SPECIAL ELLIPTIC FIBRATIONS

by

Fedor Bogomolov and Yuri Tschinkel

ABSTRACT. — We construct examples of elliptic fibrations of orbifold general type (in the sense of Campana) which have no étale covers dominating a variety of general type.

Contents

1. Introduction	1
2. Generalities	2
3. Logarithmic transforms	3
4. Construction	6
5. Holomorphic differentials	8
References	13

To the memory of our friend and colleague Andrey Tyurin.

1. Introduction

Consider the following two classes of varieties:

- admitting an étale cover which dominates a (positive dimensional) variety of general type;
- admitting a nonconstant map with target an *orbifold* of general type (defined by taking into account possible multiple fibers of the map, see Section 2 for details).

In this note we construct examples of complex three-dimensional varieties in the second class which are not in the first class, answering a question of Campana (see [2]).

Acknowledgments. We have benefited from conversations with F. Campana and J. Kollár. Both authors were partially supported by the NSF.

2. Generalities

Throughout, let X be a smooth projective algebraic variety over \mathbb{C} with function field $\mathbb{C}(X)$, $\operatorname{Pic}(X)$ its Picard group and K_X its canonical class. For $D \in \operatorname{Pic}(X)_{\mathbb{Q}}$ we let $\kappa(D)$ be the Kodaira dimension of D, $\kappa(X) = \kappa(K_X)$ the Kodaira dimension of X and $\kappa(X, D) := \kappa(K_X + D)$ the corresponding log-Kodaira dimension. We denote by Ω_X^n the sheaf of differential n-forms, by \mathcal{T}_X the tangent bundle and by $\pi_1(X)$ the fundamental group.

We now recall some notions concerning fibrations following [2]. Let $\varphi: X \to B$ be a morphism between smooth algebraic varieties, such that the locus $D := \cup_j D_j \subset B$ over which the scheme-theoretic fibers of φ are not smooth is a (strict) normal crossing divisor (with irreducible components D_j). For each j, let n_j be the minimal (scheme-theoretic) multiplicity of a fiber-component over D_j and

$$D(\varphi) := \sum_{j} (1 - 1/n_j) D_j \in \text{Pic}(B)_{\mathbb{Q}}$$

the multiplicity divisor of φ . The pair $(B, D(\varphi))$ will be called an *orbifold* associated to φ . It is called of an orbifold of *general type* if

$$\kappa(B, D(\varphi)) = \dim(B) > 0.$$

EXAMPLE 2.1. — Let $\varphi: X \to B = \mathbb{P}^1$ be an elliptic fibration such that $D(\varphi) \neq \emptyset$. The degenerate fibers with $n_j \geq 2$ are multiple fibers. The associated orbifold $(B, D(\varphi))$ is of general type provided

(2.1)
$$\sum (1 - 1/n_j) > 2.$$

This condition implies that there exists a finite cover $\tilde{B} \to B$ ramified with multiplicity n_j at points $D_j \subset D(\varphi)$ and of genus ≥ 2 . Let \tilde{X} be the pullback of the elliptic fibration to \tilde{B} . Then $\tilde{X} \to X$ is étale and has a surjective map $\tilde{X} \to \tilde{B}$.

Theorem 2.2. — There exist smooth projective algebraic threefolds X admitting an elliptic fibration $\varphi: X \to B$ such that

- $-\pi_1(X)=0;$
- B is a smooth elliptic surface with $\kappa(B) = 1$;
- $-D(\varphi) \subset B$ is a smooth irreducible divisor;
- the orbifold $(B, D(\varphi))$ is of general type.

3. Logarithmic transforms

We recall the construction of logarithmic transforms of elliptic fibrations due to Kodaira [4] (for more details see [3], Section 1.6).

