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faces.
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Introduction

The study of surfaces over nonclosed fields k leads naturally to certain
auxiliary varieties, called universal torsors. The proofs of the Hasse
principle and weak approximation for certain Del Pezzo surfaces required
a very detailed knowledge of the projective geometry, in fact, explicit
equations, for these torsors [4], [6], [5], [14],[15], [13]. More recently,
it was realized that in many cases the study of asymptotics of rational
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points of bounded height also boils down to counting of integral points
on universal torsors [11], [12], [2].

Colliot-Thélène and Sansuc gave a general formalism for writing down
equations for these torsors. Briefly, their method consists in the following:
Let X be a smooth projective variety, {Dj}j∈J a finite set of irreducible
divisors on X such that U := X \ ∪j∈JDj has trivial Picard group. In
practice, one usually chooses Dj to be the generators of the effective cone
of X, e.g., the lines on the Del Pezzo surface. Consider the resulting exact
sequence:

0→ k̄[U ]∗

k̄∗
→⊕j∈J ZDj→Pic(Xk̄)→0.

Applying Hom(−, k̄∗) one obtains an exact sequence of tori

1→TNS→T→R→1,

which can also be regarded as sheaves over U . Choose rational functions,
invertible on U , which generate the torus R. These can be interpreted
as giving a section U→R, which induces an TNS-torsor over U . This
torsor canonically extends to X. In practice, this extension can be made
explicit, yielding equations for the universal torsor.

However, in cases when the effective cone is simplicial, there are no
relations among the generators and this method gives little information.
In this paper we outline an alternative approach to the construction of
universal torsors which works even when the effective cone is simplicial
and illustrate it in specific examples.

1. Generalities on the Cox ring

Let X be a nonsingular projective variety over an algebraically closed
field k characteristic zero. Let NS(X) ⊂ H2(X, Z) denote the Néron-
Severi group and Pic(X) the Picard group. We shall always assume
Pic(X) is torsion free, and in particular,

Pic(X) ' NS(X).

Let NE1(X) ⊂ NS(X)R denote the cone of (pseudo)effective divisors,
i.e., the smallest real closed cone containing all the effective divisors of X.
For any finite set Ξ ⊂ NS(X), let Cone(Ξ) be the cone generated by Ξ.
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Let NE1(X) denote the cone effective curves and NM1(X) ⊂ NS(X)R its
dual, the cone of nef divisors. By Kleiman’s criterion, this is the smallest
real closed cone containing all ample divisors of X.

Let L1, . . . , Lr be line bundles on X and for ν = (n1, . . . , nr) ∈ Nr

write

Lν := L⊗n1
1 ⊗ . . .⊗ L⊗nr

r .

Consider the ring

R(X, L1, . . . , Lr) :=
⊕
ν∈Nr

Γ(X, Lν),

which need not be finitely generated in general.
By definition, a line bundle L on X is semiample if Ln is globally

generated for some n > 0:

Proposition 1.1. — ([9] Lemma 2.8) If the line bundles L1, . . . , Lr are
semiample then R(X, L1, . . . , Lr) is finitely generated.

Remark 1.2. — If the Li are ample then, after replacing each Li by a
large multiple, R(X, L1, . . . , Lr) is generated by

Γ(X, L1)⊗ . . .⊗ Γ(X, Lr).

However, this is not generally the case if the Li are only semiample
(despite the assertion in the second part of Lemma 2.8 of [9]). Indeed,
let X→P1×P1 be a double cover and L1 and L2 be the pull-backs of the
polarizations on the P1’s to X. For suitably large n1 and n2, Ln1

1 ⊗ Ln2
2

is very ample and its sections embed X. However,

Γ(X, Ln1
1 )⊗ Γ(X, Ln2

2 ) ' Γ(P1,OP1(n1))⊗ Γ(P1,OP1(n2)),

and any morphism induced by these sections factors through P1 × P1.

Proposition 1.3. — Let L1, . . . , Lr be a set of line bundles on X such
that Lj is generated by sections sj,0, ..., sj,dj

. Assume that the induced

morphism X→
∏

j Pdj is birational into its image. Then the ring gener-

ated by the sj,k’s has the same fraction field as R(X, L1, . . . , Lr).

