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Abstract. — We study the arithmetic of certain Del Pezzo surfaces of degree 2. We
produce examples of Brauer-Manin obstruction to the Hasse principle, coming from 2-
and 4-torsion elements in the Brauer group.
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1. Introduction

A Del Pezzo surface is a smooth projective surface, isomorphic over the
algebraic closure to P2, to P1 × P1, or to the blow-up of P2 at up to 8 points
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in general position. In the last case the Del Pezzo surface has degree equal
to 9 minus the number of points in the blow-up. The arithmetic of Del Pezzo
surfaces over number fields is an active area of investigation. It is known that
the Hasse principle holds for Del Pezzo surfaces of degree at least 5.

Counterexamples to the Hasse principle were discovered for Del Pezzo sur-
faces of degrees 3 and 4 (see [12] and [8], respectively). A growing body of
evidence (e.g., [3]) led to the question of whether the failure of the Hasse
principle for Del Pezzo surfaces is always explained by the Brauer-Manin ob-
struction; this question is specifically raised by Colliot-Thélène and Sansuc in
[5]. Computer verifications for diagonal cubics in [4] and theoretical advances,
e.g., [2], [10], [14], lend support to an affirmative answer to this question.

A general smooth Del Pezzo surface of degree 2 can be realized as a double
cover of P2 ramified in a smooth curve of degree 4. In this note we consider
surfaces S over Q of the form

(1.1) w2 = Ax4 + By4 + Cz4.

We compute their Galois-theoretic invariant Br(S)/Br(Q) and produce exam-
ples of obstruction to the Hasse principle (see [4], [9] for background). Of
particular interest is Example 7.6, where the obstruction comes from a 4-
torsion element in the Brauer group. By [13], only 2- and 3-torsion Brauer
group elements occur for Del Pezzo surfaces of degree ≥ 3.

The tool we use is group cohomology. Let F be a Galois extension of Q, and
let G denote the Galois group Gal(F/Q). If Pic(SF ) is equal to the geometric
Picard group M := Pic(SQ) then we have

(1.2) Br(S)/Br(Q) = H1(G, M).

More generally, the Hochschild-Serre spectral sequence gives rise to the fol-
lowing exact sequence:

(1.3) 0 −→ Pic(S) −→ Pic(SF )G −→ ker(Br(Q)→Br(F ))

−→ ker(Br(S)→Br(SF )) −→ H1(G, Pic(SF )) −→ H3(G, F ∗).

We compute the group in (1.2) and represent lifts of elements to Br(S) by
Azumaya algebras. By (1.3) and cohomological dimension, such lifts exist
after possibly enlarging F ; in practice we find it is often possible to take
[F : Q] quite small and still have H1(G, Pic(SF )) isomorphic to H1(G, M)
and the final map in (1.3) trivial. Lastly, we explain the computation of local
invariants and obtain the above-mentioned examples.
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In an Appendix we show that in the case of the diagonal cubics considered in
[4] the present techniques give rise to cyclic Azumaya algebras. This simplifies
the construction of cocycle representatives and the local obstruction analysis,
as compared with the original consideration of bicyclic group cohomology.

The authors would like to thank J.-L. Colliot-Thélène for helpful discussions
and correspondence.

2. Geometry

Consider the surface S given by the equation

w2 = Ax4 + By4 + Cz4

in the weighted projective space P(2, 1, 1, 1). It is a double cover of P2,
branched over the twisted Fermat quartic curve

(2.1) 0 = Ax4 + By4 + Cz4.

Let a, b, c denote some chosen 4-th roots of A,B, C, respectively. The 56
exceptional curves on S are the pre-images of the bitangents to the quartic.
These are given by the following equations

δax + by = 0, δby + cz = 0, δcz + ax = 0, where δ4 = −1,(2.2)

αax + βby + γcz = 0 (α4 = β4 = γ4 = 1).(2.3)

Multiplying the equations (2.3) by a scalar doesn’t change the line it defines, so
it is natural to index the line by an element (α, β, γ) ∈ µ3

4/µ4. Each bitangent
lifts to a pair of exceptional curves in S: for example, the preimage of the line
given by δax + by = 0 is the pair of curves with equations

w = ±c2z2 .

These will be denoted by Lz,δ,±. There are 24 exceptional curves lying over
the lines in (2.2). The preimages of the lines in (2.3) are given by

w = ±
√

2(αβabxy + βγbcyz + αγacxz) .

The ambiguity± is resolved by scaling the tuple (α, β, γ), so that we can choose
+ and consider (α, β, γ) ∈ µ3

4/µ2. The 56 exceptional curves are denoted as
follows:

Lz,δ,± : δax + by = 0, w = ±c2z2,
Lx,δ,± : δby + cz = 0, w = ±a2x2,
Ly,δ,± : δcz + ax = 0, w = ±b2y2,

Lα,β,γ : αax + βby + γcz = 0 w =
√

2(αβabxy + βγbcyz + αγacxz) .
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Each exceptional curve has self-intersection (−1). Each pair of curves lying
above a bitangent to the Fermat quartic has intersection number 2. Other
intersection numbers are 0 or 1 and are readily determined. From this the
intersection matrix can be constructed. Let ζ = eπi/4. Then one sees that the
Picard group is a free abelian group with generators:
(2.4)
v1 = [Lx,ζ,+] v2 = [Lx,ζ3,−] v3 = [Ly,ζ,+] v4 = [Ly,ζ3,−]
v5 = [Lz,ζ,+] v6 = [Lz,ζ3,−] v7 = [Li,i,i] v8 = [Lz,ζ7,−] + [Lz,ζ3,−] + [Li,i,i] .

Moreover, we have in the Picard group:

(2.5)

[Lx,ζ5,+] = −v1 − v7 + v8 [Lx,ζ7,−] = −v2 − v7 + v8

[Ly,ζ5,+] = −v3 − v7 + v8 [Ly,ζ7,−] = −v4 − v7 + v8

[Lz,ζ5,+] = −v5 − v7 + v8 [L1,1,i] = −v2 − v3 + v8

[L1,1,−1] = −v5 − v6 + v8 [L1,1,−i] = −v1 − v4 + v8

[L1,i,1] = −v1 − v6 + v8 [L1,i,−i] = −v3 − v5 + v8

[L1,−1,1] = −v3 − v4 + v8 [L1,−1,−1] = −v1 − v2 + v8

[L1,−i,1] = −v2 − v5 + v8 [L1,−i,i] = −v4 − v6 + v8

[Li,1,1] = −v4 − v5 + v8 [Li,1,−i] = −v2 − v6 + v8

[Li,−1,−1] = −v3 − v6 + v8 [Li,−1,−i] = −v1 − v5 + v8

[Li,−i,1] = −v1 − v3 + v8 [Li,−i,−1] = −v2 − v4 + v8

The anticanonical class is

(2.6) −KS = −v1 − v2 − v3 − v4 − v5 − v6 − v7 + 3v8.

