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Abstract. We compute the effective cone of the moduli space of stable curves

of genus zero with six marked points.

1. Introduction

For a smooth projective variety, Kleiman’s criterion for ample divisors states
that the closed ample cone (i.e., the nef cone) is dual to the closed cone of effective
curves. Since the work of Mori, it has been clear that extremal rays of the cone
of effective curves play a special role in birational geometry. These correspond to
certain distinguished supporting hyperplanes of the nef cone which are negative with
respect to the canonical class. Contractions of extremal rays are the fundamental
operations of the minimal model program.

Fujita [F] has initiated a dual theory, with the (closed) cone of effective divi-
sors playing the central role. It is natural then to consider the dual cone and its
generators. Those which are negative with respect to the canonical class are called
coextremal rays, and have been studied by Batyrev [Ba]. They are expected to
play a fundamental role in Fujita’s program of classifying fiber-space structures on
polarized varieties.

There are relatively few varieties for which the extremal and coextremal rays
are fully understood. Recently, moduli spaces of pointed rational curves M0,n

have attracted considerable attention, especially in connection with mathematical
physics and enumerative geometry. Keel and McKernan first considered the ‘Fulton
conjecture’: The cone of effective curves of M0,n is generated by one-dimensional
boundary strata. This is proved for n ≤ 7 [KeMc]. The analogous statement for
divisors, namely, that the effective cone of M0,n is generated by boundary divisors,
is known to be false ([Ke] and [Ve]). The basic idea is to consider the map

r : M0,2g ↪→Mg, n = 2g,

identifying pairs (i1i2), (i3i4), . . . , (i2g−1i2g) of marked points to nodes. There exist
effective divisors in Mg restricting to effective divisors not spanned by boundary
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divisors (see Remark 4.2). However, it is true that for each n the cones of Sn-
invariant effective divisors are generated by boundary divisors [KeMc].

In recent years it has become apparent that various arithmetic questions about
higher dimensional algebraic varieties defined over number fields are also closely
related to the cone of effective divisors. For example, given a variety X over a
number field F , a line bundle L in the interior of NE1(X), an open U ⊂ X over
which LN (N � 0) is globally generated, and a height HL associated to some
adelic metrization L of L, we can consider the asymptotic behavior of the counting
function

N(U,L, B) = #{x ∈ U(F ) |HL(x) ≤ B} B > 0.

There is a heuristic principle that, after suitably restricting U ,

N(U,L, B) = c(L)Ba(L) log(B)b(L)−1(1 + o(1)),

as B →∞ (see [BT]). Here

a(L) := inf{a ∈ R | aL+KX ∈ NE1(X)},

b(L) is the codimension of the face of NE1(X) containing a(L)L+KX (provided that
NE1(X) is locally polyhedral at this point), and c(L) > 0 is a constant depending
on the chosen height (see [BM] and [BT] for more details). Notice that the explicit
determination of the constant c(L) also involves the knowledge of the effective cone.

Such asymptotic formulas can be proved for smooth complete intersections in
P
n of small degree using the classical circle method in analytic number theory

and for varieties closely related to linear algebraic groups, like flag varieties, toric
varieties etc., using adelic harmonic analysis ([BT] and references therein). No gen-
eral techniques to treat arbitrary varieties with many rational points are currently
available. To our knowledge, the only other variety for which such an asymptotic
is known to hold is the moduli space M0,5 (Del Pezzo surface of degree 5) in its
anticanonical embedding [dB]. Upper and lower bounds, with the expected a(L)
and b(L), are known (see [VW]) for the Segre cubic threefold

Seg = {(x0, . . . , x5) :
5∑
j=0

x3
j =

5∑
j=0

xj = 0}.

This admits an explicit resolution by the moduli space M0,6 (Remark 3.1); see [Hu]
for the relationship between the Segre cubic and moduli spaces.

Our main result (Theorem 5.1) is a computation of the effective cone of M0,6.
Besides the boundary divisors, the generators are the loci in M0,6 fixed under

σ = (i1i2)(i3i4)(i5i6) ∈ S6, {i1, i2, i3, i4, i5, i6} = {1, 2, 3, 4, 5, 6}.

This equals the closure of r∗h ∩M0,6, where h is the hyperelliptic locus in M3.
The effective and moving cones of M3 are studied in detail by Rulla [Ru]. Rulla’s
inductive analysis of the moving cone is similar to the method outlined in Section 2.
Results on the ample cone of M0,6 have been recently obtained by Farkas and
Gibney [FG].

