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Abstract. — We investigate correspondences between curves over Q̄.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Minimal curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. A graph on the set of elliptic curves . . . . . . . . . . . . . . . . . . . . . . 11
4. Collecting points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1. Introduction

In this note we study correspondences between (geometrically irre-
ducible) algebraic curves over number fields. Let C,C ′ be two such
curves. We say that C lies over C ′ and write

C ⇒ C ′

if there exist an étale cover C̃ → C and a dominant map C̃ → C ′. In
particular, every curve lies over P1. Clearly, if C ⇒ C ′ and C ′ ⇒ C ′′

then C ⇒ C ′′. We say that a curve C ′ is minimal for some class of curves
C if every C ∈ C lies over C ′.
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Let

(1.1) Cn : yn = x2 + 1

and C be the set of such curves. For all n,m ∈ N we have Cmn ⇒ Cn.
Belyi’s theorem [1] implies that for every curve C ′ defined over a number
field there exists a curve C = Cn ∈ C such that C ⇒ C ′ (see [4] for a
simple proof of this corollary). A natural extremal statement is:

Conjecture 1.1. — The curve C6 lies over every curve C over Q̄.

Every hyperelliptic curve C of genus g(C) ≥ 2 lies over C6 (see Propo-
sition 2.4 or [4]). The conjecture would imply that any hyperbolic hy-
perelliptic curve lies over any other curve. Our main result towards the
above conjecture is

Theorem 1.2. — For every m ≥ 6 and every n ∈ {2, 3, 5} the curve
Cm lies over Cmn. Moreover, if m is divisible by 7 then Cm lies over C7m.

The relevance of such geometric constructions to number theory comes
from a theorem of Chevalley-Weil: if π : C̃ → C is an unramified
map of proper algebraic curves over a number field K then there exists
a finite extension K̃/K such that π−1(C(K)) ⊂ C̃(K̃). Therefore, if
C ⇒ C ′ then Mordell’s conjecture (Faltings’ theorem) for C follows from
Mordell’s conjecture for C ′. Our constructions allow us, at least in the
case of hyperelliptic curves, to control the degree and discriminant of
the field K̃ in terms of the coefficients defining the curve. In particular,
“effective” Mordell for C6 implies effective Mordell for every hyperelliptic
curve (see also [14], [11],[7]).

The proof of this theorem uses certain special properties of modular
curves and related elliptic curves. In the construction of unramified cov-
ers we need to exhibit maps from various intermediate curves onto P1

or elliptic curves with simultaneous restrictions on the local ramification
indices and the branching points. This is very close, in spirit, to Belyi’s
theorem which says that every projective algebraic curve defined over Q̄
has a map onto P1 ramified in 0, 1,∞. In fact, there are many such maps.
Our technique involves optimizing the choice of these maps by trading
the freedom to impose ramification conditions for the degree of the map.
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An example of this is given in Section 4 where we prove the first part of
Belyi’s theorem (reduction to Q-rational branching) under the restriction
that the only primes dividing the local ramification indices are 2, 3, 5.

Acknowledgments. The first author was partially supported by the
NSF Grant DMS-0404715. The second author was partially supported
by the NSF Grant DMS-0100277.

2. Minimal curves

Notations 2.1. — For a surjective morphism of curves π : C ′ → C
of degree d we denote by Bran(π) ⊂ C the branching locus of π. For
c ∈ Bran(π) put

dc := (2d2 , 3d3 , . . .),
∑
i

idi ≤ d,

where di is the number of points in π−1(c) with local ramification index
i. Let

RD(π) = {dc}c∈Bran(π)

be the ramification datum.

Example 2.2. — Let zn : P1 → P1 be the n-power map z 7→ zn. Then
Bran(zn) = {0,∞} and RD(zn) = {(n)0, (n)∞}.

Notations 2.3. — Let E be an elliptic curve over Q̄ with a fixed 0 ∈ E,
E[n] the set of n-torsion points and

E[∞] := ∪∞n=1E[n] ⊂ E(Q̄)

the set of all torsion points of E. Usually, we write σ : x → −x for the
standard involution on E and

π = πσ : E → E/σ = P1

for the induced map. When we specify the elliptic curve by the branching
locus we write E = E(Bran(π)).

Proposition 2.4. — The curves C6 and C8 are minimal for the class
of hyperbolic hyperelliptic curves.
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Proof. — Fix a hyperbolic hyperelliptic curve C. Notice that for any
such C there exists an étale cover C1 → C of degree 2 and a degree two
surjection C1 → E onto an elliptic curve. For example, we can take E to
be any elliptic curve ramified in 4 of the ramification points of the initial
hyperelliptic map C → P1. Fix such an E.

