(T′(Fv)).
Since c is fixed by Γu/v, we have c ∈ X∗(Sv(Fv)). In fact, the morphism Gm

c−→ T′(Fv)
is defined over Fv. Let S̃(Fv) be the image of c in T′(Fv). Then S̃(Fv) · Sv(Fv) =
Sv(Fv), since S′v is a maximal split Fv-torus in T′(Fv). Thus S̃(Fv) ⊂ Sv and we have
Gm

c−→ S′v.
It will suffice to prove that c = ϑ̌u, as elements of X∗(S′v(Fv)):

(c, γ)S′v = (ϑ̌u, γ)S′v
for all γ ∈ ∆(G′(Fv),S′v(Fv)). For this it suffices to prove that

– (c, ϑu)S′v = 1;
– (c, γ)S′v = 0 for all γ ∈ ∆(G′(Fv),S′v(Fv)) with γ 6= ϑu.

We have
(c, ϑv)S′v = (c, αu)T′(Fv) =

∑
σ∈Γu/v/Γu/w

(σ ◦ α̌w, αu)T′(Fv).

Next we have α̌w = α̌u in X∗(T′(Fv)). Here

α̌w : Gm/Eu → T′/Eu

is obtained by base extension from

α̌ : Gm/E → T′/E,

and
αu : T′/Eu → Gm/Eu

is obtained by base extension from

α : T′/E → Gm/E.

Since extending the scalars preserves the natural pairing between roots and co-roots,
we have the claim.
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2.9. Infinite products. — The next step is to express an infinite product of the
form

(2.7)
∏

v∈Val(F )

∏
ϑ∈∆(G′(Fv),S′v(Fv))

(1− χv(ϑ̌($w))q−`v(ϑ)sϑ
v )−1

in terms of Hecke L-functions; this will be important in the regularization of height
integrals. The above expression, as written, has an infinite number of complex vari-
ables. In practice, the number of variables is finite, since the complex numbers sϑ are
Galois invariant in the following sense.

Consider the commutative diagram

X∗(T′)
ι∗v

//

r

��

X∗(T(Fv))

rv

��
X∗(S′)

ι∗v

// X∗(Sv(Fv)).

Let α ∈ ∆(G′,T′) and let O = Γ · α be the orbit of α (for the action of Γ on
∆(G′,T′)). We set further Ov = rv(ι∗u(O)) ⊂ ∆(G′(Fv),S′v(Fv)). For each ϑ ∈ Ov

choose a β ∈ ∆(G′,T′) so that ru(ι∗u(β)) = ϑ. We now require that sϑ depend only on
the Galois orbit of β in ∆(G′,T′), i.e., only on O; we will denote the common value of
all such sϑ by sO. With the assumption, the number of genuine complex parameters
appearing in (2.7) is the number of distinct Galois orbits O in ∆(G′,T′).

Fix an orbit O. For any β ∈ O, we have a field Eβ over which β is defined. We have
already described how to associate to β a Hecke character ξβ(χ) of Eβ . The Hecke
L-function L(s, ξβ(χ)) depends only on the Galois orbit O, and not on the particular
β. For this reason, we denote the L-function L(s, ξβ(χ)) by L(s, ξO(χ)). An argument
similar to the proof of Theorem 4.1.3 of [5] leads to the following proposition:

Proposition 2.10. — We have

(2.8)
∏

v∈Val(F )

∏
ϑ∈∆(G′(Fv),S′v(Fv))

(1− χv(ϑ̌($w))q−`v(ϑ)sϑ
v ) =

∏
O

L(sO, ξO(χ)),

where the latter product is over all Galois orbits in ∆(G′,T′).

3. Eisenstein series and spectral theory

3.1. Basic spectral theory. — Let B be a minimal parabolic subgroup of G.
We will work only with standard parabolic subgroups and up to association. A
typical parabolic subgroup is denoted by P. We denote the Levi factor of P by
MP, its unipotent radical by NP, and the split component of the center of MP by
AP. We let X(MP)Q be the group of characters of MP defined over Q, and we set
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aP = Hom(X(MP)Q,R). Clearly, a∗P = X(MP)Q ⊗ R. We denote by ∆P the set of the
simple roots of (P,A). We usually drop the subscript P.

For m = (mv)v ∈ M(A) define a vector HM(m) ∈ aP by

(3.1) e〈HM(m),χ〉 = |χ(m)| =
∏
v

|χ(mv)|v.

for all χ ∈ X(M)Q. This is a homomorphism

(3.2) M(A) −→ aP.

We let M(A)1 be the kernel. Then

(3.3) M(A) = M(A)1 ×A(R)0.

By Iwasawa decomposition, any x ∈ G(A) can be written as nmak with n ∈ N(A),m ∈
M(A)1, a ∈ A(R)0, k ∈ K. Set HP(x) := HM(a) ∈ aP. Denote the restricted Weyl
group of (G,A) by W. The group W acts on aB and a∗B. For any s ∈ W, fix a
representative ws in the intersection of G(Q) with the normalizer of AB. If P1,P2 are
parabolic subgroups, we let W(a1, a2) be the set of distinct isomorphisms a1 → a2

obtained by restricting elements of W to a1. The groups P1,P2 are called associated
if W(a1, a2) is not empty. We usually think of W(a1, a2) as a subset of W. We let
n(A) be the number of chambers in a.

Set

(3.4) a+
P = {H ∈ aP;α(H) > 0 for all α ∈ ∆P},

and

(3.5) (a∗P)+ = {Λ ∈ a∗P; Λ(α̌) > 0 for all α ∈ ∆P}.

There is a vector ρP ∈ (a∗P)+ such that

(3.6) δP(p) = |detAdp|nP(A)| = e2ρP(HP(p))

for all p ∈ P(A). We take the normalization of Haar measures to be as in [1].
Let L2

cusp(M(Q)\M(A)1) be the space of functions φ in L2(M(Q)\M(A)1) such that
for any parabolic P1 * P we have

(3.7)
∫

N1(Q)∩M(Q)\N1(A)∩M(A)

φ(nm) dn = 0

for almost all m. It is known that

(3.8) L2
cusp(M(Q)\M(A)1) =

⊕
ρ

Vρ

where Vρ is the ρ-isotypic component of ρ consisting of finitely many copies of ρ
(possibly zero). The pairs (M, ρ) and (M′, ρ′) are considered equivalent if there is
s ∈ W(a, a′) such that the representation

(3.9) (sρ)(m′) = ρ(w−1
s m′ws) (m′ ∈ M′(A)1)
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is unitarily equivalent to ρ′. Let X be the set of equivalence classes of such pairs.
For any X ∈ X we have a class PX of associated parabolic subgroups. If P is any
parabolic and X ∈ X, set

(3.10) L2
cusp(M(Q)\M(A)1)X =

⊕
(ρ:(M,ρ)∈X)

Vρ.

This is a closed subspace of L2
cusp(M(Q)\M(A)1), and empty if P /∈ PX .

Fix P and X ∈ X. Suppose there is a P1 ∈ PX such that P1 ⊂ P. Let ψ be a
smooth function on N1(A)M1(Q)\G(A) such that

(3.11) Ψa(m, k) = ψ(amk) (k ∈ K,m ∈ M1(Q)\M1(A), a ∈ A1(Q)\A1(A))

vanishes outside a compact subset of A1(Q)\A1(A), transforms under KR according to
an irreducible representation, and as a function of m belongs to L2

cusp(M(Q)\M(A)1).
Then the function

(3.12) ψ̂M(m) =
∑

δ∈P1(Q)∩M(Q)\M(Q)

ψ(δm) (m ∈ M(Q)\M(A)1)

is square-integrable on M(Q)\M(A)1. Define L2(M(Q)\M(A)1)X to be the span of all
such ψ̂M. If no such P1 exist, latter space is the zero space.

By a result of Langlands,

(3.13) L2(M(Q)\M(A)1) =
⊕
X

L2(M(Q)\M(A)1)X .

For any P, let Π(M) denote the set of equivalence classes of irreducible unitary rep-
resentations of M(A). For ζ ∈ a∗C and π ∈ Π(M) let πζ be the product of π with the
quasi-character

(3.14) x 7→ eζHP(x) (x ∈ G(A)).

If ζ ∈ ia∗, πζ is again unitary. This means that Π(M) is a differentiable manifold
which carries an action of ia∗. We use this action to define a measure dπ on Π(M).

For π ∈ Π(M) we let H0
P(π) be the space of smooth functions

(3.15) φ : N(A)M(Q)\G(A) → C

satisfying
1. φ is right K-finite;
2. for every x ∈ G(A) the function

m 7→ φ(mx) (m ∈ M(A))

is a matrix coefficient of π;
3. ‖φ‖2 =

∫
K

∫
M(Q)\M(A)1

|φ(mk)|2 dmdk < +∞.

Let HP(π) be the completion. If φ ∈ HP(π) and ζ ∈ a∗C set

(3.16) φζ(x) = φ(x)eζ(HP(x)) (x ∈ G(A))
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and

(3.17) (IP(πζ , y)φζ)(x) = φζ(xy)δP(xy)
1
2 δP(x)−

1
2 .

Then IP(πζ) is a unitary representation if ζ ∈ ia∗.
Given X ∈ X, let HP(π)X be the closed subspace of HP(π) consisting of those φ

such that for all x the function m 7→ φ(mx) belongs to L2(M(Q)\M(A)1)X . Then

(3.18) HP(π) =
⊕
X

HP(π)X .

Let K0 be an open-compact subgroup of G(Af ) and W an equivalence class of irre-
ducible representations of KR. Let HP(π)X,K0 be the subspace of functions in HP(π)X

which are invariant under K0 ∩ K. Also let HP(π)X,K0,W be the space of those func-
tions in HP(π)X,K0 which transform under KR according to W . It is a theorem of
Langlands that each of the spaces HP(π)X,K0,W is finite-dimensional. We fix an or-
thonormal basis B(π)X for HP(π)X , for each π and each X, such that for all ζ ∈ ia∗
we have

(3.19) B(πζ)X = {φζ : φ ∈ BP(π)X}
and such that every φ ∈ BP(π)X belongs to one of the spaces HP(π)X,K0,W .

Suppose that π ∈ Π(M), φ ∈ H0
P(π), ζ ∈ a∗C. For <(ζ) ∈ ρP + (a∗)+ we set

(3.20) E(x, φ, ζ) =
∑

δ∈P(Q)\G(Q)

φζ(δx)δP(δx)
1
2 .

For s ∈ W(a, a′), we define the global intertwining operator

(M(s, π, ζ)φζ)(x)

=
∫

N′(A)∩wsN(A)w−1
s \N′(A)

φζ(w−1
s nx)δP(w−1

s nx)
1
2 δP(x)−

1
2 dn.

(3.21)

Both E(x, φ, ζ) and M(s, πζ)φζ can be analytically continued to meromorphic func-
tions in ζ to a∗C. For ζ ∈ ia∗, E(x, φ, ζ) is a smooth function of x and M(s, πζ) is
unitary from HP(πζ) to HP′(sπζ).