Since the anticanonical class is the class of any pair of curves lying above a
bitangent, the class of any exceptional curve can be read off from (2.4)–(2.6).

3. Galois group - generic case

Let G be the Galois group of the extension

(3.1) F := Q(ζ, a2, b/a, c/a)

over Q (where ζ = eπi/4). The subextension Q(ζ)/Q corresponds to a normal
subgroup H of index 4. The quotient group is the Klein four-group. In the
generic case, when |G| = 128, we have the generators

σ, τ, ιa, ιb, ιc
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characterized by

σ(a2) = a2, σ(b/a) = b/a, σ(c/a) = c/a, σ(ζ) = ζ−1,
τ(a2) = a2, τ(b/a) = b/a, τ(c/a) = c/a, τ(ζ) = ζ3,
ιa(a2) = −a2, ιa(b/a) = −ib/a, ιa(c/a) = −ic/a, ιa(ζ) = ζ,
ιb(a2) = a2, ιb(b/a) = ib/a, ιb(c/a) = c/a, ιb(ζ) = ζ,
ιc(a2) = a2, ιc(b/a) = b/a, ιc(c/a) = ic/a, ιc(ζ) = ζ .

The corresponding action of G on exceptional curves is given by

σ τ ιa ιb ιc
Lz,δ,s Lz,σ(δ),s Lz,τ(δ),s Lz,iδ,s Lz,−iδ,s Lz,δ,−s

Lx,δ,s Lx,σ(δ),s Lx,τ(δ),s Lx,δ,−s Lx,iδ,s Lx,−iδ,s

Ly,δ,s Ly,σ(δ),s Ly,τ(δ),s Ly,−iδ,s Ly,δ,−s Ly,iδ,s

Lα,β,γ Lα−1,β−1,γ−1 Liα−1,iβ−1,iγ−1 Liα,β,γ Lα,iβ,γ Lα,β,iγ

Now we can build the matrices which encode the action of the various
generators on the Picard group Pic(SF ). For instance for ιa the matrix is:

−2 −1 −1 −1 −1 −1 −1 −3
−1 −2 −1 −1 −1 −1 −1 −3
−1 −1 −1 −2 −1 −1 −1 −3
−1 −1 0 −2 −1 −1 0 −2
−1 −1 −1 −1 −1 0 0 −2
−1 −1 −1 −1 −2 −1 −1 −3
−1 −1 0 −1 −1 0 −1 −2

3 3 2 3 3 2 2 7


.

4. Group cohomology

We start with a review of group cohomology. Let G be a finite group and
let M a G-module. A standard free resolution of Z is given as follows:

(4.1) CG
• := . . . Z[G×G×G] → Z[G×G] → Z[G] ,

where the augmentation map Z[G] → Z is given by g 7→ 1 (for all g ∈ G) and
where each map in CG

• is of the form

(g1, . . . gn) 7→
n∑

i=1

(−1)i+1(g1, . . . , ĝi, . . . , gn) .
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The action of g ∈ G on any of the terms in (4.1) is the diagonal left multipli-
cation action. We may identify

(4.2)
Z[G×G] '

⊕
g′∈G Z[G] ,

(g, gg′) 7→ (0, . . . , g, . . . , 0) ,

where the unique non-zero entry g is in the g′-th position. We also identify

(4.3)
Z[G×G×G] '

⊕
(g′,g′′)∈G×G Z[G] ,

(g, gg′, gg′g′′) 7→ (0, . . . , g, . . . , 0) ,

where the unique non-zero entry g is in the (g′, g′′)-th position.
After these identifications, the complex Hom(CG

• ,M) is identified with

(4.4) C•G,M := M
d0

−→
⊕
g′∈G

M
d1

−→
⊕

(g′,g′′)∈G×G

M . . . .

Here the g′-th coordinate of the map d0 is m 7→ m− g′ ·m and the (g′, g′′)-th
coordinate of d1 is (. . . , mg, . . .) 7→ mg′−mg′g′′ +g′ ·mg′′ . Of course, H i(G, M)
is identified with the i-th cohomology of (4.4). For instance, the kernel of d0

is the module MG of G-invariants of M .
Now let H be a subgroup of G. Since restriction is an exact functor, CG

• is
a resolution of Z as an H-module. We choose a set Q ⊂ G of coset represen-
tatives, so G =

⋃
q∈Q Hq.

We have an isomorphism of H-modules

(4.5)
Z[G] '

⊕
q∈Q Z[H] ,

hq 7→ (0, . . . , h, . . . , 0) ,

where h appears in the q-th position (h ∈ H, q ∈ Q). Also

(4.6)
Z[G×G] '

⊕
(q,h′,q′)∈Q×H×Q Z[H] ,

(hq, hh′q′) 7→ (0, . . . , h, . . . , 0) ,

where h appears in the (q, h′, q′) position. We can project the resolution CG
•

to the standard resolution CH
• . Under the identification (4.5) the map on

the degree zero component is the sum of the |Q| projection maps. Under
the identifications (4.2) and (4.6) the map on the degree 1 component sends
the element (0, . . . , h, . . . , 0) from (4.6) to (0, . . . , h, . . . , 0) with h in the h′

position. Applying HomH(−,M) we get an inclusion of complexes C•H,M into
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HomH(CG
• ,M), and via our identifications,

M //

χ0

��

⊕
H M //

χ1

��

. . .

⊕
Q M //

⊕
Q×H×Q M // . . . .

(4.7)

This allows us to take elements of H i(H,M), represented as cocycles via the
standard resolution, and realize them as cocycles in the complex HomH(CG

• ,M).
Now we discuss cohomology of group extensions. Assume that there is an

exact sequence of groups

1 → H → G → Q → 1 .

Then Q acts on the cohomology Hq(H,M) for all q and there is an associated
standard spectral sequence

(4.8) Ep,q
2 = Hp(Q,Hq(H,M)) ⇒ Hp+q(G, M) .

This leads to a 5-term exact sequence
(4.9)

0 → H1(Q,MH) → H1(G, M) → H1(H,M)Q d0,1
2−→ H2(Q,MH) → H2(G, M) .

