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1. Introduction

A classical theme in mathematics is the study of integral solutions of dio-
phantine equations, that is, equations with integral coefficients. The main
problems are

– decide the existence (or nonexistence) of solutions;
– find (some or all) solutions;
– describe (qualitatively or quantitatively) the set of solutions.

Even the first of these questions is difficult, in full generality. As we know
from logic, it is, in a sense, equivalent to all (formal) mathematics: for a given
formal language, there exists one (nonhomogeneous) polynomial f(t, x1, ..., xn)
(with Z-coefficients) such that the Statement #t is provable in this language
iff the equation f(t, x1, ..., xn) = 0 has a solution with (x1, ..., xn) ∈ Zn. Thus,
at least theoretically, one can convert a problem in any field of mathematics,
e.g. topology, to a problem in number theory. This is convincing evidence that
general diophantine equations are extraordinarily complex.

Nevertheless, there exist classes of equations, for which the above questions
may have a satisfactory answer. Below I will show how some of these classes
arise in practice. But first notice that the questions are “invariant” under coor-
dinate changes. This central observation signals the entry of algebraic geome-
try into the subject. Algebraic geometry does not only simplify and streamline
manipulations of bulky equations (providing “models”). More importantly, it
opens the field to geometric intuition and geometric constructions.
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From now on, let X/Q be a projective algebraic variety. Thus X is defined
by a system of homogeneous equations with Q-coefficients. Rational points
on X are (equivalence classes of) rational solutions to these equations. It is a
natural idea that in the stable range, that is, after passing to a finite extension
of Q and restricting to some Zariski open subset X0 of X there should be
a relation between the set of rational points of X0 and geometric invariants
of X. This idea not only explains and unifies “statistical” data (numerical
experiments, theoretical results) but also arms us with predictive power. It is
a source of inspiration to both fields: arithmetic and geometry.

The focus of this survey is the relationship between the asymptotic distribu-
tion of rational points of bounded height on varieties with many rational points
and their global geometric invariants: the cone of (classes of) effective divisors
and the position of the anticanonical class with respect to this cone. We will be
mostly concerned with rational varieties so that the points are already Zariski
dense. In fact, most of the varieties are compactifications of algebraic groups
or homogeneous varieties and the proofs of asymptotics of rational points rely
on harmonic analysis on the corresponding adelic spaces. My main goal in
these notes is to show where the geometric invariants enter the analysis and
how the analysis forces us to introduce new geometric tools.

Here is a brief outline of the paper. In Section 2 we introduce the main
geometric invariants of interest to us. In Section 3 we explain the problem and
state known results. In Section 4 we define Tamagawa numbers which appear
in asymptotics of rational points of bounded height. Finally, in Section 5 we
illustrate the interaction between geometry and arithmetic in several examples.
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2. Geometry

In this section we introduce some geometric background material and define
certain geometric invariants which will be used in arithmetic investigations
later on. Here we work over an algebraically closed field of characteristic zero.

2.1. Main invariants. — Let X be a smooth projective algebraic variety.
The main global geometric invariants of interest to us are

– the Picard group Pic(X) and the Néron-Severi group NS(X);
– the (closed) cone of effective divisors

Λeff(X) ⊂ Pic(X)R = Pic(X)⊗ R

and (the closure of) the ample cone Λample(X) ⊂ Λeff(X);
– the canonical class KX .

One can think of these as being combinatorial data encoding the geometry
of X (fibration structures etc.). In all of our applications, Pic(X) = NS(X),
Λeff(X) is finitely generated and −KX is contained in the interior of Λeff(X).

Example 2.1.1. — Let X = Xd ⊂ P
n be the hypersurface defined by a

(smooth) homogeneous form f of degree d in n + 1 variables (with n ≥ 4).
Then

– Pic(X) = Z ·H (where H is the hyperplane class);
– Λeff(X) = Λample(X) is generated by H;
– −KX = (n+ 1− d)H.

Example 2.1.2. — Let X = M̄0,5 be the moduli space of stable curves of
genus 0 with 5 punctures, classically known as the Del Pezzo surface of degree
5. It can be realized as a blow-up of P2 in four points. We write H for the
(proper transform) of the hyperplane class on P2 and E1, ..., E4 for the classes
of the exceptional curves. Then

– Pic(X) = Z5 = 〈H,E1, ..., E4〉;
– Λeff(X) is generated by the classes Ei, H−Ei−Ej, and Λample(X) is dual

to it (with respect to the intersection pairing);
– −KX = 3H − (E1 + ...+ E4).

For more information, see [33] or [24].
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Example 2.1.3. — Let X = M̄0,6 be the moduli space of stable curves of
genus 0 with 6 punctures. It can be realized as a blow-up of P3 in 5 points
and 10 lines joining pairs of these points. We write H for the hyperplane class,
E1, ..., E5 for the proper transforms of the 5 points and Eij for the proper
transforms of lines through the points i and j. By [24], we have:

– Pic(X) = Z16 = 〈H,Ei, Eij〉 with i 6= j ∈ [1, ..., 5], Ei,j = Ej,i;
– Λeff(X) is generated by

Ei, Eij, H − (Ei + Ej + Ek + Eij + Eik + Ejk),

2H − (E1 + ...+ E5)− (Eik + Ei` + Ejk + Ej`)

(altogether 40 generators);
– −KX = 4H − 2(E1 + ...+ E5)− (

∑
i<j Eij).