3.2. Spectral expansion. — Let f be a function on G(Q)\G(A). By the spectral
expansion of f we mean

S(f, x) =
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∑
φ∈BP(π)X

E(x, φ)

(∫
G(Q)\G(A)

E(y, φ)f(y) dy

)
dπ.

(3.22)

For M = G, the integrals are interpreted appropriately to give a discrete sum. It is
an interesting problem to determine under which conditions on the function f , we
have f(x) = S(f, x). Also, for the application we have in mind, we need to know that
the identity f = Sf holds as an identity not just of L2-functions, but of continuous
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functions. In order to show that for a given f , the spectral identity holds, we just need
to prove that that right hand side of the (3.22) is uniformly convergent on compact
sets. This would suffice since for all pseudo-Eisenstein series θφ (II.1.10 of [26]) we
have

(3.23) (S(f), θφ) = (f, S(θφ)),

and since pseudo-Eisenstein series are rapidly decreasing (Proposition II.1.10 [26]), we
have θφ = S(θφ) by the spectral decomposition [1]. Consequently (f − S(f), θφ) = 0
for all pseudo-Eisenstein series θφ. Then by the density theorem Theorem II.1.12
of [26] we get the required identity. In our applications, we use a slightly different
re-arrangement of the terms of S(f) as suggested by the definition of I(S, f, x, y) on
page 930 of [1].

Let f be a smooth function on G(A), and suppose that f is right invariant under
a compact-open subgroup K of G(Af ). Define a function on G(Q)\G(A) by

F (g) :=
∑

γ∈G(Q)

f(γg).

Suppose that f is such that the function F is convergent for all g, is smooth and
bounded. By Lemma 4.1 of [1], givenm, there is an n and functions f1 ∈ Cm

c (G(R))KR

and f2 ∈ C∞c (G(R))KR such that ∆n ∗ f1 + f2 is the delta distribution at the identity
of G(R). This implies that after taking the finite places into account, we can find
functions η1, η2 of compact support on G(A), with appropriate differentiability at the
archimedean place, such that

(3.24) R(∆n ∗ η1 + η2)F = F,

where R is the right regular convolution action. We get

(3.25) R(η1)∆nF +R(η2)F = F.

Consider the following modified spectral expansion

S′(F, x) =
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(Q)\G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, φ)

F (y) dy dπ.
(3.26)
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We get

S′(F, x) =
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(Q)\G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, φ)

F (y) dy dπ

=
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(Q)\G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, φ)


(R(η1)∆nF (y) +R(η2)F (y)) dy dπ.

Consequently, S′(F, x) will be the sum of the following two series

S1(F, x) =
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(Q)\G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, IP(π, η̃1)φ)


∆nF (y) dy dπ

and

S2(F, x) =
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(Q)\G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, IP(π, η̃2)φ)


F (y) dy dπ

for appropriately chosen compactly supported function η̃1, η̃2. By Lemma 4.4 of [1],
there are N, r0 and a continuous seminorm ‖ · ‖r0 on Cr0

c (G(A)) such that if r ≥ r0
and η is K-finite in Cr

c (G(A)),

∑
X∈X

∑
P

n(A)−1

∫
Π(M)

∣∣∣∣∣∣
∑

φ∈BP(π)X

E(x, φ)E(y, IP(π, η)φ)

∣∣∣∣∣∣ dπ
is bounded by ‖η‖r0 · ‖x‖N · ‖y‖N . Here we have defined the height ‖ · ‖ on G(A) as
in [1], page 918. Since m can be taken to be arbitrarily large, all we need to verify in
order to get the uniform convergence is the convergence of the following integrals

(3.27)
∫

G(A)

|f(y)| · ‖y‖N dy

and

(3.28)
∫

G(A)

|∆nf(y)| · ‖y‖N dy.

We summarize this discussion:
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Lemma 3.1. — Let n,N be as above. Assuming convergence of the integrals (3.27)
and (3.28) we have

(3.29) F (x) = S1(F, x) + S2(F, x).

3.3. Truncations. — Let T ∈ a+
B . Let ∆0 be a set of simple roots of (B,A), and

dB(T ) := minα∈∆0{α(∆)}. We will need those T which are sufficiently regular ; this
means that dB(T ) is large. Recall that for sufficiently regular T , the Arthur truncation
∧T acts on functions on G(Q)\G(A) [3].

Lemma 3.2. —
1. If φ is locally bounded, then ∧Tφ is defined everywhere.
2. If φ : G(Q)\G(A) → C is locally L1, then we have

∧T ∧T φ(g) = ∧Tφ(g)

for almost all g. If φ is locally bounded, then the identity holds for all g.
3. Suppose φ1, φ2 : G(Q)\G(A) → C are locally L1. If φ1 is of moderate growth and
φ2 is rapidly decreasing, then∫

G(Q)\G(A)

∧Tφ1(g)φ2(g) dg =
∫

G(Q)\G(A)

φ1(g) ∧T φ2(g) dg.

Observe that the lemma implies that if φ1, φ2 are as above, then

(3.30)
∫

G(Q)\G(A)

∧Tφ1(g)φ2(g) dg =
∫

G(Q)\G(A)

∧Tφ1(g) ∧T φ2(g) dg.

Given P, and π ∈ Π(MP(A)) and λ ∈ ia∗P we define an operator

(3.31) ΩT
X,π(P, λ) : H0

P(π)X → H0
P(π)X

by setting

(3.32) (ΩT
X,π(P, λ)π, π′) =

∫
G(Q)\G(A)1

∧TE(x, φ, λ)∧TE(x, φ′, λ) dx,

for each pair of vectors φ, φ′ ∈ H0
π(π)X .

Next let K0 be a subgroup of finite index in Kf . Suppose that W is a finite
dimensional representation of K∞. Given P ⊃ B, π ∈ P(MP(A)1), let H0

P(π)K0
X be

the space of K0-invariant functions in H0
P(π)X , and let H0

P(π)K0,W
X be the subspace of

functions in H0
P(π)K0

X which transform under K∞ according to W . If a linear operator
A on H0

P(π)X leaves any of these subspaces H0
P(π)�

X , with � = K0 or � = K0,W ,
invariant, we denote by A∗ the restriction of A to the appropriate subspace. Choose
the differential operator ∆ as in [3]. Then ∆ acts on H0

P(π)X through each of the
representations IP(πζ), and we denote the action by IP(πζ ,∆). This action leaves the
two subspaces mentioned above invariant. For ζ ∈ ia∗P, the action of IP(πζ ,∆) is via
a scalar greater than 1.
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Lemma 3.3 (Arthur [2]). — There exist integers C0, d0, and m such that for any
subgroup K0 ⊂ Kf of finite index, and any T ∈ ia+

B with dB(T ) > C0, the expression

(3.33)
∑
X∈X

∑
P

∑
π∈Π(MP(A)1)

|n(A)|−1

∫
ia∗P/ia∗G

‖ΩT
X,π(P, ζ)K0 .IP(πζ ,∆m)−1‖1dζ

is bounded by CK0(1+‖T‖)d0 . Here CK0 is a constant which depends only on K0, and
‖ · ‖1 is the trace class norm.

3.4. A bound for Eisenstein series. — We recall a bound for Eisenstein series
embedded in the proof of Proposition 2 of [25]. Fix a large compact set C of G(A) and
a small compact open subgroup K of G(Af ), and let f be a sufficiently differentiable
function with support in C.

Lemma 3.4. — Fix a compact set C ′ in G(A). There are constants c,N > 0 depend-
ing only on the support of f such that for sufficiently regular T we have

(3.34) |E(g, I(f, πλ)ϕ, λ)| ≤ c‖g‖N‖f‖∞ · ‖ ∧T E(·, ϕ, λ)‖L2(G(Q)\G(A)).

This lemma combined with Lemma 3.3 together with Lemma 4.1 of [1] implies the
following result.

Proposition 3.5. — For φ ∈ BP(π)X let Λ(φ) be defined by ∆ · φ = Λ(φ) · φ. Then
there is an l > 0 such that

(3.35)
∑
X∈X

∑
P

n(A)−1

∫
Π(M)

 ∑
φ∈BP(π)X

Λ(φ)−m|E(e, φ)|2
 dπ

is convergent. The outermost summation is only over those classes for which Λ(φ) 6= 0
are fixed by K0.

4. Spherical functions and bounds for matrix coefficients

4.1. Spherical functions. — Let π be an infinite-dimensional automorphic repre-
sentation of G, and suppose φ is a right K-finite automorphic form in the space of π.
Here K =

∏
v Kv. Define a function M(φ, g) on G(A) by

M(φ, g) =
1

(vol K)2

∫
K

∫
K

φ(κgκ′) dκ dκ′.

If π has no K-invariant vectors, then the above integral is zero, and we may assume
that φ is right K invariant. Let Vπ be a vector space on which G(A) acts via a
representation which is isomorphic to the space of K-finite vectors. Let j : Vπ → Hπ

be the intertwining map. We have used the same notation for a representation and
its underlying representations space. By a standard result of Jacquet, Langlands, and
Flath, we have

Vπ =
⊗

v

Vπ,v.
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Since φ is right K-finite, it is in the image of j. Let w = j−1(φ). Then

w ∈ VK
π =

⊗
v/∈S∞

VKv
π,v

⊗

(⊗
v∈S∞

Vπ,v

)
.

Set S = SF . We know that for v /∈ S we have dim VKv
π,v = 1. Fix a non-zero element

ev in each of these spaces. This means then

w = (⊗v/∈Sev)⊗ wS ,

where

wS ∈

 ⊗
v∈S\S∞

VKv
π,v

⊗

(⊗
v∈S∞

Vπ,v

)
.

Next we examine M(φ, g). Define a functional λ on Vπ by

λ(ν) =
∫

K

j(ν)(κ) dκ,

(for ν ∈ Vπ). Then it is easily seen that

λ ∈
⊗
v/∈S

ṼKv
π,v ⊗ V∗S .

Here VS =
⊗

v∈S Vπ,v, V∗S is the dual space and Ṽπ is the smooth dual of the local
representation Vπ. Since the smooth dual of an admissible representation is admissi-
ble, it follows that dim ṼKv

π,v = 1. For each v /∈ S choose an element ξv in this space
in such a way that ξv(ev) = 1. This then means that, as in the case of w = j−1(φ),
we have

λ = (⊗v/∈Sξv)⊗ λS ,

with λS in the obvious space. Combining this identity with the similar identity for w
we obtain

λ(v) = (
∏
v/∈S

ξv(ev)) · λS(wS)

= λS(wS).

This implies that

λS(wS) =
∫

K

j(w)(κ) dκ

=
∫

KS

j(w)(κ) dκ.

Here KS =
∏

v∈S Kv. Consider an embedding η : G(AS) −→ G(A) given by

g 7→ (1, 1, . . . , 1, g).
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Obviously,

vol(KS)M(φ, g) = λ(π(g)w)

=
∏
v/∈S

ϕv,π(gv) ·
∫

KS

φ(κη(gS)) dκ,

where ϕv,π(gv) = ξv(πv(gv)ev) is the normalized local spherical function.

