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1. Introduction

One of the main problems in the theory of irreducible holomorphic sym-
plectic manifolds is the description of the ample cone in the Picard group.
The goal of this paper is to formulate explicit Hodge-theoretic criteria for
the ampleness of line bundles on certain irreducible holomorphic symplectic
manifolds. It is well known that for K3 surfaces the ample cone is governed
by (—2)-curves. More generally, we expect that certain distinguished two-
dimensional homology classes of the symplectic manifold should correspond
to explicit families of rational curves, and that these govern its ample cone.

The program for analyzing the ample cone of a symplectic manifold di-
vides naturally into three parts. First, for each deformation type of irreducible
holomorphic sympectic manifolds we identify distinguished Hodge classes
in Hy(Z) that should be represented by rational curves. We congidef)
and H?(Z) as quadratic lattices with respect to a natural quadratic form (the
Beauville form discussed in Secti@yand distinguish orbits ift/5(Z) under
the orthogonal group. These orbits are often characterized by the ‘squares’
of the corresponding elements, i.e., the value of the quadratic form. These
distinguished classes should be in one-to-one correspondence with certain
geometrically described rational curves 6n In many cases, one can use
deformation arguments to show that, if a given distinguished class represents
a rational curve of a certain type then this remain true under deformation
(see Sectiont). Second, one shows that rational curves with the geometry
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described govern the ample conefof This entails classifying possible con-
tractions of symplectic manifolds - a very active topic of current research (see
the discussion of the literature below) - and interpretting this classification in
terms of the numerical properties of the contracted curves. It also involves the
classification of base loci for sections of line bundles on a symplectic mani-
fold. The third part of the program is to show that a divisor class satisfying
certain numerical conditions arises from a big line bundle and thus yields a
birational transformation of the symplectic manifold. This aspect of the pro-
gram is still largely conjectural; see the work of Huybrechts cited below.

We are mainly concerned with the first step of this program in a specific
case. LetF’ be an irreducible holomorphic symplectic fourfold deformation
equivalent to the punctual Hilbert scherfiél for some K3 surface. Given
the Hodge structure ofi?(F'), we describe explicitly (but conjecturally) the
cone of effective curves oA’ and, by duality, the ample cone éf. As in
the case of K3 surfaces, each divisor class of squa&rénduces a reflection
preserving the Hodge structure. The ‘birational ample cone’ is conjectured
to be the interior of a fundamental domain for this reflection group. How-
ever, the ample cone may be strictly smaller than the birational ample cone,
owing to the existence of elementary transformations alBtigin £'. The
corresponding classes have squai® with respect to the Beauville form.

Here we give a brief and incomplete overview of work on related problems.
Wilson has studied Calabi-Yau threefolds from a similar point of view (see
[26],[29,[20], and [31].) If F'is a Calabi-Yau threefold then the Picard group
of F'is equipped with two integer-valued forms: a cubic fqurfthe intersec-
tion form) and a linear forna,(F') (obtained by intersecting with the second
Chern class of the tangent bundle.) Wilson gives criteria for the existence of
birational contractions and elliptic fibrations in terms of the number-theoretic
properties of these forms.

Namikawa PZ] and Shepherd-Barror?f], have proven structural results
on the geometry of birational morphisms from holomorphic symplectic man-
ifolds. There are also results in this direction by Burns, Hu, and Liiarid
Wierzba P 7]. Matsushita [ 9] [20] has proven a detailed description of fiber
structures on irreducible holomorphic symplectic manifolds. Huybrechts has
conjectured a projectivity criterion for irreducible holomorphic symplectic
manifolds and elaborated consequences of his criterion. Sgarid the er-
ratum in [L4]; we will be careful to distinguish results fully proved ind
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from those which remain conjectural. Markman] has developed a theory
of generalized elementary transformations for moduli spaces of sheaves on
K3 surfaces.

Our study of rational curves on symplectic manifolds began with the de-
tailed study of a particular example: the varidtyparametrizing lines on a
cubic fourfold X is an irreducible holomorphic symplectic manifold. The ex-
istence of rational curves of coincides with the presence of rational ruled
surfaces onX. Our conjectures therefore shed light on the effectivity of cer-
tain codimension-two cycles oX. Conversely, the projective geometry of
cubic fourfolds provides a useful laboratory where we may test our claims.
As an application of our conjectures, we find that the presence of distin-
guished Hodge classes ghoften implies the existence of special unirational
parametrizations ok'.

This paper is organized as follows. In Sectidnve recall basic results
and conjectures for irreducible holomorphic symplectic manifolds. In the
next section, we introduce the notion wbdal classesand state our basic
conjectures. In Section we give some deformation-theoretic evidence for
our conjectures. The rest of the paper is devoted to examples supporting the
conjectures. Sectiof is devoted to Hilbert scheme#? for K3 surfaces of
small degree. We describe examples of nonnodal rational curves and certain
codimension-two behavior in SectiénWe turn to the projective geometry of
cubic fourfolds in the last section. Questions of rationality and unirationality
are addressed in SectiGrb.

Throughout, we work ovef. A primitive element of an abelian groupis
one that cannot be written in the fonm: for anyxz € Aorn € Z,n > 1. An
indecomposablelement of a monoid is an element which cannot be written
in the forma + b for some nonzera andb in this monoid. Recall that an
element of a convex real con€’ is anextremal rayif, for any u, w € C with
u + w = v we necessarily have w € R v.
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2. Generalities

Let F' be an irreducible, holomorphic symplectic manifold of dimension
2n. This means thak' is compact, Khler, simply connected, ard’(F, Q%)
is spanned by an everywhere-nondegenerate 2-form fgfarid [6]). The
second cohomology groufi(F,Z) carries a nondegenerate integer-valued
quadratic form(, ), theBeauville form It has signaturé3, by(F') — 3) and its
restriction toH'! N H?(F,Z) has signaturél, by(F') — 3), whereby(F) is
the second Betti number (seg pnd [LZ] §1.9 for more details).

Using the universal coefficient theorem, we extend the Beauville form to a
Q-valued form onH,(F, Z). Concretely, given some primitivie € Hy(F,7Z),
there exists a unique class € H?*(F,Q) such thatRv = (w,v) for all
v € H*F,Z). We set(R,R) = (w,w). Letp € H?*(F,Z) denote the
primitive class such thatp = w for somec > 0. Note thatR is of type
(2n — 1,2n — 1) iff pis of type(1,1). Conversely, given a primitive €
H?*(F,Z) with (p, H*(F,Z)) = dZ andd > 0, there exists a primitive class
R € Hy(F,Z) with dRv = (v, p) for all v € H*(F,Z).

Throughout this paper, the square of a divisor class means the square with
respect to the Beauville form. In the sequel we will assume th&ias a
polarizationg; note that(g, g) > 0[13] §1.9. Denote by

Pic,(F,g) = {v € Pic(F) | (v,g) > 0}

the positive halfspace (with respecttand the Beauville form). Let (F, g) C
Pic, (F, g) be the vectors with positive square.