For the purpose of computing d0,1
2 , we describe explicitly the spectral se-

quence at the E0 level. There is an action of Q on the complex HomH(CG
• ,M),

which is induced from the G action on this complex that combines the con-
jugation of G on itself with its action on M . This Q action has invariants
HomG(CG

• ,M). Moreover, each term is acyclic as a Q-module. This leads to
the E0-term of the spectral sequence (4.8)

HomH(Z[G3],M) //
⊕

Q HomH(Z[G3],M) // · · ·

HomH(Z[G2],M)

d0,1
0

OO

//
⊕

Q HomH(Z[G2],M)

d1,1
0

OO

// · · ·

OO

HomH(Z[G],M)

d0,0
0

OO

//
⊕

Q HomH(Z[G],M)

d1,0
0

OO

//
⊕

Q2 HomH(Z[G],M)

OO

In the special case where G is a semi-direct product of H and Q, we have
identifications (4.5) and (4.6). Now q̃ ∈ Q acts on elements of the groups



8 ANDREW KRESCH and YURI TSCHINKEL

appearing in the bottom row of (4.7) as follows:

q̃ · (. . . , mq, . . .) = (. . . , q̃ ·mq̃−1q, . . .)(4.10)

q̃ · (. . . , mq,h′,q′ , . . .) = (. . . , q̃ ·mq̃−1q,q̃−1h′q̃,q̃−1q′ , . . .)(4.11)

For finite abelian groups G there are more efficient resolutions than the
standard resolution. In each of the following representative cases we give an
alternative resolution of Z by free Z[G]-modules together with explicit maps
from the standard resolution to the more efficient resolution. This allows us
to compute the images of cocycles from the efficient resolution in the standard
resolution.

Notations 4.1. — Let G be a finite abelian group and g ∈ G an element
of order n. Put Ng := 1 + g + · · · + gn−1 and ∆g := 1 − g in Z[G]. For
g1, . . . , gν ∈ G and i1, . . . , iν ∈ Z the element in CG

1 which, under the iden-
tification (4.2) is the vector (0, . . . , 1, . . . , 0) with 1 in the (gi1

1 gi2
2 · · · giν

ν )-th
position, is denoted αi1,...,iν . Similarly, given i′1, . . . , i

′
ν ∈ Z the element in CG

2

which, under the identification (4.3) is the vector (0, . . . , 1, . . . , 0) with 1 in
the (gi1

1 gi2
2 · · · giν

ν , g
i′1
1 g

i′2
2 · · · gi′ν

ν )-th position is denoted αi1,...,iν ,i′1,...,i′ν
.

Case 1: G = Z/n.

C[n]
• := · · ·Z[G]

Ng−→ Z[G]
∆g−→ Z[G] ,

with quasi-isomorphism

σ
[n]
• : CG

• → C[n]
•

given by

(4.12)
σ

[n]
1 (αi) = 1 + g + · · ·+ gi−1 ,

σ
[n]
2 (αi,i′) =

{
1 if i > i′

0 otherwise ,

where g is a generator of G. For instance, if M is a G-module then H i(G, M)
is the ith cohomology of

(4.13) 0 −→ M
∆g−→ M

Ng−→ M −→ · · · .

Case 2: G = Z/n⊕ Z/m.

C[n,m]
• := · · ·Z[G]3 A[g,h]

−−−−→ Z[G]2
(∆g ∆h)−−−−→ Z[G] ,
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where

A[g,h] :=
(

Ng ∆h 0
0 −∆g Nh

)
with quasi-isomorphism

σ
[n,m]
• : CG

• → C[n,m]
•

given by

(4.14) σ
[n,m]
1 (αi,j) = (1 + g + · · ·+ gi−1, gi + gih + · · ·+ gihj−1) ,

where g (resp. h) is a generator of Z/n (resp. Z/m).

Case 3: G = Z/n⊕ Z/m⊕ Z/`.

C[n,m,`]
• := · · ·Z[G]6 A[g,h,u]

−−−−−→ Z[G]3
(∆g ∆h ∆u)−−−−−−→ Z[G] ,

where

A[g,h,u] :=

Ng ∆h 0 ∆u 0 0
0 −∆g Nh 0 ∆u 0
0 0 0 −∆g −∆h Nu


with quasi-isomorphism

σ
[n,m,`]
• : CG

• → C[n,m,`]
•

given by

(4.15) σ
[n,m,`]
1 (αi,j,k) =

(1 + g + · · ·+ gi−1, gi(1 + h + · · ·+ hj−1), gihj(1 + · · ·+ gihjuk)) ,

where g (resp. h, resp. u) is a generator of Z/n (resp. Z/m, Z/`).

The existence of efficient resolutions is not limited to the case of abelian
groups. For instance, taking G = Dn, the dihedral group with generators g
and h and relations gn = h2 = ghgh = e, it is an exercise in linear algebra to
verify that there is a resolution

· · ·Z[G]4
D3

n−→ Z[G]3
D2

n−→ Z[G]2
D1

n−→ Z[G]

with

D3
n =

∆g 0 0 Nh

0 ∆h 0 −Ng

0 0 ∆gh −Ng

 , D2
n =

(
Ng 0 Ngh

0 Nh −Ngh

)
,

and D1
n = (∆g ∆h).
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In each case, given a G-module M we apply HomG(−,M) to every complex
above. This provides a practical method for computing group cohomology
of finite abelian groups. The dual maps are notated as above but with the
super- and subscripts interchanged. For example, A[g,h] : M2 → M3 maps
the element (m, 0) to (m + g ·m + · · ·+ gn−1 ·m,m− h ·m, 0).

5. Computation of Br(S)/Br(Q) in the generic case

In this section we explain the computation of H1(G, M), where M =
Pic(SF ), in the generic case. We have an exact sequence

(5.1) 1 → H → G → Q → 1

with H = (Z/4)2 ⊕ (Z/2) and Q = (Z/2)2. In principle, H1(G, M) can be
computed using the standard resolution (4.4). However, in this case the map
d1 would be given by a 131072×1024-matrix, which makes direct computations
impractical. Exploiting the fact that G is an extension of one abelian group by
another, we can use the spectral sequence technique, explained in Section 4,
to simpify the computation significantly.

In the following, we will constantly refer to the diagram in Figure 1. First
we compute MH = MG = Z, spanned by the canonical class. In particular,
H1(Q,MH) = 0. Thus H1(G, M) is equal to the kernel of the map

d0,1
2 : H1(H,M)Q → H2(Q,MH) .

The group H1(H,M) is computed by the complex on the left side of the
diagram. In this diagram the horizontal arrows labeled σi

[4,4,4] and χi give
quasi-isomorphisms of complexes. The linear algebra required to compute
Ker(M3 → M6) is quite modest and the cohomology group is identified as

H1(H,M) = Z/2 .

It remains to take a single cocycle representative of the non-zero element of
H1(H,M) and follow it through the diagram to determine whether it lies in
the kernel of d0,1

2 .

Remark 5.1. — In this case the class is automatically Q-invariant since Z/2
has only the identity automorphism. In general, as we point out below, at a
certain point in the diagram chase this invariance is naturally tested.