Corollary 4.1. — If K =
∏

v Kv is such that for each local place v, including the
archimedean places, the local compact subgroups Kv satisfy the hypotheses I and II of
[35], then

(4.1) M(φ, g) = φ(e)
∏
v

ϕv,π(gv)

if each π has a Kv-fixed vector; otherwise it is zero.

We note that local Kv satisfying I and II of [35] exist by [19], for archimedean
places, and [10, 38, 40], for non-archimedean places.

4.2. Bounds on Matrix Coefficients. — In this section we recall an important
result of H. Oh that is used in estimates leading to the proof of the spectral expansion
(3.22).

Let k be a non-archimedean local field of char(k) 6= 2, and residual degree q.
Let H be the group of k-rational points of a connected reductive split or quasi-split
group with H/Z(H) almost k-simple. Let S be a maximal k-split torus, B a minimal
parabolic subgroup of H containing S and K a good maximal compact subgroup of H
with Cartan decomposition G = KS(k)+K. Let Φ be the set of non-multipliable roots
of the relative root system Φ(H,S), and Φ+ the set of positive roots in Φ. A subset
S of Φ+ is called a strongly orthogonal system of Φ if any two distinct elements α
and α′ of S are strongly orthogonal, that is, neither of α± α′ belongs to Φ. Define a
bi-K-invariant function ξS on H as follows: first set

nS(g) =
1
2

∑
α∈S

logq |α(g)|,

then

ξS(g) = q−nS(g)
∏
α∈S

(
(logq |α(g)|)(q − 1) + (q + 1)

q + 1
).

Theorem 4.2 ([28], Theorem 1.1). — Assume that the semi-simple k-rank of H is
at least 2 and let S be a strongly orthogonal system of Φ. Then for any unitary
representation % of H without an invariant vector and with K-finite unit vectors ν and
ν′, one has

|(%(g)ν, ν′)| ≤ (dim(Kν) dim(Kν′))
1
2 · ξS(g),

for any g ∈ H.
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Corollary 4.3. — Let v /∈ SF . Let ϕv be the normalized spherical function as-
sociated with an infinite dimensional unramified principal series representation of
G(Fv). Suppose that the semi-simple rank of G(Fv) is at least 2. Then for each
ϑ ∈ ∆(G(Fv),Sv(Fv)) we have

|ϕv(ϑ̌($v))| < 2q−
`v(ϑ)

2
v .

Proof. — Fix ϑ. By definition, a singleton is a strongly orthogonal set. Set

Sv = {ϑ}.

Then

nSv
(ϑ̌($v)) =

`v(ϑ)
2

,

and

ξSp
(ϑ̌($v)) = q

− `v(ϑ)
2

v
2qv
qv + 1

.

Since ν and ν′ that define the spherical function are Kv-invariant, this equation com-
bined with Theorem 4.2 implies

|ϕv(ϑ̌($v)) ≤ ξSv
(ϑ̌($v)))

≤ q−
`v(ϑ)

2
2qv
qv + 1

< 2q−
`v(ϑ)

2
v ,

which gives the claim.

We also need a similar bound on spherical functions when the semi-simple rank
is equal to one. In this case, local considerations do not suffice, as the trivial repre-
sentation may not be isolated in the unitary dual of the local group. However, for
our purposes it will suffice to obtain a bound for a restricted class of representations.
Let π be an infinite-dimensional unitary irreducible automorphic representation of G.
Suppose π = ⊗vπv. Extending SF if necessary, we may assume that for v /∈ SF , πv

is an unramified representation.

Proposition 4.4. — For all v /∈ SF , the representation πv is infinite-dimensional.

Proof. — Realize π on a Hilbert subspace V of L2(G(F )\G(A)). Denote by V∞ the
subspace of V consisting of all vectors ν such that:

– ν is Kf -finite, and
– for all archimedean places v, the map G(Fv) → V given by g 7→ π(g)ν is C∞.
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It is standard that V∞ is G(A)-stable, and dense in V (with respect to the L2-topology).
The image of V∞ in L2 consists of smooth functions. Suppose that for some v /∈ SF the
representation πv is not infinite-dimensional. Since this representation is admissible,
it must be one-dimensional. Concretely, if we pick an element ϕ ∈ V∞, we have

ϕ(γxv) = χv(xv)ϕ(e), γ ∈ G(F ), xv ∈ G(Fv).

Here χv : G(Fv) → C× is a one-dimensional representation of G(Fv). Next, by Satz
6.1. of [24] we know that the commutator subgroup G′(A) of G(A) is contained in the
closure of G(F )G(Fv). As G′(A) has no non-trivial one-dimensional representations,
we conclude that for all ϕ ∈ V∞ we have

(4.2) ϕ(g′) = ϕ(e),

for all g′ ∈ G′(A). Since the subspace V∞ is G(A)-invariant, (4.2) must hold for all
right translates of ϕ by elements of G(A). Hence

ϕ(xg) = ϕ(g), x ∈ G′(A), g ∈ G(A).

Since G′(A) is a normal subgroup of G(A), it follows that we must also have

ϕ(gx) = ϕ(g), x ∈ G′(A), g ∈ G(A),

i.e., every element of V∞ is invariant under the restriction of the representation π to
the subgroup G′(A). This implies that the representation π on V∞ factors through
G(A)/G′(A), which is an abelian group. Since irreducible admissible representations
of abelian groups are all one-dimensional, the space V∞ must be one-dimensional.
Finally, use the fact that V∞ is dense in V to conclude that V is also one-dimensional.

Theorem 4.5. — There is an absolute constant c > 0 with the following property.
Let π = ⊗vπv be an infinite-dimensional irreducible automorphic representation of G;
for G = PGL2 assume that π is not the automorphic representation associated with
an Eisenstein series induced from a Borel subgroup. Let v be a place with v /∈ SF ,
and ϕv the normalized spherical function of πv. Then for all α ∈ ∆(G(Fv),Sv(Fv))
we have

|ϕv(ϑ̌($v))| < q−c`v(ϑ).

Proof. — According to the result of Corollary 4.3, we recognize two cases:

The case where s.s. rank is equal to one. In this case, G is a form of PGL2 or
PGU3. For the case of PGL2, if G is not split, then it has to be a quaternion algebra,
and in this case by the Jacquet-Langlands correspondence, there is an irreducible
cuspidal automorphic representation π′ of GL2, such that for all v /∈ S, we have
πv = π′v as representations of GL2(Fv). Since the local representation obtained this
way is unramified, there must exist a pair of unramified quasi-characters χ and χ′ of
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F×v such that π′v = π(χ, χ′). Since this representation has trivial central character,
we must have χ′ = χ−1. In this case, if α is the unique positive root, we have

tv(α) =
(

1
$v

)
.

Next if χ 6= 1, by the formula of Casselman ([13]), we have

ϕv

(
1

$v

)
=

q−
1
2

1 + q−1
{1− q−1χ($v)−2

1− χ($v)−2
χ($v) +

1− q−1χ($v)2

1− χ($v)2
χ($v)−1}

=
q−

1
2

1 + q−1
(χ($v) + χ($v)−1).

The same formula holds for χ = 1 by analytic continuation. Since χ is an unramified
character, we have χ = | · |s, for some complex number s. We now need some non-
trivial estimate towards the Ramanujan conjecture. For example, by a recent result
of Kim and Shahidi ([23]), we know that

−1
6
≤ <(s) ≤ 1

6
.

This implies that ∣∣∣∣ϕv

(
1

$v

)∣∣∣∣ ≤ 2q−
1
2+ 1

6

1 + q−1
< 2q−

1
3 .

When G = PGL2 and π is cuspidal, the result follows from the same result of Kim
and Shahidi. Next, let G be an inner form of the quasi-split group G′ = PGU(2, 1).
Suppose that G′ splits over a quadratic extension E/F . By Rogawski’s theorem [33],
there is an automorphic cuspidal representation π′ = ⊗vπ

′
v of PGU(2, 1) such that

for all v /∈ S, πv = π′v as representations of G′(Fv). Consider the base change of π′

from PGU(2, 1)/F to PGL3/E, again established by Rogawski. At this point, use the
result of Oh on PGL3.

The case where the s.s. rank is larger than one. By Proposition 4.4, πv is not
one-dimensional (for v /∈ SF ), and the assertion follows from Corollary 4.3.

Part II. GEOMETRY AND HEIGHT FUNCTIONS

5. Geometry

In this section we recall the constructions and basic geometric properties of won-
derful compactifications.
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5.1. Flag varieties. — An important class of varieties, homogeneous for the action
of G is the class of generalized flag varieties

YI := PI\G.

The geometry of these, and their subvarieties (for example, Schubert varieties) plays
an important role in different branches of algebra, e.g., representation theory and
enumerative geometry.

We now recall some basic facts about these varieties. For λ ∈ X∗(Tsc) we can
define a line bundle Lλ on Bsc\Gsc = B\G by

Gsc ×Ga/ ∼, with (g, a) ∼ (gb, λ−1(b)a),

g ∈ Gsc, b ∈ Bsc and a ∈ Ga. The canonical projection

π : Lλ → B\G

is given by
π(g, a) = Bg.

This gives an identification of

Pic(Y ) = X∗(Tsc).

Under this identification, the (closures of the) ample and the effective cones of Y
correspond to the positive Weyl chamber, that is, the set of nonnegative linear com-
binations of ωi. The anticanonical class is given by

−KY = 2ρ.

5.2. Wonderful compactifications. —
First we work over an algebraically closed field of characteristic zero.

Proposition 5.1. — [15],[12] There exists a canonical compactification of a con-
nected adjoint group G: a smooth projective variety X such that

– G ⊂ X is a Zariski open subvariety and the action of G× G on G, by

(g1, g2)(g) = g1gg
−1
2 ,

extends to an action of G× G on X;
– The boundary X \ G is a union of strict normal crossings divisors Di (for i =

1, ..., r). For every I ⊂ [1, ..., r] the subvariety DI = ∩i∈IDi is a G × G-orbit
closure. All G× G-orbit closures are obtained this way;

– X contains a unique closed G× G-orbit Y = G/B× G/B;
– The components DI are isomorphic to fibrations over G/PI × G/PI with fibers

canonical compactifications of the adjoint form of the associated Levi groups.
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We review several constructions of wonderful compactifications over algebraically
closed fields (of characteristic 0), throughout G is semi-simple adjoint:

Via Hilbert schemes: Let P ⊂ G be a parabolic subgroup and Y = G/P the
associated flag variety. Then X is the G×G-orbit closure of the diagonal of the Hilbert
scheme of Y × Y (see [11]).

Via representations: Let λ be a regular dominant weight of G and Vλ the ir-
reducible representation of G with highest weight λ. We have an action of G × G
on

End(Vλ) = Vλ ⊗ V ∗λ .

Taking the closure of the orbit through (the image of) the identity in P(End(Vλ)) we
obtain the canonical compactification X.

Via Lie algebras: Let g = Lie(G) and n = dim(G) = dim(g). The variety
L of Lie subalgebras of the Lie algebra g ⊕ g can be regarded as a subvariety of
the Grassmannian Gr(n, 2n). It contains g, embedded diagonally. Moreover, L is
a projective G × G-variety. Taking the closure of the G × G-orbit X◦ through g we
obtain X ⊂ L. Since G is an adjoint group, the adjoint representation of G on G×G is
faithful and we may identify X◦ with the variety G, or more precisely G×G/Diag(G).