We denote by\,.,,(F) andA,.¢(F') the monoids of ample and nef divi-
sor classes. LeV;(F') be the group of classes of 1-cycles (up to numerical
equivalence)NE(F) C N;(F)gr the cone of effective curves, andE(F)
its closure. We denote by’ (£, g) the set of classeR such that the corre-
spondingp is contained im  (F, g).

We next review properties of line bundles on polarized irreducible holomor-
phic symplectic manifolds which follow from standard results of the minimal
model program.
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PROPOSITION2.1. — Let (F,g) be a polarized irreducible holomorphic
symplectic manifold.

1. A class\ € Pic(F) is ample iffA € A (F,g) and \C' > 0 for each
curveC C F (seg[13] Cor. 6.4).

2. Any class\ € A,¢(F') which is big has the property that the line bundle
L(\) has no cohomology anfl(m ) is globally generated fom > 0;
it therefore defines a birational morphisin FF—Y (see[15], Remark
3-1-2 and Theorem 1-2-3).

The following statements were conjectured by Huybrechi$ (but stated
as Theorem 3.11 and Corollary 3.10 irt] with an incomplete proof):

CONJECTURE2.2. — Let F' be an irreducible holomorphic symplectic man-
ifold.

1. F is projective iff there exists a clagse Pic(F') with (g, g) > 0.

2. If g is a polarization forF" then any class € A, (F, g) is big.

Now assumé” = S, the Hilbert scheme of length subschemes of a K3
surfaceS. Then we have an isomorphism

Pic(SM) ~ Pic(S) @, Ze

compatible with the Beauville form (se€]]. Each divisorf on S determines
a divisor onS!™, also denoted by, and corresponding to the subschemes
with some support irf. The locus of subschemes with support at fewer than
n points has clasge and(e,e) = —2(n — 1).

More generally, iff" is deformation equivalent 8" then the Beauville
formonL := H?(F,Z) is an even, integral form isomorphic to

U @) (—Es)® @ Ze,

whereU is a hyperbolic planefs the positive-definite quadratic form associ-
ated to the corresponding Dynkin diagram.

PROPOSITION2.3. — Assume that = 2 so that
LU, (E)* @, (—2).

The orbits of primitive elements € L under the action of' = Aut(L) are
classified by(v, v) and the idealv, L) (which equalsZ or 27Z.)
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Proof. We shall classify primitive imbeddings of the lattiéé := Zv =
(2d) (where(v, v) = 2d) into L. For simplicity, we first restrict to the cade#
0. The basic technical tool is tréiscriminant groupd(L) := L*/L and the
associated)/2Z-valued quadratic form;, [23]. We haved(L) ~ Z/27Z with
qr, equal to—% (mod 27Z) on the generator. Lek denote the orthogonal
complement tds in L, d(K) andd(K~) the discriminant groups, ang; and
qx+ the corresponding forms, so thétK) ~ Z/2dZ with qx equal to,;
(mod 27Z) on the generatof;. We have the sequence of inclusions

KeK-cLcL'Cc K*® (KM

L* consists of the elements &f* & (K+)* which are integral orl.. Let H
(resp. H*) be the image of_ (resp. L*) in d(K) & d(K*), so thatd(L) =
H*/H. Note thatH is isotropic and{* is the annihilator of{ with respect to
gk @ qi. (or theQ/Z-valued bilinear form associated to it). The projection
of H into d(K) is injective and its image is a subgroup of index one or two,
depending on whethép, L) = Z or 2Z.

In the first cased(K*) contains the projection dff as an index two sub-
group. Since is isotropic forgx @ qx 1, the restrictiong, . |H takes value

1

—5g (mod 2Z) on the generator. Let € H* be a nontrivial element project-

ing to 0 in d(K), which may be regarded as an elemend@*). We have
qx1(z) = —3 (mod 2Z) becauser generates/(L). Sincex annihilatesH,
it follows thatd(K+) = H + Zx ~ 7/2d7Z &, 7./2Z. This determines the
discriminant form (and signature) @+ completely, which determines it up
to isomorphism 73] 1.14.2. The classification of the primitive imbeddings
K — L follows from [23] 1.15.1.

The proof in the second case is similar but easied(#5") is equal toH,
so its discriminant form is easily computed.

If d = 0, we may produce an elemetite L with (v,¢’) =0, (¢/,¢') = -2,
and(¢’, L) = 2Z. By our previous argument € I'e, SO we may assume that
w € UP & (—Eg)®2. Then the result follows fromlf] §2. O

Whenn = 2, we have an identity,(F') - v - v = 30 (v,v) (given in [L3]
1.11 up to a multiplicative constant). Hence Riemann-Roch takes the form

X(E, L) = £((0.0) + D)((0,0) +6).
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3. Conjectures

In this section(F, g) is a g-polarized irreducible holomorphic symplectic
manifold, deformation equivalent to the Hilbert scheme of length-two sub-
schemes of a K3 surface. Lét be the (possibly infinite!) set of classes
p € Pic,(F, g) satisfying one of the following:

1. (p,p) = —2and(p, L) = 2Z,

2. (p,p) =—2and(p,L) =7,

3. (p,p) = —10and(p, L) = 2Z,

Let E* be the corresponding classBs= H,(F,Z); this means that for some
p € E we have

2Rv  where(p, L) = 27Z
for eachw € L. In particular,R satisfies one of the following

(v, p) = {Rv where (p, L) = Z

1. (Ra R) = _%1
2. (R,R) = -2,
3. (R,R) = —&.

Let Ng(F, g) C Hy(F,Z) be the smallest real cone containifg and the
elementsk € N;(F) such thatk - ¢ > 0 and the corresondinghas nonneg-
ative square. Note that the boundaryof(F, ¢) is polyhedral in a neighbor-
hood of any boundary point with negative square. This follows from the fact
that the Beauville form is negative definite on the orthogonal complement to
g in Pic(F).

We now can state our main conjecture.

CONJECTURES. 1 (Effective curves conjecture}—
NE(F) = Ng(F, g).

The analogous theorem for K3 surfaces may be founglli6 and 1.7 of
[16] (see also{]).

The classes irE* that are extremal in (the closure oz (F, g) will be
callednodal classesin analogy with the terminology for K3 surfaces (see
[1€], Section 1.4). The nodal classes are dendigg and the corresponding
classes irnF are denoted,,q. Since the boundary d¥z(F, g) is polyhedral
in a neighborhood of any nodal class, it follows that a class E* is nodal
iff no positive multiple of R is decomposable.
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REMARK 3.2, — Consider the monoiVg(F, g) N Hy(F,Z). In contrast to
the situation for K3 surfaces, it is possible for-a2)-class in the monoid to be
indecomposable but not nodal. Indeed, there exist examplesih(F') =
2.