We start with a representative in M3 for the nontrivial element λ ∈ H1(H,M),
for instance

u = ((0, 0, 0, 0,−1,−1,−1, 1), (0, 0, 0, 0,−1, 1, 0, 0), (0, 0, 0, 0,−2, 0,−1, 1)).
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Let v denote the image in E1,1
0 of v by the composite of three horizontal maps

in Figure 1. Now, we claim, v lies in the image of d1,0
0 if and only if λ is

Q-invariant (obviously true in this case). Indeed, a linear algebra solver can
produce

v0 = ((0, 0, 0, 0,−1, 1, 0, 0)∗4, (0, 0, 0, 0,−1,−1,−1, 1)∗4))

satisfying d1,0
0 (v0) = v, where each vector with superscript ∗4 denotes the

element in
⊕

Q M with the vector repeated 4 times. Applying the cobounday
map E1,0

0 → E2,0
0 to v0 necessarily produces an element in the image of i2,

representing d0,1
2 (λ) in H2(Q,MH). In the present case, we get 0; in general,

a linear solver can test whether or not it is a coboundary.

6. The non-generic case

We start by presenting some examples when the Galois group is smaller
than in the generic case.

Example 6.1. — Consider the case (A,B, C) = (−6,−3, 2). The Galois
group of the field F , defined in (3.1), has order 32; it is an extension of the
Klein four-group by (Z/4) ⊕ (Z/2). However, in this way it is not a split
extension. On the other hand, we can use the split extension

1 → H → G → Z/2 → 1

where H = (Z/4)2, generated by ιaιb and στιaιc, and the image of Z/2 in G is
generated by σ. In this case, we compute H1(H,M) = 0. By (4.9), H1(G, M)
is isomorphic to H1(Z/2,MH). We find that MH has rank 2, spanned by

(1, 1, 1, 1, 1, 1, 1,−3), (1, 1, 1, 1, 1, 1, 0,−2),

hence MH is isomorphic to Z⊕ Z′, where Z′ is free of rank 1 with non-trivial
Z/2-action. So, we have

H1(G, M) = Z/2.

As in the generic case, we have MG = Z, that is Pic(S) has rank 1.

Example 6.2. — The case (A,B, C) = (1, 1,−2) is interesting because Pic(S)
has rank 2. The Galois group G fits into an exact sequence

1 → Z/4 → G → Z/2 → 1
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with subgroup H = Z/4 generated by ιcστ and quotient group generated by
the image of τ . As in Example 6.1 we have H1(H,M) = 0. Now MH has rank
3, with generators

(1, 1, 1, 1, 1, 1, 1,−3) , (0, 0, 0, 0, 1,−1, 0, 0) , (0, 0, 0, 0, 1, 1, 1,−1) ,

and the action of τ fixes the first 2 vectors and negates the third. Hence

H1(G, M) = Z/2

and Pic(S) has rank 2.

Example 6.3. — The case (A,B, C) = (1, 1, 1) yields G = Gal(Q(ζ)/Q), the
Klein four-group, and we directly compute

H1(G, M) = (Z/2)3.

In this case Pic(S) has rank 1.

The comprehensive treatment proceeds via a case-by-case computer analy-
sis of all subgroups of the generic Galois group, such that in the exact sequence
(5.1) the subgroup maps onto Q. These correspond to field extensions con-
taining the eighth roots of unity. Each such subgroup (it is enough to consider
conjugacy classes of subgroups) is a semi-direct product of abelian groups, and
hence yields to the sort of analysis of the examples of this section. By means
of an exhaustive computer run, we obtain

Theorem 6.4. — Let S have the form (1.1). Then Br(S)/Br(Q) is isomor-
phic to one of the following groups:

(1), Z/2, Z/4, (Z/2)⊕ (Z/2),

(Z/4)⊕ (Z/2), (Z/2)⊕ (Z/2)⊕ (Z/2).

7. Examples of Brauer-Manin obstruction

Here we compute the Brauer-Manin obstruction to the Hasse principle in
several representative cases. In all the examples below the surface S has points
in all completions of Q.

Example 7.1. — The case (A,B, C) = (−25,−5, 45). The Galois group
G = Gal(F/Q) has order 32 and fits into an exact sequence

1 → H → G → Z/2 → 1.
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We have H = (Z/4)⊕ (Z/2)2, generated by ι2aιbιc, ι2c , and στ . A complement
to H in G is Z/2 = 〈σιaιb〉. After the sort of computation detailed in the
previous section we find

(7.1) H1(Z/2,MH) ∼→ H1(G, M)

in (4.9) with MH spanned by (1, 1, 1, 1, 1, 1, 1,−3) and (1, 1, 1, 1, 1, 1, 0,−2).
Hence, as in Example 6.1, we have

H1(G, M) = Z/2.

In light of (7.1) we are in the nice situation where Br(S) has elements
(that are not in Br(Q)) annihilated by the base extension Q → Q[i] = FH .
Specifically, if we let ε be a divisor on SQ[i] whose class in M = Pic(SF ) is
(1, 1, 1, 1, 1, 1, 0,−2), then the nonzero element of Br(S)/Br(Q) is represented
by the quaternion algebra

(−1, g)

where g is any rational function on S satisfying div(g) = α + α; here the bar
denotes complex conjugation. Let D be the curve given by

−5x2 − 2y2 + 9z2 = 0 and w = i(3y2 − 6z2).

Then the cycle
α = D − (z = 0)

(the sum of the curve and a canonical divisor) has the required class in M . So
with

g = −5(x/z)2 − 2(y/z)2 + 9,

we have (−1, g) ∈ Br(S).
Observe that the image of Z in P2 is the conic having four tangencies with

the quartic (2.1), at the points (±1 : ±
√

2 : 1). So we find

g > 0

at all Q-points of the plane. It is necessary to complete p-adic analysis only
at the primes p = 2 and p = 3 (since 5-adically, Q[i] is a split extension of
Q). For the 2-adic analysis, we assume x, y, and z to be 2-adic integers, not
all even, and find by analysis mod 16 that the condition −25x4 − 5y4 + 45z4

should be a 2-adic square implies x and z are odd and y is even. So, without
loss of generality, we may take z = 1. By mod 32 analysis, the only possible
values of (x, y) mod 8 are

(1, 2), (1, 6), (3, 0), (3, 4), (5, 0), (5, 4), (7, 2), (7, 6).
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In each case we find g = 12 (mod 16), hence (−1, g) is ramified at all 2-adic
points of S. By a similar analysis mod 27 we find that at any 3-adic point
x and y are prime to 3, hence so is g, and (−1, g) is unramified at all 3-adic
points of S.

Therefore S provides an example of Brauer-Manin obstruction to the Hasse
principle.