We use the following simple fact about elliptic curves: Let π : E → P1

be an elliptic curve. Then π(E[3]) is (projectively equivalent to) the
union of one point from Bran(π) and {1, ζ, ζ2,∞} ⊂ P1 (where ζ is a
fixed third root of 1). Similarly, π(E[4]) is (projectively equivalent to)

Bran(π) = {λ, λ−1,−λ,−λ−1} ∪ {1,−1, i,−i, 0,∞} ⊂ P1.

Now consider the natural (multiplication by m) isogeny

ϕm : E → E

where m = 3 or 4. The map ϕm is 2-ramified in E[m], for m = 3, 4.

Consider the diagram

C C1
oo

ι1

��

C2
τ2oo

ι2

��

C2

σ2

��

C3
τ3oo

ι3
��

C4
τ4oo

ι4
��

C5
τ5oo

��
E Eϕm

oo
π

// P1 Emπm

oo Emϕm

oo C2m.ιm
oo

Here

– Bran(π3) = {1, ζ, ζ3,∞} ⊂ Bran(σ2);
– Bran(π4) = {1,−1, i,−i} ⊂ Bran(σ2);
– ιm : C2m → Em = Cm is the standard map, it is ramified in two

points (whose difference is) in Em[m];
– C2 is an irreducible component of the fiber product C1 ×E E;
– σ2 = π ◦ ι2;
– C3 := C2 ×P1 Em;
– C4 is an irreducible component of C3 ×Em Em;
– C5 := C4 ×Em C2m;

Observe that for q ∈ Bran(πm) the local ramification indices in the preim-
age σ−1

2 (q) are all even. Therefore, τ3 is unramified and ι3 has even local
ramification indices over (the preimage of) q ∈ {π(E[m]) \ Bran(πm)}
(such a point exists). Note that q ∈ Bran(π). The map ι4 is ramified
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over the preimages (πm ◦ ϕm)−1(q), with even local ramification indices,
which implies that τ5 is unramified. Finally, C5 has a dominant map onto
C2m and is unramified over C4 (and consequently, C1). This shows that
every hyperelliptic curve lies over C2m, for m = 3, 4.

Theorem 2.5. — For all m ≥ 6 and n ∈ {2, 3} one has

Cm ⇒ Cmn.

Proof. — We first assume that m = 2n is even and ≥ 8, since C6 ⇒ C8.
First we show that C := Cm lies over C2m. Consider the diagram:

C2n

ι0

��

C1
τ1oo

ι1

��

C2
τ2oo

ι2

��

C3

ι3

��

τ3oo C3

ι′3
��

C4
τ4oo

��
P1 P1

zn
oo Eπ

oo Eϕ2

oo
π′

// P1 C4n.θ
oo

Here

– π is a double cover whose branch locus consists of 3 points in the
preimage of 1 under zn and the preimage of 0;

– C1 is the fiber product C2n ×P1 P1, note that τ1 is unramified and
that ι1 is evenly ramified over all points in Bran(π);

– C2 = C1 ×P1 E, note that τ2 is unramified since ι1 has ramification
of order two over 0 and even ramification over all ζn ∈ P1;

– τ3 is unramified;
– since n ≥ 4, the map ι2 has ramification points of order 2n and ι3

is branched with ramification index 2n over all points in E[2];
– π′ is the map such that Bran(π′) = π′(E[2]), then ι′3 := π′ ◦ ι3 is

4n-ramified over all points in Bran(π′);
– θ is the map branched in three of the above points, in particular, τ4

is unramified.

Now we assume that m is odd, m ≥ 5 and consider the diagram:
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Cm

ι0
��

C1
τ1oo

ι1
��

C1

ι′1
��

C2
τ2oo

ι2
��

C3
τ3oo

ι3

��
P1 P1

zm
oo

ψ1

// P1 P1
ψ2

oo E.π
oo

Here

– ψ1 : z 7→ (z + z−1)/2, then ι′1 = ψ1 ◦ ι1 : C1 → P1 is 2-ramified
over -1, 2m-ramified over 1 and m-ramified over ξi := (ζ im + ζ−im )/2;

– ψ2 = m
√

(z − ξ1)/(z − ξ2), it has 2-ramification over all m preimages
of −1 and 2m-ramification over the preimages of 1;

– π is a double cover ramified over (arbitrary) 4 points in the preimage
of −1 under ψ2, then ι3 : C3 → E ism-ramified over all other points
and we can continue as above.

