
EFFECTIVITY OF BRAUER–MANIN OBSTRUCTIONS

ANDREW KRESCH AND YURI TSCHINKEL

Abstract. We study Brauer–Manin obstructions to the Hasse principle and to

weak approximation, with special regard to effectivity questions.

1. Introduction

Let k be a number field, X be a smooth projective (geometrically irreducible) vari-
ety over k, and X(k) its set of k-rational points. An important problem in arithmetic
geometry is to find an effective procedure to determine whether X(k) 6= ∅. A nec-
essary condition is that X(kv) 6= ∅ for all completions kv of k. This condition can
be tested effectively and easily, given the defining equations for X. One says that X
satisfies the Hasse principle when

X(k) 6= ∅ ⇔ X(kv) 6= ∅ ∀v. (1.1)

When X is a quadric hypersurface (of arbitrary dimension) over the rational num-
bers, the validity of (1.1) was established in 1921 by Hasse in his doctoral thesis
[Has23b]. The statement (1.1) was proposed as a principle by Hasse in 1924 [Has24],
where it was proved to hold for quadric hypersurfaces over arbitrary number fields.
Hasse’s main insight was to relate the existence of solutions to equations over a number
field to existence of solutions over its completions, i.e., the v-adic numbers, which had
been introduced and developed into a theory by his thesis advisor Hensel [Hen08]. In
fact, Hensel had studied v-adic solutions to quadratic equations (see [Hen13] Chap-
ter 12), obtaining necessary and sufficient conditions for local solvability. Earlier,
Minkowski had defined a complete system of invariants of quadratic forms over the ra-
tionals, one at each prime p [Min90]; the Hasse principle for quadratic forms [Has23a]
(or in other settings) is often referred to as the Hasse–Minkowski principle.

A related problem in arithmetic geometry is to find k-rational points onX matching
local data, i.e., determining whether or not X(k) is dense in the adelic space

X(Ak) =
∏
v

X(kv).

(The adelic space is equipped with the product topology.) In this case one says that
X satisfies weak approximation.

The Hasse principle, and weak approximation, are known to fail for general pro-
jective varieties, e.g., cubic curves and cubic surfaces. Counterexamples to the Hasse
principle appeared as early as 1880 [Pép80]. (For a discussion, and proofs of the claims
that appeared at that time, see [Lem03].) By the early 1940’s it was well established
that genus 1 curves may fail to satisfy the Hasse principle [Lin40], [Rei42].
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All known obstructions to the Hasse principle and weak approximation are based
on the Brauer–Manin obstruction defined by Manin [Man71] or reduce to this after
finite étale covers of X [Sko99]. The Brauer–Manin obstruction is based on the Brauer
group Br(X) of X and class field theory for k. It cuts out a subspace X(Ak)Br of
the adelic space X(Ak) with the property that X(k) ⊂ X(Ak)Br. In particular, if
X(Ak) 6= ∅ and X(Ak)Br = ∅, then X(k) = ∅ and X fails to satisfy the Hasse
principle. If X(k) 6= ∅ and X(Ak)Br 6= X(Ak) then weak approximation fails for X.
In the former case, we speak of a Brauer–Manin obstruction to the Hasse principle,
and in the latter case, of a Brauer–Manin obstruction to weak approximation. We
explain this in Section 3.

For geometrically rational surfaces, one expects that the Brauer–Manin obstruction
is the only obstruction to the Hasse principle and to weak approximation [CTS80].
However, the explicit computation of this obstruction is a nontrivial task, even in
such concrete classical cases as cubic surfaces over Q [CTKS87], [KT04].

In this note, we prove (Theorem 3.4) that there is a general procedure for computing
this obstruction, provided the geometric Picard group is finitely generated, torsion
free, and known explicitly by means of cycle representatives with an explicit Galois
action. See Section 2 for a precise description of the required input data. In particular
this procedure is applicable to all del Pezzo surfaces (see Section 2).

The procedure is presented in Section 5. It involves several steps, which we now
summarize. A splitting field (a finite extension of k over which all the cycle repre-
sentatives are defined) must be chosen; this is taken to be Galois. The first Galois
cohomology group of the geometric Picard group can be identified abstractly with
a Brauer group. Generators, which are 1-cocycles for group cohomology, are com-
puted. The next step is to obtain cocycle data for Brauer group elements from these
generators, i.e., 2-cocycles of rational functions on X. With this, the computation of
the subspace of X(Ak) cut out by these Brauer group elements is carried out. Some
results in this direction have been discussed in [BSD04], [Bri]. A Magma package for
degree 4 del Pezzo surfaces is available [Log04].

2. Preliminaries

In this section we introduce notation and give details of the input data required
for the algorithm of Section 5. We fix a number field k and a smooth projective
geometrically irreducible variety X over k. When K/k is a field extension, we write
XK for the base change of X to K. We write Gal(K/k) for the Galois group when
the extension is normal. The Picard group of X is denoted Pic(X).

