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1. Introduction

One of the main problems in the theory of irreducible holomorphic sym-
plectic manifolds is the description of the ample cone in the Picard group.
The goal of this paper is to formulate explicit Hodge-theoretic criteria for
the ampleness of line bundles on certain irreducible holomorphic symplectic
manifolds. It is well known that for K3 surfaces the ample cone is governed
by (−2)-curves. More generally, we expect that certain distinguished two-
dimensional homology classes of the symplectic manifold should correspond
to explicit families of rational curves, and that these govern its ample cone.

The program for analyzing the ample cone of a symplectic manifold di-
vides naturally into three parts. First, for each deformation type of irreducible
holomorphic sympectic manifolds we identify distinguished Hodge classes
in H2(Z) that should be represented by rational curves. We considerH2(Z)
andH2(Z) as quadratic lattices with respect to a natural quadratic form (the
Beauville form discussed in Section2) and distinguish orbits inH2(Z) under
the orthogonal group. These orbits are often characterized by the ‘squares’
of the corresponding elements, i.e., the value of the quadratic form. These
distinguished classes should be in one-to-one correspondence with certain
geometrically described rational curves onF . In many cases, one can use
deformation arguments to show that, if a given distinguished class represents
a rational curve of a certain type then this remain true under deformation
(see Section4). Second, one shows that rational curves with the geometry



2 BRENDAN HASSETT AND YURI TSCHINKEL

described govern the ample cone ofF . This entails classifying possible con-
tractions of symplectic manifolds - a very active topic of current research (see
the discussion of the literature below) - and interpretting this classification in
terms of the numerical properties of the contracted curves. It also involves the
classification of base loci for sections of line bundles on a symplectic mani-
fold. The third part of the program is to show that a divisor class satisfying
certain numerical conditions arises from a big line bundle and thus yields a
birational transformation of the symplectic manifold. This aspect of the pro-
gram is still largely conjectural; see the work of Huybrechts cited below.

We are mainly concerned with the first step of this program in a specific
case. LetF be an irreducible holomorphic symplectic fourfold deformation
equivalent to the punctual Hilbert schemeS[2] for some K3 surfaceS. Given
the Hodge structure onH2(F ), we describe explicitly (but conjecturally) the
cone of effective curves onF and, by duality, the ample cone ofF . As in
the case of K3 surfaces, each divisor class of square−2 induces a reflection
preserving the Hodge structure. The ‘birational ample cone’ is conjectured
to be the interior of a fundamental domain for this reflection group. How-
ever, the ample cone may be strictly smaller than the birational ample cone,
owing to the existence of elementary transformations alongP

2’s in F . The
corresponding classes have square−10 with respect to the Beauville form.

Here we give a brief and incomplete overview of work on related problems.
Wilson has studied Calabi-Yau threefolds from a similar point of view (see
[28],[29],[30], and [31].) If F is a Calabi-Yau threefold then the Picard group
of F is equipped with two integer-valued forms: a cubic formµ (the intersec-
tion form) and a linear formc2(F ) (obtained by intersecting with the second
Chern class of the tangent bundle.) Wilson gives criteria for the existence of
birational contractions and elliptic fibrations in terms of the number-theoretic
properties of these forms.

Namikawa [22] and Shepherd-Barron [25], have proven structural results
on the geometry of birational morphisms from holomorphic symplectic man-
ifolds. There are also results in this direction by Burns, Hu, and Luo [7] and
Wierzba [27]. Matsushita [19] [20] has proven a detailed description of fiber
structures on irreducible holomorphic symplectic manifolds. Huybrechts has
conjectured a projectivity criterion for irreducible holomorphic symplectic
manifolds and elaborated consequences of his criterion. See [13] and the er-
ratum in [14]; we will be careful to distinguish results fully proved in [13]
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from those which remain conjectural. Markman [17] has developed a theory
of generalized elementary transformations for moduli spaces of sheaves on
K3 surfaces.

Our study of rational curves on symplectic manifolds began with the de-
tailed study of a particular example: the varietyF parametrizing lines on a
cubic fourfoldX is an irreducible holomorphic symplectic manifold. The ex-
istence of rational curves onF coincides with the presence of rational ruled
surfaces onX. Our conjectures therefore shed light on the effectivity of cer-
tain codimension-two cycles onX. Conversely, the projective geometry of
cubic fourfolds provides a useful laboratory where we may test our claims.
As an application of our conjectures, we find that the presence of distin-
guished Hodge classes onX often implies the existence of special unirational
parametrizations ofX.

This paper is organized as follows. In Section2 we recall basic results
and conjectures for irreducible holomorphic symplectic manifolds. In the
next section, we introduce the notion ofnodal classesand state our basic
conjectures. In Section4 we give some deformation-theoretic evidence for
our conjectures. The rest of the paper is devoted to examples supporting the
conjectures. Section5 is devoted to Hilbert schemesS[2] for K3 surfaces of
small degree. We describe examples of nonnodal rational curves and certain
codimension-two behavior in Section6. We turn to the projective geometry of
cubic fourfolds in the last section. Questions of rationality and unirationality
are addressed in Section7.5.

Throughout, we work overC. A primitiveelement of an abelian groupA is
one that cannot be written in the formnx for anyx ∈ A or n ∈ Z, n > 1. An
indecomposableelement of a monoid is an element which cannot be written
in the forma + b for some nonzeroa andb in this monoid. Recall that an
elementv of a convex real coneC is anextremal rayif, for anyu,w ∈ C with
u+ w = v we necessarily haveu,w ∈ R+v.
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questions in Section7.5 benefitted from discussions with D. Saltman and I.
Dolgachev.

2. Generalities

Let F be an irreducible, holomorphic symplectic manifold of dimension
2n. This means thatF is compact, K̈ahler, simply connected, andH0(F,Ω2

F )
is spanned by an everywhere-nondegenerate 2-form (cf. [2] and [6]). The
second cohomology groupH2(F,Z) carries a nondegenerate integer-valued
quadratic form(, ), theBeauville form. It has signature(3, b2(F )− 3) and its
restriction toH1,1 ∩ H2(F,Z) has signature(1, b2(F ) − 3), whereb2(F ) is
the second Betti number (see [3] and [13] §1.9 for more details).

Using the universal coefficient theorem, we extend the Beauville form to a
Q-valued form onH2(F,Z). Concretely, given some primitiveR ∈ H2(F,Z),
there exists a unique classw ∈ H2(F,Q) such thatRv = (w, v) for all
v ∈ H2(F,Z). We set(R,R) = (w,w). Let ρ ∈ H2(F,Z) denote the
primitive class such thatcρ = w for somec > 0. Note thatR is of type
(2n − 1, 2n − 1) iff ρ is of type (1, 1). Conversely, given a primitiveρ ∈
H2(F,Z) with (ρ,H2(F,Z)) = dZ andd > 0, there exists a primitive class
R ∈ H2(F,Z) with dRv = (v, ρ) for all v ∈ H2(F,Z).

Throughout this paper, the square of a divisor class means the square with
respect to the Beauville form. In the sequel we will assume thatF has a
polarizationg; note that(g, g) > 0 [13] §1.9. Denote by

Pic+(F, g) = {v ∈ Pic(F ) | (v, g) > 0}

the positive halfspace (with respect tog and the Beauville form). LetΛ+(F, g) ⊂
Pic+(F, g) be the vectors with positive square.