Now we show that Cm lies over C3m (m even, this suffices for our pur-
poses). Consider:

C2n

ι0
��

C1
τ1oo

ι1
��

C2

ι2

��

τ2oo C3
τ3oo

ι3

��

C3

ι′3
��

C4
τ4oo

ι4
��

C5
τ5oo

ι5
��

C5

��

C6
τ6oo

��
P1 P1

zn
oo Eπ

oo Eϕ6

oo
π′

// P1 E0π0

oo E0ϕ3

oo
θ0

// P1 C6n
oo

Here

– π is a double cover whose branch locus consists of 3 points in the
preimage of 1 under zn and the preimage of 0;

– C1 = C2n ×P1 P1, note that τ1 is unramified and that ι1 is evenly
ramified over all points in Bran(π);

– C2 is the fiber product C1×P1 E, note that τ2 is unramified since ι1
has ramification of order two over 0 and even ramification over all
ζn ∈ P1;

– τ3 is unramified;
– since n ≥ 4, the map ι2 has ramification points of order 2n and ι3

is branched with ramification index 2n over all points in E[6];
– π′ : E → P1 is the map such that Bran(π′) = π′(E[2]), then ι′3 =
π′ ◦ ι3 is 4n-ramified over all points of Bran(π′);



COUNIFORMAZATION OF CURVES 7

– Bran(π3) = π′(E[3]) \ π′(0) and the fiber product C4 = C3 ×P1 C3

is unramified over C3, since the all the preimages of Bran(π3) in C3

have even ramifications (for ι3);
– note that there is a point q0 ∈ E0 such that every point in ι−1

4 (q0) ∈
C4 has ramification of order 2n (for example, take a point q of order
exactly 6 in E and take any q0 ∈ π−1

0 (π′(q)) ∈ E0).
– the fiber product C5 = C4 ×E0 E0 is unramified over C4 and the

map ι5 has ramification of order 2n over all points in E0[3];
– now let θ0 be the triple cover of P1 ramified in three points of order

3 in E0, the composition of θ0 with ι5 exhibits C5 as a cover of
P1 so that all local ramification indices over three points in P1 are
multiples of 6n;

– finally, the fiber product C6 = C5 ×P1 C6n is unramified over C5.

Proposition 2.6. — We have

C6 ⇒ C5.

Proof. — Consider the standard action of the alternating group A5 on
P1. Choose any A4 ⊂ A5 and let p1, . . . , p12 be the A4-orbit of a point
fixed by an element of order 5 in A5. By Klein (see [8], Ch. 1, 12, p.
58-59), there exists a polynomial identity

108t4 − w3 + χ2 = 0,

where

χ ∈ H0(P1,O(p1 + · · ·+ p12)), t ∈ H0(P1,O(6)) and w ∈ H0(P1,O(8))

(the zeroes of t give the vertices of the octahedron, of w the vertices of the
cube and of χ the vertices of the icosahedron). An Euler characteristic
computation shows that the map w3/χ2 : P1 → P1 is branched over
exactly three points with RD = {(38), (46), (212)}.

Consider

C6 C24
τ0oo

ι0

��

C1

ι1

��

τ1oo C1

ι′1
��

C2
τ2oo

ι2

��

C3

ι3

��

τ3oo C4
τ4oo

��
P1 P1

w3/χ2
oo

ξ5

// P1 P1
π2

oo P1
π3

oo C30
oo
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Here

– RD(ι0) = {(241), (122), (24)1} and τ0 is unramified;
– all local ramification indices of ι1 over all zeroes of χ are divisible

by 12.
– ξ5 : P1 → P1/A5, the map ι1 is branched in three points q0, q1, q∞:

over q0 all local ramification indices are even, over q1 - divisible by
3 and over q∞ - divisible by 60;

– π2 is a double cover branched q0 and q∞, ι2 is branched in three
points r0, r1, r∞ so that all local ramification indices of ι2 over r0, r1
are divisible by 3 and over r∞ divisible by 30;

– π3 is a triple cover, branched in three points so that all local rami-
fication indices of ι3 are divisible by 30;

– the standard map C30 → P1 is ramified over 3 points with RD =
{(301), (152), (301)}.

Thus C6 ⇒ C30 ⇒ C5, as claimed.

Theorem 2.7. — For all m, p ∈ N one has

C5m ⇒ C5pm.

Proof. — Let π : E5 → P1 be a degree 5 map from an elliptic curve,
given by a rational function f ∈ C(E5) with div(f) = 5(q0 − q∞), and
q0, q∞ ∈ E5. Assume that π has cyclic degree 5 ramification over 0 =
π(q0) and ∞ = π(q∞) and that the (unique) remaining degenerate fiber
of π contains two points with local ramification equal to 2 and one point
q1 where π is unramified. (Such a curve can be given as a quotient of the
modular curve X(10).)