We proceed to describe the boundary X \ G in the latter representation. Let
P = PI (with I ⊂ [1, . . . , r]) be a standard parabolic subgroup of G. Choose a Levi
decomposition P = M · U. Let LP be the set of pairs

(m+ u,m+ u′), with m ∈ Lie(M), u, u′ ∈ Lie(U).

Then LP is a subalgebra of g ⊕ g. Next let C = {P} denote the conjugacy class of
parabolic subgroups of G containing P. We note that the G×G-orbit of LP in L does
not depend on the particular choice of M in the Levi decomposition of P; in fact, it
depends only on the class {P}. We denote this orbit by DC . When P is maximal, the
orbit DC is a smooth irreducible divisor in X. Moreover,

X \ G =
⋃
C
DC ,

the union over classes of maximal parabolics. As the classes C of maximal parabolics
in G are in bijection with the simple roots α of T, we may write then

DC = Di,

if C is the maximal parabolic that corresponds to αi.

For w ∈ W we denote by X(w) the closure of BwB ⊂ G in X. The B × B -
stable boundary components Di correspond to X(sw0si). Every line bundle L on X
restricts to the unique closed G × G-orbit Y = G/B × G/B; we get a restriction map
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Pic(X) → Pic(Y ). Recall, that in Section 5.1 we have identified the Picard group of
G/B with X∗(Tsc).

Proposition 5.2. — Let X be the canonical compactification of G as above.
– The Picard group Pic(X) is freely generated by the classes [Di];
– The image of Pic(X) ↪→ Pic(Y ) consists of classes

L(λ) = (λ,−w0λ) ⊂ Pic(Y ) = Pic(G/B)× Pic(G/B);

– The (closed) cone of effective divisors is given by

Λeff(X) := ⊕r
i=1R≥0[Di].

More precisely, if λ ∈ X(Tsc) is a dominant weight then the line bundle L(λ)
on X has a unique (up to scalars) global section fλ with divisor

div(fλ) =
r∑

i=1

〈λ, α∨i 〉Di.

Moreover, fλ is an eigenvector of Bsc × Bsc with weight (−w0λ, λ).
– The anticanonical class is given by

−KX = L(2ρ+
r∑

i=1

αi).

Proof. — See [15] and [12].

Let L be a line bundle on X. Then L admits a G-linearization - there exists a
Gsc × Gsc-action on π : L→ X such that for (g1, g2) ∈ Gsc × Gsc, l ∈ L one has

π((g1, g2) ◦ l) = (ḡ1, ḡ2) ◦ π(l) ,

where ḡ is the image of g ∈ Gsc in G. We have a representation ρ = ρL of Gsc × Gsc

on the space of global sections H0(X,L).

Theorem 5.3. — Let λ ∈ X∗(Tsc) and L(λ) be the associated line bundle on X. Let
ρλ be the representation of Gsc × Gsc on H0(X,L(λ)). Then:

– The representation ρλ decomposes with multiplicity one;
– Let γ be the dominant weight on Tsc (relative to Bsc). Let ξγ be the associated

irreducible representation of Gsc and ηγ the irreducible representation of Gsc ×
Gsc defined by

ηγ = ξγ × ξ∗γ .

Then each irreducible component of ρλ is of the form ηγ for some dominant
weight γ of Tsc. Moreover, if ηγ appears in ρλ, then γ has the form

γ = λ−
r∑

i=1

niλi ,

with ni ∈ Z≥0, for all i = 1, ..., r.



34 JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL

– In particular, the restriction of ρλ to Gsc × {1} is a sum, with multiplicity, of
ξγ ’s with γ as above.

We now return to the case of nonsplit G and discuss the canonical F -structure on
the wonderful compactification X of G as well as the corresponding Galois action on
the boundary divisors Dα, for α ∈ ∆.

A summary can be given as follows: in the Lie algebra model, the Galois group Γ
operates on Gr(n, 2n) in an obvious way and preserves L and X◦. Hence Γ operates
on X. Since Γ acts on the parabolic subgroups of G, it also permutes the boundary
divisors

σ(Dα) = Dσ(α).

Here if C = {P}, then σ(C) = {σ(P)}.

The F -group G′ is defined by a homomorphism

θ : Γ → Out(Gsp) ,

to the group of outer automorphisms relative to the pair (Bsp,Tsp) and Bsp,Tsp chosen
as above and both defined over F . We have then an action of Γ on ∆. Moreover,

σ(Dα) = Dσ(α) for α ∈ ∆ .

Finally, since G is obtained G′ by inner twisting, the two actions of Γ on the classes
of maximal parabolics in G(E) and G′(E) coincide.

In detail, let λ =
∑r

i=1 ωi and Vλ be the corresponding representation with highest
weight λ. We first regard Vλ as a module for G′. As such, it is defined over F , since
λ ∈ X∗(T′)F (the action of Γ on X∗(T′) = X∗(T) via θ simply permutes the ωi). Let
L2λ be the corresponding line bundle on B′\G′. Then W := H0(B′\G′, L2λ) has an
F -structure WF . Denote by ρ = ρλ the absolute representation of G on W . By the
Borel-Weil theorem, we may identify V2λ with WF ⊗F F̄ , this gives an action of Γ on
V2λ:

σ(w ⊗ a) = w ⊗ σ(a), for w ∈WF , a ∈ F̄ .
We have the twisted action σ̃ = c(σ) · σ of Γ on G(F̄ ), the corresponding twisted
action on W ⊗W ∗ is given by

σ̃ · w = ρ⊗ ρ∗(c(σ), c(σ)) · σ.

If we identify End(W ) = W ⊗W ∗ we see that this action is

(5.1) σ̃(A) = ρ(c(σ))σ(A)ρ(c(σ))−1.

Let eW ∈ End(W ) be the identity. Since W is defined over F , σ(eW ) = eW and
similarly, σ̃(eW )eW . Thus eW is rational for the twisted action.
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Remark 5.4. — The representation ρ is actually a representation of Gsc. However,
ρ is irreducible and therefore maps Zsc to scalars. It follows that (5.1) is well-defined.

We use the twisted action to define an F -structure on End(W ). We claim then
that the map

G 3 g 7→ ρ(g) · eW = ρ(g)
is F -rational. Consider

ρ(c(σ)σ(g))eW =ρ(c(σ)σ(g)c(σ)−1)eW

=ρ(c(σ))ρ(σ(g))eW ρ(c(σ))−1

=ρ(c(σ))σ(ρ(g)eW )ρ(c(σ))−1.

The latter equality holds since eW is F -rational. Thus

ρ(c(σ)σ(g))eW = σ̃(ρ(g)eW ).

which proves the assertion.
For g ∈ G, let ρ̄(g) be the image of ρ(g) in P(W ). Then

ρ̄ : G → P(End(W ))

is also F -rational (equivalently, ρ̄ is Γ-equivariant for the twisted action). Thus ρ̄(G)
and its closure X in P(End(W )) are Γ-stable. This gives a canonical F -structure for
the variety X and on

Y :=
⋂

α∈∆

Dα,

(the G × G-orbit through the image of v2λ ⊗ v∗2λ in P(End(W )), where v2λ is “the”
highest weight in V2λ, see 5.1 of [15]). Moreover, we have an equivariant isomorphism
of F -varieties

Y ' G/B× G/B−.

Indeed, the F̄ -irreducible boundary components Dα of X \ G are permuted by Γ.
Each component Dα is G × G-stable and in particular stable for the action of the
diagonal Diag(G):

A 7→ ρ(g)Aρ−1(g).
From (5.1) we have

σ̃(Dα) = σ(Dα).
Thus Y is invariant for the standard action.

We now prove that the G×G-action on X is F -rational for the twisted F -structure.
For this we need to see that for x ∈ X,

σ̃((g1, g2))x = σ̃(g1, g2)σ̃(x).

In fact, this holds for all y ∈ P(End(W )). We have to show that

σ̃(ρ(g1)Aρ(g2)−1) = ρ(σ̃(g1))σ̃(A)ρ(σ̃(g2)−1).

The left side is
ρ(c(σ))σ(ρ(g1)Aρ(g2)−1)ρ(c(σ))−1,
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and the right side

ρ(c(σ))ρ(σ(g1))ρ(c(σ))−1ρc(σ)(A)ρ(c(σ))−1ρ(c(σ))ρ(σ(g2))−1ρ(c(σ))−1 =

ρ(c(σ))ρ(σ(g1))σ(A)ρ(σ(g2))−1ρ(c(σ))−1.

The assertion follows, since σ and ρ(g), g ∈ G, commute.

The restriction of line bundles to the unique closed G × G-orbit Y induces an
injection

(5.2) Pic(X) → Pic(Y ).

Note that since each divisor Dα is G×G-stable, the two actions of Γ on X give rise to
the same action on Pic(X). Moreover, since Y is defined over F , the injection (5.2)
is Γ-equivariant. Here

Pic(Y ) ' X(T′)⊕ X(T′)

as Γ-modules. The image of Pic(X) is exactly the set of pairs (λ,−λ), where λ ∈
X∗(T′), with boundary divisors Dα corresponding to (α,−α). The F -irreducible
boundary components are divisors

DJ =
∑
α∈J

Dα,

for any Γ-stable subset J ⊂ ∆(G′,T′).

6. Heights

6.1. Metrizations. — Here we recall the definitions of (adelically) metrized line
bundles and the associated heights.

Definition 6.1. — Let X be a smooth projective algebraic variety over a number
field F . A smooth adelic metrization of a line bundle L on X is a family of v-adic
norms ‖ · ‖v on L⊗F Fv for all v ∈ Val(F ) such that

– for v ∈ S∞ one has ‖ · ‖v is C∞;
– for v /∈ S∞ the norm of any local section of L is locally constant in v-adic

topology;
– there exist a finite set S ⊂ Val(F ), a flat projective scheme (an integral model)
X over Spec(OS) with generic fiber X together with a line bundle L on X such
that for all v /∈ S the v-adic metric is given by the integral model.

Example 6.2. — If L is generated by global sections (si) and s is a section such
that s(x) 6= 0 then

‖s(x)‖v := max
i

(| si

s
(x)|v)−1.

This defines a v-adic metric on L, which, of course, depends on the choice of the basis
(si). An adelic metric on L is a collection of v-adic metrics (for all v) such that there
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exists an F -rational basis (sj) of H0(X,L) with the property that for all but finitely
many v the v-adic metric on L is defined by means of this basis.

An adelically metrized line bundle L induces local and global heights: for any local
section s of L and any x with s(x) 6= 0 define

Hs,L,v(x) = ‖s(x)‖−1
v .

For x ∈ X(F ) the product formula ensures that the global height

HL(x) =
∏

v∈Val(F )

Hs,L,v(x)

is independent of the choice of s. We write L = (L, ‖ · ‖) when we want to emphasize
that L ∈ Pic(X) is adelically metrized.

Let F be a number field and V a finite-dimensional vector space over F . Thus V is
the set of F -rational points V (F ) of a linear variety V defined over F . For v ∈ Val(F )
we set Vv := V ⊗F Fv.