Proof. — Both rings have fraction field k(X)(t1, ..., tr), where tj is a
nonzero section of Lj.
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Definition 1.4. — [9] Let X be a nonsingular projective variety so that
Pic(X) is a free abelian group of rank r. The Cox ring for X is defined

Cox(X) := R(X, L1, . . . , Lr)

where L1, . . . , Lr are lines bundles so that

1. the Li form a Z-basis of Pic(X);
2. the cone Cone({L1, . . . , Lr}) contains NE1(X).

This ring is naturally graded by Pic(X): for ν ∈ Pic(X) the ν-graded
piece is denoted Cox(X)ν.

Proposition 1.5. — [9] The ring Cox(X) does not depend on the
choice of generators for Pic(X).

Proof. — Suppose we have two sets of generators L1, . . . , Lr and M1, . . . ,Mr.
Since Cone({Li}) and Cone({Mi}) contain all the effective divisors, the
nonzero graded pieces of both R(X, L1, . . . , Lr) and R(X, M1, . . . ,Mr)
are indexed by the effective divisor classes in Pic(X). Choose isomor-
phisms

Mj ' L(a1j ,...,arj), i = 1, . . . , r, A = (aij)

which naturally induce isomorphisms

Γ(M ν) ' Γ(LAν), Aν = (a11ν1 + . . . + a1rνr, . . . , ar1ν1 + . . . + arrνr).

Thus we find R(X, L1, . . . , Lr) ' R(X, M1, . . . ,Mr).

As Cox(X) is graded by Pic(X), a free abelian group of rank r, the
torus

T (X) := Hom(Pic(X), Gm)

acts on R(X). Indeed, each ν ∈ Pic(X) naturally yields a character χν

of T (X), so we have the action

t · ξ = χν(t)ξ, ξ ∈ Cox(X)ν , t ∈ T (X).

Thus the isomorphism constructed in Proposition 1.5 is not canonical:
Two such isomorphisms differ by the action of an element of T (X).

The following conjecture is a special case of 2.14 of [9]:

Conjecture 1.6 (Finiteness of Cox ring). — Let X be a log Fano va-
riety. Then Cox(X) is finitely generated.
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Remark 1.7. — Note that if Cox(X) is finitely generated it follows triv-
ially that NE1(X) is finitely generated. Moreover, the nef cone NM1(X)
is also finitely generated.

Indeed, the nef cone corresponds to one of the chambers in the group
of characters of T (X) governed by the stability conditions for points
v ∈ Spec(Cox(X)). These chambers are bounded by finitely many hy-
perplanes (see Theorem 0.2.3 in [7] for more details).

It has been conjectured by Batyrev [1] that the pseudo-effective cone
of a Fano variety is finitely generated. However, the finiteness of the Cox
ring is not a formal consequence of the finiteness of the pseudo-effective
cone.

Example 1.8. — Let p1, . . . , p9 ∈ H ⊂ P3 be nine distinct coplanar
points given as a complete intersection of two generic cubic curves in the
hyperplane H, and let X be the blow-up of P3 at these points. Then
NE1(X) is finitely generated but Cox(X) is not. Indeed, X is an equiv-
ariant compactification of the additive group G3

a, acting by translation
on the affine space P3 −H. The group action can be used to show that
NE1(X) is generated by the boundary components (see [8]). Similarly,
one can show that the cone NE1(X) is generated by classes of curves in
the boundary components, in particular, in the proper transform H̃ ⊂ X
of H. It is well-known that NE1(H̃) is infinite: each section of the in-
duced fibration in cubic plane curves

H̃→P1

is a (−1)-curve and a generator. These sections are also generators of
NE1(X) (since the sections other than the exceptional divisors intersect
H̃ negatively). It follows that NE1(X) and NM1(X) are not finitely
generated and hence Cox(X) is not finitely generated (see Remark 1.7).

Proposition 1.9. — Let X be a nonsingular projective variety whose
anticanonical divisor −KX is nef and big. Suppose that D is a nef divisor
on X. Then H i(X, D) = 0 for each i > 0 and D is semiample.
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Proof: The first assertion is a consequence of Kawamata-Viehweg van-
ishing [10] §2.5. The second is a special case of the Kawamata Basepoint-
freeness Theorem [10] §3.2. �

Proposition 1.9 largely determines the Hilbert function of the Cox ring:

Corollary 1.10. — Retain the assumptions of Proposition 1.9. Then
for nef classes ν we have

dim Cox(X)ν = χ(OX(ν)).