Note that 5q0 = 5q1 = 5q∞ in Pic(E5). Since C5 ⇒ C20 it suffices to
consider the diagram

C20n

��

C1
τ1oo

ι1
��

C2
τ2oo

ι2
��

C2

ι′2
��

C3
τ3oo

ι3
��

P1 E5π
oo E5

φ5

oo
π

// P1 C25n.θ
oo

Here

– C1 = C20n×P1 E5, and τ1 has cyclic ramification of order 20 over q1;
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– C2 is (an irreducible component of) the fiber product C1 ×E5 E5;
– ι′2 = π ◦ ι2 has cyclic 100n ramifications over 0,∞ and only even

local ramification indices over 1;
– θ is the composition of the standard map C25n → P1 with a degree

two map P1 → P1 (given by x 7→ (x + 1/x) + 1), so that θ has the
following ramification: a unique degree 50 cyclic ramification point
over 0, two cyclic ramification points of degree 25 over ∞ and only
degree two local ramifications over 1.

Then the (irreducible component of the) fiber product C3 is unramified
over C2.

Corollary 2.8. — The subset of minimal curves in the class {Cn} is
infinite: if the only prime divisors of n are 2,3 or 5 then Cn is minimal.

Example 2.9. — Let

X(7) : x3y + y3z + z3x = 0

be Klein’s quartic plane curve of genus 3. It is easy to see thatX(7) ⇔ C7:
X(7) is isomorphic to the curve y7 = x2(x+ 1) while C7 is isomorphic to
y7 = x(x + 1). Thus their fiber product over P1 is unramified for both
projections.

The automorphism group Aut(X(7)) = PSL2(F7) contains (conju-
gated) symmetric groups S3 and every element σ of order two (invo-
lution) embedds into an S3. There standard quotient map

X(7)
PSL2(F7)−→ P1

can be factored as

X(7)
ι−→ E7

π−→ P1.

where

– E7 is an elliptic curve with complex multiplication by the maximal
order in Z[

√
−7];

– π is a degree 84 map with RD(π) = (712)∞, (3
28)1, (2

40)0);
– ι = ισ is a double cover branched in four points q1, . . . , q4 ∈ E7

which are exactly the nonramified points in the preimage of π−1(0).
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Moreover, there is a map

X(7)
S3−→ P1

which itself can be factored as

X(7)
ι′−→ E7

π′
−→ P1,

where

– ι′ is a degree 3 map and
– π′ is a double cover ramified in E7[2].

Lemma 2.10. — The unramified points q1, . . . , q4 ∈ π−1(0) and all points
in π−1(∞) are torsion points (with respect to the same zero on E7).

Proof. — We have class maps X(7) → J (d)(X(7)) to degree d Jacobians
of X(7) and an isogeny J (1)(X(7)) → J (4)(X(7)). We say that a point
in J (1)(X(7)) is torsion if it is torsion with respect to some (any) point
in the preimage of the canonical class cycle in J (4)(X(7))).

By the theorem of Manin-Drinfeld [9], [6], all points in (ι ◦ π)−1(∞)
are torsion (the precise description is given in [12], for example). The
involution σ defining ι : X(7) → E7 induces an involution on J (1)(X(7))
(denoted by the same letter σ). Our claim follows from the fact that the
fixed points of σ are torsion in J (1)(X(7)), which we now prove.

Consider the tangent action of S3 on J (1)(X(7)). The induced linear
representation decomposes as V1⊕V2, where V1 is the sign-representation
and V2 is the unique two-dimensional representation. For any involution
σ ∈ S3 the fixed point set is a finite union of elliptic curves which are
isogeneous to E7.

Let τ ∈ S3 be an element of order three and Tr : 1 + τ + τ 2 the trace
map on J (1)(X(7)). Then

– Tr maps J (1)(X(7)) to an elliptic curve E ′
7 isogenous to E7;

– the restriction of Tr to every elliptic curve in J (1)(X(7)) fixed by σ
is an isogeny;

– every point on X(7) ↪→ J (1)(X(7)) which is invariant under σ is
mapped to a point of order two on E ′

7.

This concludes the proof.
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Remark 2.11. — We observe that all points (ι◦π)−1(0) map to torsion
points in J (1)(X(7)). We don’t know whether this holds for other modular
curves or even if for preimages of 1.

Theorem 2.12. — For all m,n ∈ N one has

C7n ⇒ C7mn.