Conjecture3.1 and Propositior2.1 yield a characterization of the ample
monoid:

Aamp(F) = {A € AL(F,g): (\v) > 0foreach
v € Picy(F,g)with (v,v) >0o0rv e E}.

The signature of the Beauville form implies tha{ ¥, \) and (v, v) are both
nonnegative therjA,v) > 0; indeed if A and v are linearly independent
then strict inequality follows. Furthermore, verifying the positivity condi-
tion against nonextremal classes is clearly redundant. We therefore obtain the
following simplification:

CoNJECTURE3.3 (Consequence of Conjectutd). —
Aamp(F) = {X€AL(F,g): (A, v) > 0foreachv € Eyuq}.

This generalizes Proposition 1.9 d¢fd].
We digress to consider the monoid of effective divisors. Its description is
the same as for K3 surfaces.

CONJECTURE3.4 (Effective divisors conjecture}— The monoid of effec-
tive divisors is generated by the element®af, (F, g) with square> —2.

REMARK 3.5, — A (—2)-class is extremal in the (conjectured) cone of ef-
fective divisors iff it is indecomposable in the (conjectured) monoid of effec-
tive divisors. We expect that each of thése2)-classes is realized by a conic
bundle over a K3 surface.

We next discuss classas= A,.¢(F), i.e., those in the boundary of the am-
ple cone. Conjecturg.2implies that wher{\, A) > 0 the sections of(m\)
for m > 0 give a birational morphisrh: F—Y . Any curve represented by a
nodal class? € E; , orthogonal to\ is contracted by.

CoNJECTURE3.6 (Nodal classes conjecture}- Eachnodalclas® € E*

nod

represents a rational curve contracted by a birational morphigimen by
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sections of£(mA), where)\ is any class on the boundary of the ample cone
satisfying\R = 0.
1. If (R,R) = —%, —2 (i.e., the correspondingis a(—2)-class) therp is
represented by a family of rational curves parametrized by a K3 surface.
This family can be blown down to rational double points.
2.If (R,R) = —2 (i.e., the corresponding is a (—10)-class) therp is
represented by a family of lines contained in a pl&AeThis plane can
be contracted to a point.

The following theorem of Namikawa provides support for this conjecture
(part of the theorem was proved first by Shepherd-Bartdih 4nd related
results were obtained by Wierzbaf).

THEOREM3.7. — ([27] Props. 1.1 and 1.4,25]) Letb : F'—Y be a bira-
tional projective morphism from a projective holomorphic symplectic mani-
fold to a normal variety.

1. There exists a subvariety C Y of codimension at least four, so that
Y\ Z is singular along a smooth codimension-two subvarigtyhich
admits a nondegenerate holomorphic two-form. FurthermbreZ has
rational double points of fixed type along each connected component of
S.

2. Assume thaP’ € Y is an isolated Gorenstein singular point and that
at least one irreducible component 6f := b~!(P) is normal. Then
G ~ P" with normal bundle?;,..

A key tool in the study of K3 surfaces is thigeyl group the group gener-
ated by reflections with respect to the2)-classes in the Picard group (see
[4] or [16]). Our conjectures imply that there is an analog in higher dimen-
sions. For eacp € E with square—2, we obtain a reflection, given by the
formula

SP(U) =v+ (Uv p) p-
The groupV generated by these reflections is called geaeralized Weyl
group. LetC, (F', g) be the smallest real cone containihg(F', g) andD(F, g)
the subcone of’, (F, ¢g) defined by(v, p) > 0 for eachp € E with square
—2. This is a fundamental domain for the action)of on C (F,g). The
(—10)-classes inE are walls for a subdivision dP(F, g) into subchambers.
The interior of each subchamber is the ample cone for a symplectic birational
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model for F'; the subchamber containingis the ample cone of'. In other
words,D(F, g) is the closure of the birational ample conefaf

One does not generally expect that the closure of the ample cone should
be a fundamental domain for the action of a gratp O W. Algebraically,
(—10)-classes do not yield reflections. Geometrically, one does not expect
to find a group relating the various birational modelsfof For a concrete
example, see the discussion below of the Fano variety of lines on a cubic
fourfold of discriminant eight.

We now describe the square-zero classes on the boundary of the closure of
the ample cone:

CONJECTURE3.8. — Let A be a primitive square-zero class on the bound-
ary of the closure of the ample cone. Then the corresponding line bundle
L = L()\) has no higher cohomology and its sections yield a morphism

a: F—P?
whose generic fiber is an abelian surface.

The following theorem of Matsushita describes fiber space structures on
holomorphic symplectic manifolds.

THEOREM3.9. — ([19)) Let F be a projective irreducible holomorphic sym-
plectic manifold andi : F— B be a fiber space structure with normal base
B and generic fibelr,. Then we have:

1. a is equidimensional in codimension-two pointgbf

2. Ky, is trivial and there exists an abelian variefy, and anétale mor-
phismF,— F},.

3. dim(B) = n and B hasQ-factorial log-terminal singularities.

4. — K is ample andB has Picard number 1.

5. The polarization onB pulls back to a square-zero divisor dn

Furthermore, ifF" has dimension four theh, is an abelian surface.

Matsushita has also proved that such fibrations are Lagrangiqn ffor
convenience, we provide a proof in our special case:

PROPOSITION3.10. — In addition to the hypotheses of Theor&m® as-
sume that the dimension éfis four. Then the fibers;, are Lagrangian.
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Proof. It suffices to prove this result for smooth fibers. Recall the formula
for the Beauville form (seel[f], 1.9)

(,0) = / (0F)a? — ( / 052a> ( / a2aa>,

whereo is the generator off"(F, 27.), normalized so thaf (07)? = 1. If «
is the pullback of the polarization oB then the class of}, is equal to some
rational multipleca®. Sincea is of type(1, 1), type considerations imply that
the second term vanishes. On the other hand, the first term is equal to

— O|pO|F, .
c/n F,O|F,

Since(a, ) is zero by the previous theorem it follows thatestricted toF;,
is also zero and thereforg, is Lagrangian (here we use the Hodge-Riemann
bilinear relations). O

REMARK 3.11 — Itis instructive to compare ConjectuBe3 with Wilson’s
results. LetF’ be a Calabi-Yau threefold and a nef divisor class correspond-
ing to a nonsingular point of the cubic hypersurfage = 0 and satisfying
Dcy(F) # 0. Then for somer > 0 the linear serieg:D]| is free and induces

an elliptic fiber space structure dn(see P §3 and P9 §1). The assump-
tion co(F)D # 0 can be weakened under further technical hypotheses (see

[30] and [31]).

REMARK 3.12 — Let F' be an irreducible holomorphic symplectic mani-
fold and\ € A,¢(F') a divisor with(A, \) = 0. IS A necessarily semiample?

4. Deformation theory

4.1. Deformations of subvarieties. —In this section, we work with arbi-
trary irreducible holomorphic symplectic manifolds.