The arithmetic consequences of Theorem 5.1 will be addressed in a future paper.
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2. Generalities on effective cones

Let X be a nonsingular projective variety with Néron-Severi group NS(X) and
group of one-cycles N1(X). The closed effective cone of X is the closed convex cone

NE1(X) ⊂ NS(X)⊗ R

generated by effective divisors on X. Let NM1(X) be the dual cone NE1(X)∗ in
N1(X)⊗ R. Similarly, let NE1(X) be the cone of effective curves and NM1(X) its
dual, the nef cone.

We review one basic strategy, used in Section 5, for computing NE1(X). Sup-
pose we are given a collection Γ = {A1, . . . , Am} of effective divisors that we expect
to generate the effective cone and a subset Σ ⊂ Γ. For any effective divisor E, we
have a decomposition

E = MΣ +BΣ, BΣ = a1A1 + . . .+ amAm, aj ≥ 0,

where BΣ is the fixed part of |E| supported in Σ. The divisor MΣ may have fixed
components, but they are not contained in Σ. Let Mov(X)Σ denote the closed
cone generated by effective divisors without fixed components in Σ. To show that
Γ generates NE1(X) it suffices to show that it generates Mov(X)Σ. Any divisor of
Mov(X)Σ restricts to an effective divisor on each Aj ∈ Σ. Consequently,

Mov(X)Σ ⊂ NM1(Σ, X)∗,

where NM1(Σ, X) ⊂ N1(X) is generated by the images of the NM1(Ai) and Ai ∈ Σ.
To prove that Γ generates NE1(X), it suffices then to check that

{cone generated by Γ}∗ ⊂ NM1(Σ, X).

3. Geometry of M0,n

3.1. A concrete description of M0,n. In this section we give a basis for
the Néron-Severi group of M0,n and write down the boundary divisors and the
symmetric group action.

We recall the explicit iterated blow-up realization

βn : M0,n → P
n−3

from [Has] (see also a related construction in [Kap].) This construction involves
choosing one of the marked points; we choose sn. Fix points p1, . . . , pn−1 in lin-
ear general position in P

n−3 := X0[n]. Let X1[n] be the blow-up of Pn−3 at
p1, . . . , pn−1, and let E1, . . . , En−1 denote the exceptional divisors (and their proper
transforms in subsequent blow-ups). Consider the proper transforms `ij ⊂ X1[n] of
the lines joining pi and pj . Let X2[n] be the blow-up of X1[n] along the `ij , with
exceptional divisors Eij . In general, Xk[n] is obtained from Xk−1[n] by blowing-up
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along proper transforms of the linear spaces spanned by k-tuples of the points. The
exceptional divisors are denoted

Ei1,... ,ik {i1, . . . , ik} ⊂ {1, . . . , n− 1}.

This process terminates with a nonsingular variety Xn−4[n] and a map

βn : Xn−4[n]→ P
n−3.

One can prove that Xn−4[n] is isomorphic to M0,n. We remark that for a generic
point pn ∈ Pn−3, we have an identification

β−1
n (pn) = (C, p1, p2, . . . , pn),

where C is the unique rational normal curve of degree n− 3 containing p1, . . . , pn
(see [Kap] for further information).

Let L be the pull-back of the hyperplane class on Pn−3 by βn. We obtain the
following explicit basis for NS(M0,n):

{L,Ei1 , Ei1i2 , . . . , Ei1,... ,ik , . . . , Ei1,... ,in−4}.

We shall use the following dual basis for the one-cycles N1(M0,n):

{Ln−4, (−Ei1)n−4, . . . , (−Ei1,... ,ik)n−3−kLk−1, . . . , (−Ei1,... ,in−4)Ln−5}. (†)

3.2. Boundary divisors. Our next task is to identify the boundary divisors
of M0,n in this basis. These are indexed by partitions

{1, 2, . . . , n} = S ∪ Sc, n ∈ S and |S|, |Sc| ≥ 2;

the generic point of the divisor DS corresponds to a curve consisting of two copies
of P1 intersecting at a node ν, with marked points from S on one component and
from Sc on the other. Thus we have an isomorphism

DS ' M0,|S|+1 ×M0,|Sc|+1, (‡)
(P1, S) ∪ν (P1, Sc) −→ (P1, S ∪ {ν})× (P1, Sc ∪ {ν}).

