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Abstract. — We study the equations of universal torsors on rational surfaces.
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Introduction

The study of surfaces over nonclosed fields k leads naturally to certain
auxiliary varieties, called universal torsors. The proofs of the Hasse
principle and weak approximation for certain Del Pezzo surfaces required
a very detailed knowledge of the projective geometry, in fact, explicit
equations, for these torsors [6], [8], [7], [20],[21], [19]. More recently,
it was realized that in many cases the study of asymptotics of rational
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points of bounded height also boils down to counting integral points on
universal torsors [17], [18], [2].

Colliot-Thélène and Sansuc have given a general formalism for writing
down equations for these torsors. We briefly sketch their method: Let
X be a smooth projective variety and {Dj}j∈J a finite set of irreducible
divisors on X such that U := X \ ∪j∈JDj has trivial Picard group. In
practice, one usually chooses generators of the effective cone of X, e.g.,
the lines on the Del Pezzo surface. Consider the resulting exact sequence:

0 −→ k̄[U ]∗/k̄∗ −→ ⊕j∈JZDj −→ Pic(Xk̄) −→ 0.

Applying Hom(−, Gm), one obtains an exact sequence of tori

1 −→ T (X) −→ T −→ R −→ 1,

where the first term is the Néron-Severi torus of X. Suppose we have
a collection of rational functions, invertible on U , which form a basis
for the relations among the {Dj}j∈J . These can be interpreted as a
section U→R × U , and thus naturally induce a T (X)-torsor over U ,
which canonically extends to the universal torsor over X. In practice,
this extension can be made explicit, yielding equations for the universal
torsor.

However, when the cone generated by {Dj}j∈J is simplicial, there are
no relations and this method gives little information. In this paper, we
outline an alternative approach to the construction of universal torsors
and illustrate it in specific examples where the effective cone of X is
simplicial.

We will work with varieties X such that the Picard and the Néron-
Severi groups of X coincide and such that the ring

Cox(X) :=
⊕

L∈Pic(X)

Γ(X, L),

is finitely generated. This ring admits a natural action of the Néron-
Severi torus and the corresponding affine variety is a natural embedding
of the universal torsor of X. The challenge is to actually compute Cox(X)
in specific examples; Cox has shown that it is a polynomial ring precisely
when X is toric [9].
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Here is a roadmap of the paper: In Section 1 we introduce Cox rings
and discuss their general properties. Finding generators for the Cox ring
entails embedding the universal torsor into affine space, which yields em-
beddings of our original variety into toric quotients of this affine space.
We have collected several useful facts about toric varieties in Section 2.
Section 3 is devoted to a detailed analysis of the unique cubic surface
S with an isolated singularity of type E6. We compute the (simplicial)
effective cone of its minimal desingularization S̃, and produce 10 distin-
guished sections in Cox(S̃). These satisfy a unique equation and we show
the universal torsor naturally embeds in the corresponding hypersurface
in A10. More precisely, we get a homomorphism from the coordinate ring
of A10 to Cox(S̃) and the main point is to prove its surjectivity. Here
we use an embedding of S̃ into a simplicial toric threefold Y , a quo-
tient of A10 under the action of the Néron-Severi torus so that Cox(Y ) is
the polynomial ring over the above 10 generators. The induced restric-
tion map on the level of Picard groups is an isomorphism respecting the
moving cones. We conclude surjectivity for each degree by finding an
appropriate birational projective model of Y and using vanishing results
on it. Finally, in Section 4 we write down equations for the universal
torsors (the Cox rings) of a split and a nonsplit cubic surface with an
isolated singularity of type D4.

Acknowledgments: The results of this paper have been reported at
the American Institute of Mathematics conference “Rational and integral
points on higher dimensional varieties”. We benefited from the comments
of the other participants, in particular, V. Batyrev and J.L. Colliot-
Thélène. We also thank S. Keel for several helpful discussions about Cox
rings and M. Thaddeus for advice about the geometric invariant theory
of toric varieties.

1. Generalities on the Cox ring

For any finite subset Ξ of a real vector space, let Cone(Ξ) denote the
closed cone generated by Ξ.
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Let X be a normal projective variety of dimension n over an alge-
braically closed field k of characteristic zero. Let An−1(X) and Nn−1(X)
denote Weil divisors on X up to linear and numerical equivalence, respec-
tively. Let A1(X) and N1(X) denote the classes of curves up to equiva-
lence. Let NEn−1(X) ⊂ Nn−1(X)R denote the cone of (pseudo)effective
divisors, i.e., the smallest real closed cone containing all the effective di-
visors of X. Let NE1(X) ⊂ N1(X)R denote the cone of effective curves
and NM1(X) ⊂ Nn−1(X)R the cone of nef Cartier divisors, which is dual
to the cone of effective Cartier divisors. By Kleiman’s criterion, this is
the smallest real closed cone containing all ample divisors of X.

Let L1, . . . , Lr be invertible sheaves on X. For ν = (n1, . . . , nr) ∈ Nr

write

Lν := L⊗n1
1 ⊗ . . .⊗ L⊗nr

r .

Consider the ring

R(X, L1, . . . , Lr) :=
⊕
ν∈Nr

Γ(X, Lν),

which need not be finitely generated in general.
By definition, an invertible sheaf L on X is semiample if LN is globally

generated for some N > 0:

Proposition 1.1. — ([13], Lemma 2.8) If L1, . . . , Lr are semiample
then R(X, L1, . . . , Lr) is finitely generated.

Remark 1.2. — If the Li are ample then, after replacing each Li by a
large multiple, R(X, L1, . . . , Lr) is generated by

Γ(X, L1)⊗ . . .⊗ Γ(X, Lr).

