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1 Introduction

Let X be an irreducible algebraic variety defined over a number field K. We
will say that rational points on X are potentially dense if there exists a finite
extension K ′ of K such that the set of K ′-rational points is Zariski–dense in
X. It seems reasonable to ask whether or not rational points are potentially
dense if neither X nor its unramified coverings admit a morphism onto a
variety of general type. This question has an easy answer if the dimension
of X equals 1. Very little is known in higher dimensions. Clearly, potential
density holds for unirational varieties and for abelian varieties. In [6] and [3]
it is proved that rational points are potentially dense on all Fano threefolds
with the possible exception of double covers of P3 ramified in smooth surfaces
of degree 6.

In this paper we will study the question of density under the additional
assumption that X admits the structure of an elliptic fibration ϕ : X → B
over some irreducible normal base B. As one of the applications we prove that
rational points on Enriques surfaces are potentially dense. An alternative
idea to prove density would have been to use the group of automorphisms
Aut(X). There exist Enriques surfaces with a finite group Aut(X) (cf. [5],
[1]), but even then the automorphism group of the corresponding K3-cover
is infinite (this follows from the classification of Enriques surfaces with finite
automorphism groups [10], [8]).
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2 Elliptic fibrations - Generalities

Let K be a number field and X a smooth projective algebraic surface defined
over K. We say that X admits a structure of an elliptic fibration if there
exists a regular map ϕ : X → B onto a smooth (irreducible) curve B whose
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fibers are connected curves such that the generic fiber is a smooth curve of
genus 1. We denote by Xb the fiber over b ∈ B. We will say that X admits a
structure of a Jacobian elliptic fibration if there exists a zero section e : B →
X. It is well known (cf. [2] or [7]) that to every elliptic fibration ϕ : E → B
one can associate a Jacobian elliptic fibration ϕJ : J = J (E) → B (over
the same groundfield), which over the generic point of the base B is given by
classes of divisors of degree zero in the fiber. The zero section corresponds
to the trivial class. There is a fiberwise action of J on E , more precisely, a
rational map

ψ : J ×B E → E
which is regular in non-singular points of the fibers of J and E and which
induces a transitive action of Jb on Eb (for smooth fibers).

2.1 Multisections

Let ϕ : E → B be an elliptic fibration. A multisection i : M ↪→ E is an
irreducible subvariety of E such that the map ϕ ◦ i : M → B is finite and
surjective. We will denote by d = d(M) the degree of this projection.

Definition 2.1 Let ϕ : E → B be an elliptic fibration. A multisection M
is said to be of order m if m is the smallest positive integer such that for
any b ∈ B and any pair of points pb, p

′
b ∈M∩Eb the image of the zero-cycle

pb − p′b in Jb is torsion of order m.

Note that any section of an elliptic fibration is a multisection of order
one.

Let Φm ⊂ J be the subvariety of of m-torsion points of J (all points pb

such that m ·pb = 0 in the group of rational points of the corresponding fiber
Jb) which are not contained in the zero section e(B).

Lemma 2.2 If M⊂ ψ(Φm ×B M) then M is a multisection of order m.

Proof. Tautology.

Definition 2.3 Let ϕ : E → B be an elliptic fibration. A saliently ramified
multisection of E is a multisection M which is ramified in a point pb which
lies in a smooth (elliptic curve) fiber Eb of E .

Proposition 2.4 Let M be a saliently ramified multisection of E. Then M
is not of order m for any m > 0.
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Proof. By assumption, nearby fibers of Eb are smooth. Consider an
embedding K ↪→ C. We can find a sequence (bi) ∈ B(C) of points in the
base converging to b (in complex topology) and pairs of distinct points pi, p

′
i

in the fibers Ebi
(C) which converge to p. If we assume that the cycle pi−p′i is

torsion of orderm (for somem ≥ 2) in the Jacobian we obtain a contradiction
since it converges to 0 = e(b).