Assumption 2.1. We suppose that we are given explicit equations defining X in
PN , i.e., generators f1, . . ., fr, of the ideal J = J (X) ⊂ k[x0, . . . , xN ]. We assume
that X(Ak) 6= ∅, that Pic(Xk̄) is torsion free, and that the following are specified:

(1) a collection of codimension one geometric cycles D1, . . ., Dm ∈ Z1(Xk̄) whose
classes generate Pic(Xk̄), i.e., there is an exact sequence of abelian groups

0 → R→
m⊕
i=1

Z · [Di] → Pic(Xk̄) → 0; (2.1)

(2) the subgroup of relations R;
(3) a finite Galois extension K of k, over which the Di are defined, with known

Galois group
G := Gal(K/k);
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(4) the action of G on Pic(Xk̄).

For simplicity, we assume that the cycles in (1) are effective, and the collection of
cycles is closed under the Galois action.

We adopt the convention that the Galois action on the splitting field is a left action,
written α 7→ gα (g ∈ G, α ∈ K). Hence there is an induced right action of G on XK ,
which we denote by ag : XK → XK . For a divisor D on XK we denote a∗gD by gD.
The action of G on Pic(Xk̄), mentioned in (4), is the action of pullback by ag, meaning
that g ∈ G sends the class of D to the class of gD.

Example. Let X be a del Pezzo surface of degree d ≤ 4. (Note that Hasse principle
and weak approximation hold for d ≥ 5 [Man74].) It is known that Xk̄ is isomorphic
to a blow-up of P2 in 9 − d points. For d = 3, 4, the anticanonical class −ωX
gives an embedding X ↪→ Pd; this supplies the ideal J . When d = 2 we get an
embedding X ↪→ P(1, 1, 1, 2) ↪→ P6 from −2ωX , and when d = 1 we get a embedding
X ↪→ P(1, 1, 2, 3) ↪→ P22 by −6ωX .

There is a finite collection of exceptional curves on Xk̄, with explicit equations.
For instance, when d = 3, X ⊂ P3 is a (smooth) cubic surface, and [Sou17] gives a
procedure for the determination of the lines on X.

The classes of the exceptional curves generate Pic(Xk̄). The number nd of these
curves is given in the following table:

d 1 2 3 4
nd 240 56 27 16

We may take m = nd in the exact sequence (2.1). Furthermore, we know that Pic(Xk̄)
is isomorphic to Z10−d. Intersection numbers of curves on X are readily computed,
and R can be obtained using the fact that the intersection pairing on Pic(Xk̄) is
nondegenerate. The Galois group G = Gal(K/k) acts by permutations on the set of
exceptional curves, and thus on their classes in Pic(Xk̄).

In this paper, we make use of computations of group cohomology, cf. [Bro94]. For
G a finite group, any resolution of Z as a Z[G]-module (by finite free Z[G]-modules)
defines the cohomology Hi(G,M) of a G-module M , as the ith cohomology of the
complex obtained by applying the functor Hom(−,M). We write (C•(M), ∂) for this
complex. (This complex depends on the choice of resolution, which we suppress in
the notation; the cohomology is an invariant of M .) We write MG = H0(G,M) for
the submodule of M of G-invariant elements.

3. The Brauer–Manin obstruction

In this section we recall basic facts about the Brauer groups of fields and schemes.
The Brauer group Br(F ) of a field F is the group of equivalence classes of central
simple algebras over F . The Brauer group Br(X) of a Noetherian scheme X, defined
by Grothendieck [Gro68], is the group of equivalence classes of sheaves of Azumaya
algebras on X. It injects naturally into the cohomological Brauer group Br′(X),
defined as the torsion subgroup of H2(X,Gm), étale cohomology of the sheaf Gm of
invertible regular functions (multiplicative group scheme). For X projective over a
field (or more generally, arbitrary X possessing an ample invertible sheaf), Br(X) =
Br′(X) by a result of Gabber (see [dJ05]).
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By class field theory (see, e.g., [CF67]), the Brauer group of a number field k fits
in an exact sequence

0 → Br(k) −→
⊕
v

Br(kv)
inv−→ Q/Z → 0 (3.1)

where the direct sum is over completions v of k. The Brauer groups of the fields kv
are known by local class field theory. More precisely, there is a local invariant

invv : Br(kv)
∼→

 Q/Z when v - ∞
( 1
2Z)/Z when kv = R

0 when kv = C
(3.2)

In (3.1),

inv =
∑
v

invv.