The exceptional divisors are identified as follows:

Ei1,... ,ik = Di1,... ,ik,n, {i1, . . . , ik} ⊂ {1, . . . , n− 1}, k ≤ n− 4.

The remaining divisors Di1,... ,in−3,n are the proper transforms of the hyperplanes
spanned by (n− 3)-tuples of points; we have

[Di1,... ,in−3,n] = L− Ei1 − Ei2 − . . .− Ei1,... ,in−4 − . . .− Ei2,... ,in−3 .

Remark 3.1. The explicit resolution of the Segre threefold

R : M0,6 → Seg

alluded to in the introduction is given by the linear series

|2L− E1 − E2 − E3 − E4 − E5|.

The image is a cubic threefold with ten ordinary double points, corresponding to
the lines `ij contracted by R.
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3.3. The symmetric group action on M0,n. The symmetric group Sn acts
on M0,n by the rule

σ(C, s1, . . . , sn) = (C, sσ(1), . . . , sσ(n)).

Let Fσ ⊂M0,n denote the closure of the locus in M0,n fixed by an element σ ∈ Sn.
We make explicit the Sn-action in terms of our blow-up realization. Choose

coordinates (z0, z1, z2, . . . , zn−3) on Pn−3 so that

p1 = (1, 0, . . . , 0), . . . , pn−2 = (0, . . . , 0, 1), pn−1 = (1, 1, . . . , 1, 1).

Each permutation of the first (n − 1) points can be realized by a unique element
of PGLn−2. For elements of Sn fixing n, the action on M0,n is induced by the
corresponding linear transformation on Pn−3. Now let σ = (jn) and consider the
commutative diagram

M0,n
σ→ M0,n

βn ↓ ↓ βn
P
n−3 σ′

99K P
n−3

.

The birational map σ′ is the Cremona transformation based at the points pi1 , . . . , pin−2

where
{i1, . . . , in−2, j} = {1, 2, . . . , n− 1},

e.g., when σ = (n− 1, n) we have

σ(z0, z1, . . . , zn−3) = (z1z2 . . . zn−3, z0z2 . . . zn−3, . . . , z0 . . . zn−4).

4. Analysis of surfaces in M0,6

4.1. The M0,5 case.

Proposition 4.1. NE1(M0,5) is generated by the divisors Dij , where {ij} ⊂
{1, 2, 3, 4, 5}.

Sketch proof: This is well-known, but we sketch the basic ideas to introduce notation
we will require later. As we saw in § 3.1, M0,5 is the blow-up of P2 at four points
in general position. Consider the set of boundary divisors

Σ = {Di5, Dij} = {Ei, L− Ei − Ej}, {i, j} ⊂ {1, 2, 3, 4}

and the set of semiample divisors

Ξ = {L−Ei, 2L−E1−E2−E3−E4, L, 2L−Ei−Ej −Ek}, {i, j, k} ⊂ {1, 2, 3, 4}.

These semiample divisors come from the forgetting maps

φi : M0,5 →M0,4 ' P1, i = 1, . . . , 5

and the blow-downs
βi : M0,5 → P

2, i = 1 . . . , 5.

Kleiman’s criterion yields

C(Σ) ⊂ NE1(M0,5) = NM1(M0,5)∗ ⊂ C(Ξ)∗.

All the inclusions are equalities because the cones generated by Ξ and Σ are
dual; this can be verified by direct computation (e.g., using the computer program
PORTA [PORTA]). �
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4.2. Fixed points and the Cayley cubic. We identify the fixed-point di-
visors for the S6-action on M0,6. When τ = (12)(34)(56) we have

τ(z0, z1, z2, z3) = (z0z2z3, z1z2z3, z0z1z2, z0z1z3)

and Fτ is given by z0z1 = z2z3. It follows that

[Fτ ] = 2L− E1 − E2 − E3 − E4 − E5 − E13 − E23 − E24 − E14.

More generally, when τ = (ab)(cd)(j6) we have

[Fτ ] = 2L− E1 − E2 − E3 − E4 − E5 − Eac − Ead − Ebc − Ebd.

Remark 4.2. Consider (P1, s1, . . . , s6) ∈ Fτ and the quotient under the cor-
responding involution

q : P1 −→ P
1, q(s1) = q(s2), q(s3) = q(s4), etc.