However, this is not generally the case if the Li are only semiample
(despite the assertion in the second part of Lemma 2.8 of [13]). Indeed,
let X→P1×P1 be a double cover and L1 and L2 be the pull-backs of the
polarizations on the P1’s to X. For suitably large n1 and n2, Ln1

1 ⊗ Ln2
2

is very ample and its sections embed X. However,

Γ(X, Ln1
1 )⊗ Γ(X, Ln2

2 ) ' Γ(P1,OP1(n1))⊗ Γ(P1,OP1(n2)),

and any morphism induced by these sections factors through P1 × P1.
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Proposition 1.3. — Let L1, . . . , Lr be a set of invertible sheaves on
X such that Lj is generated by sections sj,0, ..., sj,dj

. Assume that the

induced morphism X→
∏

j Pdj is birational into its image. Then the ring

generated by the sj,k’s has the same fraction field as R(X, L1, . . . , Lr).

Proof. — Both rings have fraction field k(X)(t1, ..., tr), where tj is a
nonzero section of Lj.

Definition 1.4. — [13] Let X be a nonsingular projective variety so
that Pic(X) is a free abelian group of rank r. The Cox ring for X is
defined

Cox(X) := R(X, L1, . . . , Lr),

where L1, . . . , Lr are lines bundles so that

1. the Li form a Z-basis of Pic(X);
2. the cone Cone({L1, . . . , Lr}) contains NEn−1(X).

This ring is naturally graded by Pic(X): for ν ∈ Pic(X) the ν-graded
piece is denoted Cox(X)ν.

Proposition 1.5. — [13] The ring Cox(X) does not depend on the
choice of generators for Pic(X).

Proof. — Consider two sets of generators L1, . . . , Lr and M1, . . . ,Mr.
Since Cone({Li}) and Cone({Mi}) contain all the effective divisors, the
nonzero graded pieces of both R(X, L1, . . . , Lr) and R(X, M1, . . . ,Mr)
are indexed by the effective divisor classes in Pic(X). Choose isomor-
phisms

Mj ' L(a1j ,...,arj), i = 1, . . . , r, A = (aij)

which naturally induce isomorphisms

Γ(M ν) ' Γ(LAν), Aν = (a11ν1 + . . . + a1rνr, . . . , ar1ν1 + . . . + arrνr).

Thus we find R(X, L1, . . . , Lr) ' R(X, M1, . . . ,Mr).

As Cox(X) is graded by Pic(X), a free abelian group of rank r, the
torus

T (X) := Hom(Pic(X), Gm)
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acts on Cox(X). Indeed, each ν ∈ Pic(X) naturally yields a character
χν of T (X), and the action is given by

t · ξ = χν(t)ξ, ξ ∈ Cox(X)ν , t ∈ T (X).

Thus the isomorphism constructed in Proposition 1.5 is not canonical:
Two such isomorphisms differ by the action of an element of T (X). It
is precisely this ambiguity that makes descending the universal torsor to
nonclosed fields an interesting question.

The following conjecture is a special case of 2.14 of [13]:

Conjecture 1.6 (Finiteness of Cox ring). — Let X be a log Fano va-
riety. Then Cox(X) is finitely generated.

Remark 1.7. — Note that if Cox(X) is finitely generated it follows
trivially that NEn−1(X) is finitely generated. Moreover, the nef cone
NM1(X) is also finitely generated.

Indeed, the nef cone corresponds to one of the chambers in the group
of characters of T (X) governed by the stability conditions for points
v ∈ Spec(Cox(X)). These chambers are bounded by finitely many hy-
perplanes (see Theorem 0.2.3 in [10] for more details).

It has been conjectured by Batyrev [1] that the pseudo-effective cone
of a Fano variety is finitely generated. However, the finiteness of the Cox
ring is not a formal consequence of the finiteness of the pseudo-effective
cone.

Example 1.8. — Let p1, . . . , p9 ∈ H ⊂ P3 be nine distinct coplanar
points given as a complete intersection of two generic cubic curves in the
hyperplane H, and let X be the blow-up of P3 at these points. Then
NE1(X) is finitely generated but Cox(X) is not. Indeed, X is an equiv-
ariant compactification of the additive group G3

a, acting by translation
on the affine space P3 −H. The group action can be used to show that
NE1(X) is generated by the boundary components (see [12]). Similarly,
one can show that the cone NE1(X) is generated by classes of curves in
the boundary components, e.g., the proper transform H̃ ⊂ X of H. It
is well-known that NE1(H̃) is infinite [15] §1.23(4): The pencil of cubic
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plane curves with base locus p1, . . . , p9 induces an elliptic fibration,

H̃→P1,

for which the nine exceptional curves of H̃→H are sections. Addition in
the group law gives an infinite number of sections, which are also (−1)-
curves and generators of NE1(H̃). These are also generators of NE1(X),
since the sections (other than the nine exceptional curves) intersect H̃
negatively. It follows that NE1(X) and NM1(X) are not finitely generated
and hence Cox(X) is not finitely generated (see Remark 1.7).

Proposition 1.9. — Let X be a nonsingular projective variety whose
anticanonical divisor −KX is nef and big. Suppose that D is a nef divisor
on X. Then H i(X, D) = 0 for each i > 0 and D is semiample.

Proof. — The first assertion is a consequence of Kawamata-Viehweg van-
ishing [15] §2.5. The second is a special case of the Kawamata Basepoint-
freeness Theorem [15] §3.2.

Proposition 1.9 largely determines the Hilbert function of the Cox ring:

Corollary 1.10. — Retain the assumptions of Proposition 1.9. Then
for nef classes ν we have

dim Cox(X)ν = χ(OX(ν)).

Remark 1.11. — In practice, this will help us to find generators of
Cox(X).

2. Generalities on toric varieties

We recall quotient constructions of toric varieties, following Brion-
Procesi [3], Cox [9], and Thaddeus [22].