Example 7.2. — Here we show that Example 6.1 fits into an infinite family
of examples of Brauer-Manin obstruction to the Hasse principle. Consider

(A,B, C) = (−2p,−p, 2),

where p is any prime such that

p = 3 (mod 16).

The computation of the group cohomology is exactly as in Example 6.1. So,
H1(G, M) = H1(Z/2,MH) = Z/2. We proceed as in Example 7.1.

By the condition on p we may write

p = u2 + 2v2

for integers u and v. Now we compute the equation of the conic tangent to
the quartic at the points (±

√
u/p,±

√
2v/p) and find that with the curve D

given by

−ux2 − vy2 + z2 = 0 and w = i(−2vx2 + uy2)

the cycle α = D − (z = 0) has the correct class in M . Now we analyze the
ramification pattern of (−1, g) where

g = −u(x/z)2 − v(y/z)2 + 1.

The analysis is simplest if we assume

u = 1 (mod 4) and v = 1 (mod 4)

(until now, u and v have been determined only up to sign; this fixes the signs).
Then (−1, g) is

(i) unramified over R (at any rational point);
(ii) ramified at all 2-adic points of S;
(iii) unramified at all p-adic points of S;
and there is a Brauer-Manin obstruction to the Hasse principle.

We leave the verification of (i)–(ii) to the reader. For (iii) we need the
following lemma.
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Lemma 7.3. — Let p be a prime with p = 3 (mod 16). Write p = u2 + 2v2

for integers u and v with u = 1 (mod 4) and v = 1 (mod 4). Now, if we let y
be a solution to y4 = −2 (mod p) then we have vy2 = u (mod p).

Proof. — The two square roots of −2 mod p are ±uv−1. So y2 = ±uv−1

(mod p) and the lemma is asserting that the correct sign is +, or equivalently,
that uv is a quadratic residue mod p. By quadratic reciprocity,(u

p

)
=

(p

u

)
and

(v

p

)
=

(p

v

)
.

If p′ is a prime dividing v, then p is a quadratic residue mod p′. This and a
similar consideration when p′ divides u yield(p

v

)
= 1 and

(2p

u

)
= 1.

By mod 16 analysis, u is congruent to 1 or 7 mod 8, hence(2
u

)
= 1.

So, as required, uv is a quadratic residue mod p.

To establish (iii) we claim that for any p-adic integer solution (w, x, y, z)
to (1.1), with not all of w, x, y, and z divisible by p, the p-adic integer
z2g = −ux2− vy2 + z2 is not divisible by p. Indeed, since 2 is not a quadratic
residue mod p we must have p dividing z, hence x and y are nonzero mod p.
Without loss of generality we suppose x = 1. Now y must be a fourth root of
−2 mod p. The claim follows from Lemma 7.3.

Example 7.4. — Here we give a recipe for testing the presence of Brauer-
Manin obstruction to the Hasse principle in the generic case. This is the case
when the Galois group has order 128, or equivalently, when the set{

εAαBβCγ
∣∣ ε ∈ {−2,−1, 1, 2} and (α, β, γ) ∈ {0, 1}3 r {(0, 0, 0)}

}
contains no perfect squares.

As we computed in Section 5, we have Br(S)/Br(Q) = H1(G, M) = Z/2.
Since G has a subgroup of index two

H = 〈στ, ι2a, ιaιb, ιaιc, ιaσ〉

with the property that

MH = 〈 (1, 1, 1, 1, 1, 1, 1,−3), (1, 1, 1, 1, 1, 1, 0,−2) 〉,
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we have H1(G/H, MH) ∼→ H1(G, M). Therefore, we can construct a quater-
nion algebra as in Example 7.1. In this case,

FH = Q(
√
−ABC).

Let θ =
√
−ABC, and let (r0 : s0 : t0) be a Q(θ)-rational point on the conic

Ar2 + Bs2 + Ct2 = 0

(this exists by the Hasse principle). Then

Ar0x
2 + Bs0y

2 + Ct0z
2 = 0

defines a conic over Q(θ), meeting the quartic curve (2.1) in 4 tangencies. We
have the identity

C2t20(Ax4 + By4 + Cz4) + ABC(s0x
2 − r0y

2)2

+ C(Ar0x
2 + Bs0y

2 + Ct0z
2)(Ar0x

2 + Bs0y
2 − Ct0z

2) = 0.

Hence there is a curve D on SQ(θ) defined by

Ar0x
2 + Bs0y

2 + Ct0z
2 = 0 and w = θ(s0x

2 − r0y
2)/(Ct0)

such that the union of D and its conjugate is rationally equivalent to twice
the anticanonical class. This rational equivalence is given explicitly by the
rational function

g := (Ar1s1+A2BCr2s2)+(Bs2
1−A2BCr2

2)(y/x)2+Cs1t0(z/x)2+ACr2t0w/x2,

where we suppose t0 ∈ Q and write

r0 = r1 + r2θ and s0 = s1 + s2θ.

To test the Brauer-Manin obstruction to the Hasse principle for S, one has to
analyze the quaternion algebra

(−ABC, g)

at real- and Qp-valued points of S (for p dividing 2ABC).
To see that this case sometimes yields a nontrivial Brauer-Manin obstruc-

tion, consider (A,B, C) = (−126,−91, 78). Here we may take r0 = −13,
s0 = −12, and t0 = 21, and g is proportional to

3 + 3(y/x)2 + 2(z/x)2.

In this case the quaternion algebra (−ABC, 3+2(y/x)2 +3(z/x)2) is ramified
at all Q2-points of S and unramified at all points in other completions.



18 ANDREW KRESCH and YURI TSCHINKEL

Example 7.5. — The case (A,B, C) = (34, 34, 34). Here G = Gal(F/Q) is
isomorphic to (Z/2)3:

G = 〈ιaιbιcσ, τ, σ〉.
We have H1(G, M) = (Z/2)3. In fact, for the index-two subgroup

H = 〈ιaιbιcσ, τ〉

we have MH spanned by

(7.2)

(1,−1, 0, 0, 0, 0, 0, 0),
(0, 0, 1,−1, 0, 0, 0, 0),
(0, 0, 0, 0, 1,−1, 0, 0),
(1, 1, 1, 1, 1, 1, 1,−3),

and
H1(G/H, MH) ∼→ H1(G, M).

Here, of course, σ in G/H acts nontrivially on the first three vectors in (7.2)
and trivially on the last. We have

FH = Q(
√
−17).

Using (4.13) we can identify elements of Br(S)/Br(Q) with the image of the
(−1)-eigenspace of MH (under the σ-action). To produce quaternion algebras
representing a given element of Br(S)/Br(Q) we need to find divisors defined
over Q(

√
−17) representing particular classes in MH . Notice that the class

of any combination of exceptional curves defined over Q(
√
−17) in MH is a

coboundary of (4.13). Hence, we need additional cycles defined over Q(
√
−17).