Define

X(Ak)Br =
{

(xv) ∈ X(Ak)
∣∣ ∑

v

invv(A(xv)) = 0 ∀A ∈ Br(X)
}
. (3.3)

By (3.1), X(k) ⊂ X(Ak)Br.
The Leray spectral sequence

Hp(Gal(k̄/k),Hq(Xk̄,Gm)) ⇒ Hp+q(X,Gm) (3.4)

gives rise to an exact sequence

0 → Pic(X) → Pic(Xk̄)
Gal(k̄/k) →

Br(k) → ker(Br(X) → Br(Kk̄)) → H1(Gal(k̄/k),Pic(Xk̄)) → 0.
(3.5)

Our assumptions imply (see Remark 3.2 below)

ker(Br(X) → Br(Xk̄))/Br(k) ∼= H1(Gal(k̄/k),Pic(Xk̄)). (3.6)

This kernel ker(Br(X) → Br(Xk̄)) is known as the algebraic part of the Brauer group.
We define

X(Ak)Br.alg =
{

(xv) ∈ X(Ak)
∣∣ ∑

v

invv(A(xv)) = 0 ∀A ∈ ker(Br(X) → Br(Xk̄))
}
.

(3.7)

Remark 3.1. By virtue of the sequence (3.1) it suffices in (3.3) and (3.7) to consider
one representative from each Br(k)-coset in Br(X).

Remark 3.2. Since X(Ak) 6= ∅,
(i) Br(k) ↪→ Br(X);
(ii) Pic(X) ∼= Pic(Xk̄)Gal(k̄/k).

Indeed, each of the homomorphisms Br(kv) → Br(Xkv
) is split because points exist

locally, and fact (i) follows from the exact sequence (3.1). This implies the vanishing
of the edge homomorphism in (3.5), which in turn implies (ii).

By assumption, the field K is chosen so that

Pic(XK) ∼= Pic(Xk̄). (3.8)
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The corresponding Leray spectral sequence gives rise to an exact sequence

0 → ker(Br(k) → Br(K)) → ker(Br(X) → Br(XK)) λ→ H1(G,Pic(XK))

→ H3(G,K∗).
(3.9)

The inflation map

H1(G,Pic(XK)) → H1(Gal(k̄/k),Pic(Xk̄)), (3.10)

is an isomorphism by the Hochschild–Serre spectral sequence of group cohomology
(the inflation map is injective, and the cokernel maps into H1 of a torsion-free module
with trivial action of a profinite group, which is trivial).

Summarizing, we have

Proposition 3.3. The composition of the inflation map (3.10) and the isomorphism
(3.6) is an isomorphism

ker(Br(X) → Br(Xk̄))/Br(k) ∼= H1(G,Pic(XK)). (3.11)

In particular, the set X(Ak)Br.alg in (3.7) is determined by finitely many coset
representatives A ∈ ker(Br(X) → Br(Xk̄)), i.e., coset representatives of generators of
the finite group (3.11). Our main theorem is

Theorem 3.4. If X is as in Assumption 2.1 then X(Ak)Br.alg is effectively com-
putable.

Remark 3.5. In this paper, we focus exclusively on the algebraic part of the Brauer
group and on effectively computing X(Ak)Br.alg. Whenever Br(Xk̄) = 0, we have

Br(X)/Br(k) ∼= H1(G,Pic(XK))

by (3.6) and (3.10), and by the definition (3.7) we have

X(Ak)Br.alg = X(Ak)Br.

The condition Br(Xk̄) = 0 holds automatically in either of the following cases:
(i) Xk̄ is rational (by birational invariance of Br(X) for smooth projective X

over a field of characteristic zero [Gro68, (III.7.4)]), or
(ii) X is Fano (i.e., has ample anticanonical divisor) and dimX ≤ 3 [IP99].

An example of a computation of a Brauer–Manin obstruction based on transcendental
(i.e., non-algebraic) elements of the Brauer group is given in [Wit04].

Example. Let X be a del Pezzo surface of degree 3 given by an equation of diagonal
form

ax3 + by3 + cz3 + dt3 = 0, (3.12)
where a, b, c, d are nonzero integers. Then X(Q) 6= ∅ ⇔ X(k) 6= ∅ where k =
Q(e2πi/3). A splitting field is

K = k( 3
√
b/a, 3

√
c/a, 3

√
d/a).

Specifically, all 27 exceptional curves of Xk̄ are defined over K. The Galois action of
G = (Z/3Z)3 on Pic(XK) = Z7 can be computed. By [CTKS87], the result is:

H1(G,Pic(XK)) =

 0 if one of ab/cd, ac/bd, ad/bc is a cube,
(Z/3Z)2 if exactly 3 of a/b, a/c, . . ., c/d are cubes,

Z/3Z otherwise.
(3.13)
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4. Descent for divisors

In this section we explain how to make effective the isomorphism

Pic(X) ∼= Pic(Xk̄)
Gal(k̄/k) (4.1)

from Remark 3.2. While this is not a logical requirement for the proof of Theorem
3.4 (in fact it relies on results from Sections 6 and 7), it is important in practical
applications. More precisely, given the data of Assumption 2.1, let H be a subgroup
ofG, with corresponding intermediate field extensionK0 = KH . Then (4.1) applied to
XK0 yields divisors on XK0 representing elements of Pic(Xk̄)H . In this way, effective
implementation of (4.1) sometimes allows K to be replaced by a smaller splitting
field, or at least a smaller extension over which a sufficiently interesting submodule
of Pic(Xk̄) is defined.