We denote byΛamp(F ) andΛnef(F ) the monoids of ample and nef divi-
sor classes. LetN1(F ) be the group of classes of 1-cycles (up to numerical
equivalence),NE(F ) ⊂ N1(F )R the cone of effective curves, andNE(F )
its closure. We denote byΛ∗+(F, g) the set of classesR such that the corre-
spondingρ is contained inΛ+(F, g).

We next review properties of line bundles on polarized irreducible holomor-
phic symplectic manifolds which follow from standard results of the minimal
model program.
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PROPOSITION2.1. — Let (F, g) be a polarized irreducible holomorphic
symplectic manifold.

1. A classλ ∈ Pic(F ) is ample iffλ ∈ Λ+(F, g) andλC > 0 for each
curveC ⊂ F (see[13] Cor. 6.4).

2. Any classλ ∈ Λnef(F ) which is big has the property that the line bundle
L(λ) has no cohomology andL(mλ) is globally generated form � 0;
it therefore defines a birational morphismb : F→Y (see[15], Remark
3-1-2 and Theorem 1-2-3).

The following statements were conjectured by Huybrechts [14] (but stated
as Theorem 3.11 and Corollary 3.10 in [13] with an incomplete proof):

CONJECTURE2.2. — LetF be an irreducible holomorphic symplectic man-
ifold.

1. F is projective iff there exists a classg ∈ Pic(F ) with (g, g) > 0.
2. If g is a polarization forF then any classλ ∈ Λ+(F, g) is big.

Now assumeF = S[n], the Hilbert scheme of lengthn subschemes of a K3
surfaceS. Then we have an isomorphism

Pic(S[n]) ' Pic(S)⊕⊥ Ze

compatible with the Beauville form (see [3]). Each divisorf onS determines
a divisor onS[n], also denoted byf , and corresponding to the subschemes
with some support inf . The locus of subschemes with support at fewer than
n points has class2e and(e, e) = −2(n− 1).

More generally, ifF is deformation equivalent toS[n] then the Beauville
form onL := H2(F,Z) is an even, integral form isomorphic to

U⊕3 ⊕⊥ (−E8)⊕2 ⊕⊥ Ze,

whereU is a hyperbolic plane,E8 the positive-definite quadratic form associ-
ated to the corresponding Dynkin diagram.

PROPOSITION2.3. — Assume thatn = 2 so that

L ' U⊕3 ⊕⊥ (−E8)⊕2 ⊕⊥ (−2).

The orbits of primitive elementsv ∈ L under the action ofΓ = Aut(L) are
classified by(v, v) and the ideal(v, L) (which equalsZ or 2Z.)
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Proof. We shall classify primitive imbeddings of the latticeK := Zv =
(2d) (where(v, v) = 2d) intoL. For simplicity, we first restrict to the cased 6=
0. The basic technical tool is thediscriminant groupd(L) := L∗/L and the
associatedQ/2Z-valued quadratic formqL [23]. We haved(L) ' Z/2Z with
qL equal to−1

2
(mod 2Z) on the generator. LetK⊥ denote the orthogonal

complement toK in L, d(K) andd(K⊥) the discriminant groups, andqK and
qK⊥ the corresponding forms, so thatd(K) ' Z/2dZ with qK equal to 1

2d

(mod 2Z) on the generatorv
2d

. We have the sequence of inclusions

K ⊕K⊥ ⊂ L ⊂ L∗ ⊂ K∗ ⊕ (K⊥)∗;

L∗ consists of the elements ofK∗ ⊕ (K⊥)∗ which are integral onL. LetH
(resp.H∗) be the image ofL (resp. L∗) in d(K) ⊕ d(K∗), so thatd(L) =
H∗/H. Note thatH is isotropic andH∗ is the annihilator ofH with respect to
qK ⊕ qK⊥ (or theQ/Z-valued bilinear form associated to it). The projection
of H into d(K) is injective and its image is a subgroup of index one or two,
depending on whether(v, L) = Z or 2Z.

In the first case,d(K⊥) contains the projection ofH as an index two sub-
group. SinceH is isotropic forqK ⊕ qK⊥, the restrictionqK⊥|H takes value
− 1

2d
(mod 2Z) on the generator. Letx ∈ H∗ be a nontrivial element project-

ing to 0 in d(K), which may be regarded as an element ofd(K⊥). We have
qK⊥(x) = −1

2
(mod 2Z) becausex generatesd(L). Sincex annihilatesH,

it follows thatd(K⊥) = H + Zx ' Z/2dZ ⊕⊥ Z/2Z. This determines the
discriminant form (and signature) ofK⊥ completely, which determines it up
to isomorphism [23] 1.14.2. The classification of the primitive imbeddings
K ↪→ L follows from [23] 1.15.1.

The proof in the second case is similar but easier, asd(K⊥) is equal toH,
so its discriminant form is easily computed.

If d = 0, we may produce an elemente′ ∈ Lwith (v, e′) = 0, (e′, e′) = −2,
and(e′, L) = 2Z. By our previous argumente′ ∈ Γe, so we may assume that
w ∈ U⊕3 ⊕ (−E8)⊕2. Then the result follows from [16] §2. �

Whenn = 2, we have an identityc2(F ) · v · v = 30 (v, v) (given in [13]
1.11 up to a multiplicative constant). Hence Riemann-Roch takes the form

χ(F,L(v)) =
1

8
((v, v) + 4)((v, v) + 6).
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3. Conjectures

In this section(F, g) is a g-polarized irreducible holomorphic symplectic
manifold, deformation equivalent to the Hilbert scheme of length-two sub-
schemes of a K3 surface. LetE be the (possibly infinite!) set of classes
ρ ∈ Pic+(F, g) satisfying one of the following:

1. (ρ, ρ) = −2 and(ρ, L) = 2Z,
2. (ρ, ρ) = −2 and(ρ, L) = Z,
3. (ρ, ρ) = −10 and(ρ, L) = 2Z,

LetE∗ be the corresponding classesR ∈ H2(F,Z); this means that for some
ρ ∈ E we have

(v, ρ) =

{
Rv where (ρ, L) = Z

2Rv where (ρ, L) = 2Z

for eachv ∈ L. In particular,R satisfies one of the following
1. (R,R) = −1

2
,

2. (R,R) = −2,
3. (R,R) = −5

2
.

LetNE(F, g) ⊂ H2(F,Z) be the smallest real cone containingE∗ and the
elementsR ∈ N1(F ) such thatR · g > 0 and the corresondingρ has nonneg-
ative square. Note that the boundary ofNE(F, g) is polyhedral in a neighbor-
hood of any boundary point with negative square. This follows from the fact
that the Beauville form is negative definite on the orthogonal complement to
g in Pic(F ).

We now can state our main conjecture.

CONJECTURE3.1 (Effective curves conjecture). —

NE(F ) = NE(F, g).

The analogous theorem for K3 surfaces may be found in§1.6 and 1.7 of
[16] (see also [4]).

The classes inE∗ that are extremal in (the closure of)NE(F, g) will be
callednodal classes, in analogy with the terminology for K3 surfaces (see
[16], Section 1.4). The nodal classes are denotedE∗nod and the corresponding
classes inE are denotedEnod. Since the boundary ofNE(F, g) is polyhedral
in a neighborhood of any nodal class, it follows that a classR ∈ E∗ is nodal
iff no positive multiple ofR is decomposable.
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REMARK 3.2. — Consider the monoidNE(F, g) ∩H2(F,Z). In contrast to
the situation for K3 surfaces, it is possible for a(−2)-class in the monoid to be
indecomposable but not nodal. Indeed, there exist examples withrkN1(F ) =
2.