Let T ' Gr
m be a torus with character group X∗(T ). Suppose that T

acts faithfully on the polynomial ring k[x1, . . . , xn+r] by the formula

t(xj) = χj(t)xj, t ∈ T,

where {χ1, . . . , χn+r} ⊂ X∗(T ). Define M as the kernel of the surjective
morphism

χ := (χ1, . . . , χn+r) : Zn+r→X∗(T ).
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We interpret M as the character group of the quotient torus Gn+r
m /T .

Set N = Hom(M, Z) so that dualizing gives

(Zn+r)∗→N→0.

Let e1, . . . , en+r and e∗1, . . . , e
∗
n+r denote the coordinate vectors in Zn+r

and (Zn+r)∗; let ē∗1, . . . , ē
∗
n+r ∈ N denote the images of the e∗i in N .

Concretely, the ē∗i are the columns of the n×(n+r) matrix of dependence
relations among the χj.

Consider a toric n-fold X associated with a fan having one-skeleton
{ē∗1, . . . , ē∗n+r}. In particular, we assume that none of ē∗i is zero or a
positive multiple of any of the others. The variety X is a categorical
quotient of an invariant open subset U ⊂ An+r under the action of T
described above (see [9] 2.1). Elements ν ∈ X∗(T ) classify T -linearied
invertible sheaves Lν on An+r and

Γ(An+r,Lν) ' k[x1, . . . , xn+r]ν .

We have An−1(X) ' X∗(T ) and we can identify

Γ(OX(D)) ' k[x1, . . . , xn]ν(D),

where ν(D) ∈ X∗(T ) is associated with the divisor class of D. The
variables xi are associated with the irreducible torus-invariant divisors
Di on X (see [11] §3.4), and the cone of effective divisors NEn−1(X) is
generated by {D1, . . . , Dn+r}. Geometrically, the effective cone in X∗(T )
is the image of the standard simplicial cone generated by e1, . . . , en+r

under the projection homomorphism χ : Zn+r→X(T ).
Recall that the moving cone

Mov(X) ⊂ NEn−1(X)

is defined as the smallest closed subcone containing the effective divisors
on X without fixed components.

Proposition 2.1. — Retaining the notation and assumptions above,

Mov(X) =
⋂

i=1,...,n+r

Cone(χ1, . . . , χi−1, χi+1, . . . , χn+r)

and has nonempty interior.
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Proof. — The fixed components of Γ(X,OX(D)) are necessarily invari-
ant under the torus action, hence are taken from {D1, . . . , Dn+r}. More-
over, Di is fixed in each Γ(X,OX(dD)), d > 0 if and only if xi divides
each element of k[x1, . . . , xn+r]dν(D). This is the case exactly when

ν(D) ∈ Cone(χ1, . . . , χn+r)− Cone(χ1, . . . , χi−1, χi+1, . . . , χn+r).

Suppose that the interior of the moving cone is empty. After permuting
indices there are two possibilities: Either Cone(χ2, . . . , χn+r) has no in-
terior, or the cones Cone(χ2, . . . , χn+r) and Cone(χ1, χ3, . . . , χn+r) have
nonempty interiors but meet in a cone with positive codimension. As
the T -action is faithful, the χi span X∗(T ). In the first case, χ2, . . . , χn+r

span a codimension-one subspace of X∗(T ) that does not contain χ1, so
that each dependence relation

c1χ1 + . . . + cn+rχn+r = 0

has c1 = 0. This translates into ē∗1 = 0, a contradiction. In the second
case, χ3, . . . , χn+r span a hyperplane, and χ1 and χ2 are on opposite
sides of this hyperplane. Putting the dependence relations among the χi

in row echelon form, we obtain a unique relation with nonzero first and
second entries, and these two entries are both positive. This translates
into the proportionality of ē∗1 and ē∗2.

We now seek to characterize the projective toric n-folds X with one-
skeleton {ē∗1, . . . , ē∗n+r}. These are realized as Geometric Invariant Theory
quotients An+r//T associated with the various linearizations of our T -
action. We consider the graded ring

R :=
∑
d≥0

Γ(An+r,Ldν) =
∑
d≥0

k[x1, . . . , xn+r]dν .

Proposition 2.2 (see [22] §2,3). — Retain the notation above and set
X := Proj(R).

1. X is projective over k if and only if 0 is not contained in the convex
hull of {χ1, . . . , χn+r}.

2. X is toric of dimension n if ν is in the interior of

Cone(χ1, . . . , χn+r).
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3. In this case, the one-skeleton of X is contained in {ē∗1, . . . , ē∗n+r}.
Equality holds if ν is in the interior of the moving cone⋂

i=1,...,n+r

Cone(χ1, . . . , χi−1, χi+1, . . . , χn+r).

Remark 2.3. — Our proof will show that X may still be of dimension
n even when ν is contained in a facet of

Cone(χ1, . . . , χn+r).

Similary, the one-skeleton of X may still be {ē∗1, . . . , ē∗n+r} even when
ν is contained in a facet of⋂

i=1,...,n+r

Cone(χ1, . . . , χi−1, χi+1, . . . , χn+r).

Proof. — The monomials which appear in R are in one-to-one correspon-
dence to solutions of

a1χ1 + . . . + an+rχn+r = dν, ai ∈ Z≥0.

In geometric terms, the monomials appearing in R coincide with the
elements of Zn+r in the cone

χ−1(Cone(ν)) ∩ Cone(e1, . . . , en+r).

By Gordan’s Lemma in convex geometry, R is generated as a k-algebra
by a finite set of monomials xm1 , . . . , xms . The monomials appearing in
the dth graded piece Rd coincide with elements of Zn+r in the polytope

Pdν := χ−1
R (dν) ∩ Cone(e1, . . . , en+r).

Note that χ−1(dν) is a translate of M .
For the first part, recall that Proj(R) is projective over Spec(R0), where

R0 is the degree-zero part. Now 0 is in the convex hull of {χ1, . . . , χn+r}
if and only if there are nonconstant elements of R of degree zero. Our
hypothesis just says that R0 = k and thus is equivalent to the projectivity
of X over k.