Remark 1.11. — In practice, this will help us to find generators of
Cox(X).

2. The E6 cubic surface

By definition, the E6 cubic surface is given by the homogeneous equa-
tion

(2.1) S = {(w, x, y, z) : xy2 + yw2 + z3 = 0} ⊂ P3.

We recall some elementary properties:

Proposition 2.1. —

1. The surface S has a single singularity at the point p := (0, 1, 0, 0),
of type E6.

2. S is the unique cubic surface with this property, up to projectivity.
3. S contains a unique line, satisfying the equations y = z = 0.

Any smooth cubic surface may be represented as the blow-up of P2 at
six points in ‘general position’. There is an analogous property of the E6

cubic surface:

Proposition 2.2. — The E6 cubic surface S is the closure of the image
of P2 under the linear series

w = a2c x = −(ac2 + b3) y = a3 z = a2b,

where
Γ(P2,OP2(1)) = 〈a, b, c〉.

This map is the inverse of the projection of S from the double point p.
The affine open subset

A2 := {a 6= 0} ⊂ P2
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is mapped isomorphically onto S − `. In particular, S \ ` ' A2, so the
E6 cubic surface is a compactification of A2.

Remark 2.3. — Note that S is not an equivariant compactification of
G2

a, so the general theory of [3] does not apply.
Indeed, if S were an equivariant compactification of G2

a then the pro-
jection from p would be G2

a-equivariant (see [8]). Therefore, the map
P2 99K S given above has to be G2

a-equivariant. The only G2
a-action

on P2 under which a line is invariant is the standard translation action
[8]. However, the linear series above is not invariant under the standard
translation action

b 7→ b + βa c 7→ c + γa.

We proceed to compute the effective cone of the minimal resolution
β : S̃→S. Let ` ⊂ S̃ be the proper transform of the line mentioned in
Proposition 2.1.

Proposition 2.4. — The Picard group Pic(S̃) is a free abelian group of
rank seven, generated by ` and the exceptional curves of β. For a suitable
ordering {F1, F2, F3, F4, F5, F6} of the exceptional curves, the intersection
pairing takes the form

(2.2)

F1 F2 F3 ` F4 F5 F6

F1 −2 0 1 0 0 0 0
F2 0 −2 0 0 0 0 1
F3 1 0 −2 0 0 0 1
` 0 0 0 −1 1 0 0
F4 0 0 0 1 −2 1 0
F5 0 0 0 0 1 −2 1
F6 0 1 1 0 0 1 −2

.

Proposition 2.5. — The effective cone NE(S̃) is simplicial and gener-
ated by Φ := {F1, F2, F3, `, F4, F5, F6}. The nef cone NM(S̃) is generated
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by

A1 = F2 + F3 + 2` + 2F4 + 2F5 + 2F6

A2 = F1 + F2 + 2F3 + 3` + 3F4 + 3F5 + 3F6

A3 = F1 + 2F2 + 2F3 + 4` + 4F4 + 4F5 + 4F6

A` = 2F1 + 3F2 + 4F3 + 3` + 4F4 + 5F5 + 6F6

A4 = 2F1 + 3F2 + 4F3 + 4` + 4F4 + 5F5 + 6F6

A5 = 2F1 + 3F2 + 4F3 + 5` + 5F4 + 5F5 + 6F6

A6 = 2F1 + 3F2 + 4F3 + 6` + 6F4 + 6F5 + 6F6

and each nef divisor is contained in the monoid generated by these divi-
sors.

Proof. — The intersection form in terms of A := {A1, . . . , } is:

(2.3)

A1 A2 A3 A` A4 A5 A6

A1 0 1 1 2 2 2 2
A2 1 1 2 3 3 3 3
A3 1 2 2 4 4 4 4
A` 2 3 4 3 4 5 6
A4 2 3 4 4 4 5 6
A5 2 3 4 5 5 5 6
A6 2 3 4 6 6 6 6

.

This is the inverse of the intersection matrix (2.2) written in terms of the
basis Φ, so the Ai generate the dual to Cone(Φ). Observe that all the
entries of matrix (2.3) are nonnegative and

Cone(A) ⊂ Cone(Φ).