We start with an example, and then explain how to carry this out in general.

Example. Let k = Q(ζ), where ζ = e2πi/3, and let X be the diagonal cubic surface
(3.12). Recall, we can take K = k( 3

√
b/a, 3

√
c/a, 3

√
d/a) and G = (Z/3)3. Assume the

coefficients a, b, c, and d to be generic, so that

H1(G,Pic(Xk̄)) = Z/3Z (4.2)

(see (3.13)). If we consider the subfield

K0 = k( 3
√
ad/bc)

then a computation reveals that the inflation map of Galois cohomology

H1(Gal(K0/k),Pic(XK0)) → H1(G,Pic(Xk̄)) (4.3)

is an isomorphism. Concretely, Pic(XK0) ∼= Z·(−ωX)⊕M whereM is a rank 2 module
with nontrivial action of Gal(K0/K) ∼= Z/3Z. The Galois-invariant combinations of
exceptional lines on Xk̄ generate only an index 3 subgroup of M . An additional
generator of M is the class of the following divisor

D = D′ −D′′, D′ :
{
x+ ζ2 3

√
b/a y = 0

z + 3
√
d/c t = 0

D′′ :
{
x+ 3

√
b/a y = 0

z + ζ2 3
√
d/c t = 0

(4.4)

for which we do not, a priori, have a representative defined over K0. Notice that D
is defined over

K1 = K0( 3
√
b/a) = k( 3

√
b/a, 3

√
d/c).

We define
L1 = OXK1

(D).

To make the isomorphism (4.1) effective, we apply the following strategy: We use
descent to produce a line bundle L0 defined over K0 having the desired class in the
Picard group. A rational section of L0 defined over K0 will produce the required
cycle.

The theory of descent is a machinery for patching, i.e., the construction of a global
object from local data (see [Gro71, exp. VIII]). In this case, the local data consists of
the line bundle L1 on XK1 , together with isomorphisms of L1 with its translates under
Gal(K1/K0). The isomorphisms which we must supply need to satisfy a compatibility
condition called the cocycle condition.

For the sake of illustration, we carry this out for the special choice of coefficients

a = 5, b = 9, c = 10, d = 12.
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These coefficients are those of the famous example of Cassels and Guy of a cubic
surface which violates the Hasse principle [CG66]. Then

K0 = k( 3
√

2/3), and K1 = K0( 3
√

9/5).

Let ρ denote a generator of Gal(K1/K0) ∼= Z/3Z. To apply descent, we need to
produce an isomorphism ϕ : L1 → ρL1 satisfying the cocycle condition ρρϕ◦ρϕ◦ϕ = id;
then the descent machinery produces a line bundle L0 on XK0 . This is easy to do
because X has a K0-point, e.g.,

p := (3, 1, 0,− 3
√

12).

If we require ϕ to act as identity on the fiber of L1 over p, then ϕ is uniquely deter-
mined (since it is unique up to scale):

ϕ = −1
2
(1 + 3

√
15)

z + 3
√

6/5 t
x+ 3

√
9/5 y

. (4.5)

Starting with the function 1 (viewed as a rational section of L1 or any of its Galois
translates), the rational section 1 + ρρϕ(1) + ρρϕ ◦ ρϕ(1) is compatible with the Galois
action, hence descends to a rational section s of L0. The divisor associated with the
rational section s, which must have the same class in the Picard group as D, is

C − (L+ ρL+ ρρL)

where C is the cubic curve on XK0 defined by the equations

2x2 − 6xy − xz + 3ζ 3
√

2/3xt+ 3yz − 9ζ 3
√

2/3 yt+ 8z2 = 0,

4x2 − 2xz − 6 3
√

2/3xt− 6ζ2yz + z2 + 3 3
√

2/3 zt+ 9 3
√

4/9 t2 = 0,

−2xy − 5ζxz − ζ2 3
√

2/3xt+ 6y2 − ζyz + 3ζ2 3
√

2/3 yt− 8 3
√

2/3 zt = 0,

(4.6)

and where L is the exceptional curve defined by x+ 3
√

9/5y = 0 and z + ζ2 3
√

6/5t =
0. Now Pic(XK0) is generated by an anticanonical divisor and C together with its
translates under Gal(K0/k).