As for the second part, T acts on R by homotheties and thus acts
trivially on Proj(R), so we have an induced action of Gn+r

m /T on Proj(R).
We claim this action is faithful, so the quotient is toric of dimension n.
Let µ1, . . . , µn be generators for M = X∗(Gn+r

m /T ). Choose v ∈ Zn+r

in the interior of Cone(e1, . . . , en+r) so that χR(Cone(v)) = Cone(ν).
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Replacing v by a suitably large integral multiple, we may assume each
v+µi, i = 1, . . . , n, is in Cone(e1, . . . , en+r). If χ(v) = dν then Rd contains
a set of generators for M , so the induced representation of Gn+r

m /T on
Rd is faithful.

For the third part, we extract the fan classifying X from Pdν , following
[11] §1.5 and 3.4: For each face Q of Pdν , consider the cone

σQ = {v ∈ NR : 〈u, v〉 ≤ 〈u′, v〉 for all u ∈ Q, u′ ∈ Pdν}.

This assignment is inclusion reversing, so the one-dimensional cones of
the fan correspond to facets of Pdν . Moreover, each facet of Pdν is in-
duced by one of the facets of Cone(e1, . . . , en+r). The corresponding
one-dimensional cone in NR is spanned by ē∗i . It remains to verify that
each facet of Cone(e1, . . . , en+r) actually induces a facet of Pdν . The hy-
pothesis that ν is in the moving cone means that Pdν intersects each of
the Cone(e1, . . . , ei−1, ei+1, . . . , en+r). If ν is in the interior of the moving
cone then the intersection of Pdν with Cone(e1, . . . , ei−1, ei+1, . . . , en+r)
meets the relative interior of this cone, hence this cone induces a facet of
Pdν .

Proposition 2.2 yields the following nice consequence:

Proposition 2.4. — Let X be a complete toric variety and ν a divisor
class in the interior of Mov(X). Then there exists a projective toric
variety Yν, with the same one-skeleton as X, and polarized by ν.

For generic T -linearized invertible sheaves on An+r, all semistable points
are actually stable; hence Yν is a simplicial toric variety for generic ν (see
[3] 1.2 and [9] 2.1). For the special values ν0, contained in the walls of
the chamber decomposition of [22], this fails to be the case. However, for
each special ν0, there exists a generic ν so that Cone(ν) is very close to
Cone(ν0) and there is a projective, torus-equivariant morphism Yν→Yν0

[22] 3.11. The polarization associated to ν0 pulls back to Yν , so we obtain
the following:

Proposition 2.5. — Let X be a complete toric variety and ν0 a divisor
class in the moving cone of X. Then there exists a simplicial projective
toric variety Y , with the same one-skeleton as X, so that ν0 is semiample
on Y .
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Of course, ν0 is big when it is in the interior of the effective cone.

3. The E6 cubic surface

By definition, the E6 cubic surface is given by the homogeneous equa-
tion

(3.1) S = {(w, x, y, z) : xy2 + yw2 + z3 = 0} ⊂ P3.

We recall some elementary properties (see [4] for more details on singular
cubic surfaces):

Proposition 3.1. —

1. The surface S has a single singularity at the point p := (0, 1, 0, 0),
of type E6.

2. S is the unique cubic surface with this property, up to projectivity.
3. S contains a unique line, satisfying the equations y = z = 0.

Any smooth cubic surface may be represented as the blow-up of P2 at
six points in ‘general position’. There is an analogous property of the E6

cubic surface:

Proposition 3.2. — The E6 cubic surface S is the closure of the image
of P2 under the linear series

w = a2c x = −(ac2 + b3) y = a3 z = a2b,

where
Γ(P2,OP2(1)) = 〈a, b, c〉.

This map is the inverse of the projection of S from the double point p.
The affine open subset

A2 := {a 6= 0} ⊂ P2

is mapped isomorphically onto S − `. In particular, S \ ` ' A2, so the
E6 cubic surface is a compactification of A2.

Remark 3.3. — Note that S is not an equivariant compactification of
G2

a, so the general theory of [5] does not apply.
Indeed, if S were an equivariant compactification of G2

a then the pro-
jection from p would be G2

a-equivariant (see [12]). Therefore, the map
P2 99K S given above has to be G2

a-equivariant. The only G2
a-action
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6 5 l31

2

4

Figure 1. Dynkin diagram of E6

on P2 under which a line is invariant is the standard translation action
[12]. However, the linear series above is not invariant under the standard
translation action

b 7→ b + βa c 7→ c + γa.

We proceed to compute the effective cone of the minimal resolution
φ` : S̃→S. Let ` ⊂ S̃ be the proper transform of the line mentioned in
Proposition 3.1.

Proposition 3.4. — The Picard group Pic(S̃) is a free abelian group of
rank seven, generated by ` and the exceptional curves of φ`. For a suitable
ordering {F1, F2, F3, F4, F5, F6} of the exceptional curves, the intersection
pairing takes the form

(3.2)

F1 F2 F3 ` F4 F5 F6

F1 −2 0 1 0 0 0 0
F2 0 −2 0 0 0 0 1
F3 1 0 −2 0 0 0 1
` 0 0 0 −1 1 0 0
F4 0 0 0 1 −2 1 0
F5 0 0 0 0 1 −2 1
F6 0 1 1 0 0 1 −2

.

Proposition 3.5. — The effective cone NE(S̃) is simplicial and gen-
erated by Φ := {F1, F2, F3, `, F4, F5, F6}. Each nef divisor is contained in
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the monoid generated by the divisors

A1 = F2 + F3 + 2` + 2F4 + 2F5 + 2F6

A2 = F1 + F2 + 2F3 + 3` + 3F4 + 3F5 + 3F6

A3 = F1 + 2F2 + 2F3 + 4` + 4F4 + 4F5 + 4F6

A` = 2F1 + 3F2 + 4F3 + 3` + 4F4 + 5F5 + 6F6

A4 = 2F1 + 3F2 + 4F3 + 4` + 4F4 + 5F5 + 6F6

A5 = 2F1 + 3F2 + 4F3 + 5` + 5F4 + 5F5 + 6F6

A6 = 2F1 + 3F2 + 4F3 + 6` + 6F4 + 6F5 + 6F6

Moreover A` is the anticanonical class −KS̃ and its sections induce the

resolution morphism φ` : S̃→S.