Definition 2.5 Let M be a multisection of degree d of the elliptic fibration
ϕ : E → B and b ∈ B. We denote by TrM(b) the zero-cycle M∩ Eb. Define
the class map

τM : EB → JB

by the following rule:

τM(p) = [d · p− TrM(ϕ(p))]

for p ∈ E .

Lemma 2.6 Suppose that the multisection M is of degree d and not of order
d′ with d′|d. Then the map

τM : M→ τM(M)

is a birational isomorphism.

Proof. Consider all points p, p′ ∈ Eb such that τM(p) = τM(p′). Then
the cycle p − p′ is of order d′|d in Jb. On the other hand, for a given d′

pairs of distinct points differing by torsion of order d′ (more precisely, by a
translation by Φd′) constitute a Weil divisor in M. Therefore, the map τM
is a birational isomorphism.

Proposition 2.7 The map τM is regular outside of singular fibers of E → B.

Proof. Evident.

Corollary 2.8 LetM be a saliently ramified multisection of E. Then τM(M)
is a saliently ramified multisection of J .

Proof. The map τM is unramified on the set of non-singular fibers. By
lemma 2.6, it is a birational isomorphism.
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Remark 2.9 Let M⊂ E be a multisection which is not of order m for any
m. Then τM(M) is not of order m for any m.

From now on we will restict to the case of the base B = P1. Merel’s
theorem implies:

Proposition 2.10 [3] Let ϕJ : J → P1 be a Jacobian elliptic fibration
defined over K with a saliently ramified multisection M. Then for all but
finitely many b ∈ ϕJ (M(K)) ⊂ P1(K) the fibers Jb have infinitely many
rational points.

Theorem 2.11 Let ϕ : E → P1 be an elliptic fibration defined over K.
Assume that there exists a rational or elliptic saliently ramified multisection
M defined over K. Then rational points on E are potentially dense.

Proof. Extending the groundfield, we can assume that K-rational points
on M are Zariski-dense and that it intersects a smooth fiber Eϕ(p) with local
intersection multiplicity ≥ 2 at a K-rational point p. The image ϕ(M(K))
is Zariski-dense in P1. Every fiber Eb for b ∈ ϕ(M(K)) contains at least
one point pb ∈ M(K). Therefore, it suffices to show that for almost all
b ∈ ϕ(M(K)) the fiber Jb has a K-rational point of infinite order. Then we
use the action of the J on E to translate pb.

By assumption and 2.8 the curve τM(M) is a saliently ramified multisec-
tion of J → P1. The point τM(pb) ∈ τM(M) is a K-rational point of the
fiber Jϕ(pb). Moreover, it is contained in the saliently ramified multisection
τM(M). By theorem 2.10, for all but finitely many fibers Jϕ(pb) the point
τM(pb) is a non-torsion point in the group Jϕ(pb)(K). This concludes the
proof.

Remark 2.12 An alternative argument avoiding Merel’s theorem goes as
follows: We can find a base change β : B′ → B with the following properties:
β is étale at b (corresponding to the smooth fiber of E → B where M is
ramified), M pulls back to a section M′ of E ′ → B′ and E ′ acquires a zero
section e′ (which is different from M′). Then M′ must be of infinite order
in the Mordell–Weil group of E ′. A specialization argument (cf. [11]) implies
that rational points are (potentially) dense on E ′.

Proposition 2.13 Let X be a smooth algebraic surface defined over a num-
ber field K and admitting two different elliptic fibrations ϕ1 : E1 → B1 and
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ϕ2 : E2 → B2 with B1 ' B2 ' P1. Then rational points on X are potentially
dense.

Proof. If there is at least one Eb2 which is not of order m for any m we
are done by 2.9. In view of 2.8, it suffices to consider the case when for all
b2 ∈ B2 all multiple intersection points of the multisections Eb2 with fibers Eb1

(for b1 ∈ B1) are contained in the singular fibers of the fibration E1 → B1. If
a generic Eb2 is of some fixed order m0 we see that (a cover of) X is dominated
(birationally) by a product of two elliptic curves.