We use descent to produce line bundles on SQ(
√
−17) and obtain the desired

cycles as loci of vanishing of rational sections of these line bundles.
Here we explicitly carry out the task of representing the class of the first

entry of (7.2) in Br(S). Set ρ = ιaιbιcσ. Over F = Q(
√
−17, ζ) we have

(7.3) [Lx,ζ,+]− [Lx,ζ3,−] = (1,−1, 0, 0, 0, 0, 0, 0)

in Pic(SF ). Consider the line bundle O([Lx,ζ,+] − [Lx,ζ3,−]) together with
isomorphisms

O(Lx,ζ,+ − Lx,ζ3,−)
η−→ O(Lx,ζ7,− − Lx,ζ5,+)

and

O(Lx,ζ,+ − Lx,ζ3,−)
ξ−→ O(Lx,ζ3,+ − Lx,ζ,−).
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These constitute descent data (for the covering SF → SQ(
√
−17)) provided that

the diagram

O(Lx,ζ,+ − Lx,ζ3,−)
η

//

ξ
��

1

,,

1

��

O(Lx,ζ7,− − Lx,ζ5,+)
ρ(η)

//

ρ(ξ)

��

O(Lx,ζ,+ − Lx,ζ3,−)

O(Lx,ζ3,+ − Lx,ζ,−)
τ(η)

//

τ(ξ)
��

O(Lx,ζ5,− − Lx,ζ7,+)

O(Lx,ζ,+ − Lx,ζ3,−)

commutes. The isomorphisms given by

η = δ
x2 − iy2 + z2 − 1√

34
w

x2 − iy2 − z2 + 1√
34

w
and ξ = ε

ζy + z

ζ3y + z
,

satisfy this condition if and only if δ, η ∈ F satisfy

δ ρ(δ) = −1,

ε τ(ε) = 1,

δ ρ(ε) = τ(δ) ε.

(7.4)

We find that one solution is

δ =
√
−17ζ − 4ζ3 and ε = 4ζ +

√
−17ζ3.

Then, by effective descent, we obtain a line bundle E on SQ(
√
−17).

Using (7.4) and descent, we see that

f := 1 + ρ(η) + τ(ξ) + ρ(η τ(ξ))

defines a rational section of E . We write f as a quotient of quartic polynomials
and observe that f has (with respect to local trivializations of E) a simple pole
along Lx,ζ,− ∪ Lx,ζ3,− ∪ Lx,ζ5,+ ∪ Lx,ζ7,+ and a zero of order one along some
curve Z. Then, by (7.3), we deduce that

[Z] = (−3,−1,−2,−2,−2,−2,−2, 6)

in the Picard group. Therefore, if h ∈ Q(S) defines a rational equivalence
between Z ∪ σ(Z) and some hyperplane sections, then the quaternion algebra
(−17, h) represents an element of Br(S) of the desired class in Br(S)/Br(Q).
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Denoting by g the numerator of f , we have

g = (x2 + iy2 + z2 +
1√
34

w)[y2 + iz2 + (4ζ −
√
−17ζ3)(y2 +

√
2yz + z2)]

+ (x2 + iy2 − z2 − 1√
34

w)[y2 +
√

2yz + z2 + (4ζ −
√
−17ζ3)(−y2 + iz2)].

The simultaneous vanishing of g, ρ(g), τ(g), and ρτ(g) defines the curve Z.
Equivalently, writing

g = p0 + p1ζ + p2ζ
2 + p3ζ

3

with pi ∈ Q(
√
−17)[w, x, y, z] we have Z defined by the vanishing pi for i = 0,

. . ., 3. A unique (up to scale) Q(
√
−17) linear combination of these is defined

over Q, namely

h1 :=
1
2
p0 +

4−
√
−17

2
p1 +

1
2
p2 −

4 +
√
−17

2
p3

= wy2 + wz2 + x2y2 + 8x2yz + x2z2 + y4 − z4.

Then h = h1/x4 is as desired. Cyclically permuting the variables x, y, and z,
we obtain polynomials h2 and h3 such that the classes of (−17, hi/x4) generate
Br(S)/Br(Q).

The ramification pattern of an Azumaya algebra is an invariant of its
class in Br(S). However, in practice, the ramification pattern of an alge-
bra (−17, hi/x4) is difficult to test on p-adic points where hi vanishes. Hence,
it is helpful to have several rational functions that determine the same class
in Br(S)/Br(Q). We can obtain additional such functions by repeating the
previous construction for different choices of δ and ε satisfying (7.4). In the
present case, it is easier to use symmetry to obtain these functions. Allowing
all permutations of the variables x, y, and z, we obtain additional polynomials
h4, h5, and h6 such that (−17, hi/x4) and (−17, hi+3/x4) represent the same
class in Br(S)/Br(Q) for all i.

Let qi ∈ Br(S) denote the class of (−17, hi/x4), for each i. Here are the
results of the local analysis, confirming the presence of a Brauer-Manin ob-
struction:

– qi is unramified on S(R), for all i;
– S(Q2) is the disjoint union of two nonempty sets, U and R, such that

each qi is unramified on U , and such that for 1 ≤ i ≤ 3 and any r ∈ R,
one of {qi, qi+3} (and a posteriori the other as well) is ramified at r;

– qi is unramified on S(Qp) for all i and p /∈ {2, 17}, and hence in particular
qi = qi+3 for 1 ≤ i ≤ 3;
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– At any point of S(Q17), exactly two of {q1, q2, q3} are ramified.

Example 7.6. — The case (A,B, C) = (−9826,−2, 136) = (−2p3,−2, 8p)
where p = 17 illustrates working with a non-cyclic Azumaya algebra. We have
F = Q(ζ, 4

√
p). The Galois group of F over Q has order 16:

G = 〈ιaιbιcστ, ι3aιc, ιbι
3
cσ〉.

In this case, H1(G, M) = Z/4. We leave it to the interested reader to produce
a subgroup H of index 2 with H1(G/H, MH) = Z/2 and show that

(−2, 136 + (y/x)2 + 18(z/x)2)

represents the unique nontrivial 2-torsion element of Br(S)/Br(Q) and is un-
ramified at all points S valued in all completions of Q. So the obstruction
analysis requires a representative of a generator of Br(S)/Br(Q).

The central element u := ιaιbιcστ of G satisfies

F u = Q(i, 4
√

p)

and
H1(G/〈u〉,Mu) = Z/4.