Let C be a smooth curve and $\eta: \mathcal{E} \to C$ a nonisotrivial elliptic fibration. Let $\Delta \subset C$ be a unit disc with center p_0 and smooth central fiber E_0 over p_0 . For every $m \in \mathbb{N}$ consider the diagram

$$\begin{array}{ccc}
\tilde{\mathcal{J}} & \longrightarrow \mathcal{J} \\
\tilde{\eta} & & & \eta \\
\tilde{\Delta} & \xrightarrow{\iota_m} \Delta
\end{array}$$

where \mathcal{J} is the restriction of \mathcal{E} to Δ , ι_m is a cyclic cover of degree m given by

$$\tilde{z} \mapsto \tilde{z}^m = z$$

(with z a local analytic coordinate at p_0) and $\tilde{\mathcal{J}}$ the pullback of \mathcal{J} to $\tilde{\Delta}$. After appropriate choices one has

$$\mathcal{J} = (\mathbb{C} \times \Delta)/\Lambda(z), \quad \ \tilde{\mathcal{J}} = (\mathbb{C} \times \Delta)/\Lambda(\tilde{z}^m)$$

(where $\Lambda(z) \subset \mathbb{C}$ is a family of lattices) and

$$\mathcal{J} = \tilde{\mathcal{J}}/\mathfrak{C}_m,$$

where \mathfrak{C}_m is a finite cyclic group generated by

$$(s, \tilde{z}) \mapsto (s, \zeta_m \tilde{z}) \mod \Lambda(\tilde{z}^m)$$

(and ζ_m is an m-th root of 1). Let $\omega_m(z)/m$ be a local m-torsion section of \mathcal{J} and define

$$\mathcal{J}' := \tilde{\mathcal{J}}/\mathfrak{C}'_m,$$

where \mathfrak{C}'_m is a cyclic group generated by

$$(s, \tilde{z}) \mapsto (s + \frac{\omega_m(\tilde{z}^m)}{m}, \zeta_m \tilde{z}) \mod \Lambda(\tilde{z}^m).$$

We have an isomorphism

$$\mathcal{J}' \setminus (E_0/\mathfrak{C}_m) \simeq \mathcal{J} \setminus E_0$$

and we can extend \mathcal{J}' to an elliptic fibration $\eta': \mathcal{E}' \to C$, called the logarithmic transform (twist) of \mathcal{E} . In \mathcal{E}' a cycle (circle) \mathbb{S} which was bounding a holomorphic section over a disc in \mathcal{E} is homologous to a nontrivial cycle $\mathbb{S}' \in E_0$.

Proposition 3.1. — Assume that \mathcal{E} is locally Jacobian and not locally isotrivial and that \mathcal{E}' is obtained from \mathcal{E} by a logarithmic transform at exactly one point $p_0 \in C$. Then

- $-H^{0}(\mathcal{E}, K_{\mathcal{E}}) \simeq H^{0}(\mathcal{E}', K_{\mathcal{E}'});$ $-\pi_{1}(\mathcal{E}) = 0 \Rightarrow \pi_{1}(\mathcal{E}') = 0;$
- $-\mathcal{E}'$ is Kähler.

Proof. — Every form $w \in H^{2,0}(\mathcal{E})$ has a local representation as

$$w = dh \wedge d \log(s)$$
.

It is visibly invariant under translation by s on $\mathcal{E} \setminus E_0$, is preserved under gluing and can be extended from $\mathcal{E} \setminus E_0$ to \mathcal{E}' . Moreover, on \mathcal{E}' it has a zero of multiplicity m-1 along E_0/\mathfrak{C}_m . After twisting exactly one fiber, we have

$$K_{\mathcal{E}'} = K_{\mathcal{E}} + (1 - 1/m)E,$$

where E is a (generic) fiber of η . Since \mathcal{E} is locally Jacobian we have $K_{\mathcal{E}} = \eta^* L$, where $L \in \text{Pic}(C)$, and $H^0(\mathcal{E}, K_{\mathcal{E}}) = H^0(C, L)$. Similarly, we have an imbedding $K_{\mathcal{E}'} \hookrightarrow \eta^*(L+p_0)$ and

$$H^0(\mathcal{E}', K_{\mathcal{E}'}) \subset H^0(\mathcal{E}', \eta'^*(L+p_0)) = H^0(C, (L+p_0)).$$