Conjecture3.1 and Proposition2.1 yield a characterization of the ample
monoid:

Λamp(F ) = {λ ∈ Λ+(F, g) : (λ, v) > 0 for each

v ∈ Pic+(F, g) with (v, v) ≥ 0 or v ∈ E}.

The signature of the Beauville form implies that if(λ, λ) and(v, v) are both
nonnegative then(λ, v) ≥ 0; indeed if λ and v are linearly independent
then strict inequality follows. Furthermore, verifying the positivity condi-
tion against nonextremal classes is clearly redundant. We therefore obtain the
following simplification:

CONJECTURE3.3 (Consequence of Conjecture3.1). —

Λamp(F ) = {λ ∈ Λ+(F, g) : (λ, v) > 0 for eachv ∈ Enod}.

This generalizes Proposition 1.9 of [16].
We digress to consider the monoid of effective divisors. Its description is

the same as for K3 surfaces.

CONJECTURE3.4 (Effective divisors conjecture). — The monoid of effec-
tive divisors is generated by the elements ofPic+(F, g) with square≥ −2.

REMARK 3.5. — A (−2)-class is extremal in the (conjectured) cone of ef-
fective divisors iff it is indecomposable in the (conjectured) monoid of effec-
tive divisors. We expect that each of these(−2)-classes is realized by a conic
bundle over a K3 surface.

We next discuss classesλ ∈ Λnef(F ), i.e., those in the boundary of the am-
ple cone. Conjecture2.2 implies that when(λ, λ) > 0 the sections ofL(mλ)
for m� 0 give a birational morphismb : F→Y . Any curve represented by a
nodal classR ∈ E∗nod orthogonal toλ is contracted byb.

CONJECTURE3.6 (Nodal classes conjecture). — Each nodal classR ∈ E∗nod

represents a rational curve contracted by a birational morphismb given by
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sections ofL(mλ), whereλ is any class on the boundary of the ample cone
satisfyingλR = 0.

1. If (R,R) = −1
2
,−2 (i.e., the correspondingρ is a(−2)-class) thenρ is

represented by a family of rational curves parametrized by a K3 surface.
This family can be blown down to rational double points.

2. If (R,R) = −5
2

(i.e., the correspondingρ is a (−10)-class) thenρ is
represented by a family of lines contained in a planeP

2. This plane can
be contracted to a point.

The following theorem of Namikawa provides support for this conjecture
(part of the theorem was proved first by Shepherd-Barron [25] and related
results were obtained by Wierzba [27]).

THEOREM 3.7. — ([22] Props. 1.1 and 1.4,[25]) Let b : F→Y be a bira-
tional projective morphism from a projective holomorphic symplectic mani-
fold to a normal variety.

1. There exists a subvarietyZ ⊂ Y of codimension at least four, so that
Y \ Z is singular along a smooth codimension-two subvarietyS, which
admits a nondegenerate holomorphic two-form. Furthermore,Y \Z has
rational double points of fixed type along each connected component of
S.

2. Assume thatP ∈ Y is an isolated Gorenstein singular point and that
at least one irreducible component ofG := b−1(P ) is normal. Then
G ' Pn with normal bundleΩ1

Pn
.

A key tool in the study of K3 surfaces is theWeyl group, the group gener-
ated by reflections with respect to the(−2)-classes in the Picard group (see
[4] or [16]). Our conjectures imply that there is an analog in higher dimen-
sions. For eachρ ∈ E with square−2, we obtain a reflectionsρ given by the
formula

sρ(v) = v + (v, ρ) ρ.

The groupW generated by these reflections is called thegeneralized Weyl
group. LetC+(F, g) be the smallest real cone containingΛ+(F, g) andD(F, g)
the subcone ofC+(F, g) defined by(v, ρ) ≥ 0 for eachρ ∈ E with square
−2. This is a fundamental domain for the action ofW on C+(F, g). The
(−10)-classes inE are walls for a subdivision ofD(F, g) into subchambers.
The interior of each subchamber is the ample cone for a symplectic birational



10 BRENDAN HASSETT AND YURI TSCHINKEL

model forF ; the subchamber containingg is the ample cone ofF . In other
words,D(F, g) is the closure of the birational ample cone ofF .

One does not generally expect that the closure of the ample cone should
be a fundamental domain for the action of a groupW ′ ) W. Algebraically,
(−10)-classes do not yield reflections. Geometrically, one does not expect
to find a group relating the various birational models ofF . For a concrete
example, see the discussion below of the Fano variety of lines on a cubic
fourfold of discriminant eight.

We now describe the square-zero classes on the boundary of the closure of
the ample cone:

CONJECTURE3.8. — Let λ be a primitive square-zero class on the bound-
ary of the closure of the ample cone. Then the corresponding line bundle
L = L(λ) has no higher cohomology and its sections yield a morphism

a : F→P2

whose generic fiber is an abelian surface.

The following theorem of Matsushita describes fiber space structures on
holomorphic symplectic manifolds.

THEOREM 3.9. — ([19]) LetF be a projective irreducible holomorphic sym-
plectic manifold anda : F→B be a fiber space structure with normal base
B and generic fiberFb. Then we have:

1. a is equidimensional in codimension-two points ofB.
2. KFb is trivial and there exists an abelian varietỹFb and anétale mor-

phismF̃b→Fb.
3. dim(B) = n andB hasQ-factorial log-terminal singularities.
4. −KB is ample andB has Picard number 1.
5. The polarization onB pulls back to a square-zero divisor onF .

Furthermore, ifF has dimension four thenFb is an abelian surface.

Matsushita has also proved that such fibrations are Lagrangian [20]. For
convenience, we provide a proof in our special case:

PROPOSITION3.10. — In addition to the hypotheses of Theorem3.9 as-
sume that the dimension ofF is four. Then the fibersFb are Lagrangian.
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Proof. It suffices to prove this result for smooth fibers. Recall the formula
for the Beauville form (see [13], 1.9)

(α, α) =

∫
(σσ)α2 −

(∫
σσ2α

)(∫
σ2σα

)
,

whereσ is the generator ofH0(F,Ω2
F ), normalized so that

∫
(σσ)2 = 1. If α

is the pullback of the polarization onB then the class ofFb is equal to some
rational multiplecα2. Sinceα is of type(1, 1), type considerations imply that
the second term vanishes. On the other hand, the first term is equal to

1

c

∫
Fb

σ|Fbσ|Fb .

Since(α, α) is zero by the previous theorem it follows thatσ restricted toFb
is also zero and thereforeFb is Lagrangian (here we use the Hodge-Riemann
bilinear relations). �

REMARK 3.11. — It is instructive to compare Conjecture3.8with Wilson’s
results. LetF be a Calabi-Yau threefold andD a nef divisor class correspond-
ing to a nonsingular point of the cubic hypersurfaceµF = 0 and satisfying
Dc2(F ) 6= 0. Then for somen > 0 the linear series|nD| is free and induces
an elliptic fiber space structure onF (see [28] §3 and [29] §1). The assump-
tion c2(F )D 6= 0 can be weakened under further technical hypotheses (see
[30] and [31]).

REMARK 3.12. — Let F be an irreducible holomorphic symplectic mani-
fold andλ ∈ Λnef(F ) a divisor with(λ, λ) = 0. Isλ necessarily semiample?

4. Deformation theory

4.1. Deformations of subvarieties. —In this section, we work with arbi-
trary irreducible holomorphic symplectic manifolds.