Suppose that D is an effective divisor on S̃. We write D as a sum of
the fixed components contained in {F1, . . . , F6, `} and the parts moving
relative to Φ:

D = MΦ + a1F1 + . . . + a6F6 + a``, a1, . . . , a6, a` ≥ 0.

A priori, MΦ may have fixed components, but they are not contained in
Φ (however, see Lemma 2.7). It follows that MΦ intersects each element
of Φ nonnegatively, i.e., it is contained in Cone(A) and thus in Cone(Φ).
We conclude that D ∈ Cone(Φ). Since A1, ..., A6, A` generate NS(S̃) over
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Z each nef divisor can be written as a nonnegative linear combination of
these divisors.

We give explicit descriptions of the sections of the generators of the
effective cone and the morphisms they induce. Proposition 1.9 applies
to the minimal resolution of the E6 cubic surface S. Since OS(−KS) =
OS(+1), the anticanonical class of S is nef and big. Furthermore, rational
double points admit crepant resolutions, i.e., β∗KS = KS̃, so −KS̃ is also
nef and big.

Choose nonzero sections ξ1, . . . , ξ` generating Γ(F1), . . . , Γ(`):

Γ(F1) = 〈ξ1〉 , . . . , Γ(F6) = 〈ξ6〉 , Γ(`) = 〈ξ`〉 .
These are canonical up to scalar multiplication. Each effective divisor

D = b1F1 + b2F2 + b3F3 + b`F` + b4F4 + b5F5 + b6F6

has a distinguished nonzero section

ξ(b1,b2,b3,b`,b4,b5,b6) := ξb1
1 . . . ξb6

6 ξb`
` .

The distinguished section of Aj is denoted ξα(j). Note that we have an
injective ring homomorphism

(2.4) k[ξ1, . . . , ξ6, ξ`]→Cox(S̃).

There is a partial order on the monoid of effective divisors of S̃: D1 ≺
D2 if D2 −D1 is effective. The restriction of this order to the generators
of the nef cone is illustrated in the tree below:

A6

|
A5

|
A4

� �
A` A3

� �
A2

|
A1
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Whenever D1 ≺ D2 we have a inclusion

Γ(D1)↪→Γ(D2)

which is natural up to scalar multiplication: Indeed, express

D1 −D2 = b1F1 + b2F2 + . . . + b6F6 + b``, bj ≥ 0

so we have

s1 7→ ξ(b1,b2,b3,b`,b4,b5,b6)s1

Γ(D1) ↪→ Γ(D2).

The homomorphism (2.4) is not surjective. We apply Proposition 1.9
and Corollary 1.10 to extract the generators for Cox(S̃) beyond the ξj:

Γ(A1) =
〈
ξα(1), τ1

〉
Γ(A2) =

〈
ξα(2), ξα(2)−α(1)τ1, τ2

〉
Γ(A3) =

〈
ξα(3), ξα(3)−α(2)τ2, ξ

α(3)−α(1)τ1, ξ
α(3)−2α(1)τ 2

1

〉
Γ(A`) =

〈
ξα(`), ξα(`)−α(2)τ2, ξ

α(`)−α(1)τ1, τ`

〉
The sections of A1 induce a conic bundle structure

φ1 : S̃→P1,

obtained by projecting S from the line ` = {y = z = 0} (cf. Equation
(2.1)). The sections of A2 induce a blow-up realization

φ2 : S̃→P2,

obtained by projecting S from the singularity p = {w = y = z = 0}. The
divisor A` is the anticanonical divisor: Indeed, the adjunction formula
implies

KS̃Fi = 0, i = 1, . . . , 6 KS̃` = −1

so the nondegeneracy of the intersection form implies A` = −KS̃. Thus
we have

Γ(A`) = Γ(−KS̃) = Γ(−β∗KS) = Γ(β∗OS(+1))

so the sections of A` induce

β : S̃→S.
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We now analyze the kernel of the homomorphism

k[ξ1, ..., ξ6, ξ`, τ1, τ2, τ`]→Cox(S̃).

After renormalizing the ξi’s and the τj’s, we may identify

y = ξα(`) w = ξα(`)−α(2)τ2 z = ξα(`)−α(1)τ1 x = τ`.