The S6-invariant ample cone has two generators, denoted by L3 and L4. The
associated line bundles give maps

f3 : M̄0,6 → S3 ⊂ P4,

f4 : M̄0,6 → I4 ⊂ P4,

with images the Segre cubic:

S3 :
5∑
i=0

x3
i =

5∑
i=0

xi = 0,

respectively, the Igusa quartic:

I4 : (x0x1 + x0x2 + x1x2 − x3x4)2 − 4x0x1x2(x0 + x1 + x2 + x3 + x4) = 0,

(see [26] for more information about these varieties).

Example 2.1.4. — Let X be an equivariant compactification of a unipotent
algebraic group. Then

– Pic(X) = ⊕j∈JDj, where Dj are classes of the irreducible components of
the boundary;

– Λeff(X) is generated by the Dj;
– −KX =

∑
j∈J κjDj, with κj ≥ 2 for all j ∈ J (see [23]).

Example 2.1.5. — Let X = B\G be a generalized flag variety: G is a semi-
simple algebraic group and B ⊂ G a Borel subgroup. Then

– Pic(X)Q = X∗(T)Q (the characters of the maximal torus T ⊂ B);
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– Λeff(X) = Λample(X) is generated by the fundamental weights ωj, j =
1, ..., rk G;

– −KX = 2ρ (sum of roots occurring in the unipotent radical of B).

Example 2.1.6. — Let X be the wonderful compactification of a semi-
simple group G of adjoint type (see [15]). Then

– Pic(X)Q = X∗(T)Q (where T is the maximal torus in G);
– Λeff(X) is generated by the positive simple roots, αj, j = 1, ..., rk G;
– Λample(X) is generated by the fundamental weights ωj, j = 1, ..., rkG;
– −KX = 2ρ+

∑
j αj.

2.2. Rough classification. — Let me recall the very rough classification of
smooth algebraic varieties (over an algebraically closed field) according to the
position of the anticanonical class with respect to the ample cone. There are
three main cases:

– Fano: −KX ample;
– general type: KX ample;
– intermediate type: none of the above.

In finer classification schemes and in the minimal model program it is impor-
tant to include varieties with certain “mild” singularities (see [29]). Similarly,
in many arithmetic questions, the passage to singular varieties is inevitable
(see Section 4). Some examples of varieties in each group are contained in the
following table:

dim Fano Intermediate type General type

1 P
1 elliptic curves C, g(C) ≥ 2

2 P
2,P1 × P1, K3 surfaces : X4 ⊂ P3, ... ...
M̄0,5, X3 ⊂ P3, ... abelian surfaces, ...

3 smooth : ∼ 120 families Calabi− Yau varieties ...
singular : M̄0,6, .... ...
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Smooth Fano surfaces, also known as Del Pezzo surfaces, have been classified
by the Italian school. The classification of smooth Fano threefolds, initiated
by Fano, advanced by Iskovskikh [27] and completed by Mori-Mukai [35], is a
major achievement of modern algebraic geometry. After Kollár and Mori [31],
one knows that there are only finitely many families of smooth Fano varieties
in each dimension. It seems plausible, that certain classes of varieties of in-
termediate type will also admit a good description (for example, holomorphic
symplectic varieties). For a recent approach to the classification of algebraic
varieties see [8].

In our arithmetic applications we will mostly encounter varieties on the left
side of the table.

2.3. Cones. — Let (A,Λ) be a pair consisting of a lattice and a strictly
convex (closed) cone in AR: Λ∩−Λ = 0. Let (Ǎ, Λ̌) the pair consisting of the
dual lattice and the dual cone defined by

Λ̌ := {λ̌ ∈ ǍR | 〈λ′, λ̌〉 ≥ 0, ∀λ′ ∈ Λ}.
The lattice Ǎ determines the normalization of the Lebesgue measure dǎ on ǍR
(covolume =1). For a ∈ AC define

XΛ(a) :=

∫
Λ̌

e−〈a,ǎ〉dǎ.(2.1)

The integral converges absolutely and uniformly for <(a) in compacts con-
tained in the interior Λ◦ of Λ.

Definition 2.3.1. — Assume that X is smooth, NS(X) = Pic(X) and that
−KX is in the interior of Λeff(X). We define

γ(X) := XΛeff(X)(−KX).

Remark 2.3.2. — This constant measures the volume of the polytope ob-
tained by intersecting the affine hyperplane 〈−KX , ·〉 = 1 with the dual to
the cone of effective divisors Λeff(X) in the dual to the Néron-Severi group.
The explicit determination of γ(X) can be a serious problem in linear pro-
gramming. For example, let X be the moduli space M̄0,6 (see Example 2.1.3).
The dual to the cone Λeff(X) has 3905 generators (in a 16-dimensional vector
space), forming 25 orbits under the action of the symmetric group S6.
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Let (A,Λ,−K) be a triple consisting of a (torsion free) lattice A = Z
n,

a (closed) strictly convex polyhedral cone in AR generated by finitely many
vectors in A and a vector −K ⊂ Λ◦ (the interior of Λ). For L ∈ Λ◦ we define

a(Λ, L) = inf{a | aL+K ∈ Λ}

and b(Λ, L) as the codimension of the minimal face of Λ containing the class
a(Λ, L)L + K. Obviously, for L = −K we get that a(Λ,−K) = 1 and that
b(Λ,−K) equals the rank of A.