We return to the general setting. Let X be as in Assumption 2.1. The machinery
of descent associates, to a vector bundle Ẽ on XK (or more generally a quasi-coherent
sheaf of OXK

-modules) together with a collection of isomorphisms ϕg : Ẽ → a∗gẼ (for
all g ∈ G) satisfying the cocycle condition

ϕgh = (gϕh) ◦ ϕg (4.7)

(for all g, h ∈ G) a vector bundle (or quasi-coherent sheaf) E on X together with an
isomorphism ξ : EK → Ẽ , which is compatible with the ϕg. Here gϕh denotes a∗gϕh,
where ag is the automorphism of XK induced by g ∈ G. (The reversed order of the
composition on the right-hand side of (4.7) is accounted for by our convention, in
which the Galois action induces a right action of G on X.) The E and ξ that are
produced by descent are unique up to canonical isomorphism.

Let D ⊂ XK be a divisor (given by equations) whose class [D] ∈ Pic(Xk̄) is
invariant under G = Gal(K/k). By Proposition 7.3, if D′ ⊂ XK is a divisor with
[D′] = [D] in Pic(Xk̄), then there is an effective procedure to construct a rational
function in K(X)∗ whose associated divisor is D−D′. Multiplication by this function
is then an explicit isomorphism OXK

(D) → OXK
(D′). For each g ∈ G, let

ϕg : OXK
(D) → OXK

(gD)
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be such an isomorphism.
Each isomorphism ϕg is uniquely determined up to a multiplicative constant. We

can characterize whether it is possible to modify each isomorphism by a multiplicative
constant, in order to satisfy (4.7). The obstruction to (4.7) is the class in H2(G, k∗) =
ker(Br(k) → Br(K)) of the following K∗-valued 2-cocycle (γg,h):

γg,h := ϕ−1
gh ◦

gϕh ◦ ϕg.

As we have seen in the Example, the condition X(k) 6= ∅ is sufficient for the obstruc-
tion to vanish. In general we do not know whether X(k) is empty. But we have, by
assumption, X(kv) 6= ∅ for all completions kv of k. So the obstruction vanishes upon
base change to any completion of k; hence by the exact sequence (3.1) (the Hasse
principle for the Brauer group of a number field) the obstruction indeed vanishes.
In other words, (γg,h) must be a 2-coboundary. There is an effective algorithm to
express (γg,h) as the coboundary of a 1-cochain with values in K∗ (see the proof of
Proposition 6.3). So the ϕg can be modified, using these multiplicative factors, in
order to satisfy (4.7). Applying descent, we obtain a line bundle L on X, such that
L is a representative of [D] ∈ Pic(Xk̄).

It remains to express the line bundle L (which is determined by means of descent)
explicitly as the class of a divisor onX. Given any rational section of L, the associated
divisor (of zeros minus poles, with respect to local trivializations of L) will be defined
over k and will have class in the Picard group equal to [D]. The theory of descent
also includes descent for sections: a rational section of L is determined uniquely by
a tuple of rational sections of OXK

(gD), for each g, that are compatible with the ϕg.
We obtain such a collection of sections from a single rational section of OXK

(D), by
means of the “trace” operation: we translate the given section by all the elements of
G and form the sum of the translates. So it suffices to exhibit a rational section of
OXK

(D) having nontrivial trace. Let x ∈ XK be a closed point (not necessarily a
K-rational point), not lying in D or in any of its Galois translates, with Galois orbit
O(x) and image y ∈ X. The extension from the residue field of y to the coordinate
ring of O(x), with G-action on the latter, can be calculated explicitly. An element of
the residue field of x with nontrivial trace can be produced and lifted to an element
of H0(XK r

⋃
g∈G

gD,OXK
(D)), also with nontrivial trace.

5. Computing the obstruction

In this section we explain the main steps of the computation of X(Ak)Br.alg in
terms of the data of Assumption 2.1. The details will be provided in subsequent
sections, completing the proof of Theorem 3.4.

We first need some additional notation. Put

U = X r
m⋃
i=1

Di. (5.1)

Note that U is defined over k. We have an exact sequence

0 → K∗ → O(UK)∗ → R→ 0. (5.2)

Step 1. Compute the Galois cohomology group H1(G,Pic(XK)), and exhibit (finitely
many) explicit 1-cocycle representatives of generators.

For each generator (with cocycle representative) we implement the following.
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Step 2. Apply the connecting homomorphism of the cohomology exact sequence of
(2.1) to the cocycle representative of the generator from Step 1 to obtain a 2-cocycle
representative of the corresponding element in H2(G,R).

Step 3. Extending K if necessary, kill the obstruction in H3(G,K∗) to lifting the
element ofH2(G,R) to an elementB ∈ H2(G,O(UK)∗); carry out the lifting explicitly
on the cocycle level.