THEOREM 4.2. — Let F be an irreducible holomorphic symplectic mani-
fold of dimension2n andY a submanifold of dimensionk. Assume either that
Y is Lagrangian, or that all of the following hold:NY/F = Ω1

Y ⊕ O⊕2n−2k
Y ,

the restriction of the symplectic form toY is zero, andH1(OY ) = 0. Then
the deformation space ofY in F is smooth of dimension2n− 2k.
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The deformations ofF arising from deformations of the pair(Y, F ) are
precisely those preserving the sub-Hodge structure

ker(H∗,∗(F )→ H∗,∗(Y )).

Proof. Identical to the proof of Corollary 3.4 in [24]. By [24], Corollary
3.2, any obstructions to deformingY in F lie in the kernel of the natural
projection

π0,2 : H1(NY/F )→ H1(Ω1
Y )⊗ ker(H0(Ω2

F )→ H0(Ω2
Y ))∗.

Under our hypotheses this map is an isomorphism. �

COROLLARY 4.3. — Keep the hypotheses of theorem4.2. Assume further-
more that the cohomology ofY is generated by divisor classes. Then the
deformations ofF arising from a deformation of the pair(Y, F ) are precisely
those for which the image of

H2(Y,Z)→ H2(F,Z)

remains algebraic.

4.4. Applications. — In this section we will assume thatF is deformation
equivalent toS[2] for a K3 surfaceS. We show that the locus where our
conjectures hold is open (in the analytic topology) in the moduli space. We
will find points in the moduli space where our conjectures hold in subsequent
sections.

THEOREM 4.5. — LetF be as above andR a nodal class onF . Assume that
Conjecture3.6 holds forR andF . LetF ′ be a small projective deformation
of F such thatR deforms to a classR′ of type(3, 3). Then the Conjecture
remains true forF ′ andR′.

Proof. Let π : F→∆ be a deformation ofF over a disc andA a nef and
big line bundle onF such thatA has degree zero onR. By Corollary4.3,
R deforms to a family of rational curvesR ⊂ F over ∆. In each fiberRt

itself deforms in a two parameter family. This family is parametrized by a
deformationSt of the K3 surfaceS if ρ is a (−2)-class. It is parametrized
by aP2 if ρ is a(−10)-class. Clearly, these are contracted by the sections of
some power ofA. �
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THEOREM 4.6. — Let F be as above andλ be a nef, square-zero divisor
class onF . Assume that Conjecture3.8holds forλ andF . LetF ′ be a small
projective deformation ofF such thatλ deforms to a divisor classλ′. Then
the Conjecture remains true forF ′ andλ′.

Proof. This is a consequence of Theorem4.2and the Lagrangian property
proved in3.10. �

4.7. Examples. — In this section we give examples of submanifolds satis-
fying the conditions of Theorem4.2. Assume thatY is a complete homoge-
neous space under a reductive algebraic group or a toric variety, and assume
that the normal bundle toY is of the form stated above. Theorem4.2 shows
that the deformation space ofY in F is smooth. Moreover, the locus in the
deformation space ofF corresponding to manifolds containing a deformation
of Y has codimension equal to the rank of the Néron-Severi group ofY . Here
are some specific examples:

EXAMPLE 4.8. — GivenY = P
n ⊂ F , the deformations ofF containing

P
n form a divisor in the deformation space. For instance, ifS is a K3 surface

containing a smooth rational curveC thenC [n] ' P
n ⊂ S[n]. Let R ∈

H2(F,Z) be the class of a line inPn andρ ∈ H2(F,Z) the corresponding
divisor (i.e.2Rv = (ρ, v) for v ∈ H2(F,Z)). Thenρ = 2C − e and(ρ, ρ) =
−2(n+ 3).

EXAMPLE 4.9. — Again, letS be a K3 surface containing a smooth rational
curveC andF = S[n]. Consider the subschemes ofS of lengthn with some
support alongC. The generic such subscheme is the union of a point ofC and
a lengthn − 1 subscheme disjoint fromC. Thus we get a divisorD1 ⊂ S[n]

birational to aP1 bundle overS[n−1]. The normal bundle to a generic fiberY
of this bundle isΩ1

Y ⊕ O⊕2n−2
Y . Let R = [Y ] ∈ H2(F,Z) andρ = [D1] ∈

H2(F,Z); note thatR corresponds toρ and(ρ, ρ) = (C · C)S = −2. The
deformations ofS[n] containing a deformation ofD1 are those for whichR (or
ρ) remains algebraic. They have codimension one in the deformation space.

The relevance of these examples to Conjecture3.6 is discussed in Section
5.7. We will give further examples in Section6, where we consider cases
whereF is deformation equivalent toS[2] andY = F0,F1, or F4. We digress
to give one further example that is particularly interesting:
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EXAMPLE 4.10. — We give a geometric realization of certain Mukai iso-
genies between K3 surfaces (cf. [21]). Let S8 be a generic degree 8 K3
surface. In particular, we assumeS8 is realized as a complete intersection of
3 quadric hypersurfaces inP5, and the discriminant curve for these quadrics
is a smooth sextic plane curveB. It follows that each such quadricQ has rank
five or six, and the corresponding family of maximal isotropic subspaces in
Q is parametrized byP3 or a disjoint union two copies ofP3 respectively. As
we varyQ, the families of maximal isotropic subspaces are parametrized by
a K3 surfaceS2 of degree 2, the double cover ofP2 branched overB. Thus
we obtain ańetaleP3-bundleE→S2, mapping intoS[4]

8 , with fibers satisfying
the conditions of Proposition4.2.

This yields an elegant universal construction of Brauer-Severi varieties rep-
resenting certain 2-torsion elements of the Brauer group of a degree two K3
surface. Other 2-torsion elements are realized asétaleP1-bundlesE→S2 aris-
ing from families of nodal rational curves (see the discussion of cubic four-
folds of discriminant8 in Examples7.8and7.15). The relationship between
Mukai isogenies and Brauer groups is explored more systematically in the
upcoming thesis of Caldararu [8].

5. Symmetric squares of K3 surfaces

Let S2n be a K3 surface with Picard group generated by a polarizationf2n

of degree2n. The Beauville form restricted to the Picard group takes the form

f2n e
f2n 2n 0
e 0 −2

The effective divisor with class2e is called the diagonal. It is isomorphic
to aP1-bundle overS2n; the fibers are nodal rational curves. It follows that
an ample line bundle has class of the formxf2n − ye with x, y > 0 and
Proposition2.1 implies that2nx2 − 2y2 > 0. The conjectures in Section3
give sufficient conditions onx andy for xf2n − ye to be ample.

PROPOSITION5.1. — Assume thatS2n is a K3 surface with a polarization
f2n which embedsS2n as a subvariety ofPn+1. The line bundleaf2n − e on
S

[2]
2n is ample whenevera > 1 or a = 1 andS2n does not contain a line. In

particular, f2n lies on the boundary of the closure of the ample cone.
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Proof. Let S be a smooth surface embedded in projective spaceP
r and

not containing a line. Then there is a morphism from the Hilbert scheme
S[2] to the GrassmannianGr(2, r). This morphism is finite onto its image.
Therefore, the pullback of the polarization on the Grassmannian toS[2] is
ample. We apply this to the image ofS2n under the line bundleaf2n. �

REMARK 5.2. — In the event thatS2n does contain a linè⊂ Pn+1 the line
bundlef2n − e fails to be ample. However, it is nef and big and a sufficiently
high multiple of it gives a birational morphism contracting the plane`[2] and
inducing an isomorphism on the complement to this plane. In particular, there
is a nodal(−10)-class2[`]− e orthogonal tof2n − e.