We have $h^0(C, (L+p_0)) \leq h^0(C, L) + 1$. An $f \in H^0(C, (L+p_0))$ which is not in the image of $H^0(C, L)$ is nonzero at p_0 . The corresponding element in $H^0(\mathcal{E}', \eta'^*(L+p_0))$ is also nonzero on the fiber over p_0 . However, every global section of $K_{\mathcal{E}'}$ vanishes on the central fiber. Thus $f \notin H^0(\mathcal{E}', K_{\mathcal{E}'})$ so that every section of $K_{\mathcal{E}'}$ is an extension of a section of $K_{\mathcal{E}}$ (restricted to $\mathcal{E} \setminus E_0$):

$$H^0(\mathcal{E}, K_{\mathcal{E}}) = H^0(\mathcal{E}', K_{\mathcal{E}'}).$$

Since $\pi_1(\mathcal{E}) = 0$ we have $C = \mathbb{P}^1$. We claim that $\pi_1(\mathcal{E} \setminus E_0) = 0$. Indeed, the fundamental group of the elliptic fibration $(\mathcal{E} \setminus E_0) \to (C \setminus p_0)$ lies in the image of $\pi_1(E)$, which is a *finite* abelian group since there are nontrivial vanishing cycles which are homotopic to zero. Since the global monodromy has finite index in $\mathrm{SL}_2(\mathbb{Z})$ the group $\pi_1(\mathcal{E} \setminus E_0)$ is also finite abelian and the corresponding covering is fiberwise. Thus it extends as a finite étale covering of \mathcal{E} , contradicting the assumption that $\pi_1(\mathcal{E}) = 0$.

Consider the (topological) quotient spaces \mathcal{E}/E_0 and \mathcal{E}'/E'_0 . They are naturally isomorphic and we have two exact homology sequences

$$\dots \to H_3(\mathcal{E}, \mathbb{Q}) \to H_3(\mathcal{E}/E_0, \mathbb{Q}) \xrightarrow{d} H_2(E_0, \mathbb{Q}) \to H_2(\mathcal{E}, \mathbb{Q})$$

and

$$\ldots \to H_3(\mathcal{E}', \mathbb{Q}) \to H_3(\mathcal{E}'/E_0', \mathbb{Q}) \xrightarrow{d'} H_2(E_0', \mathbb{Q}) \to H_2(\mathcal{E}', \mathbb{Q}).$$

Since \mathcal{E} is Kähler

$$\mathbb{Q} = H_2(E_0, \mathbb{Q}) \hookrightarrow H_2(\mathcal{E}, \mathbb{Q})$$

and

$$H_3(\mathcal{E}, \mathbb{Q}) = H_3(\mathcal{E}/E_0, \mathbb{Q}) = H_1(C, \mathbb{Q})^*.$$

Here we used that $H_1(\mathcal{E}, \mathbb{Q}) = H_1(C, \mathbb{Q})$ which follows from the local nonisotriviality of \mathcal{E} . Geometrically it means that every 3-cycle on \mathcal{E} and \mathcal{E}/E_0 can be realized as a product of a 1-cycle on C and an elliptic fiber.

Since
$$\mathcal{E}/E_0 = \mathcal{E}'/E'_0$$
 the differential d' is also zero and

$$H_2(E_0',\mathbb{Q}) \hookrightarrow H_2(\mathcal{E}',\mathbb{Q}).$$

Thus the class of the generic fiber E is nontrivial. This implies the existence of a Kähler metric (see [5]). Therefore, if \mathcal{E} is Kähler then so is \mathcal{E}' .

COROLLARY 3.2. — If \mathcal{E} is algebraic and rational then \mathcal{E}' is algebraic.

Proof. — A smooth surface S is projective iff there is a class $x \in H_2(S, \mathbb{Q})$ with $x^2 > 0$ which is orthogonal to $H^{2,0}(S) \subset H^2(S, \mathbb{C})$. Since \mathcal{E}' is Kähler and $H^{2,0}(\mathcal{E}) = H^{2,0}(\mathcal{E}') = 0$ there is such a class in $H_2(\mathcal{E}, \mathbb{Q})$. \square