The element B ∈ H2(G,O(UK)∗) will be the restriction to U of an element A ∈
Br(X). More precisely the Leray spectral sequence

Ep,q2 = Hp(G,Hq(UK ,Gm)) ⇒ Hp+q(U,Gm)

induces a map
H2(G,O(UK)∗) → Br(U). (5.3)

This map sends the class of a 2-cocycle with values in O(UK)∗ to the element of
Br(U) represented by the same cocycle, viewed now as a Čech cocycle for the covering
UK → U . Then Proposition 6.1, below, exhibits the required A ∈ Br(X). The Br(k)-
coset Ã of A will be one of finitely many generators of ker(Br(X) → Br(Xk̄))/Br(k).
Define

X(Ak)A = { (xv) ∈ X(Ak) |
∑
v

invv(A(xv)) = 0 }.

Then
X(Ak)Br.alg =

⋂
A

X(Ak)A,

where A runs over the finite set of representatives.

Step 4. Obtain from the set D1 := {Di}, new finite collections D2, . . ., Dr of geometric
cycles, such that the corresponding complements U =: U1, U2, . . ., Ur form an open
covering of X. Repeat Steps 2 and 3 for each Dj to obtain Bj ∈ H2(G,O(U jK)∗) such
that the restriction of A to U j is equal to Bj , modulo Br(k).

Step 5. (Calibration) Compute Ij ∈ Br(k) such that

Bj + Ij = A|Uj

in Br(U j).

Step 6. Compute the local invariants invv(A(xv)) for all v and all xv ∈ X(kv).

6. 2-cocycle representatives

In this section we carry out Steps 1 through 3 outlined above. We obtain 2-cocycle
representatives for the classes B ∈ H2(G,O(UK)∗) from Section 5.

Step 1, the computation of H1(G,Pic(XK)), is implemented in standard computer
algebra packages, e.g., Magma. Indeed, by Assumption 2.1, Pic(XK) with its Galois
action is known. The output is a presentation of H1(G,Pic(XK)) as a finite abelian
group, with 1-cocycle representatives of a set of generators.

Steps 2 and 3 produce lifts of a generator to Br(X), via the map λ of the se-
quence (3.9). All computations are done on the level of cocycle representatives. The
obstructions in H3(G,K∗) to producing the lift are killed by enlarging K, if necessary.

Let B̃ ∈ H1(G,Pic(XK)) be one of the generators, with 1-cocycle representative
β̃. Concretely, β̃ is a tuple of elements of Pic(XK), satisfying a cocycle condition.
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Combining the cohomology exact sequences coming from (2.1) and (5.2) and a
portion of the exact sequence (3.9) we obtain a diagram

Br(U)

ker(Br(X) → Br(XK))

22ddddddddddddddddddddddddddd

λ��

H2(G,O(UK)∗)

44iiiiiiiiiiii

µ
��

0 // H1(G,Pic(XK)) δ //

ε **UUUUUUUUUUU
H2(G,R) //

ν
��

H2(G,
⊕m

i=1 Z · [Di])

H3(G,K∗)

(6.1)

In this diagram, we have used the fact that
⊕m

i=1 Z · [Di] is a permutation module,
and hence its first cohomology vanishes. The maps to Br(U) are the restriction map
from Br(X) and the map from H2(G,O(UK)∗) of (5.3), respectively.

Proposition 6.1. Let X be as in Assumption 2.1, let B̃ ∈ H1(G,Pic(XK)).
(i) The map ε in (6.1) is the rightmost map in (3.9).
(ii) Suppose that ε(B̃) = 0. Let A ∈ ker(Br(X) → Br(XK)) be a lift of B̃ by the

map λ and B ∈ H2(G,O(UK)∗) a lift of δ(B̃) by the map µ in (6.1). Then the
images of A and B in Br(U) via the maps in (6.1) are equal modulo Br(k).

Proposition 6.2. With notation as above, there is an effective construction of a
splitting σ : R→ O(UK)∗ of the sequence (5.2).

Proposition 6.3. Let k be a number field, and K/k a finite Galois extension with
Galois group G = Gal(K/k). Let κ be a cocycle representative of an element in
H3(G,K∗). There is an effective algorithm to determine whether κ is trivial in
H3(G,K∗). If so, we can effectively produce a lift of κ to a 2-cochain via the cobound-
ary map. Otherwise, we can effectively produce a finite extension L/K, with L Galois
over k, such that the inflation of κ to H3(Gal(L/k), L∗) is trivial.

It is straightforward to compute δ(β̃). Now ε(β̃) = ν(δ(β̃)), and ν(δ(β̃)) is com-
puted using the splitting σ : R→ O(UK)∗ of Proposition 6.2. Proposition 6.3 supplies
an extension L of K killing the class of ε(β̃) in H3(G,K∗). Replacing K by L, we
now invoke Proposition 6.3 to produce a 2-cochain η with values in K∗, such that

ε(β̃) = ∂(η)

Now put

β :=
σ(δ(β̃))

η
.