Proof. — Let π : E7 → P1 be a degree 84 map as in Example 2.9. with

RD(π) = {(712)∞, (3
28)1, (2

40)0},
and 4 further simple points q1, . . . , q4 over 0. All unramified points over
0 and all points over ∞ are torsion in Pic(E7) (with respect to the same
zero) 2.10. Since C7 ⇒ C42 it suffices to consider the diagram

C42n

��

C1
τ1oo

ι1
��

C2
τ2oo

ι2
��

C2

ι′2
��

C3
τ3oo

ι3
��

P1 E7π
oo E7

φ14

oo
π

// P1 C49n.θ
oo

Here

– C1 = C42n ×P1 E7, τ1 has cyclic ramification of order 42n in every
point in the preimage ι−1

1 (qi), for i = 1, . . . , 4;
– C2 is (an irreducible component of) the fiber product C1 ×E7 E7;
– ι′2 = π◦ ι2 has cyclic 42n ramifications over 0,∞ and only even local

ramification indices over 1;
– θ is the composition of the standard map C49n → P1 with a degree 6

map P1 → P1 so that θ has the following ramification: three degree
98n cyclic ramification points over∞, 98n cyclic ramification points
of degree 3 over 1 and only degree exactly two local ramifications
over 0.

Then the (irreducible component of the) fiber product C3 is unramified
over C2.

3. A graph on the set of elliptic curves

Axiomatizing the constructions of Section 2, we are lead to consider a
certain directed graph structure on the set E of all elliptic curves defined
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over Q̄, defined as follows: Write

E ⇁ E ′, resp. E 
 E ′,

if Bran(E ′, π′) is projectively equivalent to a set of four points in π(E[∞]),
resp. if E,E ′ are isogenous. Here π and π′ are the standard double covers
over P1. Note that the set

π(E[∞]) ⊂ P1(Q̄),

depends (up to the action of PGL2 on P1) only on E and not on the
choice of 0 ∈ E.

Definition 3.1. — Let E ′ be an elliptic curve. A curve C ′ is called
(E ′, n)-minimal if for every cover ι′′ : C ′′ → E ′ such that all local rami-
fication indices over at least one point in Bran(ι′′) are divisible by n one
has C ′′ ⇒ C ′.

Remark 3.2. — Note that every curve ι′ : C ′ → E ′ such that

– Bran(ι′) ⊂ E ′[∞];
– all local ramification indices of ι′ divide n.

is (E ′, n)-minimal.

Consider the standard action of the icosahedral group A5 on P1. Let

– κ5 : H5 → P1 be the hyperelliptic curve branched in the 12 five-
invariant points;

– κ3 : H3 → P1 the hyperelliptic curve branched in the 20 three-
invariant points;

– ι5 : C5 → P1 the standard curve from (1.1);
– ι : C → P1 the degree 4 cover ramified over the primitive 5th

roots {ζ i} of 1, with local ramification indices equal to 2; we have
g(C) = 2.

Proposition 3.3. — We have

H5 ⇔ H3 ⇔ C5 ⇔ C.

Proof. — First of all, H5 ⇒ C5, since 6 of the 12 points are projectively
equivalent to Bran(ι5) and hence an unramified degree two cover of H5

surjects onto C5. On the other hand, C30 ⇒ H5, since κ5 has three
ramification points with indices 2, 3, 10.
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Similarly, C30 ⇒ H3, since κ3 has 2, 6, 5 as local ramification indices.
On the other hand, H3/C5 is an elliptic curve, and the quotient map is
branched at 4 points with ramification indices equal to 5. Hence H3 ⇒ C5.
Since κ5 is two-ramified over the 5-th roots of unity plus 0, we have
C5 ⇒ C.

Finally, let R be the fiber product of five degree 2-covers P1 → P1

ramified over, ζ i, ζ i+1, for i = 1, . . . , 5. Then R → P1 is a Galois cover,
consisting of two components R1, R2, each of genus 5, each ramified over
P1 with degree 16 (32 − 8 · 5 = −8). The natural action of the cyclic
group C5 on R1 has two invariant points (among the preimages of 0,∞),
hence R1/C5 is an elliptic curve and, consequently, R1 ⇒ C5. At the
same time, R1 ⇔ C.

Note that C is (E(ζ, ζ2, ζ3, ζ4), 2)-minimal, since its 2-ramifications lies
over points of finite order. Similarly, X(7) is 2-minimal with respect to
E7.

Proposition 3.4. — Let C ′ be an (E ′, n)-minimal curve and E ⇁ E ′.
Let ι : C → E be a cover such that there exists an e ∈ E with the
property that for all c ∈ ι−1(e) the local ramification indices are divisible
by n. Then C ⇒ C ′.

Proof. — As in Section 2.