5.3. Degree2 K3 surfaces. — A K3 surfaceS2 of degree two can be real-
ized as a double cover ofP2 ramified in a curve of degree 6. The quadratic
form 2x2− 2y2 does represent−2 and−10. The corresponding nodal classes
aree and2f2 − 3e. The second class corresponds to the plane inS

[2]
2 arising

from the double cover. Our conjectures predict that the ample cone consists of
classesxf2−yewherex, y > 0 and2x−3y > 0. The quadratic form also rep-
resents 0, but the corresponding classf2− e satisfies(2f2−3e, f2− e) = −2.
After flopping the plane the proper transform off2 − e doesyield an abelian
surface fibration (the Jacobian fibration) - as expected.

Here is a sketch proof that the class3f2 − 2e is nef and big. Indeed,3f2 is
very ample and embedsS2 into P10. The image is cut out by quadricsI(2).
Each pair of points onS2 determines a linè. The quadrics vanishing on
that line form a hyperplane inI(2). This induces a morphism fromS[2]

2 to
P

27 = P(I(2)∗) given by the sections of the line bundle.

5.4. Degree4 K3 surfaces. — Let S4 be a K3 surface with Picard group
generated by a polarization of degree 4. We takef4 − e as the polarization
of S[2]

4 . Now we describe the(−2) and (−10)-lattice vectors inZf4 ⊕ Ze
and determine which are nodal classes. In fact, there are no(−10)-lattice
vectors. The(−2)-vectors are of the form±amf4∓bme, wheream

√
2+bm =

(2
√

2 + 3)m. The vectors in the positive halfspacePic+(S
[2]
4 , f4 − e) satisfy

2x − y > 0. The nodal classes are2f4 − 3e ande. It is easy to see that
all the other(−2)-classes in the positive halfspace are decomposable. We
therefore predict that the ample cone is the interior of the cone spanned by
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f4 and3f4 − 4e. Indeed,S[2]
4 has an involution exchangingf4 and3f4 − 4e

(givenp, q ∈ S4 the line spanned byp andq meetsS4 in two more points).

5.5. Degree8 K3 surfaces. — Let S8 be a K3 surface with Picard group
generated by a polarization of degree 8. This is the smallest degree case
where there are no nodal classes besides the diagonal. Indeed, the quadratic
form 8x2 − 2y2 represents−2 and−10 exactly when(x, y) = (0,±1) and
(±1,±3). However, the parity condition for nodal classes of square−10 is
not satisfied byf8 − 3e, i.e.,(f8 − 3e,H2(F,Z)) 6= 2Z. Therefore, our con-
jectures imply that the ample cone is the interior of the cone spanned byf8

andf8 − 2e, and the second line bundle yields an abelian surface fibration
a : F→P2. We have already seen that the ample cone is contained in this
cone. For an explicit construction of the abelian surface fibration, see [12] §7.
There it is shown that the symmetric square of a generic K3 surface of degree
2n2 (n > 1) admits an abelian surface fibration.

REMARK 5.6. — This is a counterexample to the theorem in Section 2, p.
463 of [18]. There it is claimed thatS[2] of a K3 surfaceS admits a (La-
grangian) abelian surface fibration if and only ifS is elliptic.

5.7. K3 surfaces containing a rational curve. —Let S be a K3 surface
containing a rational curveC and letT be the surface obtained by blowing
down C. Of course,T has one rational double point. Consider the map
b : S[2]→Sym2(T ). This map contracts rational curves corresponding to
both(−2) and(−10)-nodal classes.

The Hilbert schemeS[2] contains a planeC [2] and two distinguished divi-
sorsD1 andD2, birational toP1-bundles overS. The divisorD1 is the locus
of subschemes with some support inC andD2 is the diagonal. The map
b contractsD1 andD2 to surfaces isomorphic toT andC [2] to the pointp
where these surfaces intersect. The fiberb−1(p) is the union ofC [2] andF4

(cf. Theorem3.7).
The divisorsD1 andD2 have classesC and2e respectively. IfR is the

class of a line inC [2] ' P2 then the corresponding divisor classρ = 2C − e.
The (−2)-classe and the(−10)-classρ are nodal; the classC is not nodal.
Of course, it becomes nodal upon floppingC [2] ⊂ S[2].
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6. Nonnodal smooth rational curves

It is well known that for K3 surfaces all smooth rational curves are nodal
and correspond to indecomposable (-2)-classes. In Section5.7 we gave ex-
amples of nonnodal smooth rational curves; these curves were parametrized
by a K3 surface. Here we discuss further examples of nonnodal smooth ratio-
nal curves. As we shall see, these curves need not be parametrized by a K3
surface or aP2.

We first consider three examples where smooth rational curves do not cor-
respond to nodal classes, but still correspond to classes with negative square.
Let F = S[2], whereS is a K3 surface which is a double cover of a rational
surfaceΣ with Picard group of rank 2. ThenF contains a surface isomorphic
to Σ. We emphasize that the results of Subsection4.1apply in this case. This
suggests certain refinements to Conjecture3.6, which we formulate in each
example.

EXAMPLE 6.1. — Let S→Σ = F0 be branched over a general curve of
type(4, 4). Hence the rulings induce two elliptic fibrationsE1 andE2 which
generate the Picard group and intersect as follows:

E1 E2

E1 0 2
E2 2 0

.

Let R1 andR2 denote the rulings ofΣ ⊂ S[2], with ρ1 andρ2 their Poincaŕe
duals inPic(S[2]). We haveρ1 = E1−e andρ2 = E2−e so that the Beauville
form may be written

ρ1 ρ2

ρ1 −2 0
ρ2 0 −2

.

Moreover, theρi generate a saturated sublattice of the Picard group and

(ρi, H
2(F,Z)) = Z.

The smooth curves in the classR1 + R2 move in a 3-parameter family on
Σ ⊂ F . However,ρ1 + ρ2 is not a nodal class. We conjecture that any holo-
morphic symplectic fourfold deformation equivalent to a symmetric square of
a K3 surface with 2 nodal classesρ1 andρ2 as above should contain a surface
Σ = F0.
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EXAMPLE 6.2. — Let S→Σ = F1 be branched over a general curve of type
6R0 + 4R−1, whereR0 is the class of the ruling andR−1 is the class of the
exceptional curve. The ruling induces an elliptic fibrationE on S and the
exceptional curve yields a rational curveC ⊂ S; these generate the Picard
group and intersect as follows:

E C
E 0 2
C 2 −2

.

Let ρ0 (resp. ρ−1) be the Poincaré dual toR0 (resp. 2R−1). We have
ρ0 = E − e and ρ−1 = 2C − e, so thatρ0 and ρ−1 generate a saturated
sublattice on which the Beauville form may be written

ρ0 ρ−1

ρ0 −2 2
ρ−1 2 −10

.

Moreover,(ρ0, H
2(F,Z)) = Z and(ρ−1, H

2(F,Z)) = 2Z.
The smooth curves in the class2R0 +R−1 move in a 4-parameter family on

Σ ⊂ F . However,4ρ0+ρ−1 is not a nodal class. In this case we conjecture that
anyF whose cohomology contains 2 nodal classesρ0 andρ−1 as above should
contain a surfaceΣ = F1. Furthermore, we expect thatF is a specialization
of a variety containing a planeΠ which corresponds to a(−10)-nodal class.
This class is equal to2ρ0 + ρ−1 andΠ specializes to a union of aP2 and the
F1 in F .