EXAMPLE 3.3. — Let $\xi: \mathbb{P}^1 \to \mathbb{P}^1$ be a polynomial map of degree $n \geq 2$ which is cyclically n-ramified over ∞ . Let $\bar{\varphi}: \bar{\mathcal{E}} \to \mathbb{P}^1$ be a rational elliptic surface and $\bar{\mathcal{E}}'$ its logarithmic nm-twist over ∞ . Consider the diagram

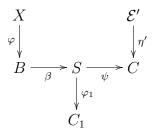
$$\begin{array}{c|c} \mathcal{E} & \xrightarrow{\eta} & \mathbb{P}^1 & \xrightarrow{\eta'} & \mathcal{E}' \\ \xi & & \xi & & \downarrow \xi \\ \bar{\mathcal{E}} & \xrightarrow{\bar{\eta}} & \mathbb{P}^1 & \xrightarrow{\bar{\eta}'} & \bar{\mathcal{E}}' \end{array}$$

The surface \mathcal{E}' (induced by ξ) is a logarithmic m-twist at ∞ of \mathcal{E} (induced from $\bar{\mathcal{E}}$). We have $h^0(\mathcal{E}, K_{\mathcal{E}}) = n - 1$. Since $\bar{\mathcal{E}}'$ is algebraic (by Corollary 3.2), \mathcal{E}' is also algebraic.

For more details concerning algebraicity of elliptic fibrations obtained by logarithmic transformations we refer to [3], Section 1.6.2.

4. Construction

Consider the following diagram



where

- $-C_1, C \text{ are } \mathbb{P}^1;$
- S is a nonisotrivial locally Jacobian elliptic surface with irreducible fibers, $\pi_1(S) = 0$ and $\kappa(S) = 1$;
- $-\psi: S \to C$ is a rational map with connected fibers defined by a generic line $\mathbb{P}^1_{\psi} \subset \mathbb{P}(H^0(S, L))$, where L is a polarization on S;
- $-\beta: B \to S$ is a minimal blowup so that $\gamma := \psi \circ \beta: B \to C$ is a fibration with irreducible fibers (it exists since L is very ample and ψ is generic, i.e., all singularities of ψ are simple and lie in different smooth fibers of φ_1);

- $-\eta': \mathcal{E}' \to C$ is the fibration from Example 3.3;
- $-\varphi: X \to B$ is the pullback of η' via γ .

LEMMA 4.1. — Let B be the surface above, $p \in C$ a generic point and $D = \gamma^{-1}(p)$. Then

- $-\varphi_1 \circ \beta : B \to C_1$ is an elliptic fibration and $\kappa(B) = 1$;
- $-\pi_1(B\setminus D)=0.$

Proof. — The genericity of L and ψ implies that all fibers are irreducible and that B is a blowup of S in a finite number of distinct points in which the divisors from $\mathbb{P}^1_{\psi} \subset \mathbb{P}(H^0(S,L))$ intersect transversally. Since $\pi_1(S) = 0$ we have

$$\pi_1(S \setminus D) = \mathfrak{C}_m$$

(by Lefschetz theorem), where m is the largest integer dividing L in Pic(S). The corresponding cyclic covering of S is m-ramified along D. We have

$$(B \setminus D) = (S \setminus D) \cup \bigcup_{i \in I} \ell_i$$

where I is a finite set and ℓ_i are affine lines. A cycle generating $\pi_1(B \setminus D)$ is contracted inside one of these lines, which implies that the image of $\pi_1(S \setminus D)$ in $\pi_1(B \setminus D)$ is trivial.

Proof of Theorem 2.2. — The elliptic fibration $\varphi: X \to B$ satisfies the claimed properties.

First observe that D intersects all components of the fibers E of

$$\varphi_1 \circ \beta : B \to C_1.$$

Indeed, by genericity every such E is either irreducible or a union of a smooth elliptic curve and a rational (-1) curve P. If E is irreducible the claim follows from the ampleness of L. For the same reason we have $\deg(D_{|E}) \geq 2$. Since $D \cdot P = 1$ there is a nontrivial intersection with another component.