Suppose first that v is non-archimedean. Let Λv be an Ov lattice in Vv. We define
the norm

‖ · ‖Λv = ‖ · ‖v

on Vv (associated to Λv) as follows. Let n = dimV and let

Bv := {ξ(1)v , . . . , ξ(n)
v }

be an Ov-module basis of Λv. Let v ∈ Vv have the form

v =
n∑

j=1

ajξ
(j)
v .

We set
‖v‖Λv = max

1≤j≤n
(|aj |v) .

We see at once that ‖ · ‖Λv
depends only on Λv and not on the particular choice of a

basis of Bv.
Now suppose that v is archimedean and let

Bv := {ξ(1)v , . . . , ξ(n)
v }

be a basis of the Fv-vector space Vv. For

v =
n∑

j=1

ajξ
(j)
v

we set
‖v‖Λv

= (
∑

1≤j≤n

|aj |2v)1/2

(for v complex, we set |z|2v = z · z̄).
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6.2. Heights on the canonical compactification. — First we describe the sit-
uation for Gsp. Recall that the (classes of) irreducible boundary components Dα,
α ∈ ∆ = ∆(Gsp,Tsp), generate Pic(X). Each divisor class [Dα] has a unique Gsp×Gsp-
stable representative - namely this component. We put Lα = OX(Dα). This gives us
a canonical splitting of the projection

Div(X) → Pic(X),

which allows us to identify Pic(X) with the set of all integral linear combinations

L =
∑
α∈∆

sαLα,

and Pic(X)C with formal sums
∑

α∈∆ sαLα.

We fix an integral model Lα on the line bundle Lα, for α ∈ ∆. If L′α is another
model then the induced integral structures on Lα,v, resp. L′α,v coincide for almost all
v. An integral model defines a height function

Hα = HLα
: X(F ) → R>0

as in Section 6.1. Given an L =
∑

α∈∆ sαLα, with sα ∈ C, we may define a height

HL : X(F ) → C
x 7→

∏
αHα(x)sα

We make the above construction more precise and explicit, by defining local heights

Hα,v : G(Fv) → R>0, for all α.

For each Lα we fix the (unique, up to scalars) F -rational global section sα ∈ H0(X,Lα),
which is Gsp × Gsp-invariant and non-vanishing on Gsp. Using the integral structure,
put, for gv ∈ Gsp(Fv) and α ∈ ∆,

Hα,v(gv) := ‖sα(gv)‖−1
v and Hα :=

∏
v

Hα,v.

Proposition 6.3. — There is a lattice Λ in some representation of Gsp with the
following property: Let Kf be the stabilizer of Λf in Gsp(Af ). Then for almost all
finite v ∈ Val(F ) and for every

L =
∑
α∈∆

nαLα ∈ Pic(X), with nα ≥ 0

we have
HL,v(k1gk2) = HL,v(g), for all g ∈ G(Fv), k1, k2 ∈ Kv.

Proof. — If suffices to consider L = Lλ, for regular dominant weights λ. We may
assume that the action of Gsp×Gsp on L is defined over F (passing to a multiple of L,
see [27], Section 3, Prop. 1.5). Fix a lattice Λ ⊂ H0(X,L)F , it defines an OF -integral
structure on L.
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6.3. Local heights. — Let L = Lλ be a very ample F -rational line bundle on
X and fix a lattice Λ ⊂ H0(X,L). Over the (fixed) splitting field E, there is a
distinguished s ∈ H0(X,L) which is Gsc × Gsc-invariant and non-vanishing on G(E).
Moreover, s can be written as a product of sections sα ∈ H0(X,Lα), α ∈ ∆, with
support in the E-rational divisor in Dα. Thus, for σ ∈ Γ = ΓE/F we have

σ(s) = c(σ) · s
for some c(σ) ∈ E×. By Hilbert’s theorem 90, we may assume, after replacing s by a
suitable multiple, that s is fixed by Γ, i.e., s is F -rational.

We have an OE-integral structure on L over E, induced from Λ⊗OF
OE . Over E,

we have a decomposition

H0(X,Lλ) = ⊕γ(Vγ ⊗ V ∗γ ),

as Gsc×Gsc-modules. Here the sum is over dominant γ of the form γ = λ−
∑

α∈∆mαα,
with mα ≥ 0. The following lemma is used to calculate the local height integrals.

Lemma 6.4. — One may choose SF large enough, so that for v /∈ SF , if gv = kvtvk
′
v

with kv ∈ Kv and tv ∈ S(Fv)+, then

Hv(gv) = |χλ(tv)|w.
Here χλ is the rational character of T associated with the dominant weight λ.

Proof. — After replacing Lλ by a positive integral multiple we can assume that λ is
trivial on the center of Gsc. In particular, χλ(tv) ∈ F×v . Since Lλ is G×G-linearizable,
we have an F -rational representation % of G× G on H0(X,Lλ). Then for gv ∈ G(Fv)
we have

Hv(gv) = ‖%(gv)‖Λv

where Λv = Λ⊗OF
Ov.

Let ΛE ⊂ H0(X,L)E = VE be an “admissible” lattice, i.e., ΛE is homogeneous
with respect to the decomposition of V = ⊕γVγ into weight spaces. More precisely,
the representation of Gsp × Gsp on V has a Z-form on ΛZ with ΛZ a homogeneous
lattice in VQ. We set ΛOE

:= ΛZ ⊗Z OE and ΛOF
:= ΛOE

∩ VF . Let G be the group
scheme structure on the double stabilizer of ΛOF

and Kv = G(Ov), Kw = G(Ow). We
choose SF so that for all v /∈ SF and w | v

Λw = Λv ⊗Ov
Ow.

We choose | · |w so that its restriction to Fv coincides with | · |v. Then the restriction
of ‖ · ‖Λw

to Vv is ‖ · ‖Λv
and, for g ∈ G(Fv)

Hv(gv) = ‖%(gv)‖Λw
.

Write, according to Corollary 1.3,

gv = awxva
−1
w

with xv ∈ G′(Fv), aw ∈ G(Ow) = Kw. Then

Hv(gv) = ‖%(aw)%(xv)%(aw)−1‖Λw
= ‖%(xv)‖Λw
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We set next
K′v := Kw ∩ G′(Fv).

Recall that G(Fv) ⊂ G(Ew),G′(Fv) ⊂ G(Ew). By Bruhat-Tits theory, we have

G′(Fv) = K′vS′(Fv)+K′v.

Write accordingly, xv = k1tvk2, with k1, k2 ∈ K′v, tv ∈ S′(Fv)+. Then

Hv(gv) = ‖%(tv)‖Λw .

Next choose a basis B = {vµ} of Λw consisting of weight vectors for Tsp
v . Thus

Hv(gv) = max
µ
|µ(tv)|w

Each µ has the form
µ = χλ ·

∏
α∈∆

α−mα ,

with mα ∈ N. Since tv ∈ S′v(Fv)+, we have |α(tv)|w = |α(tv)|v ≥ 1. Hence finally

(6.1) Hv(gv) = |χλ(tv)|v.

6.4. Local integrals representing heights. — Let D be a central simple algebra
of rank m over the number field F . Also let Λ be an arbitrary lattice in D. We set,
for each place v, Dv = D ⊗F Fv, and if v is non-archimedean, Λv = Λ ⊗OF

Ov. In
this subsection, we define a family of norms ‖ · ‖Λv

on Dv, one for each place v of F ,
subject to a certain compatibility condition.

– non-archimedean v: Choose a basis {ξv
1 , . . . , ξ

v
k} for Dv with ξv

i ∈ Λv = Λ⊗OOv

for all i. For g ∈ Dv, write g =
∑

i ci(g)ξ
v
i and set

‖g‖v = ‖g‖Λv := max
i=1,...,k

{|ci(g)|v}.

It is easy to see that this norm is right and left Λ×v -invariant and therefore
independent of the choice of the basis.

– archimedean v: Fix a Banach space norm ‖·‖v = ‖·‖Dv on the finite dimensional
real (or complex) vector space Dv = D⊗F Fv.

Clearly, for c ∈ Fv and g ∈ Dv, we have

‖cg‖v = |c|v · ‖g‖v.

Consequently, for c ∈ F and g ∈ D, we have

(6.2)
∏
v

‖cg‖v =
∏
v

‖g‖v,
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by the product formula. This is the compatibility condition mentioned above. Define
a function Ψv as follows:

Ψv =
{

characteristic function of Λv, for v /∈ S∞,
exp(−π‖ · ‖2v) for v ∈ S∞.

Lemma 6.5. — For all v ∈ Val(F ), all gv ∈ Dv and all s with <(s) > 0 one has∫
F×v

Ψv(agv)|a|s d×a = ζF,v(s) · ‖gv‖−s
v .

Here ζF,v(s) is the v-local Euler factor of the zeta function of F .

For Φv ∈ C∞c (Dv) and <(s) > 0 we set

Hv(s, g; Φv) := ζF,v(s)−1

∫
F×v

Φv(ag)|a|s d×a,

where g ∈ Dv. For g = (gv)v ∈ D(A) define the global height function:

H(g) =
∏

v∈Val(F )

Hv(g) =
∏

v∈Val(F )

‖gv‖v.

Similarly, if Φ = ⊗vΦv is a global Schwartz-Bruhat function on D(A), we define

H(s, g; Φ) =
∏

v∈Val(F )

Hv(s, gv; Φv).

We extend the functionalH(s, g; ·) to C∞c (D(A)) by linearity. By the product formula,
both H(g) and H(s, g; Φ), (for Φ ∈ C∞c (D(A))) are well-defined on the projective
group of D.

6.5. Complexified height function. —

Notation 6.6. — Let T be the set of all Galois invariant s = (sα)α∈∆(G′,T′) (c.f.
2.9 for the definition of Galois invariance). The element 0 ∈ T is defined by setting all
coordinates equal to zero. For ε ∈ R, the set Tε is the set of s = (sα)α ∈ T such that
<(sα) > κα + 1 + ε, for all α. Starting with an element s = (sα)α∈∆(G′,T′) and v /∈ S,
we obtain a tuple sv = (sv

ϑ) indexed by ∆(G′(Fv),S′v(Fv)) by setting sv
rv(ι∗(α)) = sα;

this is well-defined. For s, t ∈ T and v /∈ S, we set

< s, t >v=
∑

ϑ∈∆(G′(Fv),S′v(Fv))

sv
ϑt

v
ϑ.

When there is no danger of confusion, we write s for sv. For each subset R of C, we
set T (R) to be the collection of s = (sα)α with sα ∈ R for all α.

We go back to Lemma 6.4. For v /∈ SF , we have expressed Hv(g) in terms of
χλ ∈ X∗(T). Write

χλ =
∏

α∈∆(G′,T′)

αnα



42 JOSEPH SHALIKA, RAMIN TAKLOO-BIGHASH and YURI TSCHINKEL

and λ =
∑

α∈∆(G,T) nαα, nα ∈ N. We know that (nα)α∈∆(G′,T′) ∈ T . Now, let
s := (sα)α∈∆(G′,T′) ∈ T . Suppose v /∈ SF , and gv ∈ G′(Fv) is written as kvtvk

′
v with

tv ∈ S′v(Fv)+ and kv, k
′
v ∈ K′v. We define

(6.3) Hv(s, gv) =
∏

α∈∆(G′,T′)

|α(tv)|sα
v .