THEOREM4.2 — Let F be an irreducible holomorphic symplectic mani-
fold of dimensior2n andY a submanifold of dimensidn Assume either that
Y is Lagrangian, or that all of the following hold\y,/r = QF & OF*" 2,
the restriction of the symplectic form 16 is zero, andH*(Oy) = 0. Then
the deformation space &f in F is smooth of dimensian — 2k.
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The deformations of” arising from deformations of the paily, F') are
precisely those preserving the sub-Hodge structure

ker(H**(F) — H**(Y)).

Proof. Identical to the proof of Corollary 3.4 ir?f]]. By [24], Corollary
3.2, any obstructions to deforming in F' lie in the kernel of the natural
projection

To2 : H' (Ny,rp) — H'(Qy) ® ker(H(Q3) — H(QF))".
Under our hypotheses this map is an isomorphism. O

COROLLARY 4.3. — Keep the hypotheses of theorérd. Assume further-
more that the cohomology af is generated by divisor classes. Then the
deformations of* arising from a deformation of the paily’, F') are precisely
those for which the image of

Hy(Y,Z) — Hy(F,7Z)

remains algebraic.

4.4. Applications. — In this section we will assume that is deformation
equivalent toS? for a K3 surfaceS. We show that the locus where our
conjectures hold is open (in the analytic topology) in the moduli space. We
will find points in the moduli space where our conjectures hold in subsequent
sections.

THEOREM4.5. — LetF be as above an®& a nodal class orF’. Assume that
Conjecture3.6 holds for R and F'. Let I’ be a small projective deformation
of I’ such thatR deforms to a clas$t’ of type(3,3). Then the Conjecture
remains true forF” and R'.

Proof. Let 7 : F—A be a deformation of’ over a disc and4 a nef and
big line bundle onF such that4 has degree zero oR. By Corollary 4.3
R deforms to a family of rational curveR C F over A. In each fiberR,
itself deforms in a two parameter family. This family is parametrized by a
deformationS; of the K3 surfaceS if p is a (—2)-class. It is parametrized
by alP? if pis a(—10)-class. Clearly, these are contracted by the sections of
some power of4. O
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THEOREM4.6. — Let F' be as above and be a nef, square-zero divisor
class onf'. Assume that Conjectufe8holds for\ and F'. Let F” be a small
projective deformation of’ such that\ deforms to a divisor clasy’. Then
the Conjecture remains true fdf’ and \'.

Proof. This is a consequence of Theorén2 and the Lagrangian property
proved in3.10 OJ

4.7. Examples. —In this section we give examples of submanifolds satis-
fying the conditions of Theorem.2. Assume that” is a complete homoge-
neous space under a reductive algebraic group or a toric variety, and assume
that the normal bundle t&" is of the form stated above. Theoreh® shows

that the deformation space of in F' is smooth. Moreover, the locus in the
deformation space af corresponding to manifolds containing a deformation

of Y has codimension equal to the rank of therbh-Severi group of . Here

are some specific examples:

EXAMPLE 4.8 — GivenY = P" C F, the deformations of’ containing
P form a divisor in the deformation space. For instancé, i$ a K3 surface
containing a smooth rational cun@ thenC™ ~ P* c S, LetR €
H,(F,Z) be the class of a line ifi” andp € H?(F,Z) the corresponding
divisor (i.e.2Rv = (p,v) forv € H*(F,Z)). Thenp = 2C — e and(p, p) =
—2(n + 3).

EXAMPLE 4.9. — Again, letS be a K3 surface containing a smooth rational
curveC andF = S, Consider the subschemes®bf lengthn with some
support alondg”. The generic such subscheme is the union of a poi6Gtand

a lengthn — 1 subscheme disjoint fror@’. Thus we get a divisob; c S
birational to aP' bundle overS"~I. The normal bundle to a generic fibgr

of this bundle i, @ OP*" 2. Let R = [Y] € Hy(F,Z) andp = [Dy] €
H?(F,Z); note thatR corresponds t@ and(p,p) = (C - C)s = —2. The
deformations of™ containing a deformation dd, are those for whictR (or

p) remains algebraic. They have codimension one in the deformation space.

The relevance of these examples to Conjecfuéds discussed in Section
5.7. We will give further examples in Sectio®y where we consider cases
whereF is deformation equivalent t6%! andY = F,,F;, or F,. We digress
to give one further example that is particularly interesting:
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EXAMPLE 4.10 — We give a geometric realization of certain Mukai iso-
genies between K3 surfaces (cf21]). Let Sg be a generic degree 8 K3
surface. In particular, we assumig s realized as a complete intersection of
3 quadric hypersurfaces i#’, and the discriminant curve for these quadrics
Is a smooth sextic plane curvg It follows that each such quadrig has rank

five or six, and the corresponding family of maximal isotropic subspaces in
Q is parametrized b¥? or a disjoint union two copies d# respectively. As

we vary (), the families of maximal isotropic subspaces are parametrized by
a K3 surfaceS, of degree 2, the double cover Bf branched ove3. Thus

we obtain arétaleP*-bundle€ —S,, mapping intast”, with fibers satisfying

the conditions of Propositiof.2.

This yields an elegant universal construction of Brauer-Severi varieties rep-
resenting certain 2-torsion elements of the Brauer group of a degree two K3
surface. Other 2-torsion elements are realizegtaleP!-bundles€ — S, aris-
ing from families of nodal rational curves (see the discussion of cubic four-
folds of discriminan® in Examples/.8and7.15. The relationship between
Mukai isogenies and Brauer groups is explored more systematically in the
upcoming thesis of Caldarart][

5. Symmetric squares of K3 surfaces

Let Sy, be a K3 surface with Picard group generated by a polarizatipn
of degreen. The Beauville form restricted to the Picard group takes the form

‘ f2n €
f2n 2n 0
e 0 -2

The effective divisor with clas&e is called the diagonal. It is isomorphic
to alP'-bundle overS,,,; the fibers are nodal rational curves. It follows that
an ample line bundle has class of the foir, — ye with z,y > 0 and
Proposition2.1 implies that2nz? — 2y? > 0. The conjectures in Sectidh
give sufficient conditions om andy for x f5, — ye to be ample.

PROPOSITION5.1. — Assume thab,, is a K3 surface with a polarization
fon Which embeds,,, as a subvariety oP"!. The line bundle:f,, — e on
551 is ample whenever > 1 or a = 1 and.S,,, does not contain a line. In
particular, f5, lies on the boundary of the closure of the ample cone.
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Proof. Let S be a smooth surface embedded in projective sjf&cand
not containing a line. Then there is a morphism from the Hilbert scheme
S to the Grassmannia@r(2,r). This morphism is finite onto its image.
Therefore, the pullback of the polarization on the Grassmanniasi’tds
ample. We apply this to the image 65, under the line bundle f5,,. O

REMARK 5.2. — In the event thaf,,, does contain a liné c P"*! the line
bundlef,, — e fails to be ample. However, it is nef and big and a sufficiently
high multiple of it gives a birational morphism contracting the plédfeand
inducing an isomorphism on the complement to this plane. In particular, there
is a nodal(—10)-class2[¢] — e orthogonal tofs,, — e.