3 Enriques surfaces

We start with a brief summary of the structure theory of Enriques surfaces
(cf. [2], pp. 274-275): EitherX is non-special - then it has visibly two distinct
elliptic fibrations over P1 - or it admits an elliptic fibration with a 2-section
which is a (−2)-curve (this case is called special in [2]). In the special case
the associated K3 double cover π : Y → X admits the structure of an elliptic
fibration Y → P1 with two (non-intersecting) sections (which could differ
by torsion). The surface Y is the minimal resolution of a double covering
of a quadratic cone Q ⊂ P3 (given by z0z1 = z2

2 in standard coordinates in
P3 = (z0, z1, z2, z3)) ramified in an intersection of this cone with a quartic
hypersurface in P3 not passing through the vertex of this cone. The ramifi-
cation curve R is reduced, of degree 8 and has at most simple singularities.
The fibers of the elliptic fibration correspond to the generators of the cone
Q and the two sections are mapped to the vertex of Q (cf. [2], p. 278).

Using this geometric description we are going to exhibit two transversal
elliptic fibrations on X. An alternative argument, which uses the combina-
torics of the Picard lattice, is contained in [4] (Th. 3.4.1, p. 183).

Theorem 3.1 Let X be an Enriques surface over K. Then rational points
on X are potentially dense.

Proof. In the non-special case we apply 2.13 and we are done.
Now let us consider the special case. Recall that the elliptic fibration

Y → P1 has two non-intersecting sections e1, e2. Their difference is torsion
in the Picard group of the generic point of Y → P1 if there exists an integer
m > 0 such that m(e1 − e2) can be represented as a sum, with integer
coefficients, of components of singular fibers of Y → P1. If all fibers of
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Y → P1 are irreducible then the difference e1− e2 is not torsion and rational
points are potentially dense. Otherwise, we have to consider subcases of the
special case.

After blowing up the vertex of the cone we can realize Q birationally as
PP1(O(2)⊕O) (see [3]). Taking sections of PP1(O(2)) (a 3-dimensional linear
space) we obtain a family of (conics) P1

s ' P1 ⊂ Q where each P1
s intersects

the ramification curve R in 8 points (counted with multiplicities). The double
cover Ds of P1

s is a multisection of the elliptic fibration Y → P1. We want to
find an elliptic saliently ramified multisection among the Ds. Then we apply
2.11.

Denote by R0 ⊂ R the Zariski open subset of points where the curve R is
smooth and where it is not tangent to the generators of the cone Q. For every
point P ∈ R0 we consider the affine line LP of sections P1

s which are tangent
to R at P . These sections cover the whole cone Q, except the line joining P
and the vertex of Q. Consider the subset of sections of PP1(O(2)) which have
at least two distinct points of local intersection multiplicity ≥ 2 with R. If
this subset covers birationally the cone Q, then we obtain a 1-dimensional
family of elliptic curves which covers Y and which is generically transversal
to the elliptic fibration Y → P1. Hence we can apply 2.13.

In particular, if the curve R has a singular double point r ∈ R, then
for any P ∈ R0 we can find a tangent section P1

s which passes through r.
The family of such sections covers Q (birationally), provided that R has a
component which is not a section. Therefore, we have only to consider the
case when R consists of 4 distinct components which are sections. Suppose
that r lies on the intersection of two components. Then the tangents to some
point of a third component passing through r cover Q birationally and the
argument above applies.

The only remaining case is the case of a non-singular curve R. For any
P ∈ R there exists a section s ∈ LP which has local intersection multiplic-
ity ≥ 2 with R at some other point. Indeed, we have a natural tangent
correspondence TCP ⊂ LP ×R defined by

TCP = {(s, r) | s ∈ LP , r ∈ P1
s ∩R}.

Since R is irreducible this correspondence is irreducible. Since R is not a
rational curve this correspondence has ramification points over LP . Ramifi-
cation points correspond to sections having at least two intersection points
of local multiplicity ≥ 2 with R. Hence, the family of sections with this
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property (as P moves over R0) covers (birationally) the cone Q and defines
a transversal elliptic fibration on Y → P1.
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