Remark 3.5. — Proposition 3.4 explains why we are interested in min-
imal elements of the graph E : curves E ′ such that for every curve E there
is a finite chain

E ⇁ E1 · · ·⇁ E ′

ending at E ′. We have shown that E has a minimal element

E0 = C3 : y3 = x2 + 1,

(for any E the curve E0 is ramified over the images of torsion points of
order 3 of E in P1). Thus any curve isogenous to E0 is also minimal as is
any curve E ′ with E0 ⇁ E ′. In particular, every curve ι : C → E0 such
that Bran(ι) ⊂ E0[∞] with local ramification indices equal to products
of powers of two and three is minimal in the sense of Section 2.
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Remark 3.6. — Note that E does not have a maximal element, that is,
a curve E such that for every elliptic curve E ′ there is a chain

E ⇁ E1 ⇁ . . . ⇁ E ′,

(in the class E). This follows from the observation that the Galois groups
of fields obtained by adjoining torsion points are contained in iterated ex-
tensions of subgroups GL2(Z/m). In particular, fields with simple Galois
groups (over the ground field) which have no faithful two-dimensional
representations over Fp, for every prime p, cannot be realized.

Lemma 3.7. — Let E ⇁ E ′ be nonisogenous elliptic curves and let
ι : C → E be a cover, such that ι has at least one local ramification
index divisible by 2n. Then there is a cover ι′ : C ′ → E ′ from a curve
C ′ such that C ⇒ C ′, and Bran(ι′) includes points in E ′(Q̄) \ E ′[∞].

Proof. — Consider the diagram

C

ι

��

C1
τ1oo

ι1

��

C1

��

C ′

ι′

��

τ ′
oo

E Eϕm

oo
π

// P1 E ′.
π′

oo

Here

– m is such that Bran(π′) ⊂ π(E[m]), it exists since E ⇁ E ′;
– there exists a point q ∈ π(E[m]) \Bran(π′) such that the difference

between the two preimages of q, under π′, in E ′ is of infinite order
in E ′(Q̄).

This last claim holds since the set

π(E[∞]) ∩ π′(E ′[∞]) ⊂ P1

is finite, provided E is nonisogeneous to E ′. Indeed, consider the map

ρ : E × E ′ → P1 × P1 ⊃ ∆(P1)

of degree 4, induced by π, π′. For nonisogeneous E,E ′, the genus of the
preimage of the diagonal C := ρ−1(∆(P1)) is ≥ 2. By a theorem of
Raynaud [13], the set

C(Q̄) ∩ (E[∞]× E ′[∞])
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is finite (in fact, one can effectively estimate its cardinality).

Lemma 3.8. — The set π(E[∞]) ∩Gm[∞] ⊂ P1(Q̄) is finite.

Proof. — Follows from McQuillan’s generalization of a theorem of Ray-
naud’s (see [10], [13], and also [5]). Consider the map

(θ, zm) : E × P1 → P1 × P1.

Then the preimage of the diagonal (θ, zm)−1(∆) is an affine open curve C
of genus > 1. The finiteness of the intersection of C with (E×Gm)tors ⊂
E × P1 follows.

A cycle in E is a finite set of curves E,E1, . . . ∈ E such that

E ⇁ E1 ⇁ . . . ⇁ E.

Remark 3.9. — Lemma 3.7 shows that each nontrivial cycle for E gives
new (E, n)-minimal curves, which are n-ramified over points of infinite
order in E(Q̄).

We now exhibit several such cycles in E .

Lemma 3.10. — For any x ∈ P1 \ {0, 1,∞} one has

E(0, 1, x2,∞) ⇁ E(0, 1, x,∞).

Proof. — On the curve E(0, 1, x2,∞) the preimages of the points x,−x
have order 4, since the involution z → x2/z maps 0 → ∞ and 1 → x2,
and has x,−x as invariant points. In particular, by definition,

E(0, 1, x2,∞) ⇁ E(0, 1, x,∞) and E(0, 1, x2,∞) ⇁ E(0, 1,−x,∞).

Corollary 3.11. — Let ζ = ζ2n be 2n-root of unity. Then

E(0, 1,−1,∞) ⇁ E(0, 1, ζ,∞).

Corollary 3.12. — Let ` be an odd number. Then

E(0, 1, ζ`,∞) ⇁ E(0, 1, ζ` · ζ2n ,∞),

where ζm is an m-th root unity.

Proof. — Some 2m-th power of ζ` · ζ2n is equal to ζ`.
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Corollary 3.13. — Let ` be an odd number. The set

{E(0, 1, ζj` ,∞)}
decomposes into φ(`)/d` (nontrivial) cycles of length d`, where φ is the
Euler function and d` is the maximal power of 2 dividing φ(`).