5.3. Degree2 K3 surfaces. — A K3 surfaceS, of degree two can be real-
ized as a double cover @ ramified in a curve of degree 6. The quadratic
form 22% — 2y? does represent2 and—10. The corresponding nodal classes

aree and2f, — 3e. The second class corresponds to the pIar@zﬂnarising

from the double cover. Our conjectures predict that the ample cone consists of
classes: fo —ye wherex, y > 0 and2z—3y > 0. The quadratic form also rep-
resents 0, but the corresponding cléiss e satisfieg2f, — 3e, fo —e) = —2.

After flopping the plane the proper transform fof— e doesyield an abelian
surface fibration (the Jacobian fibration) - as expected.

Here is a sketch proof that the clagst — 2e is nef and big. Indeedf; is
very ample and embeds;, into P!°. The image is cut out by quadri@g2).
Each pair of points ort, determines a liné. The quadrics vanishing on
that line form a hyperplane ifi(2). This induces a morphism frorﬁg} to
P?" = P(Z(2)*) given by the sections of the line bundle.

5.4. Degreed K3 surfaces. — Let S, be a K3 surface with Picard group
generated by a polarization of degree 4. We tfke e as the polarization

of Sf]. Now we describe thé—2) and (—10)-lattice vectors inZf, & Ze

and determine which are nodal classes. In fact, there are-t0)-lattice
vectors. The—2)-vectors are of the forrea,, f4 F bi,e, Wherea,, /2 +b,, =

(2v/2 + 3)™. The vectors in the positive haIfspaEG:+(Sf], fa — e) satisfy

2x —y > 0. The nodal classes atsf, — 3e ande. It is easy to see that

all the other(—2)-classes in the positive halfspace are decomposable. We
therefore predict that the ample cone is the interior of the cone spanned by
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faand3f, — 4e. Indeed,SL[f} has an involution exchanginfj and3f, — 4e
(givenp, g € S, the line spanned by andq meetsS, in two more points).

5.5. Degree8 K3 surfaces. — Let Sg be a K3 surface with Picard group
generated by a polarization of degree 8. This is the smallest degree case
where there are no nodal classes besides the diagonal. Indeed, the quadratic
form 822 — 2y? represents-2 and —10 exactly when(z,y) = (0,+1) and
(+£1,+3). However, the parity condition for nodal classes of squaté is

not satisfied byfs — 3e, i.e., (fs — 3e, H*(F,Z)) # 2Z. Therefore, our con-
jectures imply that the ample cone is the interior of the cone spanngd by
and fs — 2¢, and the second line bundle yields an abelian surface fibration
a : F—P? We have already seen that the ample cone is contained in this
cone. For an explicit construction of the abelian surface fibration,1s§é&T.

There it is shown that the symmetric square of a generic K3 surface of degree
2n? (n > 1) admits an abelian surface fibration.

REMARK 5.6. — This is a counterexample to the theorem in Section 2, p.
463 of [1g]. There it is claimed thas®? of a K3 surfaceS admits a (La-
grangian) abelian surface fibration if and onlyiis elliptic.

5.7. K3 surfaces containing a rational curve. —Let S be a K3 surface
containing a rational curvé' and let7 be the surface obtained by blowing
down C. Of course,T has one rational double point. Consider the map
b : SPl=Sym*(T). This map contracts rational curves corresponding to
both (—2) and(—10)-nodal classes.

The Hilbert scheme!? contains a plan€'?! and two distinguished divi-
sorsD; and D-, birational toP'-bundles ovelS. The divisorD; is the locus
of subschemes with some supportGhand D, is the diagonal. The map
b contractsD; and D, to surfaces isomorphic t& and C?! to the pointp
where these surfaces intersect. The filpei(p) is the union ofC? andF,

(cf. TheorenB.7).

The divisorsD; and D, have classe§’ and2e respectively. IfR is the
class of a line inC'?! ~ P? then the corresponding divisor class= 2C' — e.
The (—2)-classe and the(—10)-classp are nodal; the clasS§' is not nodal.

Of course, it becomes nodal upon floppiag ¢ S&.
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6. Nonnodal smooth rational curves

It is well known that for K3 surfaces all smooth rational curves are nodal
and correspond to indecomposable (-2)-classes. In Se&tfome gave ex-
amples of nonnodal smooth rational curves; these curves were parametrized
by a K3 surface. Here we discuss further examples of nonnodal smooth ratio-
nal curves. As we shall see, these curves need not be parametrized by a K3
surface or &2.

We first consider three examples where smooth rational curves do not cor-
respond to nodal classes, but still correspond to classes with negative square.
Let I = S whereS is a K3 surface which is a double cover of a rational
surfaceX with Picard group of rank 2. ThehA contains a surface isomorphic
to 2. We emphasize that the results of Subsectidrapply in this case. This
suggests certain refinements to Conjecttu@ which we formulate in each
example.

EXAMPLE 6.1 — Let S—Y = F, be branched over a general curve of
type (4,4). Hence the rulings induce two elliptic fibratiofs and £ which
generate the Picard group and intersect as follows:

E, E,
El 0 2.
Bl 2 0

Let R, and R, denote the rulings of c S, with p; andp, their Poincag
duals inPic(S™). We havep, = E, —e andp, = E, — e so that the Beauville
form may be written

pP1 - P2
P1 —2 0.
p2| 0 =2

Moreover, thep; generate a saturated sublattice of the Picard group and
(pia HQ(Fa Z)) =Z.

The smooth curves in the clags + R, move in a 3-parameter family on
3 C F. However,p; + py is not a nodal class. We conjecture that any holo-
morphic symplectic fourfold deformation equivalent to a symmetric square of
a K3 surface with 2 nodal classpsandp, as above should contain a surface
¥ =T,.
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EXAMPLE 6.2 — LetS—X = IF; be branched over a general curve of type
6Ry + 4R_1, whereR, is the class of the ruling anfl_, is the class of the
exceptional curve. The ruling induces an elliptic fibratibnon S and the
exceptional curve yields a rational cur¢é C S; these generate the Picard
group and intersect as follows:

E C
E|0 2.
cl2 =2
Let po (resp. p_;) be the Poinca dual toR, (resp. 2R_1). We have

po = F —eandp_; = 2C — e, so thatp, and p_;, generate a saturated
sublattice on which the Beauville form may be written

‘ Po  pP-1
£o —2 2.
P-1 2 —10

Moreover,(py, H*(F,Z)) = Z and(p_,, H*(F, 7)) = 2Z.

The smooth curves in the cla8®, + R_; move in a 4-parameter family on
Y, C F. Howeverdpo+p_1 is nota nodal class. In this case we conjecture that
any F whose cohomology contains 2 nodal clasgesndp_; as above should
contain a surface. = [F;. Furthermore, we expect thatis a specialization
of a variety containing a plané which corresponds to @-10)-nodal class.
This class is equal tBp, + p_; andIl specializes to a union of B and the
Iy in F.