We remark that the exceptional curves Lα,β,γ (α, β, γ ∈ µ4) are defined
over F u. The quotient G′ := G/〈u〉 is isomorphic to the dihedral group D4;
generators g := ι3aιc and h := ιbι

3
cσ satisfy g4 = h2 = ghgh = e. We use the

resolution of Section 4 to identify classes in H1(G′,Mu) with pairs (v, v′) ∈
(Mu)2 satisfying

(7.5) Ngv = Nhv′ = 0 and Nghv = Nghv′,

modulo those of the form (v − gv, v − hv). Now a generator of H1(G′,Mu) is
the class of (v1, 0) where

(7.6) v1 = (−1, 0, 1, 0, 0, 0, 0, 0) = [L1,i,1]− [Li,−1,−1].

Another representative for the same cohomology class is (v2, 0) where

(7.7) v2 = (−1, 0,−1, 0,−1,−1,−2, 2) = [L1,−1,i]− [Li,i,i].

To produce an Azumaya algebra from one of these cocycles (vi, 0) we must
find rational equivalences that reflect the identities (7.5). Luckily, for each of
the cycle representatives given in (7.6) and (7.7), the result of applying Ngh

is equal to zero as a cycle. So it remains only to find rational functions whose
divisors are Ng applied to these cycle representatives. For (7.6), a function
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that vanishes on L1,i,1 ∪Li,−i,−i ∪L1,−i,1 ∪Li,i,−i and has a simple pole along
Li,−1,−1 ∪ L1,−1,−i ∪ Li,1,−1 ∪ L1,1,−i is

f1 :=
iy2 + p(1 + i)xz − (1/2)w

iy2 + p(−1 + i)xz + (1/2)w
.

The corresponding rational equivalence for (7.7) is

f2 :=
iy2 + p(1− i)xz + (1/2)w

iy2 + p(−1− i)xz − (1/2)w
.

For i = 1 and 2 we have fi h(fi) = 1, hence

(fi, 1, 1) ∈ (F u(S)∗)3

is the cocycle data for an Azumaya algebra Ai on S.
We claim A1 and A2 are equal in Br(S) and are:
– unramified at all points of S(Q2);
– ramified at all points of S(Q17);
– unramified at all points of S(R).

The last of these claims is clear, since (fi, 1, 1) ∈ S1×{1}×{1} at any point of
S(R) (where S1 ⊂ C∗ denotes the unit circle) and this is a connected subgroup
of the group of cocycles, hence trivial in cohomology.

For the claim regarding 2-adic points, we pause to discuss the cohomology
group H2(D4, Q2(i,

4
√

17)∗), where generators act by

g :

{
i 7→ i
4
√

17 7→ −i 4
√

17
h :

{
i 7→ −i
4
√

17 7→ i 4
√

17

Consider the diagram of field extensions, where labels indicate fixed fields.

Q2(i,
4
√

17)

g

tttttttttttttt
h

gh
RRRRRR

Q2((1 + i) 4
√

17)

��
��

��
��

��
�

Q2(
4
√

17)

mmmmmmmmmmmmmmmmmmmmm

Q2(i)
CCC

C

Q2

Now by the resolution for D4 of Section 4, a 2-cocycle is (r, s, t) with

r ∈ Q2(i)∗, s ∈ Q2((1 + i) 4
√

17)∗, t ∈ Q2(
4
√

17)∗
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satisfying
Nr = Ns Nt,

where in each instance, N denotes the norm from the respective field to Q2.
Coboundaries are triples

(Ngc,Nhd, Ngh(c/d))

for c, d ∈ Q2(i,
4
√

17)∗.
At every 2-adic point of S, at least one of f1 and f2 is well-defined; at some

points, both are. The only values that occur mod 32 are:

(7.8)

1+0i 1+8i 1+16i 1+24i 25+4i 25+12i 25+20i 25+28i
0+31i 8+31i 16+31i 24+31i 4+7i 12+7i 20+7i 28+7i
31+0i 31+24i 31+16i 31+8i 7+28i 7+20i 7+12i 7+4i
0+i 24+i 16+i 8+i 28+25i 20+25i 12+25i 4+25i

We claim that for any cocycle (f, 1, 1) with f (necessarily in Z2[i]) taking one
of the values mod 32 listed in (7.8), there exists c ∈ Q2(i,

4
√

17)∗ with Nghc = 1
and Ngc = f . In particular, (f, 1, 1) is a coboundary. Indeed, the image of
Ng among c ∈ Z2[i,

4
√

17] satisfying Nghc = 1 is the set of f ∈ Q(i)∗ with
Nf = 1 and f mod 32 equal to one of the values in the first row of (7.8).
Also, there exists c ∈ Q2(i,

4
√

17)∗ with Nghc = 1 and Ngc = i. Since norms
are multiplicative, the claim follows and the 2-adic analysis is complete.

The 17-adic analysis is simpler because Q17 has square roots of −1, and
hence we are reduced to analyzing norms for the extension Q17 → Q17(

4
√

17).
Norms for this extensions are precisely powers of 17 times fourth powers in
Z∗17. Evaluating f1 at points of S(Q17) and substituting a square root of −1
for i, we get only the classes 8 and 15 mod 17, and these are not fourth powers.

8. Appendix: Cyclic Azumaya algebras on diagonal cubics

In [4], there is an analysis of the Brauer-Manin obstruction on a diagonal
cubic surface S, given by

(8.1) Ax3 + By3 + Cz3 + Dt3 = 0,

with A, B, C, and D positive integers. Let θ = e2πi/3; first of all, S(Q) = ∅ if
and only if S(Q(θ)) = ∅, and hence it suffices to work over the field k := Q(θ).
The analysis proceeds by constructing Azumaya algebras that are split by a
bicyclic extension of k and computing local invariants.
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Here we simplify the algorithm proposed in op. cit. by constructing cyclic
Azumaya algebras on Sk which generate Br(Sk)/Br(k). We use descent to
exhibit the necessary cycles, as in Example 7.5.

We start by making the following assumption:
3
√

A/B /∈ Q, 3
√

A/C /∈ Q, . . . , 3
√

C/D /∈ Q
3
√

AB/CD /∈ Q, 3
√

AC/BD /∈ Q, 3
√

AD/BC /∈ Q
(8.2)

(in all other cases, the Hasse principle is known to hold). Then we define

α = 3
√

B/A β = 3
√

D/C γ = 3
√

AD/BC = α−1β

α′ = 3
√

C/A β′ = 3
√

D/B

We assume, further, that S(Qp) 6= ∅ for all primes p. Set K = k(γ, α); the
assumption (8.2) implies

(8.3) [K : k] = 9.

We need notation for the following divisors on Sk̄:

L(i):

{
x+θiαy = 0
z+θiβt = 0

L′(i):

{
x+θiαy = 0
z+θi+1βt = 0

L′′(i):

{
x+θiαy = 0
z+θi+2βt = 0

and

M(i):

{
x+θiα′z = 0
y+θi+1β′t = 0

Define

L = L(0) + L(1) + L(2) and M = M(0) + M(1) + M(2).