2.4. Cones in geometry. — In this section we assume that X is a smooth
projective Fano variety (−KX ∈ Λample(X)). We have a sequence of inclusions:

Λample(X) ⊂ Λeff(X) ⊂ Pic(X)R.

Projectivity implies that Λample(X) contains an open subset. The finer clas-
sification theories of Mori (resp. Fujita) are based on the study of Λample(X)
(resp. Λeff(X)). We now give a simplified picture of these theories by stating
some basic theorems and conjectures. We refer to [29] and [20] for more de-
tails. The conjectures are proved for all Fano varieties of dimension ≤ 3 and
certain classes of varieties, like toric varieties, in arbitrary dimension [31], [1].

Theorem 2.4.1. — The cone Λample(X) is finitely generated.

Conjecture 2.4.2. — The cone Λeff(X) is finitely generated.

Remark 2.4.3. — The ample cone Λample(X) can be finitely generated even
when −KX is not ample (or even effective). For example, Λample(X) is finitely
generated for every toric variety or every variety with rk NS(X) = 1.

Let Λ ⊂ Pic(X)R be a finitely generated rational cone. For L ∈ Λ◦, with
a(Λ, L) ∈ Q, we define

R(Λ, L) := ⊕ν≥0H
0(X, (L⊗a(Λ,L) ⊗KX)⊗kv)

(where k is the denominator of a(Λ, L)).
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Conjecture 2.4.4. — Let X be a smooth Fano variety and L (the class
of) a very ample line bundle on X. Then the rings R(Λample(X), L) and
R(Λeff(X), L) are finitely generated.

Moreover, there should be diagrams:

Mori Fujita

X L|Xy ∼ −KXy
...
↓
Y = Proj(R(Λample(X), L))

X L|Xy ∼ −KXy + E
...
↓
Y = Proj(R(Λeff(X), L))

where L is ample and E a rigid effective divisor (and ∼ means proportional).
Recall that a divisor E is called rigid if h0(O(νE)) = 1 for ν � 0. Intuitively,
the following is happening: at a = a(Λample(X), L) (resp. a = (Λample(X), L))
the divisor aL + KX just fails to be ample (resp. big). But a divisor in this
class could still move and define a fibration, rather than an embedding.

Remark 2.4.5. — Fujita’s program follows from Mori’s Minimal Model Pro-
gram [1]. We formulated it independently since in arithmetic applications we
need the effective cone. Moreover, in our examples the anticanonical class is
in the interior of the effective cone but not always ample (for example, toric
varieties) and the cone Λample(X) is not always finitely generated (for example,
equivariant compactifications of unipotent groups).

3. Arithmetic

3.1. Asymptotics. — Let F be a finite extension of Q. The conjectures
of Bombieri, Lang and Vojta predict that on a variety X (over F ) of general
type the set X(F ) of F -rational points is not Zariski dense (see [49]). Faltings
proved this for subvarieties of abelian varieties [18]. On the other hand, one
expects that Fano varieties should have a Zariski dense set of rational points,
at least after a finite extension of F . See [24], [7] for some partial results and
[22] for a recent survey. Most of the time, we will be interested in rational
varieties, so that rational points are a priori Zariski dense. We will study the
asymptotic distribution of rational points of bounded height.
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For X = Pn one can define a height

H : P
n(F ) → R>0,

(x0 : ... : xn) 7→
∏

v maxj(|xj|v),
where the product is over the set Val(F ) of all valuations of F . The choice
of the norm maxj(|xj|v) in the vector space F n+1 is to some extent arbitrary.
Namely, replacing the norms by comparable (homogeneous) norms at finitely
many places one obtains a new height. For example, at the infinite places one
could replace

max(|xj|v) by (
∑
j

|xj|2v)1/2.

One refers to such choices of norms as fixing the metrization (see Section 4.1
for more details).

Let X be projective, L a very ample line bundle on X and

fL : X → P
n = P(H0(X,L))

the corresponding embedding into a projective space. We have an induced
(exponential) height:

HL : X(F ) → R>0,
x 7→ H(fL(x)).

We wrote L to stress the dependence of the height on the metrization. The
set of points of L-height bounded by B > 0 is finite. We define the counting
function

N(U,L, B) := #{x ∈ U(F ) |HL(x) ≤ B},
where U ⊂ X is a Zariski open subset.

The following theorem summarizes most of the known results concerning
asymptotics of rational points of bounded height on algebraic varieties.

Theorem 3.1.1. — Let X/F be one of the following varieties:

– smooth complete intersection of small degree (for example, [6]);
– flag variety [19];
– smooth toric variety [5];
– smooth equivariant compactification of G/U - horospherical variety, where

G is a semi-simple group and U ⊂ G a maximal unipotent subgroup [47];
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– smooth equivariant compactification of Gn
a [12];

– smooth bi-equivariant compactification of a unipotent group [44], [45];
– a wonderful compactification of an anisotropic form of a simple algebraic

group of adjoint type [42], [43].