Consider the map r : M0,6 →M3 identifying the pairs (12), (34), and (56) and write
C = q(P1, s1, . . . , s6), so there is an induced q′ : C → P

1. Thus C is hyperelliptic
and Fτ corresponds to the closure of r∗h∩M0,6, where h ⊂M3 is the hyperelliptic
locus.

1

2 4

3 5

6

Figure 1. Trinodal hyperelliptic curves

In Section 5.3 we will use the description of the effective cone of the fixed point
divisors Fσ. We have seen that these are isomorphic to P1 × P1 blown-up at five
points p1, . . . , p5. The projection from p5

P
3 99K P2

induces a map ϕ : Fσ → P
2, realizing Fσ as a blow-up of P2: Take four general

lines `1, . . . , `4 in P2 with intersections qij = `i ∪ `j , and blow-up P2 along the qij .
We write

NS(Fσ) = ZH + ZG12 + . . .+ ZG34,

where the Gij are the exceptional divisors and H is the pull back of the hyperplane
class from P

2.

Proposition 4.3. NE1(Fσ) is generated by the (−1)-curves

G12, . . . , G34,H −Gij −Gkl,

and the (−2)-curves

H −Gij −Gik −Gil, {i, j, k, l} = {1, 2, 3, 4}.
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Proof: Let Σ be the above collection of 13 curves. Consider also the following
collection Ξ of 38 divisors, grouped as orbits under the S4-action:

typical member orbit size induced morphism
H 1 blow-down ϕ : Fσ → P

2

H −G12 6 conic bundle Fσ → P
1

2H −G12 −G13 −G23 4 blow-down Fσ → P
2

2H −G12 −G23 −G34 12 blow-down Fσ → P
2

2H −G12 −G23 −G34 −G14 3 conic bundle Fσ → P
1

3H − 2G12 −G13 −G23 −G34 12 blow-down Fσ → P(1, 1, 2)

Note that each of these divisors is semiample: the corresponding morphism is indi-
cated in the table. In particular,

C(Σ) := {cone generated by Σ} ⊂ NE1(Fσ),

C(Ξ) := {cone generated by Ξ} ⊂ NM1(Fσ)

and Kleiman’s criterion yields

C(Σ) ⊂ NE1(Fσ) = NM1(Fσ)∗ ⊂ C(Ξ)∗.

A direct verification using PORTA [PORTA] shows that the cones C(Σ) and C(Ξ)
are dual, so all the inclusions are equalities. �

Remark 4.4. The image of Fτ under the resolution R of 3.1 is a cubic surface
with four double points, classically called the Cayley cubic [Hu].

5. The effective cone of M0,6

We now state the main theorem:

Theorem 5.1. The cone of effective divisors NE1(M0,6) is generated by the
boundary divisors and the fixed-point divisors Fσ, where σ ∈ S6 is a product of
three disjoint transpositions.

5.1. Proof of Main Theorem. We use the strategy outlined in § 2. Consider
the collection of boundary and fixed-point loci

Γ = {Dij , Dijk, Fσ, σ = (ij)(kl)(ab), {i, j, k, l, a, b} = {1, 2, 3, 4, 5, 6}}

and the subset of boundary divisors

Σ = {Dij , Dijk}.

We compute the cone NM1(Σ,M0,6), the convex hull of the union of the images
of NM1(Dij) and NM1(Dijk) in N1(M0,6). Throughout, we use the dual basis for
N1(M0,6) (cf. (†)):

{L2, E2
1 , E

2
2 , E

2
3 , E

2
4 , E

2
5 ,−LE12,−LE13,

−LE14,−LE15,−LE23,−LE24,−LE25,−LE34,−LE35,−LE45}.

Recall the isomorphism (‡)

(πijk, πlab) : Dijk −→ P
1 × P1, {i, j, k, l, a, b, c} = {1, 2, 3, 4, 5, 6}

so that

N1(Dijk) = ZBijk ⊕ ZBlab, NM1(Dijk) = R+Bijk + R+Blab,
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where Bijk is the class of the fiber of πijk (and its image in N1(M0,6)). For example,
the inclusion j345 : D345 ↪→M6 induces

(j345)∗ =
(

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0

)T
using the bases (†) for N1(M0,6) and {B126, B345} for N1(D345). In particular, we
find

NM1({Dijk},M0,6) = C({Bijk}), {i, j, k} ⊂ {1, 2, 3, 4, 5, 6},

with
(

6
3

)
= 20 generators permuted transitively by S6 (Table 1).