Now L + M is comprised of 6 pairwise disjoint lines; blowing these down we
have Sk̄ → P2

k̄
. Take ` to be the class of a general line in P2

k̄
, so

3` = −KS + L + M.

By results in op. cit., we have

Z/3 = H1(Z/3,Pic(Sk(γ)))
∼→ Br(Sk)/Br(k),

generated by the class in H1(Z/3,Pic(Sk(γ))) of `−L or `−M (where we use
(4.13) to identify elements with cohomology classes). The authors of op. cit.
propose the following procedure to obtain a nontrivial Azumaya algebra on
Sk:

(i) Find a divisor D defined over k(γ) in the class `− L or `−M ,
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(ii) Find a function in k(S) whose divisor is the union of D and its Galois
conjugates.

Unfortunately, the classes in Pic(Sk(γ)) of sums of lines defined over Sk(γ)

fail to represent any nonzero elements of H1(Z/3,Pic(Sk(γ))), and the further
field extension required to find suitable sums of lines accounts for much of the
complication of the analysis of op. cit.

We show that (i) can be carried out by solving a norm equation. Then
(ii) reduces to some linear algebra. For (i), we start with the further field
extension k(γ) → K and the divisor D := L′(2)−L′′(0) in class `−M (cf. op.
cit). Denote by σ the element of Gal(K/k(γ)) which sends α to θα. For the
line bundle OSK

(D) to descend to k(γ) we must supply an isomorphism

OSK
(L′(2)− L′′(0))

ξ−→ OSK
(L′(0)− L′′(1))

satisfying

(8.4) σ2(ξ) ◦ σ(ξ) ◦ ξ = 1.

Looking at the defining equations, we see ξ must be of the form

ξ = ε
z + βt

x + αy

for some ε ∈ k(γ). Now the condition (8.4) is equivalent to

(8.5) NK/k(γ)(ε) = −C/A.

Concretely, if
ε = λ + µα + να2

with λ, µ, ν ∈ k(γ), then (8.5) expands as

(8.6) λ3 +
B

A
µ3 +

B2

A2
ν3 − 3

B

A
λµν = −C

A
.

Equation (8.6) has a solution, by the Hasse principle. There is also an a priori
bound on the size of some solution [11]. An effective algorithm exists; see for
example [7]. Algorithms from [1] and [6] have been implemented in magma.

Define k′ = k(γ). By descent we have a line bundle E on Sk′ . Also by
descent, a rational section of E is given by

f = 1 + σ2(ξ) + σ(ξ)σ2(ξ)

=
(x+θαy)(x+θ2αy) + σ2ε(x+θαy)(z+θ2βt) + σεσ2ε(z+θβt)(z+θ2βt)

(x+θαy)(x+θ2αy)
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Then, with respect to local trivializations of E , the section f has a simple pole
on L′′(0) + L′′(1) + L′′(2) and vanishes to order one along some cubic curve
C. Hence

C = −2L−M + 4`

in Pic(Sk′), and C + KS = −L + ` is a divisor as desired.
We compute C2 = 1 and C · KS = −3, which implies that its genus is

zero, so C is geometrically a twisted cubic. Denoting by g the numerator of
f , explicit defining equations of C ⊂ S over K are g = σ(g) = σ2(g) = 0. It is
possible to express

g = g0 + g1α + g2α
2

for g0, g1, g2 ∈ k′[x, y, z, t], and after a bit of algebra we find

g0 = x2 + λxz + (B/A)νxtγ + θ2(B/A)µytγ + θ2(B/A)νyz

+ [λ2 − (B/A)µν]z2 + (B/A)(λν − µ2)ztγ + (B/A)[(B/A)ν2 − λµ]t2γ2

g1 = −xy + θ2µxz + θ2λxtγ + θλyz + θ(B/A)νytγ + [(B/A)ν2 − λµ]z2

+ [(B/A)µν − λ2]ztγ + (B/A)(µ2 − λν)t2γ2

g2 = θνxz + θµxtγ + y2 + µyz + λytγ

+ (µ2 − λν)z2 + [λµ− (B/A)ν2]ztγ + [λ2 − (B/A)µν]t2γ2

Now C is defined over k′ as a subvariety of S by the equations

(8.7) g0 = g1 = g2 = 0.

In fact, we have

g0(Ax−Aλz −Bνγt) + g1(−Bνz −Bµγt) + g2(By −Bµz −Bλγt)

= Ax3 + By3 + Cz3 + Dt3

so (8.7) defines C over k′ as a subvariety of P3. We have completed task (i).
For task (ii), we claim there exist linear polynomials `0, `1, `2 ∈ k′[x, y, z, t]

such that the polynomial

(8.8) h = g0`0 + g1`1 + g2`2

is in k[x, y, z, t] and is not proportional to (Ax3 +By3 +Cz3 +Dt3). Knowing
this, a modern linear algebra solver can effectively produce such `0, `1, and
`2. Then the division algebra generated over k(S) by noncommuting variables
r and s subject to relations

r3 = AD/BC, s3 = h/x3, sr = θrs,

is the restriction of an Azumaya algebra over Sk generating Br(Sk)/Br(k).
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To justify the claim, notice first that there exists a rational function on Sk

whose divisor is 3H − C − ρC − ρ2C, where H is a hyperplane section and ρ
is a generator of Gal(k′/k). Next, by a dimension computation, we have an
isomorphism

H0(P3
k,O(3))/〈Ax3 + By3 + Cz3 + Dt3〉 → H0(S, 3H)

so this rational function must be of the form h/`3 (assuming that H is defined
by the vanishing of the linear form `). Finally, a syzygy computation shows
that h can be expressed in the form (8.8). Indeed, (8.7) defines C in P3, so we
know `dh lies in the ideal (g0, g1, g2) of k′[x, y, z, t], for some d. Suppose d ≥ 1
and

`dh =
2∑

i=0

giri,

with ri ∈ k′[x, y, z, t] for i = 0, 1, 2. Now it suffices to show that there exist s0,
s1, s2 ∈ k′[x, y, z, t] such that

∑
i gisi = 0, and ` divides ri−si for each i; then

we have `d−1h =
∑

i gi(ri − si)/` and we can proceed inductively. In other
words, it suffices to show that the map on Koszul complexes for (g0, g1, g2),
induced by the quotient map k′[x, y, z, t] → k′[x, y, z, t]/(`), gives rise to a
surjection on the first homology modules. It is enough to verify this over the
algebraic closure, and we are reduced to the case of (g0, g1, g2) defining the
twisted cubic, for which it is a standard computation.
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