Equation (2.1) gives the relation

τ`ξ
2α(`) + τ 2

2 ξ3α(`)−2α(2) + τ 3
1 ξ3α(`)−3α(1) = 0.

Dividing by a suitable monomial ξβ, we obtain

τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2ξ3.

Note that this can be regarded as a dependence relation among sections
of A6.

Proposition 2.6. — The homomorphism

% : C(S̃) := k[ξ1, ..., ξ6, ξ`, τ1, τ2, τ`]/〈τ`ξ
3
` ξ

2
4ξ5 + τ 2

2 ξ2 + τ 3
1 ξ2ξ3〉→Cox(S̃)

is an isomorphism.

Proof. — If % were not injective, its kernel would have nontrivial elements
in degrees ν = dA`. These translate into homogeneous polynomials of
degree d vanishing on S ⊂ P3. All such polynomials are multiples of the
cubic form defining S, which itself is a multiple of the relation we already
have.

Now we prove that % is surjective. We use the following

Lemma 2.7. — Let D be an effective divisor on S̃ with fixed part FD

and moving part MD. Then FD is supported in {F1, . . . , F6, `}, and MD

is a linear combination of A1, . . . , A6, A` with nonnegative coefficients.

Proof. — First observe that MD is nef and therefore semiample with
vanishing higher cohomology, by Proposition 1.9. Proposition 2.5 gives
the second claim.

Let F be a fixed component of D not supported in {F1, . . . , F6, `}. To
arrive at a contradiction, we need to show that h0(MD + F ) > h0(MD).
Since MD has vanishing higher cohomology and

h2(F + MD) = h0(K − F −MD) = 0
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it suffices to show that

χ(F + MD) > χ(MD).

By Riemann-Roch, it suffices to show that

F 2 + 2MDF −KS̃F > 0

or, equivalently,

F 2 + KS̃F + 2MDF − 2KS̃F = 2g(F )− 2 + 2MDF − 2KS̃F > 0.

Since F is irreducible, g(F ) ≥ 0 and MDF ≥ 0 and −KS̃F > 1, as MD

is nef and −KS̃ is nonpositive only along the exceptional curves and has
degree 1 only on the line ` (see Proposition 2.1).

Consider the subrings

Ca(S̃) :=
⊕

ν∈NM(S̃)

C(S̃)ν and Coxa(S̃) =
⊕

ν∈NM(S̃)

Cox(S̃)ν

obtained by restricting to degrees corresponding to nef (and thus semi-
ample) line bundles on S̃. The lemma implies that any element sD of the
Cox ring can be written in the form

sD = µξa1
1 · · · ξa6

6 ξa`
`

with nonnegative exponents, where µ is in Coxa(S̃). Hence Coxa(S̃) and
Cox(S̃) have the same fraction field, as do Ca(S̃) and C(S̃).

Since A` induces a birational morphism S̃→S, Proposition 1.3 implies
that the rings Ca(S̃) and Coxa(S̃) have the same fraction field, and it
follows that C(S̃) and Cox(S̃) have the same fraction field. Proposi-
tion 1.1 implies Cox(S̃) is in the integral closure of C(S̃) in its fraction
field. However, this ring itself is integrally closed, as it’s the quotient of
a polynomial ring by an irreducible polynomial.

3. The D4 cubic surface

The strategy of the previous section can applied to other surfaces as
well. Here we illustrate it in the case of a cubic surface given by the
homogeneous equation

S = {(x1, x2, x3, w) : w(x1 + x2 + x3)
2 = x1x2x3} ⊂ P3.
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We summarize its properties:

1. S has a single singularity at the point (0, 0, 0, 1) of type D4.
2. S contains 6 lines with the equations

`′1 := {w = x1 = 0} m′
1 := {x1 = x2 + x3 = 0}

`′2 := {w = x2 = 0} m′
2 := {x2 = x1 + x3 = 0}

`′3 := {w = x3 = 0} m′
3 := {x3 = x1 + x2 = 0}

3. S is given as a blow-up of P2 by the linear series

x1 = u1(u1 + u2 + u3)
2, x2 = u2(u1 + u2 + u3)

2, x3 = u3(u1 + u2 + u3)
2,

w = u1u2u3,

where 〈u1, u2, u3〉 = Γ(P2,OP2(1)).