Put $F := K_B + (1 - 1/m)D$. Since $\kappa(B) = 1$ and $K_B \cdot D > 0$ a subspace of sections in $H^0(B, amF)$ (for some $a \in \mathbb{N}$) gives a surjection $B \to C_1 \times C$, so that $\kappa(F) = 2$. Moreover, F intersects positively every divisor in B (except finitely many rational curves P_i obtained by blowing

up S). It follows that $F = H + \sum m_i P_i$, where H is a polarization on B and $m_i \geq 0$. Thus $(B, D(\varphi))$ is an orbifold of general type. In particular,

$$\varphi^* K_B \subset \varphi^* F \subset \Omega^2_X$$

where φ^*F is saturated, and $\kappa(\varphi^*F)=2$. Notice that $\kappa(X)=2$ since

$$\varphi^* F \times \gamma^* K_{\mathcal{E}'/C} \subset K_X$$
 and $\kappa(K_{\mathcal{E}'/C}) = 1$.

The pullback H' (to X) of a polarization on \mathcal{E}' is positive on the fibers of φ . Since B is projective it has a polarization H such that for some $a \in \mathbb{N}$ the divisor $a\varphi^*H + H'$ is positive on every curve in X and is represented by a positive definite Kähler form. This implies that X is projective.

We claim that $\pi_1(X) = 0$. We know that $\pi_1(B) = \pi_1(B \setminus D) = 0$. Hence $\pi_1(X)$ is in the image of $\pi_1(E)$ of a smooth (elliptic) fiber of φ . Since the monodromy of φ is large it kills the fundamental group of the fiber. Indeed, the restriction of φ to a \mathbb{P}^1 is isomorphic to \mathcal{E}' . Since the complement of a multiple fiber in \mathcal{E}' has trivial fundamental group the same holds for X.

Thus X admits a map onto an orbifold of general type but does not dominate a variety of general type nor has (any) étale covers.

REMARK 4.2. — In fact, we have proved that $\pi_1(X \setminus \varphi^{-1}(D)) = 0$ so that no modification can yield an étale cover.

5. Holomorphic differentials

One of the features of the construction in Section 4 was the use of a 1-dimensional subsheaf of holomorphic forms with many sections. We have seen that such sheaves impose strong restrictions on the global geometry of the variety. Generalizing several results in [1], we now give an alternative proof of Campana's theorem on the correspondence between such sheaves and maps onto orbifolds of general type (see [2]).

Let X be a smooth Kähler manifold and $\omega \in \Omega_X^i$ a form. The kernel of ω is the subsheaf of \mathcal{T}_X generated (locally) by sections t such that for all $x \in \Lambda^{i-1}\mathcal{T}_X$

$$\omega(t \wedge x) = 0.$$

The kernel doesn't change under multiplication of ω by a nonzero (local) holomorphic section of the structure sheaf. This defines, for every subsheaf $\mathcal{F} \subset \Omega^i_X$, its kernel $\operatorname{Ker}(\mathcal{F})$ (a special case of the notion of support of a differential ideal).

DEFINITION 5.1. — We say that $\mathcal{F} \subset \Omega^i_X$ is k-monomial if at the generic point of X a nonzero local section f of \mathcal{F} is a product of local holomorphic 1-forms:

$$f = q_1 \wedge \ldots \wedge q_k \wedge \omega,$$

where $1 \leq k \leq i$ and ω is a local (i - k)-form. We call $\mathcal F$ monomial if k = i.

PROPOSITION 5.2. — Let X be a smooth compact Kähler manifold and $\mathcal{F} \subset \Omega^i_X$ a one-dimensional subsheaf such that

$$h^0(X, \mathcal{F}^n) \ge an^k + b,$$

where a > 0 and $k \ge 1$. Then

- $-k \leq i$;
- $-\mathcal{F}\subset\Omega^i_X$ is a k-monomial subsheaf;
- there exist an algebraic variety Y of dimension k and a meromorphic map

$$\varphi = \varphi_{\mathcal{F}} : X \to Y$$

with irreducible generic fibers such that the tangent space of the fiber of φ at a generic point coincides with $Ker(\mathcal{F})$.