Proof. — The intersection form in terms of A := {A1, . . . , } is:

(3.3)

A1 A2 A3 A` A4 A5 A6

A1 0 1 1 2 2 2 2
A2 1 1 2 3 3 3 3
A3 1 2 2 4 4 4 4
A` 2 3 4 3 4 5 6
A4 2 3 4 4 4 5 6
A5 2 3 4 5 5 5 6
A6 2 3 4 6 6 6 6

.

This is the inverse of the intersection matrix (3.2) written in terms of the
basis Φ, so the Ai generate the dual to Cone(Φ). Observe that all the
entries of matrix (3.3) are nonnegative and

Cone(A) ⊂ Cone(Φ).

Suppose that D is an effective divisor on S̃. We write D as a sum of
the fixed components contained in {F1, . . . , F6, `} and the parts moving
relative to Φ:

D = MΦ + a1F1 + . . . + a6F6 + a``, a1, . . . , a6, a` ≥ 0.

A priori, MΦ may have fixed components, but they are not contained in
Φ (however, see Lemma 3.6). It follows that MΦ intersects each element
of Φ nonnegatively, i.e., it is contained in Cone(A) and thus in Cone(Φ).
We conclude that D ∈ Cone(Φ). Since A1, ..., A6, A` generate N1(S̃) over
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Z each nef divisor can be written as a nonnegative linear combination of
these divisors.

To see that A` is the anticanonical divisor, we apply adjunction

KS̃Fi = 0, i = 1, . . . , 6 KS̃` = −1.

Nondegeneracy of the intersection form implies A` = −KS̃. Since S has
rational double points, the resolution map φ` is crepant, i.e., φ∗`KS = KS̃.
Thus

Γ(A`) = Γ(−KS̃) = Γ(−φ∗`KS) = Γ(φ∗`OS(+1))

so the sections of A` induce φ`.

Choose nonzero sections ξ1, . . . , ξ` generating Γ(F1), . . . , Γ(`):

Γ(F1) = 〈ξ1〉 , . . . , Γ(F6) = 〈ξ6〉 , Γ(`) = 〈ξ`〉 .
These are canonical up to scalar multiplication. Each effective divisor

D = b1F1 + b2F2 + b3F3 + b`` + b4F4 + b5F5 + b6F6

has a distinguished nonzero section

ξ(b1,b2,b3,b`,b4,b5,b6) := ξb1
1 . . . ξb6

6 ξb`
` .

The distinguished section of Aj is denoted ξα(j). Note that we have an
injective ring homomorphism

(3.4) k[ξ1, . . . , ξ6, ξ`]→Cox(S̃).

There is a partial order on the monoid of effective divisors of S̃: D1 ≺
D2 if D2 −D1 is effective. The restriction of this order to the generators
of the nef cone is illustrated in the diagram below:

A6

|
A5

|
A4

� �
A` A3

� �
A2

|
A1
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Whenever D1 ≺ D2 we have an inclusion

Γ(D1)↪→Γ(D2)

which is natural up to scalar multiplication: Indeed, express

D1 −D2 = b1F1 + b2F2 + . . . + b6F6 + b``, bj ≥ 0

so we have

s1 7→ ξ(b1,b2,b3,b`,b4,b5,b6)s1

Γ(D1) ↪→ Γ(D2).

The homomorphism (3.4) is not surjective, and we now look for gen-
erators of Cox(S̃) beyond the ξj. Consider the subring

Coxa(S̃) =
⊕

ν∈NM(S̃)

Cox(S̃)ν

obtained by restricting to degrees corresponding to nef classes on S̃. The
following lemma implies that any homogeneous element sD ∈ Cox(S̃) can
be written in the form

sD = mDξb1
1 · · · ξb6

6 ξb`
`

with nonnegative exponents and mD ∈ Coxa(S̃).

Lemma 3.6. — Let D be an effective divisor on S̃ with fixed part FD

and moving part MD. Then FD is supported in {F1, . . . , F6, `}, and MD

is a linear combination of A1, . . . , A6, A` with nonnegative coefficients.

Proof. — Clearly MD is nef, so the description of the nef divisors in
Proposition 3.5 gives the expression in terms of the Ai. Proposition 1.9
shows MD is semiample with vanishing higher cohomology; the last part
of Proposition 3.5 gives the requisite positivity of the anticanonical class.

Let F be a fixed component of D not supported in {F1, . . . , F6, `}. To
arrive at a contradiction, we need to show that h0(MD + F ) > h0(MD).
Since MD has vanishing higher cohomology and

h2(F + MD) = h0(K − F −MD) = 0

it suffices to show that

χ(F + MD) > χ(MD).



UNIVERSAL TORSORS AND COX RINGS 17

By Riemann-Roch, it suffices to show that

F 2 + 2MDF −KS̃F > 0

or, equivalently,

F 2 + KS̃F + 2MDF − 2KS̃F = 2g(F )− 2 + 2MDF − 2KS̃F > 0.

Since F is irreducible, g(F ) ≥ 0 and MDF ≥ 0 and −KS̃F > 1, as MD

is nef and −KS̃ is nonpositive only along the exceptional curves and has
degree 1 only on the line ` (see Proposition 3.1).