Observe that

(6.4) Hv(s, gv) =
∏

ϑ∈∆(G′(Fv),S′v(Fv))

|ϑ(tv)|`v(ϑ)sϑ
v .

If we use Lemma 1.3 to identify the groups G(Fv) and G′(Fv), we get a complexified
local height function on G(Fv). Let S = SF and suppose g = (gv)v/∈S ∈ G(AS). We
define

(6.5) HS(s, g) :=
∏
v/∈S

Hv(s, gv).

6.6. Local height integrals I. — Consider the integral of the complexified local
height function

(6.6) Jv(s) :=
∫

Gv

Hv(s, g)−1 dg

and its versions.

Theorem 6.7. —

1. For all v /∈ S∞ the integral Jv(s) is a holomorphic function of s for s ∈ T−1.
2. Let v be an archimedean valuation and ∂ any element of the universal enveloping

algebra. Then

Jv,∂(s) :=
∫

G(Fv)

∂(H(s, g)−1) dg

is holomorphic for s ∈ T−1.

Proof. — We will only prove the first part; the second part is similar. Locally, every
two local integral structures give rise to essentially equivalent height functions; so, we
replace the local integral structure so that the resulting height function is invariant
under Kv, a good maximal compact subgroup. Let σ be the vector consisting of the
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real parts of the components of s. The local height integral is majorized by∑
t∈S(Fv)+

∑
ω∈Ωv

H(σ, tω)−1vol (KvtωKv)

�
∑

t∈S(Fv)+

H(σ, t)−1δB(t)

=
∏

ϑ∈∆(G(Fv),Sv(Fv))

∞∑
l=0

δB(ϑ̌($l
v))H(σ, ϑ̌($l

v))−1

=
∏

ϑ∈∆(G(Fv),Sv(Fv))

∞∑
l=0

q−(σϑ−κϑ)l`(ϑ)
v .

The result is now immediate.

Corollary 6.8. — In the non-archimedean situation, for each ε > 0 there is a
constant Cv(ε), such that |Jv(s)| ≤ Cv(ε) for all s ∈ T−1+ε. In the archimedean
situation, for all ε > 0 and all ∂ as above, there is a constant Cv(∂, ε) such that
|Jv,∂(s)| ≤ Cv(∂, ε) for all s ∈ T−1+ε.

6.7. The integral of the local height function II. — Let G be a connected
algebraic group over Fv, v outside a finite set of places, and g its Lie algebra of
invariant vector fields. Let X be a smooth equivariant compactification of G. Denote
by D = X\G the boundary. We assume that D is a divisor with strict normal
crossings. Let TX be the tangent bundle of X. We have a restriction map

(6.7) H0(X, TX) → TX,1 = g

obtained by evaluating a vector field at the neutral element 1 ∈ G. Conversely, given
∂ ∈ g, there is a unique vector field ∂X such that for any open subset U of X and
for any f ∈ OX(U), ∂X(f)(x) = ∂gf(g.x)|g=1. The map ∂ 7→ ∂X is a section of the
restriction map. Let ∂1, . . . , ∂n be a basis for g. Then δ := ∂X

1 ∧ · · · ∧ ∂X
n is a global

section of the line bundle det TX = K−1
X . Moreover, δ does not vanish on G. Because

of these considerations, if we know that K−1
X is ample, Peyre’s Tamagawa measure

restricts to Weil’s Tamagawa measure on G(Fv).
If µv is the local Weil-Tamagawa measure, for v outside of a finite set of places, we

have

(6.8) µv(G(Ov)) =
#G(kv)
qdim G
v

.

Therefore, we normalize the local measure by the appropriate factor to guarantee that
µ(G(Ov)) = 1 for almost all v.

Let A be a subset of ∆(G,T), we set

DA =
⋂

α∈A

Dα
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and

D0
A = DA\

 ⋃
A$A′

DA′

 ,

for Dα as defined in 5.2. The following theorem is the analog of Theorem 9.1. of [14]
in this situation, with the same proof (see also Theorem 3.1. of [17]).

Theorem 6.9. — We have

(6.9)
∫

G(Fv)

Hv(s, gv)−1 dgv =
1

#G(kv)

∑
A

#D0
A(kv)

∏
α∈A

qv − 1
qsα−κα+1
v − 1

.

Proof. — We split the integral along residue classes modulo pv. Let x̃ ∈ X(kv), kv

the residue field of Fv, and A = {α | x̃ ∈ Dα}, so that x̃ ∈ D0
A.

We can introduce local (étale) coordinates xα (α ∈ A), and yβ (β ∈ B) with #A+
#B = dimX around x̃ such that, locally, the divisor Dα is defined by the vanishing of
xα. Then the local Tamagawa measure identifies with the measure

∏
dxα×

∏
dyβ on

pA
v × pB

v . If dx denotes the fixed measure on G(Fv), one has the equality of measures
on G(Fv) ∩ red−1(x̃):

(6.10) dx =
qdim X
v

#G(kv)
Hv(ρ, x)dµv =

qdim X
v

#G(kv)

∏
α∈A

q(κα+1)v(xα)
v

∏
dxα

∏
dyβ .

Consequently,∫
red−1(x̃)

Hv(s, x)−1dx

=
qdim X
v

#G(kv)

∫
pA

v ×pB
v

q
−

P
α∈A(sα−κα−1)v(xα)

v

∏
dxα

∏
dyβ

=
qdim X
v

q#B
v #G(kv)

∏
α∈A

∫
pv

q−(sα−κα−1)v(xα)
v dxα

=
1

#G(kv)

∏
α∈A

qv − 1
qsα−κα
v − 1

.

We have used the identity∫
pv

q−sv(x)
v dx =

∞∑
n=1

q−sn
v vol

(
pn

v\pn+1
v

)
=

∞∑
n=1

q−sn
v q−n

v

(
1− 1

qv

)
=

1
qv

qv − 1
q1+s
v − 1

.
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6.8. An application to volumes. — We start with the following lemma in the
non-archimedean situation:

Lemma 6.10. — Let Kv be a be a good maximal compact subgroup of (G(Fv),S(Fv))
so that the Cartan decomposition G = KvS(Fv)+ΩKv holds. Normalize measures so
that vol(Kv) = 1. Then for all ad ∈ S(Fv)+Ω, we have

(6.11) vol (KvadKv) � δB(a).

As Ω is a finite set, this is an immediate consequence of Lemma 4.1.1 of [38]. Below
we need more detailed information on the behavior of the the above volume in the
quasi-split situation. The following lemma suffices for our purposes; the analogous
statement for simply-connected is classical. For split groups, the lemma is contained
in [21].

Lemma 6.11. — There exists a constant c, independent of v, such that for all t ∈
S(Fv)+, one has

vol(KvtKv) ≤ δB(t)(1 +
c

qv
).

Proof. — We use Theorem 6.9. The left hand side of (6.9) is obviously equal to∑
t∈S(Fv)+

H(s, t)−1vol(KvtKv).

The comparison of this expression with the right hand side of (6.9) will give an explicit
formula for the volume from which our result will easily follow. Clearly the right hand
side of (6.9) is equal to

(6.12)
∑

t∈S(Fv)+

#D0
A(t)(kv)(q − 1)#A(t)

#G(kv)
δB(t)H(s, t)−1.

Here A(t) = {δ ∈ ∆(G,S); δ(t) = 1}; we will suppress dependence on t and simply
write A. Comparison gives

(6.13) vol(KvtKv) =
#D0

A(kv)(q − 1)#A(t)

#G(kv)
δB(t)

The algebraic set DA is the fiber variety DA → G/PA × G/PA, with fibers iso-
morphic to MA, the wonderful compactification of the adjoint group of MA, i.e. MA

modulo its center. Here MA is the Levi factor of the parabolic subgroup PA. Then
D0

A has fibers MA modulo its center. Consequently,

#D0
A(kv) = (q − 1)−#A [G(kv) : PA(kv)]2 ·#MA(kv).

If UA is the unipotent radical of PA, we have

#D0
A(kv)(q − 1)#A

#G(kv)
= [G(kv) : PA(kv)] (#UA(kv))−1.
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Let WA be the Weyl group of the Levi factor MA. By the Bruhat decomposition
we have

(6.14) G(kv) =
⋃

w∈WA\W/WA

PA(kv)w
(
UA(kv) ∩ w−1UA(kv)w

)
,

where UA the unipotent radical opposite to UA. It follows that

(6.15)
[G(kv) : PA(kv)]

#UA(kv)
=

∑
w∈WA\W/WA

#
(
UA(kv) ∩ w−1UA(kv)w

)
#UA(kv)

.

As there is only one double coset of maximal dimension, we have

(6.16)
[G(kv) : PA(kv)]

#UA(kv)
≤ 1 +

# (WA\W/WA)
qv

.

The lemma is now clear for split groups. In the quasi-split case, we need only consider
Γ-stable subsets A. For the complex parameters sα we have the extra assumption that
sα = sσα, for σ ∈ Γ. The proof of the lemma in the quasi-split case is similar, and
we omit it.

7. Regularization

In this section, for v /∈ SF , with a (slight) abuse of notation we identify G(Fv) and
G′(Fv); this is permissible, in light of Corollary 1.3.

7.1. Integrals from one-dimensional representations. — Let χ be a one-
dimensional automorphic representation of G, and S = SF . We proceed to study
analytic properties of the integral

(7.1) JS(s, χ) =
∫

G(AS)

HS(s, g)−1χ(g) dg

for Galois invariant s.

Theorem 7.1. — The product

(7.2)
∏
O

L(sO, ξO(χ))−1

∫
G(AS)

HS(s, g)−1χ(g) dg

is holomorphic on T−ε for some ε > 0. The product is over all Galois orbits in
∆(G′,T′).

Proof. — We have

(7.3) JS(s, χ) =
∏
v/∈S

Jv(s, χv)

where

(7.4) Jv(s, χv) =
∫

G(Fv)

Hv(s, gv)−1χv(gv) dgv.
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Since G is of adjoint type, the collection of elements {ϑ̌($v)}ϑ∈∆(G(Fv),Sv(Fv)) forms
a basis for the semigroup Sv(Fv)+. For any vector a = (aα)α ∈ T (N), we set

(7.5) tv(a) =
∏

ϑ∈∆(G(Fv),Sv(Fv))

ϑ̌($v)aϑ .

Write
1 + av =

∑
a∈T (N)

q−〈a,s〉v
v χv(tv(a))δ(tv(a)),

and
bv =

∑
a∈T (N)

q−〈a,s〉v
v χv(tv(a))(vol (Kvtv(a)Kv)− δ(tv(a))),

so that, by Cartan Decomposition, we have

(7.6) Jv(s, χv) = 1 + av + bv.