Corollary 3.14. — For any x ∈ P1 \ {0, 1,∞} one has

E(0, 1, (x− 1)2,∞) ⇁ E(0, 1, x,∞)

and similarly,

E(0, 1, (2− x)x,∞) ⇁ E(0, 1, x,∞).

Proof. — We use the isomorphism

E(0, 1, (1− x),∞) ∼ E(0, 1, x,∞).

4. Collecting points

Lemma 4.1. — Let Ad be the complex affine space of dimension d. For
x ∈ Ad(C) let Sx be the affine algebraic variety characterized by the
property:

– x ∈ Sx and
– for every quadratic polynomial g ∈ C[y], g(y) = g2y

2 + g1y+ g2, and
every a = (a1, . . . , ad) ∈ Sx one has (g(a1), . . . , g(ad)) ∈ Sx.

Then Sx is irreducible and is either equal to Ad or is contained in one of
the diagonals ∆ij := {xi = xj, i 6= j}.

Proof. — Note that Sx is built from x as an iteration of vector bundles.
At each step we have an irreducible variety. The procedure stabilizes
after finitely many steps (by dimension reasons). Thus Sx is irreducible.

We proceed by induction on d. For d = 1, 2, 3 the claim is trivial.
Assume the claim holds for all d′ < d. We may also assume that Sx ⊂ An

is a hypersurface not coinciding with a diagonal ∆ij. Otherwise, the
projection of Sx onto the first d− 1 coordinates Ad−1 ⊂ Ad would not be
surjective and hence, by the inductive assumption, contained in one of
the diagonals, which would prove our claim.
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We see that πd−1 : Sx → Ad−1 is a generically finite cover. Let

Td−1 := {(t1, . . . , td−1)} ⊂ Ad−1

be such that all tj are roots of unity of odd order. The set Td−1 is Zariski
dense in Ad−1. It contains a subset T 0

d−1 which is Zariski dense in Ad−1

and has the property that all fibers of πd−1 over T 0
d−1 are nonempty and

finite.
Note that for each t = (tj)j=1,...,d−1 ∈ T 0

d−1 there exists an n = nt ∈ N
such that t2

n

j = tj for all j = 1, . . . , d − 1. This implies that the fiber

over t is mapped into itself by the map (aj)j=1,...,d−1 7→ (a2n

j )j=1,...,d−1. In

particular, there is a point b ∈ π−1
d−1t and an n′ ≥ n such that is fixed

under the map

(bj)j=1,...,d−1 7→ (b2
n′

)j=1,...,d−1.

We see that bj are torsion points in C∗, for all j = 1, . . . , d− 1.
If S0 ⊂ (C∗)d is an algebraic subvariety and T ⊂ S0 ∩ (C∗)d the subset

of torsion points then S0 contains a finite set of translates of subtori by
torsion points which contains T (see [5], [15]). If follows that Sx contains
a subtorus (C∗)d−1 ⊂ (C∗)d as a Zariski open subvariety.

Thus Sx ⊂ Ad is given by an equation∏
j∈J

x
nj

j =
∏
j′∈J ′

x
nj′

j′ ,

where J ∩ J ′ ⊂ [1, . . . , d] and nj, n
′
j > 0. The intersection of Sx with

every diagonal ∆ij is a proper subset (by assumption) and therefore (by
induction) a finite union of subdiagonals (the intersection Sx∩∆ij is sta-
ble under quadratic transformations). We may assume that J ⊃ {x1, x2}
and consider the diagonal ∆34 := {x3 = x4} (recall that d ≥ 4). The
resulting equation for Sx ∩ ∆34 does not define a subset of a union of
diagonals.

Corollary 4.2. — Let K/Q be a field extension of degree d = r1+2r2,
with r1 real and r2 (pairs of) complex embeddings, and

K ↪→ Rr1 ⊕ C2r2 ↪→ Cd = Ad(C)

the corresponding map into the complex affine space. Let x ∈ K∗ be a
primitive element (a generator of the field K over Q). For any Zariski
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closed subset Z ⊂ Ad there exists a finite sequence of quadratic polyno-
mials gi ∈ Q[x], i = 1, . . . , n, such that g1(g2(· · · (gn(x)))) /∈ Z.

Proof. — Since x is primitive, it is not contained in any diagonal in Ad.
Therefore, the variety Sx constructed in Lemma 4.1 coincides with Ad. It
suffices to observe that the image of x under Q-rational quadratic maps
is Zariski dense in Sx = Ad (at each step of the inductive construction,
we get a Zariski dense set of points in the total space of the vector
bundle).

For q ∈ Q̄ let deg(q) be the degree of the minimal polynomial f =
fq(x) ∈ Q[x] vanishing in q and K = Kq/Q the field generated by q.