Proof. — The ratios of sections $s_l \in H^0(X, \mathcal{F}^n)$ generate a field of transcendence degree k (for some $n \geq 1$). In particular, there is an $x \in X$, with $s_0(x) \neq 0$, where the local coordinates

$$f_l = s_l(x)/s_0(x), l = 1, ..., k$$

are independent. We know that s_0 is locally equal to w_0^n , where w_0 is a local closed form nonvanishing at x (see [1]). Further, $f_l w_0$ is also a local closed form nonvanishing at x. Since

$$ds_0 = d(f_l w_0) = df_l \wedge w_0 = 0$$

we obtain

$$w_0 = df_l \wedge w'$$
.

Since the forms df_l are linearly independent we see that

- $-w_0 = gdf_1 \wedge df_2 \dots \wedge df_k \wedge \omega$, so that g is algebraically dependent on f_l and \mathcal{F} is a k-monomial subsheaf of Ω_X^i ;
- the fibers of the map given by f_l are tangent to the kernel of w_0 .

Thus we have a meromorphic map

(5.1)
$$\varphi: X \to Y, \dim(Y) = k,$$

such that s_l are locally (at a generic point of X) products of a power of a volume form induced from Y under φ and a power of ω which is nontrivial on the fiber of φ . The map φ is holomorphic outside of the zero locus of the ring $\bigoplus_n H^0(X, \mathcal{F}^n)$.

COROLLARY 5.3. — If k = i or k = i - 1 then $\mathcal{F} \subset \Omega^i_X$ is monomial.

Proof. — It suffices to consider $f \in \mathcal{F}$ at generic points. There are two cases:

-k = i: then

$$f = df_1 \wedge \ldots \wedge df_k$$

(modulo multiplication by a function).

-k = i - 1: then

$$f = df_1 \wedge df_2 \dots \wedge df_k \wedge q,$$

where q is a closed 1-form.

Remark 5.4. — The map from (5.1) admits a bimeromorphic modification

$$\varphi: X \to Y$$

such that

- $-\varphi$ is holomorphic with generically smooth and irreducible fibers;
- -X and Y are smooth.

NOTATIONS 5.5. — For φ as in Remark 5.4 we define its degeneracy locus $D = D_{\varphi}$ as the subset of all $y \in Y$ such that $d\varphi(x) = 0$ for all $x \in \varphi^{-1}(y)$.

Remark 5.6. — After another modification of φ we can achieve that $-\operatorname{codim}(D) \ge 2$ or

 $-D = \bigcup_j D_j$ and each $\tilde{D}_j := \varphi^{-1}(D_j) = \bigcup_i \tilde{D}_{ij}$ is a normal crossing divisor.

Assumption 5.7. — The map φ is as in Remarks 5.4 and 5.6.

Lemma 5.8. — If k = i then $either \operatorname{codim}(D) \geq 2$ and

$$\mathcal{F} = \varphi^* K_Y$$

or there exist integers $n_i \geq 1$ such that

- $-D(\varphi) := K_Y + \sum_{i} (1 1/n_i) D_i$ is big on Y;
- $-\varphi \text{ has multiplicity} \geq n_j \text{ along every } \tilde{D}_{ij};$
- $-\varphi^*D(\varphi)\subset\mathcal{F}.$

Proof. — Every x with $d\varphi(x) \neq 0$ has a neighborhood U such that the restriction of every section $s \in H^0(X, \mathcal{F}^n)$ to U is induced from a (unique) section $s_U \in H^0(\varphi(U), nK_Y)$. There is a unique holomorphic tensor $s_Y \in H^0(Y \setminus D, nK_Y)$ (where $D = D_{\varphi}$ is the degeneracy locus of φ) such that the restriction of $\varphi^*(s_Y)$ to $X \setminus \varphi^{-1}(D)$ coincides with s.

If $\operatorname{codim}(D) \geq 2$ then s_Y has a unique extension to a holomorphic tensor on Y (since Y is smooth). In this case, Y is of general type. In case $\operatorname{codim}(D) = 1$ we see (using Remark 5.6) that s_Y is a well-defined tensor on Y with poles along D_j , i.e.,

$$s_Y \in H^0(Y, nK_Y + \sum_j d_j D_j),$$

for some $d_j \in \mathbb{N}$. Let n_j be the minimal multiplicity of φ on the components \tilde{D}_{ij} which surject onto D_j (for all j). Since $\varphi^* s_Y$ is holomorphic on X, a local computation shows that

$$d_i \le n(1 - 1/n_i)$$

(see, for example, [6] and [1]) and that

$$K_Y + (1 - 1/n_j)D_j$$

is big. \Box

Remark 5.9. — This gives an alternative proof of Campana's theorem characterizing fibrations over orbifolds of general type.