Let HL be an appropriate height such that the corresponding class L ∈ Pic(X)
is contained in the interior of the cone of effective divisors and

a(L) = a(Λeff(X), L), b(L) = b(Λeff(X), L).

There exist a dense Zariski open subset U ⊂ X and a constant c(U,L) > 0
such that

N(U,L, B) =
c(U,L)

a(L)(b(L)− 1)!
Ba(L)(log(B))b(L)−1(1 + o(1)),

as B →∞.

Remark 3.1.2. — The constant c(U,L) depends, of course, not only on
the geometric data (U,L) but also on the metrization. The definitions are
postponed until Section 4.

Remark 3.1.3. — The theorem holds for singular varieties as well. One
has to apply the methods to some (equivariant) desingularization and use the
functoriality of heights: if π : X ′ → X is a birational map, inducing an
isomorphism π−1(U)

∼−→ U ⊂ X then

Hπ∗L(π−1(x)) = HL(x).

Consequently,

N(U,L, B) = N(π−1(U), π∗L, B).

Remark 3.1.4. — The only other classes of varieties (that I am aware of),
for which similar asymptotic formulas have been proved, is the class of certain
twisted products of flag varieties considered in [46] and M̄0,5 in its anticanonical
embedding [16].

Remark 3.1.5. — Notice that with the exception of complete intersections
the varieties from Theorem 3.1.1 have a rather simple “cellular” structure. In
particular, we can parametrize all rational points in some dense Zariski open
subset. The theorem is to be understood as a statement about heights: even
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the torus G2
m has very nontrivial embeddings into projective spaces and in each

of these embeddings we have a different counting problem.

Remark 3.1.6. — The restriction to Zariski open subvarieties is necessary,
as X may contain proper subvarieties Z such that

lim
B→∞

N(X \ Z,L, B)

N(Z,L, B)
= 0.

It is futile to try to relate the asymptotic of rational points on Z to geometric
invariants of X. Such varieties are called L-accumulating. The simplest exam-
ple is the blow-up of P2 in one point: the exceptional curve is accumulating
with respect to −KX .

Stratifications by accumulating subvarieties have been considered in [34].

4. Tamagawa numbers

In this section we show how to associate to a metrized ample line bundle
L a constant c(L) which should appear in the leading term of asymptotic
expansions for the number of rational points of bounded L-height. If L is
proportional to −KX then the main ingredient of c(L) is an adelic integral.
Otherwise, we use Fujita’s program to reduce to this situation.

The fact that a metrized canonical line bundle determines a measure is well
known in differential geometry. The same reasoning applies over the ade-
les. Integrals of such (suitably regularized) measures give Tamagawa numbers
which appear as factors in leading coefficients in Laurent expansions of zeta
functions.

4.1. Metrizations of line bundles. —

Notations 4.1.1. — Let F be a number field and disc(F ) the discriminant
of F (over Q). The set of places of F will be denoted by Val(F ). We shall
write v|∞ if v is archimedean and v - ∞ if v is nonarchimedean. For any
place v of F we denote by Fv the completion of F at v and by ov the ring of
v-adic integers (for v -∞). Let qv be the cardinality of the residue field Fv of
Fv for nonarchimedean valuations. The local absolute value | · |v on Fv is the
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multiplier of the Haar measure, i.e., d(axv) = |a|vdxv for some Haar measure
dxv on Fv. We denote by A = AF =

∏′
v Fv the adele ring of F .

Definition 4.1.2. — Let X be an algebraic variety over F and L a line
bundle on X. A v-adic metric on L is a family (‖·‖x)x∈X(Fv) of v-adic Banach
norms on Lx such that for every Zariski open U ⊂ X and every section g ∈
H0(U,L) the map

U(Fv)→ R, x 7→ ‖g‖x,
is continuous in the v-adic topology on U(Fv).

Example 4.1.3. — Assume that L is generated by global sections. Choose
a basis (gj)j∈[0,...,n] of H0(X,L) (over F ). If g is a section such that g(x) 6= 0
then define

‖g‖x := max
0≤j≤n

(|gj
g

(x)|v)−1,

otherwise ‖0‖x := 0. This defines a v-adic metric on L. Of course, this metric
depends on the choice of (gj)j∈[0,...,n].

Definition 4.1.4. — Assume that L is generated by global sections. An
adelic metric on L is a collection of v-adic metrics, for every v ∈ Val(F ), such
that for all but finitely many v ∈ Val(F ) the v-adic metric on L is defined by
means of some fixed basis (gj)j∈[0,...,n] of H0(X,L).

We shall write ‖ · ‖ := (‖ · ‖v) for an adelic metric on L and call a pair
L = (L, ‖·‖) an adelically metrized line bundle. Metrizations extend naturally
to tensor products and duals of metrized line bundles, which shows a way
to define adelic metrizations on arbitrary line bundles L (on projective X):
represent L as L = L1 ⊗ L−1

2 with very ample L1 and L2. Assume that L1, L2

are adelically metrized. An adelic metrization of L is any metrization which
for all but finitely many v is induced from the metrizations on L1, L2.