The boundary divisorDij is isomorphic toM0,5 with marked points {k, l, a, b, ν}
where {i, j, k, l, a, b} = {1, 2, 3, 4, 5, 6} and ν is the node (cf. formula (‡)). The
proof of Proposition 4.1 gives generators for the nef cone of Dij . Thus the cone
NM1(Dij ,M0,6) is generated by the classes

{Aij , Aij;k, Aij;l, Aij;a, Aij;b, Cij , Cij;k, Cij;l, Cij;a, Cij;b} ⊂ N1(M0,6)

corresponding to the forgetting and blow-down morphisms

{φν , φk, φl, φa, φb, βν , βk, βl, βa, βb}.

As an example, consider the inclusion j45 : D45 ↪→M0,6 with

j45∗ =


1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


T

.

Applying this to the nef divisors of D45 gives the generators for NM1(D45,M0,6)
(Table 2).

However, four of the (−1)-curves in Dij are contained in Dijk, Dijl, Dija, and
Dijb, with classes Bijk, Bijl, Bija, and Bijb respectively. Thus we have the relations

Cij = Aij;k +Bijk, Cij;k = Aij +Bijk

which implies that the Cij and Cij;k are redundant:

Proposition 5.2. The cone NM1(Σ,M0,6) is generated by the Aij, the Aij;k,
and the Bijk.

These are written out in Tables 1,3, and 4.
Our next task is to write out the generators for the dual cone C(Γ)∗, as com-

puted by PORTA [PORTA]. Since Γ is stable under the S6 action, so are C(Γ)
and its dual cone. For the sake of brevity, we only write S6-representatives of the
generators, ordered by anticanonical degree.

The discussion of Section 2 shows that Theorem 5.1 will follow from the inclu-
sion

C(Γ)∗ ⊂ NM1(Σ,M0,6).

We express each generator of C(Γ)∗ as a sum (with non-negative coefficients) of the
{Aij , Aij;k, Bijk}. Both cones are stable under the S6-action, so it suffices to pro-
duce expressions for one representative of each S6-orbit. We use the representatives
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from Table 5:

(1) = A15 +A13 +A35 + 2B246 (2) = A34;5 +B126

(3) = A15 +A14 + 2B236 (4) = A25 +B146 +B136

(5) = A23 +B146 +B156 +B236 (6) = A15 +A14 +B236 +B246 +B356

(7) = A13;5 +A15 +B236 +B246 (8) = A12;5 +A14 +B256 +B356

(9) = A24 +A34 +B126 +B136 +B156

(10) = A25 +B136 +B146 +B256 +B346

(11) = A34;5 +A35;4 +A25;3 +B146 (12) = A12 +A34 + 2B126 + 2B346

(13) = A15 +A14 +A23 + 2B146 + 2B236

(14) = A23;5 +A15 +A25 +B136 +B146 +B236

(15) = A23;5 +A24;5 +A15 +B156 +B346

(16) = A24;5 +A15 +B136 +B156 +B236

(17) = A23 + 2A25 + 2B136 + 2B146

(18) = A12;3 +A34 +B126 +B136 +A36;1

(19) = A12;5 +A15 +A25 +B136 +B246 +B346

(20) = A13;5 +A35 +A45 + 2B126 +B456

(21) = A12 +A13 +B126 +B136 +B246 +B346 +B456

(22) = A15 +A23 +A34 +B126 +B146 +B156 + 2B236

(23) = A13;5 +A14;5 +A23 +A13 +B256 + 2B456

(24) = A15 +A23 +A24 +A34 +B126 +B136 +B146 +B156 + 2B236

(25) = 2A14 +A24 + 2A13;5 + 2B256 + 2B356

This completes the proof of Theorem 5.1.�

5.2. Geometric interpretations of coextremal rays. By definition, a co-
extremal ray R+ρ ⊂ NM1(X) satisfies the following

• for any nontrivial ρ1, ρ2 ∈ NM1(X) with ρ1 + ρ2 ∈ R+ρ, ρ1, ρ2 ∈ R+ρ;
• KXρ < 0.