Observe that

1 + av =
∑
a

q−〈a,s〉v
v χv(tv(a))δ(tv(a))

=
∏
ϑ

( ∞∑
aϑ=0

χv(ϑ̌($v))aϑq−(sϑ−κϑ)aϑ`(ϑ)
v

)
=
∏
ϑ

1

1− χv(ϑ̌($v))q−(sϑ−κϑ)`(ϑ)
v

.

(7.7)

With Proposition 2.10 in mind, we proceed as follows. Let σ = (<(sα))α. Observe
that in the definition bv we may assume a 6= 0. Since for each v /∈ S,{

a | a 6= 0
}

=
⋃

ϑ∈∆(G′(Fv),S′v(Fv))

{
a; av

ϑ 6= 0
}
,

we have∑
v/∈S

∣∣bv∣∣ ≤∑
v/∈S

∑
ϑ

∑
aϑ 6=0

q−〈a,σ〉v
v

∣∣∣∣(vol (Kvtv(a)Kv)− δ(tv(a)))
∣∣∣∣

�
∑
v/∈S

q−1
v

∑
ϑ

∑
aϑ 6=0

q−〈a,σ〉v
v δ(tv(a)) (by Section 6.8)

=
∑
v/∈S

q−1
v

∑
ϑ

( ∞∑
aϑ=1

q−(σϑ−κϑ)aϑ`(ϑ)
v

) ∏
β 6=ϑ

( ∞∑
aβ=0

q
−(σβ−κβ)aβ`(β)
v

)

=
∑
v/∈S

q−1
v

∑
ϑ

q
−(σϑ−κϑ)`(ϑ)
v∏

β(1− q
−(σβ−κβ)`(β)
v )

�
∑

ϑ

∑
v/∈S

q
− 3

2
v <∞.
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We need to show the existence of a C > 0 such that |1 + av| ≥ C > 0 for all v. For
this

|1 + av| ≥
∏
ϑ

1
1 + q−σϑ+κϑ

v

≥
∏
ϑ

1
2
≥ 1

2r
,

with r = |∆(Gsp,Tsp)|. In fact, q
−σk+κϑk
v ≤ q

− 1
2

v < 1.

Note that for s ∈ T−ε the estimates are uniform, i.e., the quotient∏
v/∈S Jv(χ)∏

v/∈S(1 + av)

is holomorphic in T−ε. This finishes the proof of the theorem.

7.2. Integrals from infinite-dimensional representations. — Let π = ⊗vπv be
an infinite-dimensional automorphic representation of G which is not the automorphic
representation associated to an Eisenstein series when G = PGL2 (this exceptional
case was treated in [36]). For v /∈ SF , let ϕv,π be the normalized spherical function
associated to πv and set S = SF .

Theorem 7.2. — Let c > 0 be as in Theorem 4.5. The infinite product

(7.8) JS(s, π) :=
∏
v/∈S

∫
G(Fv)

ϕv,π(gv)Hv(s, gv)−1 dgv

is holomorphic for s ∈ T−c.

Proof. — We use the notation of Section 7.1. Set

(7.9) Jv(s, π) =
∫

G(Fv)

ϕv,π(gv)Hv(s, gv)−1 dgv.

By Cartan decomposition,

(7.10) Jv(s, π) =
∑
a

ϕv,π(tv(a))Hv(s, tv(a))−1vol(Kvtv(a)Kv).

Let

av =
∑

ϑ

q−sϑ
v vol (Kvϑ̌($v)Kv)ϕv,π(ϑ̌($v))

and

bv = Jv(s, π)− 1− av.

Fix an ε < 1
2 . We claim that there is a set S′ of places of F and a positive constant

C such that |1 + av| ≥ C for all v /∈ S′. Since |1 + av| ≥ 1 − |av|, we only need to
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show that |av| is asymptotically bounded away from 1. To see this we use the fact
that ‖ϕv,π‖L∞ ≤ 1. Hence for v outside a growing finite set S′

|av| ≤
∑

ϑ

q−σϑ+κϑ
v → 0,

for s ∈ T−ε. This implies that one can choose S′ such that if v /∈ S′ and s ∈ T−ε then
|1 + av| ≥ C, for a constant C that depends only on ε.

Next, we prove that
∑

v bv is absolutely and uniformly convergent on T−ε. Denote
by b(m)v the set of terms such that av has exactly m nonzero coordinates. We have

∑
v

|b(1)v| ≤
∑

ϑ

∑
v/∈S

∑
aϑ≥2

q−σϑaϑ+κϑaϑ
v ,

Note that aϑ 6= 1, because otherwise the term would appear in av. This implies that∑
v

|b(1)v| ≤
∑

ϑ

∑
v/∈S

q−2σϑ+2κϑ
v

1− q−σϑ+κϑ
v

�
∑

ϑ

∑
v/∈S

q−2σϑ+2κϑ
v

�
∑
v/∈S

q−2+2ε
v

<∞,

for ε < 1
2 .

To continue, we fix an ordering of the elements of ∆(G(Fv),Sv(Fv)), say {ϑ1, . . . , ϑl}.
Next we verify the claim for

∑
m≥2

∑
v |b(m)v|, where

b(m)v =
∑

1≤i1<i2<...im≤l

∑
ai1>0

∑
ai2>0

· · ·
∑

aim >0

q
−

Pm
j=1 aij

sij
v vol (Kvt

m
a Kv)ϕv,π(tma ).

Here tma corresponds to the vector with coordinates aij
at ij . Next

|b(m)v| ≤
∑

1≤i1<i2<...im≤l

∑
ai1>0

∑
ai2>0

· · ·
∑

aim >0

q
−

Pm
j=1 aij

(σij
−καij

)

v

≤
∑

1≤i1<i2<...im≤l

m∏
j=1

q
−σij

+καij
v

1− q
−σij

+καij
v

�
∑

1≤i1<i2<...im≤l

m∏
j=1

q
−σij

+καij
v
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<
∑

1≤i1<i2<...im≤l

qm(−1+ε)
v

� qm(−1+ε)
v .

Since m ≥ 2 and ε < 1
2 , the series

∑
v q

m(1−ε)
v is convergent, and we are done.

The holomorphy of (7.8) follows from the uniform convergence of

ΣS =
∑
v/∈S

|av(s)|

on compact subsets of T , which we now establish. Fix an ε′ > 0, and suppose that
s ∈ T−c+ε′ . Then

ΣS ≤
∑
v/∈S

∑
ϑ

q−σϑ
v vol (Kvϑ̌($v)Kv)|ϕv(ϑ̌($v)))|

�
∑
v/∈S

∑
ϑ

q−σϑ−c
v δ(ϑ̌($v)),

by Lemma of 6.8 and Theorem 4.5. Finally, since by definition

δ(ϑ̌($v))) = qκϑ`(ϑ)
v ,

we conclude that
ΣS �

∑
v/∈S

∑
ϑ

q−η−1
v <∞,

for some η > 0. This last inequality completes the proof of the theorem.

Corollary 7.3 (of the proof). — For all ε > 0 and all compacts K ⊂ T−c+ε there
exists a constant C(ε,K) such that

|JS(s, π)| ≤ C(ε,K).

for all π as above, and all s ∈ K.

Corollary 7.4. — Let K be as in Corollary 4.1. Let φ be an automorphic form in
the space of an automorphic representation π which is right invariant under K. Set
for s ∈ T�0

(7.11) J (s, φ) :=
∫

G(A)

H(s, g)−1φ(g)dg.

Then J (s, φ) has an analytic continuation to a function which is holomorphic on T−c.
Define Λ(φ) by ∆ ·φ = Λ(φ) ·φ. Then for each integer k > 0, and all ε > 0, and every
compact subset K ⊂ T−c+ε, there exists a constant C = C(ε,K, k), independent of φ,
such that

(7.12) |J (s, φ)| ≤ CΛ(φ)−k|φ(e)|
for all s ∈ K.

Proof. — Combine Corollary 7.3, Corollary 4.1, Theorem 6.7 and its corollary.
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Remark 7.5. — The value of the spherical function at the element ϑ̌($v), for ϑ =
rv(ι∗(α)) is related to the trace of the dominant weight ωα of the L-group applied
to the Langlands class of πv, and that the Euler product JS(s, π) is regularized by a
product of LS(sα, π, ωα). Additional information about these L-functions would lead
to better error terms in asymptotics of rational points.

8. Height zeta function

8.1. The zeta function. — The main tool in the study of distribution properties
of rational points is the height zeta function, defined on G(F )\G(A) by

Z(s, g) :=
∑

γ∈G(F )

H(s, γg)−1

Proposition 8.1. — The series defining Z(s, g) converges absolutely to a holomor-
phic function for s ∈ T�0. In its region of convergence

Z(s, g) ∈ C∞(G(F )\G(A)).

Furthermore, Z(s, g) and all of its group derivatives are in L2.

Proof. — It suffices to prove the absolute convergence of Z(s, g) for <(s) contained
in some open cone. This is a general fact (see Proposition 4.4 in [14]): since X is
projective the cone generated by ample classes is open in Pic(X)R. Fix some ample
classes Lj generating Pic(X). The restriction Z(sLj , 1) converges for <(s) > σj , for
some σj > 0. Now use the exponential property of heights. The proof of the last
statement is identical to the proof of Proposition 2.3. of [36].

Proposition 8.2. — The function F (g) = Z(s, g) satisfies the conditions of Lemma
3.1, and hence has a spectral expansion.

Proof. — Obvious from the proof of Theorem 7.1.

By Lemma 3.1, the zeta function has an expansion of the form

(8.1) Z(s, g) = S1(Z(s, ·), g) + S2(Z(s, ·), g).

Since the two sides are continuous functions of g, we may set g = e to get

(8.2) Z(s) = S1(Z(s, ·), e) + S2(Z(s, ·), e).

We use this expansion to determine the analytic behavior of the height zeta function.
The idea is to separate out the contribution of one-dimensional representations. Since
the definition of S1 involves the Laplace operator, the contribution of one-dimensional
representations to this term will cancel (we will see momentarily that because of the
uniform convergence of the inner sum the ∆n can be moved to the Eisenstein series).
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It remains to treat the contribution to S2. Since both sums are of the shape considered
in (3.26), without restriction of generality, we set

S[(s) =
[∑

X∈X

∑
P

n(A)−1

∫
Π(M)

∫
G(A)

 ∑
φ∈BP(π)X

E(x, φ)E(y, φ)

H(s, y)−1 dy dπ,

(8.3)

where the symbol [ indicates that the summation is over those classes which do not
correspond to one-dimensional representations. The fact that the innermost sum is
uniformly convergent for y in compact sets is included in the first half of the proof of
Lemma 4.4 of [1]. (Note that here too one needs to use Lemma 4.1 of [1]). Therefore,
we may interchange the innermost summation with the integral over G(A) to obtain

S[(s) =
[∑

X∈X

∑
P

n(A)−1

∫
Π(M)

 ∑
φ∈BP(π)X

E(e, φ)
∫

G(A)

E(y, φ)H(s, y)−1 dy

 dπ,

(8.4)

Theorem 8.3. — The function S[ has an analytic continuation to a function which
is holomorphic on T−c.