Corollary 1.10 gives the dimensions of the graded pieces of Coxa(S̃).
We focus first on the generators of the nef cone, introducing sections
τj ∈ Γ(Aj) as needed to achieve the prescribed dimensions:

Γ(A1) =
〈
ξα(1), τ1

〉
Γ(A2) =

〈
ξα(2), ξα(2)−α(1)τ1, τ2

〉
Γ(A`) =

〈
ξα(`), ξα(`)−α(1)τ1, ξ

α(`)−α(2)τ2, τ`

〉
The sections of A` induce φ` : S̃→S ⊂ P3 by Proposition 3.5, and can be
identified with the coordinates w, x, y, z of Equation (3.1). Since A1 ≺
A2 ≺ A`, we have

Γ(A1) ↪→ Γ(A2) ↪→ Γ(A`).

We can identify Γ(A1) = 〈y, z〉; these correspond to projecting S from
the line ` = {y = z = 0} and induce a conic bundle structure

φ1 : S̃→P1.

We have Γ(A2) = 〈x, y, z〉; these correspond to projecting S from the
singularity p = {w = y = z = 0} and induce the blow-up realization

φ2 : S̃→P2.

Therefore, we may choose τ1, τ2, and τ` so that

y = ξα(`) w = ξα(`)−α(2)τ2 z = ξα(`)−α(1)τ1 x = τ`.
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We obtain the following induced sections for A3, A4, A5, and A6:

Γ(A3) =
〈
ξα(3), ξα(3)−α(1)τ1, ξ

α(3)−α(2)τ2, ξ
α(3)−2α(1)τ 2

1

〉
Γ(A4) =

〈
ξα(4), ξα(4)−α(1)τ1, ξ

α(4)−α(2)τ2, ξ
α(4)−α(`)τ`, ξ

α(4)−2α(1)τ 2
1

〉
Γ(A5) =

〈
ξα(5), ξα(5)−α(1)τ1, ξ

α(5)−α(2)τ2, ξ
α(5)−α(`)τ`, ξ

α(5)−2α(1)τ 2
1 ,

ξα(5)−α(1)−α(2)τ1τ2

〉
Γ(A6) =

〈
ξα(6), ξα(6)−α(1)τ1, ξ

α(6)−α(2)τ2, ξ
α(6)−α(`)τ`, ξ

α(6)−2α(1)τ 2
1 ,

ξα(6)−α(1)−α(2)τ1τ2, ξ
α(6)−2α(2)τ 2

2 , ξα(6)−3α(1)τ 3
1

〉
Equation (3.1) gives the relation

τ`ξ
2α(`) + τ 2

2 ξ3α(`)−2α(2) + τ 3
1 ξ3α(`)−3α(1) = 0.

Dividing by a suitable monomial ξβ, we obtain

τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2

1ξ3 = 0,

a dependence relation in Γ(A6). This is the only such relation: Any other
relation, after multiplying through by ξβ, yields a cubic form vanishing
on S ⊂ P3, but equation (3.1) is the only such form. It follows that the
sections given above for A1, . . . , A5 form bases for Γ(A1), . . . , Γ(A5).

Since

A3 ≺ A4 ≺ A5 ≺ A6 ≺ 2A`

we have

Γ(A3) ↪→ Γ(A4) ↪→ Γ(A5) ↪→ Γ(A6)

↪→ Γ(2A`) =
〈
w2, wx, wy, x2, xy, xz, y2, yz, z2

〉
and identifications

Γ(A3) =
〈
y2, yz, wy, z2

〉
Γ(A4) =

〈
y2, yz, wy, xy, z2

〉
Γ(A5) =

〈
y2, yz, wy, xy, z2, wz

〉
Γ(A6) =

〈
y2, yz, wy, xy, z2, wz, w2

〉
.

The sections of A3 induce a morphism

φ3 : S̃→P3
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onto a quadric surface with a single ordinary double point. The sections
of A4 induce a morphism

φ4 : S̃→P4

with image a quartic Del Pezzo surface with a rational double point of
type D5. The sections of A5 induce a morphism

φ5 : S̃→P5

with image a quintic Del Pezzo surface with a rational double point of
type D4. The sections of A6 induce a morphisms

φ6 : S̃→P6

with image a sextic Del Pezzo surface with two rational double points,
of types A1 and A2.

We summarize this analysis in the following proposition

Proposition 3.7. — Every section of Aj, j = 1, 2, 3, `, 4, 5, 6, can be
expressed as a polynomial in ξ1, . . . , ξ6, ξ`, τ1, τ2, τ6. The only dependence
relation among these is

τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2

1ξ3 = 0

in Γ(A6). Each Aj is globally generated and induces a morphism

φj : S̃→Pχ−1, χ = χ(OS̃(Aj)).

The remainder of this section is devoted to proving the following:

Theorem 3.8. — The homomorphism

% : k[ξ1, ..., ξ6, ξ`, τ1, τ2, τ`]/〈τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2

1ξ3〉→Cox(S̃)

is an isomorphism.

If % were not injective, its kernel would have nontrivial elements in de-
gree ν = dA`, for some d sufficiently large. These translate into homoge-
neous polynomials of degree d vanishing on S ⊂ P3. All such polynomials
are multiples of the cubic form defining S, which itself is a multiple of
the relation we already have.

It remains to show that % is surjective. By Proposition 3.5, Lemma 3.6
and the analysis of the sections of the Ai, it suffices to prove:
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Proposition 3.9. — % is surjective in degrees corresponding to nef di-
visor classes of S̃.

Lemma 3.10. — For any positive integers c1, c2, c3, c`, c4, c5, c6, the im-
age of

Γ(A1)
⊗c1 ⊗ . . .⊗ Γ(A`)

⊗c` ⊗ . . .⊗ Γ(A6)
⊗c6 −→ Γ(c1A1 + . . . + c6A6)

is a linear series embedding S̃.

Proof. — Proposition 3.7 says that each Aj is globally generated, so if
the image of

Γ(A1)⊗ . . .⊗ Γ(A6) −→ Γ(A1 + . . . + A6)

embed S̃ then the general result follows. We use the standard criterion:
a linear series gives an embedding iff any length-two subscheme Σ ⊂ S̃
imposes two independent conditions on the linear series.