EXAMPLE 6.3. — Let S→Σ = F4 be branched over the union of a general
curve of type12R0 + 3R−4 andR−4, whereR0 is the class of the ruling and
R−4 is the class of the exceptional curve. Again, the Picard group ofS is
generated by an elliptic fibrationS and a rational curveC which intersect as
follows

E C
E 0 1
C 1 −2

.

Let ρ0 (resp. ρ−4) be the Poincaré dual toR0 (resp. R−4). Then we have
ρ0 = E − e andρ−4 = 2C + e, soρ0 andρ−4 generate a saturated sublattice
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with Beauville form
ρ0 ρ−4

ρ0 −2 4
ρ−4 4 −10

.

Moreover,(ρ0, H
2(F,Z)) = Z and(ρ−4, H

2(F,Z)) = 2Z.
The smooth curves in the class5R0 +R−4 move in a 7-parameter family on

Σ ⊂ F . However,5ρ0 + ρ−4 is not a nodal class. In this case we conjecture
that anyF with cohomology containing 2 nodal classesρ0 andρ−4 as above
should contain a surfaceΣ = F4. We also expect thatF is a specialization
of a variety containing a planeΠ which corresponds to a(−10)-nodal class.
This class is equal to4ρ0 + ρ−4 andΠ specializes to a union of aP2 and the
F4 in F .

Next we consider examples of smooth rational curves inF where the cor-
responding classρ is of positive square.

EXAMPLE 6.4. — Let S2 be a general K3 surface of degree 2 with polar-
izationf2. Let C ⊂ S2 be a rational curve with two ordinary double points
contained in the linear series|f2|. Let F→P2 be the compactified Jacobian
for |f2|. The fibers corresponding toC are isomorphic to a product of nodal
curves with normalizationP1 × P1. Smooth curves of type(1, 1) in P1 × P1

yield smooth rational curves onF , deforming in a 3-parameter family. The
homology class of these rational curves is double the class of the curve of type
(1, 0), and is therefore not primitive.

EXAMPLE 6.5. — Let S4 ⊂ P3 be a general K3 surface of degree 4 andf4

its polarization. LetC ⊂ S4 be an elliptic curve in|f4| with two ordinary
double points. Note thatC [2] is a nonnormal ruled surface. Its fibers are
smooth rational curves such that the corresponding classρ has square 2. Thus
we get smooth rational curves in primitive homology classes such that the
corresponding classρ has positive square as well.

As the rank of the Picard group ofF increases we expect more and more
examples of nonnodal smooth rational curves parametrized by varieties of
dimension> 2.

REMARK 6.6. — LetR ⊂ F be a smooth rational curve with primitive ho-
mology class. Then the Hilbert scheme of flat deformations ofR need not be
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irreducible and may have arbitrarily large dimension. TakeR ⊂ F0 ⊂ F of
bidegree(1, n).

QUESTION 6.7. — Assume thatrk Pic(F ) = 1. Does there exist a smooth
rational curve onF? Can we take its class to be primitive?

7. Cubic fourfolds

In this section, a cubic fourfold generally denotes a smooth cubic hyper-
surfaceX ⊂ P5. The varietyF parametrizing lines onX is sometimes called
the ‘Fano variety of lines’ - not to be confused with a variety with ample
anticanonical class. It is known thatF is an irreducible holomorphic sym-
plectic fourfold deformation equivalent to the Hilbert scheme of length-two
subschemes of a K3 surface [1] [5]. Consequently, the conjectures of Section
3 apply. The existence of smooth rational curvesR ⊂ F translates into the
existence of scrollsT ⊂ X. By definition, a scroll is the union of the lines
parametrized by a smooth rational curve in the Grassmannian; it may have
singularities. Our conjectures yield simple and verifiable predictions for the
existence and nonexistence of scrolls in various homology classes ofX. The
presence of these scrolls yields unirational parametrizations ofX of various
degrees.

7.1. Lattices, Nodal Curves, and Scrolls. —We recall standard facts about
cubic fourfolds. We say that a cubic fourfold isspecialif it contains an alge-
braic surface not homologous to any multiple of the square of the hyperplane
classh2. Note that the intersection form〈, 〉 on the primitive cohomology
takes the form

(h2)⊥ '
(

2 1
1 2

)
⊕⊥ U⊕2 ⊕⊥ E⊕2

8

(see [10], [9], [5]). Let K = Zh2 + ZT be a saturated sublattice of algebraic
classes in the middle cohomology ofX. Then thediscriminantd = d(X,K)
is the discriminant ofK. It is a positive integer, congruent to0 or 2 modulo
6. The special cubic fourfolds of discriminantd form an irreducible divisor
Cd in the moduli spaceC of cubic fourfolds;Cd is nonempty iffd > 6. For
instance,C8 corresponds to the cubic fourfolds containing a planeT1 andC14

corresponds to the cubic fourfolds containing a smooth quartic scrollT4.
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The cohomology of a cubic fourfold and its Fano variety are closely related
(see [5] for most of what follows). The incidence correspondence betweenX
andF induces the Abel-Jacobi map

α : H4(X,Z)→H2(F,Z),

respecting the Hodge structures. We have that(α(h2), α(h2)) = 2 〈h2, h2〉
and

(α(v), α(w)) = −〈v, w〉
for v, w primitive. Note thatg := α(h2) is the polarization onF induced from
the Grassmannian. The incidence correspondence induces a second map

β : H6(F,Z)→H4(X,Z)

respecting the Hodge structures. We can compose to obtain

ψ : H2(F,Z)→H6(F,Z)
β→ H4(X,Z)

α→ H2(F,Z)→H2(F,Z),

where the first map is Poincaré duality and the last map is induced by the
Beauville form. We haveψ(g) = 2g andψ(v) = −v for v orthogonal tog.

Suppose thatF contains a smooth rational curveR of degreen. Let T̃ be
the universal line restricted toR andT ⊂ X the corresponding scroll sweeped
out byR, which also has degreen. Note that the formula〈T,Σ〉 = R · α(Σ)
(for Σ ∈ H4(X,Z)) follows from the incidence correspondence. Combining
this with our computation ofψ, we obtain

〈T, T 〉 = R · α(T ) = (R, ψ(R)) =
n2

2
− (R,R) .

We useTn,∆ to denote a scrollT of degreen for which the map

T̃→T ⊂ X

has singularities equivalent to∆ ordinary double points (by definition,∆ is
the number given by the double point formula). A Chern class computation
gives

〈Tn,∆, Tn,∆〉 = 3n− 2 + 2∆(1)

and we obtain the formula

∆ =
1

4
(n2 − 6n+ 4− 2 (R,R)).(2)
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The lattice generated byh2 andTn,∆ has discriminant

d(n,∆) = 3(3n− 2 + 2∆)− n2 = 6∆− (n2 − 9n+ 6)

=
n2

2
− 3 (R,R) .

This lattice has discriminant> 6, so we obtain the lower bound

∆ ≥ ∆min(n) := d1
6

(n2 − 9n+ 6) + 1e.

In particular, a cubic fourfold cannot contain smooth scrolls of degree> 7.

REMARK 7.2. — The latticeZh2 + ZTn,∆ need not be saturated. For in-
stance, ifn = 8 and∆ = 5 thend(8, 5) = 32. However, the lattice generated
by h2 andT8,5 has index2 in its saturation.