Batyrev ([Ba], Theorem 3.3) shows that, for smooth (or Q-factorial terminal) three-
folds, the minimal model program yields a geometric interpretation of coextremal
rays. They arise from diagrams

X
ψ
99K Y

↓ µ
B

where ψ is a sequence of birational contractions and µ is a Mori fiber space. The
coextremal ray ρ = ψ∗[C], where C is a curve lying in the general fiber of µ. These
interpretations will hold for higher-dimensional varieties, provided the standard
conjectures of the minimal model program are true.

It is natural then to write down these Mori fiber space structures explicitly.
Our analysis makes reference to the list of orbits of coextremal rays in Table 5 (and
uses the same numbering):
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(1) The first orbit in the Table is orthogonal to each of the boundary divisors
Dij ⊂M0,6. The Q-Fano fibration associated with this coextremal ray must
contract these divisors. The anticanonical series |−KM0,6

| yields a birational
morphism

M0,6 → J ⊂ P4

onto a quartic Q-Fano hypersurface, called the Igusa quartic [Hu]. The
fifteen singular points of the Igusa quartic are the images of the Dij . The
coextremal ray has anticanonical degree two and corresponds to curves pass-
ing through the generic point, i.e., the conics in J .

(2) Forgetting any of the six marked points

M0,6 →M0,5

yields a Mori fiber space, and the fibers are coextremal.
(3) We define a conic bundle structure on M0,6 by explicit linear series, using

the blow-up description of Subsection 3.1. Consider the cubic surfaces in P3

passing through the lines

`14, `15, `24, `25, `34, `35.

This linear series has additional base points: Any cubic surface containing
the lines `14, `24, `34 (resp. `15, `25, `35) must be singular at p4 (resp. p5),
and thus contains the line `45 by the Bezout Theorem.

Our linear series has projective dimension two. Indeed, cubic hypersur-
faces in P3 depend on 19 parameters; the singularities at p4 and p5 each
impose four conditions, the remaining points p1, p2, p3 impose three further
conditions, and containing the six lines imposes six more conditions. Thus
we obtain a conic bundle structure

µ : M0,6 99K P
2

collapsing the two-parameter family of conics passing through the six lines
above.

(4) For any two disjoint subsets {i, j}, {k, l} ⊂ {1, 2, 3, 4, 5, 6} we consider the
forgetting maps

φij : M0,6 → P
1, φkl : M0,6 → P

1.

Together, these induce a conic bundle structure

(φij , φkl) : M0,6 → P
1 × P1.

The class of a generic fiber is coextremal.

5.3. The moving cone. Our analysis gives, implicitly, the moving cone of
M0,6:

Theorem 5.3. The closed moving cone of M0,6 is equal to NM1(Γ,M0,6)∗,
where Γ is the set of generators for NE1(M0,6).

In the terminology of [Ru], the ‘inductive moving cone’ equals the ‘moving
cone’. Combining Theorem 5.3 with the computation of the ample cones to the
boundaries Dij and Dijk and the fixed-point divisors Fσ (Proposition 4.3) we obtain
the moving cone. However, finding explicit generators for the moving cone is a
formidable computational problem.
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Proof: Recall that M0,6 is a log Fano threefold: −(KM0,6
+ ε

∑
ij Dij) is ample

for small ε > 0 [KeMc]. Using Corollary 2.16 of [KeHu], it follows that M0,6

is a ‘Mori Dream Space’. The argument of Theorem 3.4.4 of [Ru] shows that an
effective divisor on M0,6 that restricts to an effective divisor on each generator
Ai ∈ Γ is in the moving cone. �

Remark 5.4. Our proof of Theorem 5.1 uses the cone NM1(Σ,M0,6)∗, rather
than the (strictly) smaller moving cone. Of course, if the coextremal rays are in
NM1(Σ,M0,6), a fortiori they are in NM1(Γ,M0,6).
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Table 1. Generators for NM1({Dijk},M0,6)

B126 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
B136 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
B146 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
B156 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
B236 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
B246 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
B256 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
B346 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
B356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
B456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
B123 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 −1
B124 1 0 0 1 0 1 0 0 0 0 0 0 0 0 −1 0
B125 1 0 0 1 1 0 0 0 0 0 0 0 0 −1 0 0
B134 1 0 1 0 0 1 0 0 0 0 0 0 −1 0 0 0
B135 1 0 1 0 1 0 0 0 0 0 0 −1 0 0 0 0
B145 1 0 1 1 0 0 0 0 0 0 −1 0 0 0 0 0
B234 1 1 0 0 0 1 0 0 0 −1 0 0 0 0 0 0
B235 1 1 0 0 1 0 0 0 −1 0 0 0 0 0 0 0
B245 1 1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
B345 1 1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0

