\providecommand{\bysame}{\leavevmode ---\ } \providecommand{\og}{``} \providecommand{\fg}{''} \providecommand{\smfandname}{et} \providecommand{\smfedsname}{\'eds.} \providecommand{\smfedname}{\'ed.} \providecommand{\smfmastersthesisname}{M\'emoire} \providecommand{\smfphdthesisname}{Th\`ese} \begin{thebibliography}{10} \bibitem{Ba} {\scshape V.~V. Batyrev} -- {\og The cone of effective divisors of threefolds\fg}, \emph{Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989)}, p.~337--352, Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992. \bibitem{Br} {\scshape R.~de~la Bret{\`e}che} -- {\og Nombre de points de hauteur born\'ee sur les surfaces de del {P}ezzo de degr\'e 5\fg}, \emph{Duke Math. J.} \textbf{113} (2002), no.~3, p.~421--464. \bibitem{brionproc} {\scshape M.~Brion {\normalfont \smfandname} C.~Procesi} -- {\og Action d'un tore dans une vari\'et\'e projective\fg}, \emph{Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989),} p.~509--539, Progr. Math., vol.~92, Birkh\"auser Boston, Boston, MA, 1990. \bibitem{bruce-wall} {\scshape J.~W.~Bruce {\normalfont \smfandname} C.~T.~Wall} -- {\og On the classification of cubic surfaces\fg}, \emph{J. London Math. Soc. (2)} \textbf{19} (1979), p.~257--267. \bibitem{CLT} {\scshape A.~Chambert-Loir {\normalfont \smfandname} Y.~Tschinkel} -- {\og On the distribution of points of bounded height on equivariant compactifications of vector groups\fg}, \emph{Invent. Math.} \textbf{148} (2002), no.~2, p.~421--452. \bibitem{CTS} {\scshape J.-L. Colliot-Th{\'e}l{\`e}ne {\normalfont \smfandname} J.-J. Sansuc} -- {\og La descente sur les vari\'et\'es rationnelles. {II}\fg}, \emph{Duke Math. J.} \textbf{54} (1987), no.~2, p.~375--492. \bibitem{CSS2} {\scshape J.-L. Colliot-Th{\'e}l{\`e}ne, J.-J. Sansuc {\normalfont \smfandname} P.~Swinnerton-Dyer} -- {\og Intersections of two quadrics and {C}h\^atelet surfaces. {I}\fg}, \emph{J. Reine Angew. Math.} \textbf{373} (1987), p.~37--107. \bibitem{CSS} \bysame , {\og Intersections of two quadrics and {C}h\^atelet surfaces. {II}\fg}, \emph{J. Reine Angew. Math.} \textbf{374} (1987), p.~72--168. \bibitem{Cox} {\scshape D.~A. Cox} -- {\og The homogeneous coordinate ring of a toric variety\fg}, \emph{J. Algebraic Geom.} \textbf{4} (1995), no.~1, p.~17--50. \bibitem{DH} {\scshape I.~V. Dolgachev {\normalfont \smfandname} Y.~Hu}, with an appendix by Nicolas Ressayre -- {\og Variation of geometric invariant theory quotients\fg}, \emph{Inst. Hautes \'Etudes Sci. Publ. Math.} (1998), no.~87, p.~5--56. \bibitem{fulton} {\scshape W.~Fulton} -- \emph{Introduction to toric varieties}, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. \bibitem{HT1} {\scshape B.~Hassett {\normalfont \smfandname} Y.~Tschinkel} -- {\og Geometry of equivariant compactifications of {${\bf G}\sb a\sp n$}\fg}, \emph{Internat. Math. Res. Notices} (1999), no.~22, p.~1211--1230. \bibitem{HK} {\scshape Y.~Hu {\normalfont \smfandname} S.~Keel} -- {\og Mori dream spaces and {GIT}\fg}, \emph{Michigan Math. J.} \textbf{48} (2000), p.~331--348, \bibitem{Ko} {\scshape J.~Koll{\'a}r } -- {\og Singularities of pairs \fg}, \emph{Algebraic geometry---Santa Cruz 1995}, p.~221--287, Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997. \bibitem{KM} {\scshape J.~Koll{\'a}r {\normalfont \smfandname} S.~Mori}, with the collaboration of C. H. Clemens and A. Corti. -- \emph{Birational geometry of algebraic varieties}, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. \bibitem{Mus} {\scshape M. Musta\c t\u a} -- {\og Vanishing theorems on toric varieties \fg}, \emph{Tohoku Math. J. (2)} \textbf{54} (2002), no. 3, p.~451--470. \bibitem{Peyre} {\scshape E.~Peyre} -- {\og Terme principal de la fonction z\^eta des hauteurs et torseurs universels\fg}, \emph{Nombre et r\'epartition de points de hauteur born\'ee (Paris, 1996)}, p.~259--298, \emph{Ast\'erisque} (1998), no.~251. \bibitem{Peyre2} \bysame , {\og Torseurs universels et m\'ethode du cercle\fg}, \emph{Rational points on algebraic varieties}, p.~221--274, Progr. Math., vol. 199, Birkh\"auser, Basel, 2001. \bibitem{SS} {\scshape P.~Salberger {\normalfont \smfandname} A.~N. Skorobogatov} -- {\og Weak approximation for surfaces defined by two quadratic forms\fg}, \emph{Duke Math. J.} \textbf{63} (1991), no.~2, p.~517--536. \bibitem{S} {\scshape A.~Skorobogatov} -- \emph{Torsors and rational points}, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. \bibitem{Sb} {\scshape A.~N. Skorobogatov} -- {\og On a theorem of {E}nriques-{S}winnerton-{D}yer\fg}, \emph{Ann. Fac. Sci. Toulouse Math. (6)} \textbf{2} (1993), no.~3, p.~429--440. \bibitem{thad} {\scshape M.~Thaddeus} -- {\og Toric quotients and flips\fg}, \emph{Topology, geometry and field theory}, p.~193--213, World Sci. Publishing, River Edge, NJ, 1994. \end{thebibliography}