Let S̃→S denote the minimal desingularization of S and

`1, `2, `3, m1, m2, m3

the strict transforms of the lines. The rational map S 99K P2 induces a
morphism S̃→P2 and let L denote the pullback of the hyperplane class.
Let E0, E1, E2, E3 be the exceptional divisors, ordered so that the we
have the following intersection matrix:

(3.1)

L E1 E2 E3 m1 m2 m3

L 1 0 0 0 0 0 0
E1 0 −2 0 0 1 0 0
E2 0 0 −2 0 0 1 0
E3 0 0 0 −2 0 0 1
m1 0 1 0 0 −1 0 0
m2 0 0 1 0 0 −1 0
m3 0 0 0 1 0 0 −1

.

This is a rank 7 unimodular matrix, so that the Picard group Pic(S̃) is
generated by L, ..., m3. We can write

E0 = L− (E1 + E2 + E3 + m1 + m2 + m3) and `j = L− Ej − 2mj.

The anticanonical class is given by

−KS̃ = 3L− (E1 + E2 + E3)− 2(m1 + m2 + m3) = `1 + `2 + `3.
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Proposition 3.1. — The effective cone NE(S̃) is generated by

Ξ := {E0, E1, E2, E3, mj, `j}.

Proof. — Each effective divisor D can be expressed as a sum

D = MΞ + bE0E0 + bE1E1 + . . . + b`3`3,

with nonnegative coefficients, where MΞ intersects each of the elements
in Ξ nonnegatively. The dual cone to Cone(Ξ) has generators

L, L− Ei −mi, 2L− Ei − 2mi, 2L− Ei − Ej − 2mi − 2mj,

2L− Ei − Ej −mi − 2mj.

Each of these is contained in Cone(Ξ):

L = `i + Ei + 2mi,
2L− Ei − 2mi = 2`i + Ei + 2mi,

2L− Ei − Ej −mi − 2mj = `i + `j + mi,
L− Ei −mi = `i + mi,

2L− Ei − Ej − 2mi − 2mj = `i + `j.

However, MΞ is contained in the dual cone, so that D is a sum of elements
in Ξ with nonnegative coefficients.

Each of the line bundles mi, `i and Ei has a distinguished nonzero
section (up to constants) denoted by µi, λi and ηi, respectively. We have

{λiηiµ
2
i , η0η1η2η3µ1µ2µ3} ⊂ Γ(L),

where we may identify

ai = λiηiµ
2
i and a1 + a2 + a3 = η0η1η2η3µ1µ2µ3.

The dependence relation translates to

(3.2) λ1η1µ
2
1 + λ2η2µ

2
2 + λ3η3µ

2
3 = η0η1η2η3µ1µ2µ3.

An argument similar to the one given at the end of Section 2 proves that
the natural homomorphism

k[η0, ..., η3, µi, λi]/〈λ1η1µ
2
1 + λ2η2µ

2
2 + λ3η3µ

2
3− η0η1η2η3µ1µ2µ3〉→Cox(S̃)

is an isomorphism.

Whereas the E6-cubic surface has no nontrivial automorphisms the D4-
cubic admits an S3-action on the coordinates x1, x2, x3. In particular,
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the D4-cubic has nonsplit forms over nonclosed ground fields. They can
be expressed as follows: let K/k be a cubic extension with generator γ,
and Galois closure E/k. Elements Y ∈ K can be represented as

Y = yγ + y′γ′ + y′′γ′′

with y, y′, y′′ ∈ k and γ′, γ′′ ∈ K. Then

w · TrK/k(Y )2 = NK/k(Y )

is isomorphic, over E, to the D4-cubic surface. The isomorphism is given
by

x1 = yγ + y′γ′ + y′′γ′′

x2 = yσ(γ) + y′σ(γ′) + y′′σ(γ′′)
x3 = yσ2(γ) + y′σ2(γ′) + y′′σ2(γ′′)

where σ and σ2 are coset representatives for Gal(E/k) modulo Gal(E/K).
Given elements U, V,W ∈ K associated to ηi, µi and λi, respectively,

and η0 ∈ k, the torsor equation (3.2) takes the form

TrK/k(UV 2W ) = η0NK/k(UV ).
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Figure 1. Extended Dynkin diagram of E6
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