Corollary 4.3. — Let q ∈ Q̄. Then there exists a sequence of quadratic
polynomials gi ∈ Q[x] such that g := g1(g2 · · · (gn(x))) ∈ Q[x] has the
property that

– deg(g(q)) = deg(q)/2k, for some k ∈ N, and
– the derivative of the minimal polynomial fg(q)(x) ∈ Q[x] of g(q) ∈ Q̄

has no multiple roots.

Proof. — The first condition is satisfied, since a Q-rational quadratic
maps can diminish the degree of the minimal polynomial at most by a
factor of 2. The second condition amounts to a Zariski closed condition
on the set of points in Kq ⊂ Adeg(q)(C).

Let f : P1 → P1 be a rational map and Ram(f) = {q | f ′(q) = 0} ⊂ P1

the set of ramification points.

Theorem 4.4. — For any finite set Q ⊂ P1(Q̄) there is rational map
f : P1 → P1 such that

{f(q), q ∈ Q} ∪ Ram(f) ⊂ P1(Q).

Moreover, the only prime dividing a local ramification index of f is 2.

Remark 4.5. — This is an analog of the first part of Belyi’s theorem,
with restrictions on the ramification. The proof follows the general line
of Belyi’s argument.
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Proof. — We proceed by induction on m := max(deg(q)), for q ∈ Q.
Observe, that for all f ∈ Q[x] and all q ∈ Q̄ we have

deg(f(q)) ≤ m.

Assume that m = 2k and let r ∈ Q be a point with minimal poly-
nomial f = fq of degree m. If f ′ ∈ Q[x] has no multiple roots, then
f(Q)

⋂
div0(f

′) has fewer points of degree m: f maps q to zero and
the zeroes of f ′ have degree < m. Moreover, the local ramification
indices of f are powers of 2. If f ′ has multiple roots, we apply a se-
quence of Q-rational quadratic maps as in Corollary 4.3, to replace q by
q′ := g1(g2 · · · (gn(q))) so that the derivative of the minimal polynomial
fq′(x) ∈ Q[x] of q′ has no multiple roots. The local ramification indices
of a sequence of quadratic maps are powers of 2.

Now assume that 2k−1 < m < 2k, for some k ∈ N, and put s = 2k−m.
Identify the space Fm of monic degree d polynomials with the affine space

Ad = {f0 + f1x+ · · · fd−1x
d−1 + xd}

and consider the following Q-variety:

X ⊂ Fm × Fs × As = {(a1, . . . , as)},
given by

(4.1) (f · g)′(aj) = 0, for all j = 1, . . . , s.

For fixed f ∈ Fm and a ∈ As we get a system of non-homogeneous linear
equations, where the variables are the coefficients of g. For generic, in
Zariski topology on Fm×As, choices of f and a we get a unique solution,
and a Q-birational parametrization of X by Fm × As = Am+s (here we
use m > s). Thus the set of Q-rational triples (f, g, a) subject to the
equations (4.1) is Zariski dense in X.

The natural Q-rational projection

X → Fm × Fs

is surjective (this can be checked over C). In particular, X(Q) is Zariski
dense in X. The preimage Z ⊂ X of the subset of those (f, g) where
(fg)′ and g have multiple roots is a proper subvariety.

Applying Q-rational quadratic maps as in Lemma 4.1, if necessary, we
find a generic f = fq ∈ Fm(Q) and, by the argument above, a generic
g ∈ Fs(Q) such that there is a point (f, g, a) ∈ (X \ Z)(Q) over (f, g).



20 FEDOR BOGOMOLOV and YURI TSCHINKEL

The map h := fg : P1 → P1 has the following properties:

– h(q) = 0 and Q has stricly fewer points of degree m;
– by construction, (fg)′ has at least s distinct Q-rational roots so that

the degree of points added to Q (the zeroes of (fg)′) is strictly less
than m;

– all local ramification indices are powers of 2.

This concludes the induction and the proof of the theorem.

Remark 4.6. — A similar statement holds over function fields of any
characteristic (6= 2). Using the techniques from [2] one can show the
following result: for any affine algebraic variety X over an algebraically
closed field there exist a proper finite map π : X → An and a linear
projection λ : An → An−1 such that π is ramified only in the sections of
λ and the local ramification indices are powers of 2.

Remark 4.7. — The methods of Belyi of collecting Q-points on P1 pro-
duce ramification indices which depend on all pairwise differences be-
tween the coordinates of the points (for an exposition, see [3], Chapter
10). They cannot be applied in the construction of maps with restricted
ramification.
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arithmétiques”, Astérisque (1990), no. 183, p. 37–58, Séminaire sur
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