PROPOSITION7.3. — LetX be a cubic fourfold, with Fano varietyF . Let
R ⊂ F be a nodal rational curve andTn,∆ the corresponding scroll. Then∆
takes the following values:

∆ =

{
(m− 2)(m− 1) if n = 2m;

(m− 1)2 andm(m− 2) if n = 2m+ 1.

Proof. This is a consequence of Equations1 and2 above. We observe that
n is even when(R,R) = −2 andn is odd when(R,R) = −1

2
or−5

2
. �

We summarize the numerical predictions fornodalscrolls of small degree
in the following table:

n 2 3 4 5 5 6 7 7 8 9 9 10 11 11
∆ 0 0 0 0 1 2 3 4 6 8 9 12 15 16

d(n,∆) 8 12 14 14 20 24 26 32 38 42 48 56 62 68

REMARK 7.4. — We can obtain cubic fourfolds containing scrollsTn,∆ with
more double points by exploiting nonnodal smooth rational curves on the cor-
responding Fano variety (see Examples7.18and7.25).
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7.5. Unirational parametrizations. — We start with a classical example:
if X is a cubic fourfold containing a smooth quartic scrollT4,0 thenX is
rational. One would like to generalize this construction to other special cubic
fourfolds.

PROPOSITION7.6. — LetX be a cubic fourfold with Fano varietyF . As-
sume thatF contains a smooth rational curveR of degreen, with correspond-
ing scrollTn,∆. Assume that this corresponding scrollT is not a cone. Then
there exists a rational map

φ : P4 99K X

with

deg(φ) =

(
n− 2

2

)
−∆ =

(n− 2)2

4
+

(R,R)

2
+ 1.

Proof. Our assumptions imply thatR parametrizes pairwise disjoint lines
in X. Given generic̀ 1, `2, the cubic surface

Span(`1, `2) ∩X
contains two disjoint lines and thus is rational. We therefore obtain a cubic
surface bundle

Y
σ→ Sym2(R) ' P2

φ↓
X

so that the fiber over the generic point contains two disjoint lines. Conse-
quently,Y is rational overP2 and thus is a rational variety.

To compute the degree ofφ, it suffices to compute the number of double
points arising from a generic projection of the scrollT into P4. The map
T̃→P4 has singularities equivalent to

(
n−2

2

)
double points;∆ of these are from

the singularities ofT . We obtain the second formula fordeg(φ) by applying
the Equation2 of Section7.1. �

This demonstrates that the existence of rational curves in certain homology
classes ofF implies thatX is rational. Unfortunately, our conjectures indicate
that such rational curves are quite rare. IfR is nodal then(R,R) ≥ −5

2
, so

deg(φ) = 1 only whenn = 4 (see also Examples7.12and7.21).
However, we obtain some interesting new unirational parametrizations of

cubic fourfolds. Recall that in [10], the Fano variety of lines on the generic
cubic fourfold of discriminant2(N2 + N + 1) (N > 1) was shown to be
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isomorphic toS[2] of a K3 surfaceS. In particular, it contains nodal rational
curvesR of degree2N + 1 with (R,R) = −1

2
. One can show that the scroll

corresponding to a generic such curve is not a cone, hence Proposition7.6
applies. We obtain

deg(φ) = N2 −N + 1,

which is always odd. In particular, the cubic fourfolds withodddegree unira-
tional parametrizations are dense in the moduli space.

Cubic fourfolds are known to admit unirational parametrizations of degree
two. Thus the cubic fourfolds described above admit unirational parametriza-
tions of relatively prime degrees. There are few examples of irrational vari-
eties with this property. Many common invariants used to detect irrationality
(like the unramified cohomology of the function field) vanish in this situation.

7.7. Cubic fourfolds of small discriminant. — In this section we specialize
our conjectures to Fano varieties of lines ongeneralspecial cubic fourfolds
of discriminantd. We obtain predictions on the existence and nonexistence
of scrollsTn,∆ on Xd ∈ Cd. We verify these predictions in Section7.14.
Throughout we writeg = α(h2) andτ = α(T ).

EXAMPLE 7.8 (d = 8). — For X8 ∈ C8 (resp. F8) we have intersection
pairing (resp. Beauville form):

h2 T
h2 3 1
T 1 3

g τ
g 6 2
τ 2 −2

,

so τ is a (−2)-class (note that(τ,H2(F8,Z)) = Z.) There is also a(−10)-
class:ρ = g − 2τ . One can check that these classes are nodal. Therefore
our conjectures predict a plane inΠ ⊂ F8 whose lines have degree one in the
Grassmannian. This corresponds to a plane inX8. They also predict a family
of rational curves inF8 parametrized by a K3 surface which correspond to
quadric cones inX8 (see Example7.15).

This example illustrates our previous discussion concerning the action of
the Weyl group. Here we have

C+(F8, g) = {ag − bτ : 3a+ b > 0, a− b > 0}
and the fundamental domain for the action of the Weyl group is

D(F8, g) = {ag − bτ : a+ b ≥ 0, a− b ≥ 0}.
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The conjectures predict that the ample cone should be

Λamp(F8) = {ag − bτ : a+ b > 0, a− 3b > 0};
the nef cone is bounded by clases of square0 and64. If F ′ denotes the ele-
mentary transformation ofF8 along the planeΠ, we expect

Λamp(F ′) = {ag − bτ : a− b > 0, −a+ 3b > 0};
the nef cone is bounded by classes of square8 and64. In particular, the two
subchambers ofD(F8, g) are not conjugate.

EXAMPLE 7.9 (d = 12). — ForX12 andF12 we have pairings:

h2 T
h2 3 3
T 3 7

g τ
g 6 6
τ 6 2

.

The(−10)-classes are given by2τ − g and3g − 2τ . Our conjectures predict
thatF12 contains two projective planes. The lines on these planes correspond
to families of cubic scrolls onX12 (see Example7.16).

EXAMPLE 7.10 (d = 14). — ForX14 andF14 we have pairings:

h2 T
h2 3 4
T 4 10

g τ
g 6 8
τ 8 6

.

The nodal classes classes are given by2g − τ and2τ − g. Note that(2g −
τ,H2(F14,Z)) = Z and(2τ − g,H2(F14,Z)) = 2Z. The first corresponds
to a family of rational curves of degree 4 onF14 parametrized by a K3 sur-
face. The second corresponds to a family of rational curves of degree 5 also
parametrized by a K3 surface (see Examples7.17and7.19).

EXAMPLE 7.11 (d = 20). — ForX20 andF20 we have pairings

h2 V
h2 3 4
V 4 12

g v
g 6 8
v 8 4

,

wherev = α(V ). There are no(−2)-classes but there are two nodal(−10)-
classes:e1 = 2v − g, e2 = 19g − 8v. The corresponding rational curves
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on F20 have degrees 5 and 25, respectively (cf. Example7.20). There is an
involution interchanginge1 ande2 given by:

g 7→ 5g − 2v
v 7→ 12g − 5v

.

EXAMPLE 7.12 (d = 26). — ForX26 andF26 we have pairings

h2 T
h2 3 5
T 5 17

g τ
g 6 10
τ 10 8

.

This lattice does not represent−10. The nodal(−2)-classes are2τ − g and
109g − 38τ . Note that

(2τ − g,H2(F26,Z)) = (109g − 38τ,H2(F26,Z)) = 2Z.

Our conjecture predicts two families of rational curves parametrized by K3
surfaces, with degrees7 and137 respectively.