Definition 4.1.5. — Let L = (L, ‖ · ‖) be an adelically metrized line bundle
on X and g an F -rational section of L. Let U ⊂ X be the maximal Zariski
open subset of X where g is defined and is 6= 0. For all x = (xv)v ∈ U(A) we
define the local

HL,g,v(xv) := ‖g‖−1
xv
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and the global height function

HL(x) :=
∏

v∈Val(F )

HL,g,v(xv).

By the product formula, the restriction of the global height to U(F ) does
not depend on the choice of g.

Example 4.1.6. — For X = P
1 = (x0 : x1) one has Pic(X) = Z, spanned

by the class L = [(1 : 0)]. For all g = x0/x1 ∈ Ga(A) we define

HL,g,v(gv) = max(1, |g|v).
The restriction of HL =

∏
vHL,g,v to Ga(F ) ⊂ P1 is the usual height on P1

(with respect to the usual metrization of L = O(1)).

4.2. Geometry. — I follow closely the exposition in [5]. Let E/F be some
finite Galois extension such that all of the following constructions are defined
over E. Let (V,L) be a smooth quasi-projective d-dimensional variety together
with a metrized very ample line bundle L which embeds V in some projective

space Pn. We denote by V
L

the normalization of the projective closure of

V ⊂ Pn. In general, V
L

is singular. We will introduce several notions relying
on a resolution of singularities

ρ : X → V
L
.

Naturally, the defined objects will be independent of the choice of the resolu-
tion. For Λ ⊂ NS(X)R we define

a(Λ,L) := a(Λ, ρ∗L).

We will always assume that a(Λeff(X),L) > 0.

Definition 4.2.1. — A pair (V,L) is called primitive if a(Λeff(X),L) ∈ Q>0

and if there exists a resolution of singularities

ρ : X → V
L

such that for some k ∈ N
((ρ∗L)⊗a(Λeff(X),L) ⊗KX)⊗k = O(D),

where D is a rigid effective divisor (h0(X,O(νD)) = 1 for all ν � 0).

Example 4.2.2. — of a primitive pair: (V,−KV ), where V is a smooth pro-
jective Fano variety and −KV is a metrized anticanonical line bundle.
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Let k ∈ N be such that a(Λ,L)k ∈ N and consider

R(Λ,L) := ⊕ν≥0H
0(X, (((ρ∗L)a(Λ,L) ⊗KX)⊗k)⊗ν).

As explained in Section 2.4, in both cases (Λ = Λample or Λ = Λeff ) it is
expected that R(Λ,L) is finitely generated and that we have a fibration

π = πL : X → Y L,

where Y L = Proj(R(L,Λ)). For Λ = Λeff(X) the generic fiber of π is (expected
to be) a primitive variety in the sense of Definition 4.2.1. More precisely, there
should be a diagram:

ρ : X → V
L ⊃ V

↓
Y L

such that:
• dim(Y L) < dim(X);
• there exists a Zariski open U ⊂ Y L such that for all y ∈ U(C) the pair

(Vy,Ly) is primitive (here Vy = π−1(y) ∩ V and Ly is the restriction of L to
Vy);
• for all y ∈ U(C) we have a(Λeff(X),L) = a(Λeff(Vy),Ly);
• For all k ∈ N such that a(Λeff(X),L)k ∈ N the vector bundle

Lk := R0π∗(((ρ
∗L)⊗a(Λeff(X),L) ⊗KX)⊗k)

is in fact an ample invertible sheaf on Y L.
Such a fibration will be called an L-primitive fibration. A variety may admit

several primitive fibrations.

Example 4.2.3. — Let X ⊂ Pn1 × Pn2 (n ≥ 2) be a hypersurface given by
a bi-homogeneous form of bi-degree (d1, d2). Both projections X → P

n
1 and

X → P
n
2 are L-primitive, for appropriate L. In particular, for n = 3 and

(d1, d2) = (1, 3) there are two distinct −KX-primitive fibrations: one onto a
point and another onto P3

1.
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4.3. Tamagawa numbers. — For smooth projective Fano varieties X with
an adelically metrized anticanonical line bundle Peyre defined in [39] a Tama-
gawa number, generalizing the classical construction for linear algebraic groups.
We need to further generalize this to primitive pairs.

Abbreviate a(L) = a(Λeff(X),L) and let (V,L) be a primitive pair such that

O(D) := ((ρ∗L)⊗a(L) ⊗KX)⊗k,

where k is such that a(L)k ∈ N and D is a rigid effective divisor as in Defi-
nition 4.2.1. Choose an F -rational section g ∈ H0(X,O(D)); it is unique up
to multiplication by F ∗. Choose local analytic coordinates x1,v, ..., xd,v in a
neighborhood Ux of x ∈ X(Fv). In Ux the section g has a representation

g = fka(L)(dx1,v ∧ ... ∧ dxd,v)k,

where f is a local section of L. This defines a local v-adic measure in Ux by

ωL,g,v := ‖f‖a(L)
xv dx1,v · · · dxd,v,

where dx1,v · · · dxd,v is the Haar measure on F d
v normalized by vol(odv) = 1.

A standard argument shows that ωL,g,v glues to a v-adic measure on X(Fv).
The restriction of this measure to V (Fv) does not depend on the choice of the

resolution ρ : X → V
L
. Thus we have a measure on V (Fv).