First, suppose the support of Σ is not contained in the exceptional
locus of φ` : S̃→S, i.e., the curves F1, F2, F3, F4, F5, F6. Then φ` maps Σ
to a subscheme of length two, which imposes independent conditions on
Γ(A`), and thus independent conditions on the linear series in question.
Second, suppose that Σ ⊂ Fj for some j (resp. Σ ⊂ `). Since Aj ·Fj = 1
(resp. A` · ` = 1), φj maps Fj (resp. `) isomorphically onto a line. It
follows that Σ imposes independent conditions on Γ(Aj). Third, suppose
that Σ is reduced with support in Fi and Fj, but is not contained in either
Fi or Fj. Consider the chain of rational curves containing Fi and Fj (see
Figure 3.) There exists a curve Fk in this chain so that φk(Fi) 6= φk(Fj),
so Σ imposes independent conditions on Γ(Ak). Fourth, suppose that
Σ is nonreduced and supported in Fj but not contained in any Fi or
`. The morphism φj ramifies at points where Fj meets one of the other
exceptional curves, and the kernel of the tangent morphism dφj consists
of the tangent vectors to the curves contracted by φj. It follows that
φj(Σ) has length two and imposes independent conditions on Γ(Aj).

The polynomial ring

k[ξ1, . . . , ξ6, ξ`, τ1, τ2, τ`]

is graded by the Néron-Severi group of S̃

deg(ξj) = Fj, j = 1, . . . , 6 deg(ξ`) = ` deg(τj) = Aj, j = 1, 2, `.
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This gives an action of the Néron-Severi torus T (S̃) on the corresponding
affine space A10.

We consider the projective toric varieties that arise as quotients of A10

by T (S̃). As sketched in §2, these varieties have the one-skeleton

x1 = (0, 1, 2), x2 = (1, 1, 3), x3 = (1, 2, 4), x` = (2, 3, 3), x4 = (2, 3, 4)

x5 = (2, 3, 5), x6 = (2, 3, 6), t1 = (−1, 0, 0), t2 = (0,−1, 0), t` = (0, 0,−1)

where the xj correspond to the ξj and the tj correspond to the τj.

Lemma 3.11. — Let X be a toric threefold with one-skeleton {x1, . . . , t`}
and divisor class-group X∗(T (S̃)) = N1(S̃). Then

Mov(X) = Cone(A1, . . . , A6, A`).

Proof. — Proposition 2.1 reduces this to computing the intersection of
the cones generated by subsets of

{F1, . . . , F6, `, A1, A2, A`}

with nine elements. Since A1, A2, A` are effective combinations of the
classes F1, . . . , F6, and `, it suffices to compute

Cone(F1, . . . , ˆ̀, . . . , A`)
⋂( ⋂

i=1,...,6

Cone(F1, . . . , F̂i, . . . , A`)

)
.

This intersection obviously contains A1, A2, and A`, and it is a straight-
forward computation to show that it also contains A3, A4, A5, A6. For the
reverse inclusion, suppose that D is contained in the intersection. Con-
sidering D as a divisor on S̃, we see that

D · F1, . . . , D · F6, D · `

are all nonnegative. Thus D is an effective sum of Aj by Proposition
3.5.

Combining Lemmas 3.11 and 3.10 with Propositions 2.2 and 3.7, we
obtain the following

Proposition 3.12. — Let ν be an ample divisor on S̃. Then there
exists a projective toric variety Yν with one-skeleton {x1, . . . , t`} and po-
larization ν, and an embedding S̃ ↪→ Yν with the following properties:
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1. the divisor class group of Yν is isomorphic to the divisor class group
of S̃ so that the moving cone of Yν is identified with the nef cone of
S̃;

2. the equation for S̃ in the Cox ring of Yν is

τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2

1ξ3 = 0

and [S̃] = A6 in the divisor class group of Yν;
3. Cox(Yν) = k[ξ1, . . . , τ`] and is mapped isomorphically to the image

of the homomorphism %.

For each toric variety Yν , we can consider the exact sequence of sheaves

0→IS̃→OYν→OS̃→0,

where IS̃ ' OYν (−A6) is the ideal sheaf of S̃. Given an element θ in the
divisor class group of Yν , we can twist to obtain

0→IS̃(θ)→OYν (θ)→OS̃(θ)→0.

We should make precise what we mean by the twist F(θ) of a coherent
sheaf F on Yν : Realize F as the sheafification of a graded module F over
Cox(Yν) (which exists by [16] Theorem 1.1, [9] Proposition 3.1), shift F
by θ, and then resheafify the shifted module to obtain F(θ). Twisting
respects exact sequences [9] 3.1.

The anticanonical divisor of a toric variety is the sum of the invariant
divisors [11] p. 89, so

−KYν = F1 + . . . + F6 + ` + A1 + A2 + A` = A` + A6

and we can rewrite our exact sequence as

0→OYν (KYν + A` + θ)→OYν (θ)→OS̃(θ)→0.

Suppose that θ corresponds to a nef class on S̃; we shall prove that %
is surjective in degree θ, thus proving Proposition 3.9 and Theorem 3.8.
Since

Γ(OYν (θ)) ' k[ξ1, . . . , ξ6, ξ`, τ1, τ2, τ`]θ

it suffices to show that

H1(OYν (KYν + A` + θ)) = 0.

We apply Proposition 2.5, with ν0 = A` + θ, to get a simplicial toric
variety Yν on which A` + θ is nef. As A` is in the interior of the effective
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cone of Yν , A`+θ is also big. Note that Yν has finite-quotient singularities,
which are log terminal [15] §5.2. The desired vanishing follows from
Theorem 2.17 of [14]. Alternately, we could apply Theorem 0.1 of [16],
which applies in arbitrary characteristic and obviates the need to pass to
a simplicial model.