In the case i = k a section of \mathcal{F}^n (at a generic point of X) descends to the nth-power of a (local) volume form on Y but the corresponding global form on Y may have singularities. These singularities disappear after a finite local covering which is sufficiently ramified along the singular locus. This property can be defined for arbitrary tensors.

DEFINITION 5.10. — A meromorphic tensor t on Y is locally integrable if for every point $y \in Y$ there exist a neighborhood $U = U_y$ and a (local) manifold V together with a proper finite map

$$\lambda: \varphi^{-1}(U) \to U$$

such that λ^*t is holomorphic on V.

For k = i - 1 we have an analog of Lemma 5.8:

LEMMA 5.11. — Let X be a smooth compact Kähler manifold, $\mathcal{F} \subset \Omega_X^i$ a one-dimensional subsheaf such that

$$a'n^{i-1} + b' > h^0(X, \mathcal{F}^n) \ge an^{i-1} + b,$$

with a > 0, and $\varphi = \varphi_{\mathcal{F}}$ (as in Proposition 5.2). Then there exist a nontrivial fibration

$$\rho: A_Y \to Y$$

(with fibers complex tori) and a map

$$\alpha = \alpha_{\mathcal{F}} : X \to A_{\mathcal{V}}$$

with connected fibers such that

- $-\varphi = \rho \circ \alpha;$
- the tangent space of the fiber of α at a generic point is contained in $Ker(\mathcal{F})$;
- there is a divisor $D \subset Y$ such that every section $s \in \mathcal{F}$ is a lifting of a monomial locally integrable tensor on A_Y .

Proof. — By Proposition 5.2, there is map $\varphi: X \to Y$, where dim(Y) = i - 1. It has a natural factorization

$$\varphi : X \xrightarrow{\alpha} A \xrightarrow{\rho} Y$$
,

where the fiber A_y of ρ over a generic $y \in Y$ is the Albanese variety $\mathrm{Alb}(X_y)$. Since $\mathcal{F} \subset \Omega^i_X$ any section $s \in \mathcal{F}^n$ (at a generic point of X) can be represented as

$$s = (df_1 \wedge \wedge q)^n$$

where q is a closed 1-form. The form q defines a holomorphic form on a generic fiber X_y of φ so that ρ is nontrivial and $\dim(\alpha(X_y)) \geq 1$. In particular, the restriction of q to X_y is induced from A_y .

It follows that there exists a sheaf $\mathcal{G} \subset \Omega_A^i$ such that \mathcal{F}^n is a saturation of $\alpha^*\mathcal{G}$. Moreover, all sections of \mathcal{F}^n are obtained as lifts of integrable meromorphic sections of \mathcal{G} .

REMARK 5.12. — Notice that if $\dim(A_y) = 1$ (for generic $y \in Y$) then $\mathcal{G} = K_A$ (and $A \to Y$ is an elliptic fibration).

References

- [1] F. A. BOGOMOLOV "Analytic sections in conic bundles", *Trudy Mat. Inst. Steklov.* **165** (1984), p. 16–23, Algebraic geometry and its applications.
- [2] F. CAMPANA "Special varieties and classification theory", ArXiv: math.AG/0110051, 2001.
- [3] R. FRIEDMAN and J. W. MORGAN Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27, Springer-Verlag, Berlin, 1994.
- [4] K. Kodaira "On the structure of compact complex analytic surfaces. I", Amer. J. Math. 86 (1964), p. 751–798.
- [5] Y. MIYAOKA "Kähler metrics on elliptic surfaces", Proc. Japan Acad. 50 (1974), p. 533–536.
- [6] F. Sakai "Kodaira dimensions of complements of divisors", in Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, p. 239–257.