Denote by (Dj)j∈J the irreducible components of the support of D and by

Pic(V,L) := Pic(X \ ∪j∈JDj).

The Galois group Γ acts on Pic(V,L). Let S be a finite set of valuations of
bad reduction for the data (ρ,Dj, etc.), including the archimedean valuations.
Put λv = 1 for v ∈ S, λv = Lv(1,Pic(V,L)) (for v 6∈ S) and

ωL := L∗S(1,Pic(V,L))|disc(F )|−d/2
∏
v

λ−1
v ωL,g,v.

(Here Lv is the local factor of the Artin L-function associated to the Γ-module
Pic(V,L) and L∗S(1,Pic(V,L)) is the residue at s = 1 of the partial Artin L-
function.) By the product formula, the measure does not depend on the choice
of the F -rational section g. Define

τL(V ) :=

∫
X(F )

ωL,
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where X(F ) ⊂ X(A) is the closure of X(F ) in the direct product topology.
The convergence of the Euler product follows from

h1(X,OX) = h2(X,OX) = 0.

We have a map

ρ̃ : Pic(X)R → Pic(V,L)R

and we denote by

Λeff(V,L) := ρ̃(Λeff(X)) ⊂ Pic(V,L)R.

Definition 4.3.1. — Let (V,L) be a primitive pair as above. Define

c(V,L) := XΛeff(V,L)(ρ̃([−KX ])) · |H1(Γ,Pic(V,L))| · τL(V ).

Example 4.3.2. — Let us return to the Example 2.1.3. For the image of
M̄0,6 under f3 (the Segre cubic) one knows an upper and lower bound:

c′B2 log(B)5 ≤ N(U,L3, B) ≤ c′′B2 log(B)5,

for an appropriate Zariski open U and some constants c′, c′′ ≥ 0 [50]. An
asymptotic formula for N(U,L3, B) of this shape would be compatible with the
description in Theorem 3.1.1. Moreover, we are now in the position to specify
a constant c which should appear in this asymptotic (answering a question in
[50]). Indeed, the Segre cubic threefold is singular (it has 10 isolated double
points). The blow-up X = S̃3 of 5 points on P3 is a desingularization of S3. Its
Picard group Pic(X) is freely generated by the classes H,Ej (for j = 1, ..., 5).
The effective cone is generated by the classes Ej, H − (Ei +Ej +Ek) and the
anticanonical class is given by

−KX = 4H − 2(E1 + ...+ E5).

The line bundle on S3 giving the Segre embedding pulls back to L = −1/2·KX .
Clearly, a(L) = 2 and b(L) = rk Pic(X) = 6 (see also [5], Section 5.2). The
predicted leading constant c = γ · τ , where

γ =
25

5!
XΛ(−KX)

and

τ = τ∞ ·
∏
p

(1− 1/p)6(1 + 6/p+ 6/p2 + 1/p3),

(τ∞ is the “singular integral” - the archimedean density of X).
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If (V,L) is not primitive then, by Section 4.2, some Zariski open subset
U ⊂ V admits a primitive fibration: there is a diagram

X → V
L

↓
Y L

such that for all y ∈ Y L(F ) the pair (Uy,Ly) is primitive. Then

c(U,L) :=
∑
y∈Y 0

c(Uy,Ly),

where the right side is a (possibly infinite converging (!)) sum over the subset
Y 0 ⊂ Y L(F ) of all those fibers Uy where

a(L) = a(Ly) and rk Pic(V,L)Γ = rk Pic(Vy,Ly)Γ.

In Section 5 we will see that even if we start with pairs (V,L) where V is a
smooth projective variety and L is a very ample adelically metrized line bundle
on V we still need to consider singular varieties.

5. Analysis

5.1. Height zeta functions. — We illustrate our approach to asymptotics
of rational points in the case of equivariant compactifications X of G = G

n
a .

The geometry of these varieties is quite complicated already in dimension three
(see [23] for more details). Nevertheless, we are able to prove asymptotic
formulas for every such compactification and every (big) line bundle on it.

The idea is to use harmonic analysis on the adelic points G(A). We may as-
sume that X is projective and that the boundary X \G is a strict normal cross-
ing divisor (using equivariant resolution of singularities, if necessary). Recall
that Pic(X) = NS(X) is generated by the irreducible boundary components
(see Example 2.1.4). Next we define a height pairing

H =
∏
v

Hv : Pic(X)C ×G(A)→ C.

such that its restriction to L ∈ Pic(X)×G(F ) is the usual height (with respect
to some metrized line bundle L in this class). Indeed, Pic(X) has a basis of
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(classes of) ample line bundles with sections which do not vanish in G and we
can apply the constructions in Section 4.1. The equivariance of X implies that
H is invariant under some compact subgroup K ⊂ G(Af ) (this may fail for
general compactifications of the affine space).

Now we consider the height zeta function

Z(G, s) =
∑

x∈G(F )

H(s;x)−1.

The projectivity of X implies that Z(G, s) converges a priori for <(s) in some
(shifted) open cone in Pic(X)R (see Lemma 3.2 in [9]). Tauberian theorems
relate analytic properties of Z to asymptotics of rational points of bounded
height. Thus we need to determine the domain of holomorphy of Z, find its
poles and obtain its meromorphic continuation beyond those poles.