We next apply our conjecture on effective classes to derive the nonexistence
of a T5,2 onX26. By Proposition7.6, the existence of such a surface would
imply the rationality ofX26. Let us assume thatT5,2 ⊂ X26 with ruling R.
We may takeT for the class ofT5,2. We compute the classρ corresponding to
R. Since

1

2
ρ · g = 5

1

2
ρ · τ = 17

we getρ = 5g − 2τ . If we write

ρ = a(2τ − g) + b(109g − 38τ)

then we find thata = −7/45 and b = 2/45. This implies thatR is not
contained in the (conjectured) monoid of effective classes. We shall show in
Example7.21that a quintic scroll inP5 cannot have two double points.

QUESTION 7.13. — How can one systematize the argument for the nonex-
istence ofT5,2’s on a (general)X26? More precisely, letX be a cubic fourfold
containing a scrollTn,∆ and assume that the lattice containingh2 andTn,∆
generates the lattice of algebraic classes inH4(X,Z). Do the values obtained
in Proposition7.3give upper bounds for∆ in terms ofn?
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7.14. Data. — In this section we present data from projective geometry con-
cerning the existence of scrolls on cubic fourfolds. We organize the informa-
tion by the degree of the scroll.

First of all, let us observe that a scroll of degreen with ordinary double
points can be obtained by projecting a smooth nondegenerate scroll of degree
n in Pn+1 from a suitable linear subspace.

EXAMPLE 7.15 (T2,0). — Observe that a scroll of degree two cannot have
ordinary double points at all. It is easy to see that the general cubic four-
fold of discriminant 8 contains such a scroll. Furthermore, these scrolls are
parametrized by a K3 surface of degree 2 (see [26], [10], [11]).

EXAMPLE 7.16 (T3,0). — A scroll of degree 3 also does not have any or-
dinary double points and it is contained in a general cubic fourfold of dis-
criminant 12. On a fixed cubic fourfold these scrolls are parametrized bytwo
disjointP2’s; given one scrollT , there is a residual scrollT ′ obtained by in-
tersecting a linear and a quadratic hypersurface containingT (see [9]). These
correspond to two distinct(−10)-classes.

EXAMPLE 7.17 (T4,0). — A nondegenerate scroll of degree 4 inP5 does not
have any ordinary double points. A general cubic fourfold of discriminant 14
contains a family of such scrolls, parametrized by a smooth K3 surface of
degree 14. The corresponding class is a nodal(−2)-class (see, for example,
[5], [9]).

EXAMPLE 7.18 (T4,1). — This example is closely related to Example6.1.
We will explain why the locus of cubic fourfolds containing a quartic scroll
with one ordinary double point has codimension 2 in moduli. Consider a
cubic fourfoldX containing such a scrollT4,1. Note thatT4,1 is degenerate
and is contained in a singular cubic threefoldY . We specialize first to the
case where the quartic scroll degenerates to the union of two quadric scrolls.
Each of these quadric scrolls is residual to a plane, and these planes intersect
at a single point. What can we say aboutY in this case? A cubic threefold
containing two such planes is obtained as follows. LetC be a genus 4 stable
curve obtained by taking a curveC1 of type (1, 3) on a quadric surfaceQ,
along with the union of two rulingsC2 andC3 of type (1, 0). Note thatC
is canonically imbedded inP3. ThenY is the image ofP3 under the linear
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series|L| of cubics cutting outC. The planes inY are the total transforms
of the linesC2 andC3. We claim thatY contains a family of scrollsT4,1,
parametrized byP3. In particular, a cubic fourfold containing two planes
meeting at a point also contains a three parameter family ofT4,1’s. These
are obtained by taking the proper transforms of the quadric surfacesZ in P3

containing the linesC2 andC3. These form a linear series with projective
dimension three. The restriction of|L| to Z is a linear series of type(1, 3)
with two base points (i.e., the points ofZ ∩ C1 not lying onC2 or C3). The
image ofZ is aT4,1.

This corresponds to a situation whereF contains a surface isomorphic to
P

1×P1. The hyperplane sections give a 3-parameter family of rational curves
on F . As we have seen, such fourfolds should lie in codimension two (see
4.2).

EXAMPLE 7.19 (T5,0). — The cubic fourfolds of discriminant 14 also con-
tain a family of quintic scrolls, parametrized bythe sameK3 surface which
parametrizes the quartic scrolls. The corresponding class is a second nodal
(−2)-class (see [5] or [9]).

EXAMPLE 7.20 (T5,1). — A general cubic fourfoldX20 of discriminant 20
contains a family ofT5,1’s parametrized by aP2. It is known thatX20 contains
a Veronese surfaceV . This also follows from Theorem4.2once we obtain a
P

2 ⊂ F20. The conic curves inX20 lying in V are parametrized byP2 as well.
For each such curveC, letH be the plane spanned byC so that

X20 ∩H = C ∪ `

where` is a line. This yields a subvariety ofF20 isomorphic toP2; the lines
R ⊂ P2 trace outT5,1’s onX20. The correspondingρ ∈ Pic(F20) is a(−10)-
class.

EXAMPLE 7.21 (T5,2). — There are no quintic scrolls with two ordinary
double points inP5. (This is highly unfortunate because a cubic fourfold
containing such a scroll would be rational by Proposition7.6.) Let T̃5,2 ⊂
P

6 be the normalization andp ∈ P6 a point such that the projection of̃T5,2

from p is T5,2. It follows that T̃5,2 contains four coplanar points. However,
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these points necessarily lie on a conic curveC ⊂ T̃5,2. This forcesT5,2 to be
singular along the image ofC.

EXAMPLE 7.22 (T6,0). — This remains to be explored - the corresponding
ρ is notnodal! The discriminant of the latticeZh2 + ZT6,0 is 12.

EXAMPLE 7.23 (T6,1). — In this discriminant (d = 18) the Fano variety
has two square-zero classes (bounding the ample cone, by our conjectures).
In particular, there are no nodal classes in this case.

EXAMPLE 7.24 (T6,2). — The scrollT6,2 is contained in a general cubic
fourfold X24 of discriminant 24. The family of such scrolls in a given cubic
fourfold is parametrized by a K3 surface of degree 6. The corresponding class
ρ is a nodal(−2)-class.

EXAMPLE 7.25 (T6,3). — The cubic fourfoldsX30 containing a sextic scroll
with three ordinary double points are codimension 2 in moduli. The nor-
malizationT̃6,3 ⊂ P7 has 6 points lying in a 4-dimensional linear subspace,
containing the linè from which we project. These points necessarily are con-
tained in a rational normal curveC ⊂ T̃6,3 of degree 4. The image ofC under
projection is a quartic plane curve. This plane is necessarily contained inX30

by Bezout’s theorem, soH2,2(X30,Z) has rank at least 3. Let us remark that
the Fano varietyF30 contains a surface isomorphic toP1 × P1 and the rulings
of the scrolls are given by type(1, 1)-curves of this surface (cf. the discussion
of T4,1 and Example6.1).

EXAMPLE 7.26 (Further examples). — Essentially the same argument shows
that there are no scrollsT6,4 (or T6,5 or T7,5): we look at the 8 points on the
normalizationT̃6,4 spanning a 5-dimensional linear subspace containing the
line of projection`. These points are necessarily contained on a rational nor-
mal curve of degree 5 oñT6,4. It projects to a quintic curve inP3 with 4
ordinary double points. This violates Bezout.
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