Then β is a 2-cocycle with values in O(UK)∗, such that the class of β is a lift via µ
of the class δ(B̃). We let B ∈ H2(G,O(UK)∗) denote the class of β.

By the exact sequence (3.9) and Proposition 6.1 (i) the class B̃ ∈ H1(G,Pic(XK))
lifts via λ to a class

A ∈ ker(Br(X) → Br(XK)), (6.2)
defined up to an element of Br(k). By Proposition 6.1 (ii), A can be chosen so that
the image of B in Br(U) is equal to the restriction A|U . Thus, in (6.2), we have a
Brauer group element A whose restriction to U is known explicitly, by means of the
2-cocycle β.
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Proof of Proposition 6.1. We follow [CTS87]. Let j : U → X be the inclusion, with
complement D =

⋃m
j=1Di. There is an exact sequence of étale sheaves on X

0 → Gm → j∗(Gm|U ) → Z1
D → 0 (6.3)

where on the right is the sheaf of divisors on X with support on D. Evaluating global
sections on XK , we obtain the exact sequence of G-modules

0 → K∗ → O(UK)∗ →
m⊕
i=1

Z · [Di] → Pic(XK) → 0. (6.4)

The sequence (6.3) provides a resolution of the sheaf Gm on X. Taking (I•, d) to be
a resolution of Gm by injective sheaves on X, we know that there exists a morphism
of resolutions from the resolution (6.3) to I•. Applying the equivariant global section
functor, we get a morphism of four-term exact sequences

K∗ � � // O(UK)∗ div //

ψ
��

⊕m
i=1 Z · [Di] // //

ϕ

��

Pic(XK)

K∗ � � // H0(XK , I0)
d // ker(H0(XK , I1) → H0(XK , I2)) // // Pic(XK)

(6.5)

where the first and last maps are identity maps.
The four-term exact sequence (6.4) is the amalgamation of two short exact se-

quences, and the map ε in the diagram (6.1) is the composition of the connecting
homomorphisms of the two long exact sequences in cohomology. Spectral sequence
machinery shows that the edge map H1(G,Pic(XK)) → H3(G,K∗) of the sequence
(3.9) is equal to a similar composition of connecting homomorphisms coming from the
four-term exact sequence of the bottom line of (6.5). Because there is a map between
these sequences inducing identity maps on the first and last terms, the morphism ε is
equal to the edge map of (3.9). This establishes part (i).

For (ii), let B̃ ∈ H1(G,Pic(XK)) be given, represented by the 1-cocycle β̃. Com-
puting δ(B̃) involves lifting β̃ to a 1-cochain γ̃ with values in

⊕m
i=1 Z · [Di]. Now

∂(γ̃) is a tuple of divisors rationally equivalent to zero, hence ∂(γ̃) = div(β) for some
2-cochain β with values in O(UK)∗. Moreover ∂(β) is a 3-cocycle representative of
ε(B̃) which by hypothesis vanishes. So, by adjusting β by a K∗-valued 2-cochain
we may arrange that ∂(β) = 0. Then β is a 2-cocycle representative of a class
B ∈ H2(G,O(UK)∗), such that µ(B) = δ(B̃).

We may identify Br(X) with the second cohomology of the total complex of the
term Ep,q0 = Cp(H0(XK , Iq)) of the Leray spectral sequence. Now A ∈ Br(X) is
represented by a cocycle of the total complex

(α0, α1, α2) ∈ C0(H0(XK , I2))× C1(H0(XK , I1))× C2(H0(XK , I0)).

Since A ∈ ker(Br(X) → Br(XK)), we may suppose that α0 = 0. The condition to be
a cocycle is now

d(α1) = 0, ∂(α1) = d(α2), ∂(α2) = 0.

The cocycle representative (α0, α1, α2) may be replaced by an equivalent representa-
tive with α1 = ϕ(γ̃). Then d(ψ(β)) = ϕ(div(β)) = ∂(ϕ(γ̃)) = d(α2). Hence the image
of A−B in Br(U) is represented by a 2-cocycle with values in ker(d) = K∗. �
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Proof of Proposition 6.2. The map to R in (5.2), for which we wish to find a splitting,
is the divisor map from rational functions on X, regular and nonvanishing on U , to
divisors with support outside U . So it suffices to solve the problem, given effective
divisors D and E on a smooth projective variety X over k (all given explicitly by
equations), with [D] = [E] in Pic(X), to produce effectively a rational function in
k(X)∗ whose divisor is D − E. This is the content of Proposition 7.3, given in the
next section. �

Proof of Proposition 6.3. By [BSD04] Theorem 3, there is an effective method to test
whether κ = 0 in H3(G,K∗), and to produce a lift to a 2-cochain if this is the case.
The method is to produce, effectively, a finite set of primes S such that κ = 0 if and
only if the given cocycle is the coboundary of a 2-cochain taking values in the S-units
of K. (The same argument applies to test for triviality of an i-cocycle, for any i, and
to produce an (i− 1)-cochain in case it is trivial.)