Table 2. Generators for NM1(D45,M0,6)

A45 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1
A45;1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
A45;2 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
A45;3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
A45;6 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
C45;6 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
C45;1 2 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1
C45;2 2 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1
C45;3 2 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1
C45 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3. Generators Aij for NM1({Dij},M0,6)

A12 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1
A13 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1
A14 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
A15 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0
A16 0 −2 0 0 0 0 1 1 1 1 0 0 0 0 0 0
A23 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1
A24 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0
A25 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0
A26 0 0 −2 0 0 0 1 0 0 0 1 1 1 0 0 0
A34 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
A35 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0
A36 0 0 0 −2 0 0 0 1 0 0 1 0 0 1 1 0
A45 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1
A46 0 0 0 0 −2 0 0 0 1 0 0 1 0 1 0 1
A56 0 0 0 0 0 −2 0 0 0 1 0 0 1 0 1 1
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Table 4. Generators Aij;k for NM1({Dij},M0,6)

A12;3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
A12;4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
A12;5 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
A12;6 2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
A13;2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
A13;4 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
A13;5 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
A13;6 2 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0
A14;2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
A14;3 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
A14;5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
A14;6 2 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0
A15;2 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
A15;3 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
A15;4 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
A15;6 2 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0
A16;2 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
A16;3 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
A16;4 0 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A16;5 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
A23;1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A23;4 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
A23;5 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
A23;6 2 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0
A24;1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
A24;3 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
A24;5 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
A24;6 2 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0
A25;1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
A25;3 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
A25;4 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
A25;6 2 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0
A26;1 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0
A26;3 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
A26;4 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0
A26;5 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0 0
A34;1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
A34;2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
A34;5 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
A34;6 2 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0
A35;1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
A35;2 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
A35;4 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
A35;6 2 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0
A36;1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0
A36;2 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0 0
A36;4 0 0 0 −1 0 0 0 0 0 0 0 0 0 1 0 0
A36;5 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0
A45;1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
A45;2 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
A45;3 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
A45;6 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
A46;1 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0
A46;2 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0 0
A46;3 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0
A46;5 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1
A56;1 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 0 0
A56;2 0 0 0 0 0 −1 0 0 0 0 0 0 1 0 0 0
A56;3 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0
A56;4 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 1
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Table 5. S6-orbits of coextremal rays of M0,6

deg−K order

(1) 2 1 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
(2) 2 6 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
(3) 2 15 2 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
(4) 2 45 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
(5) 3 60 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
(6) 3 72 2 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0
(7) 3 120 2 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
(8) 3 120 2 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0
(9) 3 180 2 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0

(10) 4 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(11) 4 10 3 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0
(12) 4 30 2 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
(13) 4 60 3 0 0 0 0 0 0 0 0 2 1 1 1 1 1 1
(14) 4 90 3 0 0 0 0 1 0 0 1 1 0 1 1 2 0 0
(15) 4 90 3 0 0 0 0 2 0 1 1 0 1 1 0 0 0 0
(16) 4 180 2 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
(17) 4 180 3 0 0 0 0 0 0 0 1 1 1 0 2 2 0 1
(18) 4 360 2 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
(19) 4 360 3 0 0 0 0 1 0 0 1 1 1 0 1 2 0 0
(20) 4 360 3 0 0 0 0 1 0 1 1 0 1 2 0 0 1 0
(21) 5 120 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
(22) 5 360 3 0 0 0 0 0 0 0 0 2 0 1 1 2 0 1
(23) 5 360 4 0 0 0 0 2 0 1 1 1 2 2 0 0 0 0
(24) 6 360 4 0 0 0 0 0 0 0 0 3 0 2 1 2 1 1
(25) 6 360 5 0 0 0 0 2 0 1 2 1 2 3 0 0 1 0

3905


	Introduction
	Generalities on effective cones
	Geometry of M0,n
	A concrete description of M0,n
	Boundary divisors
	The symmetric group action on M0,n

	Analysis of surfaces in M0,6
	The M0,5 case
	Fixed points and the Cayley cubic

	The effective cone of M0,6
	Proof of Main Theorem
	Geometric interpretations of coextremal rays
	The moving cone