To achieve this we pass to a “spectral” expansion of Z (Poisson formula) to
obtain a representation

Z(G, s) =
∑

(G(A)/G(F )K)∗

Ĥ(s;ψ),(5.1)

where the sum is over the group of unitary characters of G(A) which are trivial
on G(F )K. The triviality of ψ on K follows from the invariance of H under
K. This is crucial for the subsequent analysis - the right side in (5.1) is a
summation over a lattice (and the trivial representation is isolated). The next
step is the determination of the contribution of the trivial representation to
Z, achieved in the following section.

5.2. Height integrals. — Let X be a smooth d-dimensional equivariant
compactification of a linear algebraic group G over F . Assume that over some
finite Galois extension E/F with Galois group Γ = Gal(E/F ) the bound-
ary is a strict normal crossing divisor consisting of geometrically irreducible
components

X \G = ∪j∈JDj.

Then Γ acts by permutations on the set of boundary components. Denote by
J /Γ (resp. J /Γv, where Γv is the decomposition group at v) the set of orbits
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of Γ (resp. Γv) on J . We put D∅ = G and define for every subset J ⊂ J /Γv
DJ = ∩j∈JDj

D0
J = DJ \ ∪J ′)JDJ ′ .

For every j ∈ J /Γ (resp. j ∈ J /Γv) we denote by Fj/F (resp. Fj,v/Fv)
the minimal extension over which the orbit j splits completely and by fj,v the
degree [Fj,v : Fv]. Choose for each v a Haar measure dgv on G(Fv) such that
for almost all v ∫

G(ov)

dgv = 1,

(to define G(ov) one fixes a model for G over the integers). As in Section 4.1,
one can define a height pairing between

DivC := ⊕jCDj

and G(A) (for unipotent groups, DivC = Pic(X)C, by Example 2.1.4). In the
above basis, we have coordinates s = (sj)j∈J /Γ on DivC. Choose an F -rational
(bi-)invariant differential form d-form on G. Then it has poles along each
boundary component, and we denote by κj the corresponding multiplicities.
For all but finitely many nonarchimedean valuations v, one has (see [12])

∫
G(Fv)

Hv(s; gv)
−1dgv = τv(G)−1

 ∑
J⊂J /Γv

#D0
J(Fv)

qdv

∏
j∈J

q
fj,v
v − 1

q
fj,v(sj−κj+1)
v − 1

 ,

(5.2)

where τv(G) is the local Tamagawa number of G (see [51],[36]).

Corollary 5.2.1. — Let X be an equivariant compactification of a unipo-
tent group. We have a height pairing

Pic(X)C = ⊕j∈J /ΓCDj ×Gn
a(A)→ C,

generalizing the usual heights. There exists a function ϕ(s) (with s = (sj)j∈J /Γ)
which is holomorphic for sj ≥ κj − δ (for some δ > 0) such that∏

v

∫
G(Fv)

Hv(s; gv)
−1dgv =

∏
j∈J /Γ

ζFj(sj − κj + 1) · ϕ(s)(5.3)

(here we used that for unipotent groups τv(G) = 1).
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Example 5.2.2. — Let X = P1, Hv(gv) the local height as in Example 4.1.6.
Then ∫

Ga(Fv)

Hv(gv)
−sdgv =

1− q−sv
1− q−(s−2)

v

.(5.4)

Remark 5.2.3. — As often in harmonic analysis on compact spaces, the
trivial representation contributes the main term in “asymptotics”. Indeed, the
Euler product above will provide the poles of “highest” order in the expansion
of the zeta function Z(s) around the point −KX . Recall that (in the basis
Dj) the effective cone is the positive octant (see Example 2.1.4). We observe
that the polar hyperplanes of Z cut out the shifted, by the anticanonical class,
effective cone. Even if we didn’t know from geometric considerations (see 2.1.4)
what the effective cone or the anticanonical class are - the adelic integral (5.3)
is “telling” us the answer.

Example 5.2.4. — Let us consider a wonderful compactification X of a
(split) semi-simple group G of adjoint type (see 2.1.6). By construction, X is
a bi-equivariant compactification of G (the group G acts on both sides). For
almost all v, the local heights Hv are invariant under Kv = G(ov). This implies
that Hv(s; gv) depends only on the a+

v -component in the Cartan decomposition

gv = kva
+
v k
′
v

of gv (here s ∈ X∗(T)C = Pic(X)C and a+
v ∈ T(Fv)). One can check that the

height pairing

Hv : X(T)C ×G(Fv)→ C

is given by

(s, gv) 7→ q〈s,a
+
v 〉

v ,

where a+
v is the image of a+

v ∈ T(Fv) in the Lie algebra of T (under the
logarithmic map). The local height integral can be computed geometrically as
in (5.2) or directly∫

G(Fv)

Hv(s; gv)
−1dgv =

∑
a+
v

q−〈s,a
+
v 〉

v vol(Kva
+
v Kv).

Comparing these two expressions one obtains closed formulas for the volumes

vol(Kva
+
v Kv).
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Notice that the boundary strata DJ have a nice inductive description: they
are fibrations over (PJ \G)× (PJ \G) with fibers wonderful compactifications
of the Levi components of the parabolic PJ (where J ⊂ [1, ..., rk G]). This
allows a transparent inductive computation of the number of Fv-points in each
stratum. A combinatorial approach to these volumes for split G can be found
in [32]. I am not aware of a treatment of the general case in the literature.