EXAMPLE 6.3. — Let S—> = I, be branched over the union of a general
curve of typel2R, + 3R_, and R_,, whereR, is the class of the ruling and
R_,4 is the class of the exceptional curve. Again, the Picard grou§ f
generated by an elliptic fibratiofi and a rational curv€' which intersect as
follows

E C
E|0 1.
cl1 -2

Let po (resp. p_4) be the Poinca dual toR, (resp. R_4). Then we have
po=FE —eandp_, = 2C + ¢, SOp, andp_, generate a saturated sublattice
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with Beauville form

‘ Po_ P-4
Lo —2 4 .
P—4 4 —10

Moreover,(py, H*(F,Z)) = Z and(p_4, H*(F, 7)) = 2Z.

The smooth curves in the clas®, + R_, move in a 7-parameter family on
3 C F. However,5p, + p_4 is not a nodal class. In this case we conjecture
that anyF" with cohomology containing 2 nodal classgsandp_, as above
should contain a surface = F,. We also expect thak' is a specialization
of a variety containing a plané which corresponds to @-10)-nodal class.
This class is equal tdp, + p_, andIl specializes to a union of B and the
F,inF.

Next we consider examples of smooth rational curveB mhere the cor-
responding clasg is of positive square.

EXAMPLE 6.4 — Let S; be a general K3 surface of degree 2 with polar-
ization f,. LetC' C S, be a rational curve with two ordinary double points
contained in the linear seriég,|. Let F—P? be the compactified Jacobian

for | f2]. The fibers corresponding t@ are isomorphic to a product of nodal
curves with normalizatiof®’ x P'. Smooth curves of typél, 1) in P! x P!

yield smooth rational curves of, deforming in a 3-parameter family. The
homology class of these rational curves is double the class of the curve of type
(1,0), and is therefore not primitive.

EXAMPLE 6.5. — Let .S, C P? be a general K3 surface of degree 4 &ipd

its polarization. LetC' C S4 be an elliptic curve in f4| with two ordinary
double points. Note that'® is a nonnormal ruled surface. lts fibers are
smooth rational curves such that the corresponding glass square 2. Thus

we get smooth rational curves in primitive homology classes such that the
corresponding classhas positive square as well.

As the rank of the Picard group @f increases we expect more and more
examples of nonnodal smooth rational curves parametrized by varieties of
dimension> 2.

REMARK 6.6. — Let R C F be a smooth rational curve with primitive ho-
mology class. Then the Hilbert scheme of flat deformation8 aked not be
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irreducible and may have arbitrarily large dimension. Take F, C F of
bidegregq1,n).

QUESTION6.7. — Assume thatk Pic(F') = 1. Does there exist a smooth
rational curve orF'? Can we take its class to be primitive?

7. Cubic fourfolds

In this section, a cubic fourfold generally denotes a smooth cubic hyper-
surfaceX C IP°. The varietyF’ parametrizing lines oX is sometimes called
the ‘Fano variety of lines’ - not to be confused with a variety with ample
anticanonical class. It is known that is an irreducible holomorphic sym-
plectic fourfold deformation equivalent to the Hilbert scheme of length-two
subschemes of a K3 surfacq [5]. Consequently, the conjectures of Section
3 apply. The existence of smooth rational curvesC F translates into the
existence of scroll§” C X. By definition, a scroll is the union of the lines
parametrized by a smooth rational curve in the Grassmannian; it may have
singularities. Our conjectures yield simple and verifiable predictions for the
existence and nonexistence of scrolls in various homology class€s ©he
presence of these scrolls yields unirational parametrizatiod$ of various
degrees.

7.1. Lattices, Nodal Curves, and Scrolls. —We recall standard facts about
cubic fourfolds. We say that a cubic fourfoldgpecialif it contains an alge-
braic surface not homologous to any multiple of the square of the hyperplane
classh?. Note that the intersection forry) on the primitive cohomology
takes the form

(hZ)J_ ~ ( % ; > D, UeBQ EBJ_ E§B2
(see [.0], [9], [5]). Let K = Zh? + ZT be a saturated sublattice of algebraic
classes in the middle cohomology &f. Then thediscriminantd = d(X, K)
is the discriminant of<. It is a positive integer, congruent toor 2 modulo
6. The special cubic fourfolds of discriminadtform an irreducible divisor
Cq4 in the moduli spacé€ of cubic fourfolds;C, is nonempty iffd > 6. For
instance(g corresponds to the cubic fourfolds containing a plahandC,,
corresponds to the cubic fourfolds containing a smooth quartic sgroll
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The cohomology of a cubic fourfold and its Fano variety are closely related
(see p] for most of what follows). The incidence correspondence betwéen
and F' induces the Abel-Jacobi map

o HY(X,Z)—H*(F,Z),

respecting the Hodge structures. We have that?), a(h?)) = 2 (k% h?)
and

(Oé(U), a(w)) = - <U7 ’UJ>
for v, w primitive. Note thay := «(h?) is the polarization o’ induced from
the Grassmannian. The incidence correspondence induces a second map

B HY(F,Z)—H*X,7)
respecting the Hodge structures. We can compose to obtain
b1 Hy(F,Z)—H(F,Z) % HYX,Z) % HX(F,Z)—Hy(F, Z),

where the first map is Poindaiduality and the last map is induced by the
Beauville form. We have)(g) = 2g andy(v) = —v for v orthogonal tgy.

Suppose that’ contains a smooth rational curveof degreen. Let T be
the universal line restricted #® and7’ C X the corresponding scroll sweeped
out by R, which also has degree Note that the formuldT’,>) = R - a(X)

(for ¥ € H*(X,Z)) follows from the incidence correspondence. Combining
this with our computation of), we obtain

n2

(T.T) = R-o(T) = (R4(R)) = = — (R.R).

We useT;, A to denote a scroll” of degreen for which the map
T—TcCX

has singularities equivalent th ordinary double points (by definitiord) is
the number given by the double point formula). A Chern class computation
gives

(1) <Tn,A7 Tn,A) =3n—2 + 2A

and we obtain the formula

2) Azi(n2—6n+4—2(R,R)).



22 BRENDAN HASSETT AND YURI TSCHINKEL
The lattice generated by andT;, A has discriminant

d(n,A) = 3(3n—2+2A)—n?=6A— (n> —9n +6)

n2

= 5 —3(RR).

This lattice has discriminant 6, so we obtain the lower bound
1
A > Apin(n) == [6(n2 —9n+6) +1].
In particular, a cubic fourfold cannot contain smooth scrolls of degr&e

REMARK 7.2. — The latticeZh? + ZT,, » need not be saturated. For in-
stance, ifn = 8 andA = 5 thend(8,5) = 32. However, the lattice generated
by h? andT5 5 has index in its saturation.