4. D4 cubic surface

The strategy of the previous section can applied to other surfaces as
well. Here we illustrate it in the case of a cubic surface given by the
homogeneous equation

S = {(x1, x2, x3, w) : w(x1 + x2 + x3)
2 = x1x2x3} ⊂ P3.

We summarize its properties:

1. S has a single singularity at the point (0, 0, 0, 1) of type D4.
2. S contains 6 lines with the equations

`′1 := {w = x1 = 0} m′
1 := {x1 = x2 + x3 = 0}

`′2 := {w = x2 = 0} m′
2 := {x2 = x1 + x3 = 0}

`′3 := {w = x3 = 0} m′
3 := {x3 = x1 + x2 = 0}

3. S is given as a blow-up of P2 by the linear series

x1 = u1(u1 + u2 + u3)
2, x2 = u2(u1 + u2 + u3)

2, x3 = u3(u1 + u2 + u3)
2,

w = u1u2u3,

where 〈u1, u2, u3〉 = Γ(P2,OP2(1)).

Remark 4.1. — There are two isomorphism classes of cubic surfaces
with a D4 singularity [4] Lemma 4. The other class is

w(x1 + x2 + x3)
2 = x1x2(−x1 − x2);

it is obtained from S by substituting

(w, x1, x2, x3) 7→ (t−2w, x1, x2, tx3 + (t− 1)x1 + (t− 1)x2)

and letting t→0 in the resulting equation.



24 BRENDAN HASSETT and YURI TSCHINKEL

Let β : S̃→S denote the minimal desingularization of S and

`1, `2, `3, m1, m2, m3

the strict transforms of the lines. The rational map S 99K P2 induces a
morphism S̃→P2 and let L denote the pullback of the hyperplane class.
Let E0, E1, E2, E3 be the exceptional divisors of β, ordered so that we
have the following intersection matrix:

(4.1)

L E1 E2 E3 m1 m2 m3

L 1 0 0 0 0 0 0
E1 0 −2 0 0 1 0 0
E2 0 0 −2 0 0 1 0
E3 0 0 0 −2 0 0 1
m1 0 1 0 0 −1 0 0
m2 0 0 1 0 0 −1 0
m3 0 0 0 1 0 0 −1

.

This is a rank seven unimodular matrix; since the Picard group of S̃ has
rank seven, it is generated by L, E1, E2, E3, m1, m2, m3. In particular, we
have

E0 = L− (E1 + E2 + E3 + m1 + m2 + m3) and `j = L− Ej − 2mj.

The anticanonical class is given by

−KS̃ = 3L− (E1 + E2 + E3)− 2(m1 + m2 + m3) = `1 + `2 + `3.

Proposition 4.2. — The effective cone NE(S̃) is generated by

Ξ := {E0, E1, E2, E3, mj, `j}.

Proof. — Each effective divisor D can be expressed as a sum

D = MΞ + bE0E0 + bE1E1 + . . . + b`3`3,

with nonnegative coefficients, where MΞ intersects each of the elements
in Ξ nonnegatively and thus is in the dual cone to Cone(Ξ). Direct
computation shows that the dual to Cone(Ξ) has generators

L, L− Ei −mi, 2L− Ei − 2mi, 2L− Ei − Ej − 2mi − 2mj,

2L− Ei − Ej −mi − 2mj.
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Each of these is contained in Cone(Ξ):

L = `i + Ei + 2mi,
2L− Ei − 2mi = 2`i + Ei + 2mi,

2L− Ei − Ej −mi − 2mj = `i + `j + mi,
L− Ei −mi = `i + mi,

2L− Ei − Ej − 2mi − 2mj = `i + `j.

It follows that MΞ and D are sums of elements in Ξ with nonnegative
coefficients.

Each of the divisors mi, `i and Ei has a distinguished nonzero section
(up to a constant), denoted µi, λi and ηi, respectively. We have

{λiηiµ
2
i , η0η1η2η3µ1µ2µ3} ⊂ Γ(L),

and we may identify

ui = λiηiµ
2
i and u1 + u2 + u3 = η0η1η2η3µ1µ2µ3

after suitably normalizing the µi, λi, and ηi. The dependence relation
among the sections in Γ(L) translates into

(4.2) λ1η1µ
2
1 + λ2η2µ

2
2 + λ3η3µ

2
3 = η0η1η2η3µ1µ2µ3.

An argument similar to the one given at the end of Section 3 proves that
the natural homomorphism

k[η0, ..., η3, µi, λi]/〈λ1η1µ
2
1 + λ2η2µ

2
2 + λ3η3µ

2
3− η0η1η2η3µ1µ2µ3〉→Cox(S̃)

is an isomorphism.

The cubic surface S admits an S3-action on the coordinates x1, x2, x3.
In particular, it admits nonsplit forms over nonclosed ground fields. They
can be expressed as follows: Let K/k be a cubic extension with Galois
closure E/k. Fix a basis {γ, γ′, γ′′} for K over k so that elements Y ∈ K
can be represented as

Y = yγ + y′γ′ + y′′γ′′

with y, y′, y′′ ∈ k. Choose σ ∈ Gal(E/k) so that σ and σ2 are coset
representatives Gal(E/k) modulo Gal(E/K). Then

w · TrK/k(Y )2 = NK/k(Y )



26 BRENDAN HASSETT and YURI TSCHINKEL

is isomorphic, over E, to S:

x1 = Y = yγ + y′γ′ + y′′γ′′

x2 = σ(Y ) = yσ(γ) + y′σ(γ′) + y′′σ(γ′′)
x3 = σ2(Y ) = yσ2(γ) + y′σ2(γ′) + y′′σ2(γ′′)

.

Assigning elements U, V,W ∈ K to η1, µ1 and λ1, respectively, the
torsor equation (4.2) takes the form

TrK/k(UV 2W ) = η0NK/k(UV ).
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