Proof. — For simplicity we assume that the height function is invariant under right
and left translation by the compact subgroup K as in Corollary 4.1. Keeping notation
of Corollary 7.4, we write

(8.5) S[(s) =
[∑

X∈X

∑
P

n(A)−1

∫
Π(M)

 ∑
φ∈BP(π)X

E(e, φ)J (s, E(φ, ·))

 dπ.

We now use the analytic continuation and bounds established in Corollary 7.4 to
obtain the analytic continuation of S[. Let K be a compact subset of T−c. Then
there is an ε > 0 such that K ⊂ T−c+ε. By Corollary 7.4, we know that for s ∈ K
and all k the expression

(8.6)
[∑

X∈X

∑
P

n(A)−1

∫
Π(M)

 ∑
φ∈BP(π)X

|E(e, φ)| · |J (s, E(φ, ·))|

 dπ

is bounded by

(8.7) C(ε,K, k)
[∑

X∈X

∑
P

n(A)−1

∫
Π(M)

 ∑
φ∈BP(π)X

Λ(φ)−k|E(e, φ)|2
 dπ.
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The convergence of the last expression is a consequence of Proposition 3.5. This
establishes Theorem 8.3.

Remark 8.4. — In the anisotropic situation, the desired analytic properties follow
from the analytic continuation of the spectral zeta function of the Laplace operator
on the corresponding compact quotient.

8.2. — Now we let a = (aα) ∈ TN, and for s ∈ C, we set

(8.8) Za(s) = Z(s(a1, a2, . . . , ar))

as a function of one complex variable. We need to determine the right most pole of
Za(s). Set

(8.9) σ(a) = max
i

1 + κα

aα
,

and let S(a) be the set of α, modulo Galois action, for which the maximum is achieved,
and m(a) = #S(a). The theorem implies that Za(s) has no pole for <(s) > σ(a).
The order of pole of

(8.10)
∫

G(A)

H(sa, g)−1 dg

at s = σ(a) is equal to m(a). Therefore, we need those automorphic characters χ such
that ξα(χ) = 1 for all α ∈ S(a). Clearly, we are interested only in those automorphic
χ which satisfy

(8.11)
∫

G(A)

H(s, g)−1χ(g) dg 6= 0

for some s in the domain of absolute convergence. This implies that χ is right, and in
this case also left, invariant under the compact open subgroup K of G(Af ). Let X(a)
be the collection of all such characters. By Lemma 3.1 of [20], the set X(a) is finite.
The proof of the above theorem shows that

Theorem 8.5. — The complex function Za(s) has a meromorphic continuation to
<(s) > σ(a)− ε, ε > 0, with an isolated pole at σ(a) of order m(a). Furthermore,

lim
s→σ(a)

(s− σ(a))m(a)Za(s) = lim
s→σ(a)

(s− σ(a))m(a)
∑

χ∈X(a)

∫
G(A)

H(s, g)−1χ(g) dg.

The limit is a positive real number.

Proof. — If we set

(8.12) Ga =
⋂

χ∈X(a)

ker(χ),

then the above limit is equal to

(8.13) lim
s→σ(a)

(s− σ(a))m(a)

∫
Ga

H(s, g)−1 dg.
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Again by Lemma 3.1. of [20], we know that the group Ga has finite index in G(A).
This easily implies that the above limit is a positive number.

A special case of particular interest is when aα = κα + 1, for all α. Because of its
relevance to the anticanonical class of the wonderful compactification (c.f. Proposition
5.2), we denote this a by κ. In this case, σ(κ) = 1, and m(κ) is equal to the number
of distinct Galois orbits in ∆(G,T).

Proposition 8.6. — Suppose χ is an automorphic character such that ξα(χ) = 1
for all α. Then χ ≡ 1.

Proof. — This easily follows from Proposition 2.9, Cartan decomposition, and the
weak approximation.

The proposition shows that X(a−K) = {1}.

Theorem 8.7. — The complex function Zκ(s) has a meromorphic continuation to
<(s) > 1 − ε for some ε > 0 with an isolated pole of order equal to the number of
Galois orbits in ∆(G,T) at s = 1. Furthermore,

lim
s→σ(κ)

(s− σ(κ))m(κ)Zκ(s) = lim
s→σ(κ)

(s− σ(κ))m(κ)

∫
G(A)

H(sκ, g)−1 dg.

8.3. Examples. —

Example 8.8 (PGLn). — Let Fv be a local field, G = PGLn and χv a one-dimensional
representation of G(Fv). Then χv has the form

χv(g) = ξv(det(g)),

where ξv is a character of F ∗v whose order divides n. In the global situation,

χ(g) = ξ(det(g)), g ∈ G(A),

with ξ of order dividing n, and ξ|F∗ = 1. Let α1, . . . , αn−1 be the simple roots, with
the convention that

(8.14) αi(diag (a1, . . . , an)) = ai/ai+1,

and

(8.15) α̌i(t) =
(
tIi

In−i.

)
It is not hard to see that

(8.16) 2ρ =
n−1∑
i=1

i(n− i)αi.

Let a = (a1, . . . , an−1) ∈ Nn−1. We define σ(a), S(a), m(a), and X(a) as above.
Suppose χ ∈ X(a). Then if χ = ξ ◦ det, we must have

(8.17) ξi = 1
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for all i ∈ S(a). In particular, if we set

(8.18) d(a) = gcd(n, gcd
i∈S(a)

i),

then we obtain that χ ∈ X(a), if and only if χd(a) = 1.

Example 8.9 (PGL4). — Here

2ρ(diag(a, b, c, d)) = c3bc−1d−3 = α3β4γ3,

if ∆ = {α = a/b, β = b/c, γ = c/d}. Thus a−K = (4, 5, 4). For a = (1, 1, 1) we have

σ(a) = max(4, 5, 4) = 5 and S(a) = {β}.
We have

β̌($) = diag($,$, 1, 1) and χv(diag($,$, 1, 1)) = ξv($2).

Let ξ have order two. By our analysis, χ = ξ ◦ det contributes to the asymptotic
constant.

Example 8.10 (PGU3). — Let E/F be a quadratic extension and GU3 ⊂ GL3(E)
the set of all g such that

T gσSg = λS, where S =

 1
1

1

 .

Let G = PGU3 and write λ = ν(g) for the similitude norm of g ∈ G. Then

Gsc = SU3,Z = Zsc = {ζ · I3, ζ3 = 1}.
The Galois action on Gsc is given by

ρ̃(g) = ST gρS−1

if ρ ∈ ΓF̄ /F restricts to σ ∈ ΓE/F and ρ̃(g) = gρ if ρ ∈ ΓF̄ /E .

We claim that j : Tsc(Fv) → T(Fv) is not surjective.

We have
Tsc(Fv) = {diag(a, ε, a) a ∈ E∗w}

and aa−σε = 1, with N(ε) = 1, whereas

T(Fv) = {diag(a, b, λa−σ), modulo scalars }
with λ = bσb. We can take t ∈ T(Fv) to have the form

diag(a, 1, a−σ).

Finally,
j(diag(a, 1, a−σ)) = diag(aε−1, 1, a−σεσ) = diag(u, 1, u−σ),

modulo scalars. One-dimensional automorphic representations of G(A) are given by

χ(g) = ξ(ν(g)).
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We need to consider the range of ν.
If v remains prime in E, then

T gσ
vSgv = λv · S

which implies λ3
v = Nw/v(det(gv)). Thus λv ∈ Nw/v(E∗w). If v splits in E, then there

is no condition on λv. Thus

ν : G(A) → NE/F (A∗E).

Also ν(αv · I3) = NW/V (αv) if v remains prime in E.
We may take for the adjoint group U3/Z, where Z = diag(ε, ε, ε) and NE/F (ε) = 1.

We have χ(g) = ξ(det(g)), g ∈ G(A). Here ξ ∈ N1(A)/N1(F ), ξ3 = 1. By Hasse’s
theorem,

Gm(AE) → N1(A)
Gm(E) → N1(E)
x 7→ x · x−σ

are surjective. We may view ξ as a character η of Gm(AE)/Gm(E) with η3 = 1. The
map

j : Tsc(Fv) → T(Fv)

is not surjective, since T(Fv) is the set of all diag(a, 1, a−σ) and Tsc(Fv) the set of
diag(a, ε, a−σ), with aa−σε = 1.

We wish to define

L(s, χ) = LE(s, η).

This leads to the necessity of introducing a norm map. In this example we have

Nw/v : T(Ew) → T(Fv)
t 7→ t · σ̃(t)

with σ̃(t) = StσS−1. Thus

Nw/v(diag(a, b, c) = diag(ac−σ, bb−σ, ca−σ).

Note that

1 → SUv/µ3 → U3/Z
det−→ N1

v/(N1
v)3 → 1

is exact.

9. Manin’s conjecture

In this section we apply Theorem 8.7 to obtain a result regarding the number of
rational points of bounded height on wonderful compactifications of the group G.

We first recall a standard Tauberian theorem.
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Theorem 9.1. — Let (cn)n∈N be a sequence of positive real numbers such that for
any B > 0 only finitely many cn < B. Let f be a function with values in R>0 such
that

Z(s, f) =
∑

n

f(n)
csn

is absolutely convergent for <(s) > a > 0 and has a representation

Z(s, f) =
1

(s− a)b
g(s) + h(s)

with g(s) and h(s) holomorphic for <(s) ≥ a, g(a) 6= 0 and b ∈ N. Then∑
n : cn≤B

f(n) =
g(a)

a(b− 1)!
Ba(logB)b−1(1 + o(1)),

as B →∞.

Theorem 9.2. — Let X be the compactification of a semi-simple group G of adjoint
type over F as in Section 5 and L = (L, ‖ · ‖v) an adelically metrized line bundle such
that its class [L] ∈ Pic(X) is contained in the interior of the cone of effective divisors
Λeff(X). Then

N(G,L, B) := #{x ∈ G(F ) |HL(x) ≤ B} = Θ(L)Ba(L) log(B)b(L)−1(1 + o(1))

as B →∞. Here
a(L) = inf{a | a[L] + [KX ] ∈ Λeff(X)}

(where KX is the canonical line bundle of X) and b(L) is the (maximal) codimension
of the face of Λeff(X) containing a(L)[L] + [KX ]. Moreover, Θ(−KX) is the constant
defined in [29].

Proof. — We combine the following facts:
– Br(X)/Br(F ) = 1;
– G(F ) = G(A);
–
∫

G(A)
ωS =

∫
X(A)

ωS (where ωS is the Tamagawa measure defined in [29];
– ωv = τv(G)−1H−KX

(·)dgv, for all v ∈ Val(F ).
The first two facts are in [34], here it is important that G is of adjoint type. For the
identifications of the measures see [29], [6], Theorem 7.2 or [7].
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[10] A. Borel and J. Tits – “Groupes réductifs”, Inst. Hautes Études Sci. Publ.
Math. (1965), no. 27, p. 55–150.

[11] M. Brion – “Curves and divisors in spherical varieties”, in Algebraic groups
and Lie groups, Austral. Math. Soc. Lect. Ser., vol. 9, Cambridge Univ. Press,
Cambridge, 1997, p. 21–34.

[12] M. Brion – “Variétés sphériques et théorie de Mori”, Duke Math. J. 72 (1993),
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