PROPOSITION7.3. — Let X be a cubic fourfold, with Fano varietly. Let
R C F be a nodal rational curve and,, o the corresponding scroll. Thefy
takes the following values:

) (m—=2)(m —1)ifn =2m;
A= {(m—l)2 andm(m — 2) if n = 2m + 1.

Proof. This is a consequence of Equatianand2 above. We observe that
nis even wher(R, R) = —2 andn is odd when R, R) = —1 or —3. O

We summarize the numerical predictions fardal scrolls of small degree
in the following table:

n |2 3 4 5 5 6 7 7 8 9 910 11 11
A 0o 0 001 2 3 4 6 8 9 12 15 16
din,A)|8 12 14 14 20 24 26 32 38 42 48 56 62 68

REMARK 7.4. — We can obtain cubic fourfolds containing scrdlis, with
more double points by exploiting nonnodal smooth rational curves on the cor-
responding Fano variety (see Examples8and7.25).
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7.5. Unirational parametrizations. — We start with a classical example:

if X is a cubic fourfold containing a smooth quartic scrbll, then X is
rational. One would like to generalize this construction to other special cubic
fourfolds.

PROPOSITION7.6. — Let X be a cubic fourfold with Fano variety'. As-
sume thaf’ contains a smooth rational curve of degreen, with correspond-
ing scroll 7, . Assume that this corresponding scrdllis not a cone. Then
there exists a rational map

o:Pt s X

deg(6) = (” ; 2) a2 (BE)

Proof. Our assumptions imply that parametrizes pairwise disjoint lines
in X. Given generid,, /5, the cubic surface

Span(lq,ly) N X

contains two disjoint lines and thus is rational. We therefore obtain a cubic
surface bundle

with

+ 1.

Y % Sym*(R) ~ P?

¢]

X
so that the fiber over the generic point contains two disjoint lines. Conse-
quently,Y is rational oveiP? and thus is a rational variety.

To compute the degree @ it suffices to compute the number of double
points arising from a generic projection of the scrbllinto P*. The map
T—P* has singularities equivalent (6;2) double pointsA of these are from
the singularities of". We obtain the second formula fdeg(¢) by applying
the Equatior of Section7.1 O

This demonstrates that the existence of rational curves in certain homology
classes of' implies thatX is rational. Unfortunately, our conjectures indicate
that such rational curves are quite rare Rlfs nodal then R, R) > —2, so
deg(¢) = 1 only whenn = 4 (see also Exampleés12and7.21).

However, we obtain some interesting new unirational parametrizations of
cubic fourfolds. Recall that inl[J], the Fano variety of lines on the generic
cubic fourfold of discriminan(N* + N + 1) (N > 1) was shown to be
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isomorphic toS!? of a K3 surfaceS. In particular, it contains nodal rational
curvesk of degre&2N + 1 with (R, R) = —3. One can show that the scroll
corresponding to a generic such curve is not a cone, hence Propasiion
applies. We obtain

deg(¢) = N* — N + 1,
which is always odd. In particular, the cubic fourfolds watthd degree unira-
tional parametrizations are dense in the moduli space.

Cubic fourfolds are known to admit unirational parametrizations of degree
two. Thus the cubic fourfolds described above admit unirational parametriza-
tions of relatively prime degrees. There are few examples of irrational vari-
eties with this property. Many common invariants used to detect irrationality
(like the unramified cohomology of the function field) vanish in this situation.

7.7. Cubic fourfolds of small discriminant. — In this section we specialize
our conjectures to Fano varieties of lines generalspecial cubic fourfolds

of discriminantd. We obtain predictions on the existence and nonexistence
of scrollsT;,, » on X; € C;. We verify these predictions in Sectiaghl4
Throughout we writgy = «(h?) andr = a(T).

EXAMPLE 7.8 (d = 8). — For X5 € Cs (resp. Fg) we have intersection
pairing (resp. Beauville form):
h? T g T
he| 3 1 gl|6 2
T|1 3 T2 =2

sot is a(—2)-class (note thatr, H*(Fy,Z)) = Z.) There is also &—10)-
class:p = g — 27. One can check that these classes are nodal. Therefore
our conjectures predict a planelihC Fg whose lines have degree one in the
Grassmannian. This corresponds to a plan&dnThey also predict a family
of rational curves inFy parametrized by a K3 surface which correspond to
guadric cones X (see Exampl€.15).

This example illustrates our previous discussion concerning the action of
the Weyl group. Here we have

Cy(Fs,9)={ag—br:3a+b>0,a—0b>0}
and the fundamental domain for the action of the Weyl group is
D(Fs,g) ={ag—br:a+b>0, a—b>0}.



RATIONAL CURVES 25

The conjectures predict that the ample cone should be
Namp(Fs) ={ag —br:a+b>0, a—3b>0};

the nef cone is bounded by clases of squaamd64. If F’ denotes the ele-
mentary transformation afy along the planél, we expect

Norp(F') ={ag—br:a—b>0, —a+3b> 0};

the nef cone is bounded by classes of sq@aaed64. In particular, the two
subchambers dP( Fg, g) are not conjugate.

EXAMPLE 7.9 (d = 12). — For X1, andF, we have pairings:

T|6 2

The (—10)-classes are given B3+ — g and3g — 27. Our conjectures predict
that F1, contains two projective planes. The lines on these planes correspond
to families of cubic scrolls orX, (see Exampl€&.16).

EXAMPLE 7.10 @ = 14). — For X4 and F, we have pairings:

h2
4 10
The nodal classes classes are giver2hy- = and27 — g. Note that(2g —
7, H*(F4,7)) = Z and (21 — g, H*(Fy4,7Z)) = 2Z. The first corresponds
to a family of rational curves of degree 4 @¢fh, parametrized by a K3 sur-

face. The second corresponds to a family of rational curves of degree 5 also
parametrized by a K3 surface (see Exampldsgand7.19.

EXAMPLE 7.11 (d = 20). — FoerO and F5, we have pairings

g|6 8,
v|& 4

wherev = «(V'). There are ng—2)-classes but there are two nodal10)-
classesie; = 2v — g,eo = 199 — 8v The corresponding rational curves
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on Fyy have degrees 5 and 25, respectively (cf. Examphg). There is an
involution interchanging; ande; given by:

g — bg—2w
v +— 129 —5v "

EXAMPLE 7.12 (d = 26). — For X4 and Fys we have pairings

h? T g T
h*| 3 5 g| 6 10 .
T 5 17 7110 8

This lattice does not representl0. The nodal(—2)-classes arér — g and
109g — 387. Note that

(21 — g, H*(Fys,7)) = (109g — 387, H*(Fys,7)) = 2.

Our conjecture predicts two families of rational curves parametrized by K3
surfaces, with degredsand137 respectively.

We next apply our conjecture on effective classes to derive the nonexistence
of aT;5, on Xy. By Proposition7.6, the existence of such a surface would
imply the rationality of Xy6. Let us assume thaf; , C Xy with ruling R.