Finally, as in Remark 5.2.3, the local computation is telling us that the
effective cone Λeff(X) ⊂ X∗(T) “has to be” the cone dual to the cone A+

v

(parametrizing the Kva
+
v Kv-cosets in the Cartan decomposition), that is ex-

actly the cone spanned by simple roots. Similarly, we can read off the anti-
canonical class.

5.3. Height zeta functions continued. — We return to the study of an-
alytic properties of the height zeta function Z(s; g) for equivariant compact-
ifications of Gn

a and consider now nontrivial characters ψ, occurring in the

expansion (5.1). For each ψ we compute the Fourier transforms Ĥv at al-
most all nonarchimedean places and find estimates at the remaining places.
At good reduction places, this generalizes the computation in Section 5.2. A
character ψ = ψa of Gn

a(A)/Gn
a(F ) is defined by a linear form fa := 〈a, ·〉, with

a ∈ Gn
a(F ). The divisor of the corresponding rational function on X can be

written as
div(fa) = E(a)−

∑
j∈J /Γ

dj(a)Dj,

where all dj ≥ 0 (by Example 2.1.4). Denote by J0(a) the set of all j ∈ J /Γ
such that the corresponding dj(a) = 0. For nontrivial a the set J0(a) is a
proper subset of J /Γ. “Motivic” integration (combined with estimates at bad
reduction places) yields

Ĥ(s;ψa) =
∏

j∈J0(a)

ζFj(sj − κj + 1)ϕ(s; a)

where ϕ is holomorphic in the neighborhood of −KX . At this stage we observe
that each term in (5.1) admits a meromorphic continuation and that the poles
of each term are contained in the faces of the (shifted) cone Λeff(X)−KX . To
obtain a meromorphic continuation for the sum we need a bound

|ϕ(s; a)| � (1 + ‖a‖)−n

(for sufficiently large n). For this we use integration by parts at the archimedean
places. Once again, the equivariance of X is essential.
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In the neighborhood of −KX the pole of Z of highest order is contributed by
the trivial character and the leading constant at this pole is an adelic integral (a
Tamagawa number) times a rational number (the γ-constant). Let us consider
a line bundle L which is not proportional to −KX and restrict Z(s) to sL.
Denote by J (L) the set of boundary divisors which do not lie in the face of
the cone Λeff(X) containing a(L)L + KX . The one-parameter zeta function
Z(sL) is holomorphic for <(s) > a(L), admits a meromorphic continuation
to <(s) > a(L) − δ (for some δ > 0) and has a pole of order at most b(L) at
s = a(L). Notice that every term in the sum∑

a:J0(a)⊇J (L)

Ĥ(s;ψa)(5.5)

contributes to this pole (the other terms in Z have poles of smaller order). We
need to show that the (in general, infinite) sum of leading coefficients of these
terms (complex numbers) converges to a non-zero real number. Further, we
need to identify this real number.

One possible approach, suggested by harmonic analysis, is to use the Poisson
formula one more time to convert the sum over Fourier transforms of the
height to an integral over some subgroup of G(A). The common kernel of the
characters appearing in (5.5) is a subgroup

GL(F ) ·GL(A) ⊂ G(A),

where GL is the intersection of kernels of fa, for all a occurring in (5.5).
Applying the Poisson formula we find that the leading term equals

lim
s→a(L)

(s− a(L))b(L) ·

 ∑
g∈G(F )/GL(F )

∫
GL(A)

H(s; g + g′)−1dg′

(5.6)

Now we want to find a geometric explanation of this formula. First of all, the
outer sum indicates that we are dealing with a fibration. It turns out that
this fibration is exactly of the type appearing in Fujita’s program (the map
onto the base of the fibration is given by the sections fa as in (5.5)). Secondly,
the adelic integrals are very similar to those already treated in Section 5.2.
In fact, they are height integrals for the induced equivariant compactifications
of translates of GL. There is one important difference: previously, we started
with a smooth equivariant compactification X, with boundary a strict normal
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crossing divisor. We cannot guarantee, however, that the compactification of
GL (and its shifts) inside X has the same property! This explains the technical
setup of Section 4: analysis tells us that we need to deal with fibrations and
singular varieties.

Example 5.3.1. — Consider the simplest case X = P
n × Pn, L the product

of the line bundles O(a) and O(b). The Picard group Pic(X) = Z⊕Z, so that
the class of L = (a, b) and −KX = (n + 1, n + 1). The height zeta function
factors as well

ZX(s1, s2) = ZPn(s1)ZPn(s2).

Its restriction to the line s(n + 1, n + 1) has a pole at s = 1 of order 2,
with leading coefficient an adelic integral (the Tamagawa number τ 2) times a
rational number (the γ-constant). The restriction to the line s(a, b), for a > b,
has a pole at s = (n+1)/b with residue τ ·γ ·ZPn(a(n+1)/b). The (converging)
sum ∑

x∈Pn(F )

τ · γ ·HO(1)(x)a(n+1)/b

is exactly the constant c(X,L) defined in Section 4.
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