We may take!l” for the class off; . We compute the clagscorresponding to

R. Since

! d ! 17
—0 - = —0 T =
2P ) 2P

we getp = 5g — 27. If we write
p=a(2T — g) + b(109g — 387)

then we find that = —7/45 andb = 2/45. This implies thatR is not
contained in the (conjectured) monoid of effective classes. We shall show in
Example7.21that a quintic scroll ir®> cannot have two double points.

QUESTION7.13 — How can one systematize the argument for the nonex-
istence off; »’s on a (general)X,s? More precisely, leK be a cubic fourfold
containing a scrolll;, » and assume that the lattice containitfgand 7;, A
generates the lattice of algebraic classeH X, Z). Do the values obtained

in Proposition7.3 give upper bounds foA in terms ofn?
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7.14. Data. —Inthis section we present data from projective geometry con-
cerning the existence of scrolls on cubic fourfolds. We organize the informa-
tion by the degree of the scroll.

First of all, let us observe that a scroll of degreeavith ordinary double
points can be obtained by projecting a smooth nondegenerate scroll of degree
n in P**! from a suitable linear subspace.

EXAMPLE 7.15 ([,0). — Observe that a scroll of degree two cannot have
ordinary double points at all. It is easy to see that the general cubic four-
fold of discriminant 8 contains such a scroll. Furthermore, these scrolls are
parametrized by a K3 surface of degree 2 (s&# [10], [11]).

EXAMPLE 7.16 ([50). — A scroll of degree 3 also does not have any or-
dinary double points and it is contained in a general cubic fourfold of dis-
criminant 12. On a fixed cubic fourfold these scrolls are parametrizeddy
disjoint P?'s; given one scrolll’, there is a residual scrdll’ obtained by in-
tersecting a linear and a quadratic hypersurface contaihifsgpe P]). These
correspond to two distingt-10)-classes.

EXAMPLE 7.17 (I';o). — A nondegenerate scroll of degree 4ffhdoes not
have any ordinary double points. A general cubic fourfold of discriminant 14
contains a family of such scrolls, parametrized by a smooth K3 surface of
degree 14. The corresponding class is a nodal)-class (see, for example,

[5], [€D).

EXAMPLE 7.18 ([;;). — This example is closely related to Examgle.

We will explain why the locus of cubic fourfolds containing a quartic scroll
with one ordinary double point has codimension 2 in moduli. Consider a
cubic fourfold X containing such a scrolfy ;. Note that7} ; is degenerate

and is contained in a singular cubic threefdld We specialize first to the
case where the quartic scroll degenerates to the union of two quadric scrolls.
Each of these quadric scrolls is residual to a plane, and these planes intersect
at a single point. What can we say abduin this case? A cubic threefold
containing two such planes is obtained as follows. die a genus 4 stable
curve obtained by taking a curvg, of type (1,3) on a quadric surfacé),

along with the union of two rulingg’s and C; of type (1,0). Note thatC

is canonically imbedded ifi*3>. ThenY is the image ofP® under the linear
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series|L| of cubics cutting ouCC. The planes irt” are the total transforms
of the linesCy, andC's. We claim thatY” contains a family of scrollg} ;,
parametrized byP3. In particular, a cubic fourfold containing two planes
meeting at a point also contains a three parameter famil{, 5. These
are obtained by taking the proper transforms of the quadric surfade$?
containing the lines’; and C3;. These form a linear series with projective
dimension three. The restriction gf| to Z is a linear series of typél, 3)
with two base points (i.e., the points gfn C; not lying onCs or C3). The
image ofZ isaT) ;.

This corresponds to a situation whefrfecontains a surface isomorphic to
P! x PL. The hyperplane sections give a 3-parameter family of rational curves
on F'. As we have seen, such fourfolds should lie in codimension two (see
4.2).

EXAMPLE 7.19 ([50). — The cubic fourfolds of discriminant 14 also con-
tain a family of quintic scrolls, parametrized llye same<3 surface which
parametrizes the quartic scrolls. The corresponding class is a second nodal
(—2)-class (seed] or [9]).

EXAMPLE 7.20 ([5,). — A general cubic fourfoldXy, of discriminant 20
contains a family of’; ;’s parametrized by &. It is known thatXy, contains
a Veronese surfacg. This also follows from Theorem.2 once we obtain a
IP? C Fy. The conic curves ik, lying in V' are parametrized b§? as well.
For each such curv€, let H be the plane spanned kyso that

XQOHH:CUE

where/ is a line. This yields a subvariety @f,, isomorphic toP?; the lines
R C P? trace outl;;'s on X,,. The corresponding € Pic(Fy) is a(—10)-
class.

EXAMPLE 7.21 ([52). — There are no quintic scrolls with two ordinary
double points inP°. (This is highly unfortunate because a cubic fourfold
containing such a scroll would be rational by Propositioi) Let Tg,g C
PS be the normalization ang € P® a point such that the projection @2
from p is 75 5. It follows thatﬂ—,g contains four coplanar points. However,
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these points necessarily lie on a conic cufve- T~572. This forcesT; , to be
singular along the image df.

EXAMPLE 7.22 ([50). — This remains to be explored - the corresponding
pisnotnodal! The discriminant of the latticBh? + ZT; , is 12.

EXAMPLE 7.23 ([51). — In this discriminant { = 18) the Fano variety
has two square-zero classes (bounding the ample cone, by our conjectures).
In particular, there are no nodal classes in this case.

EXAMPLE 7.24 (Is2). — The scrollTj - is contained in a general cubic
fourfold X5, of discriminant 24. The family of such scrolls in a given cubic
fourfold is parametrized by a K3 surface of degree 6. The corresponding class
p is a nodal(—2)-class.

EXAMPLE 7.25 (Is3). — The cubic fourfoldsX;, containing a sextic scroll
with three ordinary double points are codimension 2 in moduli. The nor-
malizationfﬁ,g C P7 has 6 points lying in a 4-dimensional linear subspace,
containing the liné from which we project. These points necessarily are con-
tained in a rational normal curvg C Tﬁ,g of degree 4. The image ¢6f under
projection is a quartic plane curve. This plane is necessarily containggin

by Bezout's theorem, sti?( X3, Z) has rank at least 3. Let us remark that
the Fano variety*s, contains a surface isomorphiclé x P! and the rulings

of the scrolls are given by typ@, 1)-curves of this surface (cf. the discussion
of T, ; and Examplés.1).

EXAMPLE 7.26 (Further examples)— Essentially the same argument shows
that there are no scrollg; 4 (or 755 or 77 5): we look at the 8 points on the
normalizationT; , spanning a 5-dimensional linear subspace containing the
line of projection/. These points are necessarily contained on a rational nor-
mal curve of degree 5 oﬂ%A. It projects to a quintic curve ifP* with 4
ordinary double points. This violates Bezout.
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