If κ 6= 0 in H3(G,K∗), then there exist cyclic extensions ` of k such that L := `K
satisfies κ ∈ ker(H3(G,K∗) → H3(Gal(L/k), L∗)). For instance, let q be a prime not
dividing the discriminant disc(K/Q) such that q ≡ 1 (mod n). Then [L : k] = (q−1)n
where n = [K : k]. By the Chebotarev density theorem, there exists some prime ideal
p in k (which we do not need explicitly) which remains inert in the cyclic extension `
of k. Then the local degree np of p in L must be a multiple of q − 1. Therefore the
inflation map H3(G,K∗) → H3(Gal(L/k), L∗) is trivial (cf. [AT68], Section 7.4). �

Example. For the cubic surface over k = Q(ζ), ζ = e2πi/3, defined by

5x3 + 9y3 + 10z3 + 12t3 = 0,

we have found that already for the cyclic degree 3 extension K0 = k( 3
√

2/3) we have

H1(Gal(K0/k),Pic(XK0)) ∼= H1(G,Pic(Xk̄)) = Z/3Z.

Let τ denote the generator of Gal(K0/k) ∼= Z/3Z which sends 3
√

2/3 to ζ 3
√

2/3.
Cohomology Hi(Gal(K0/k),M) can be computed by means of the resolution

C•(M) : 0 −→M
∆τ−→M

Nτ−→M
∆τ−→ · · · (6.6)

where the maps alternate between ∆τ := id − τ and Nτ := id + τ + τ2. The group
H1(Gal(K0/k),Pic(XK0)) is thus identified with ker(Nτ )/im(∆τ ), and this group
(which is cyclic of order 3) is generated by the class of

[C] + ωX (6.7)

where C is the curve in XK0 given in (4.6). This is Step 1.
Choose an anticanonical divisor H ⊂ X defined, say, by x = 0, so that C −H is

a divisor in the class (6.7). Now {H,C, τC, ττC} is a Galois-invariant set of divisors
generating Pic(XK0). For this set of divisors the sequence (2.1) becomes

0 → Z → Z ·H ⊕ Z · C ⊕ Z · τC ⊕ Z · ττC → Pic(XK0) → 0. (6.8)

The connecting homomorphism induced by the resolution (6.6) on the exact se-
quence (6.8) sends the 1-cocycle (6.7) to the 2-cocycle

C + τC + ττC − 3H (6.9)

in R. Notice that in this example R is isomorphic to Z (the left-hand term in (6.8)),
and in fact (6.9) is a generator. We have completed Step 2.

We have U = Xr(H∪C∪τC∪ττC). A splitting σ : R→ O(UK0)
∗, required for Step

3, sends the generator (6.9) to a rational function which vanishes on C ∪ τC ∪ ττC
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and has a pole of order 3 along H. The obstruction group H3(Gal(K0/k),K∗
0 ) is

identified by (6.6) with H1(Gal(K0/k),K∗
0 ), which vanishes by Hilbert’s Theorem 90.

So it is possible to lift the 2-cocycle (6.9) to an element of O(UK0)
∗ invariant under

τ . To carry this out, we use the explicit equations (4.6) for C to produce directly a
function in O(U)∗ of the form f/x3, where f is a polynomial (with coefficients in k)
whose divisor is C + τC + ττC − 3H. We obtain

f = (2ζ − 2)x3 − 3ζx2y − 8ζx2z − 9ζ2xy2 + 24ζxyz + 4ζxz2 + (−6ζ − 21)y3

− 12ζyz2 + (−18ζ − 14)z3 + (4ζ − 4)t3.
(6.10)

So we have completed Step 3. The 2-cocycle given by f/x3 corresponds to a cyclic
Azumaya algebra for the extension K0 of k and the rational function f/x3 ∈ O(U)∗.
The class B ∈ Br(U) of this Azumaya algebra is the restriction of some A ∈ Br(X)
such that A generates Br(X)/Br(k).

7. Effectivity

In this section, we present effectivity results concerning ample line bundles and
homogeneous ideals. Then we show how to carry out Step 4.

Many results in effective algebraic geometry are based on Gröbner bases. There
are effective algorithms to compute a Gröbner basis of a homogeneous ideal I ⊂
k[x0, . . . , xN ], which is given by means of generators. Based on this, there are effective
algorithms (implemented in computer algebra packages) to:

• test whether a given polynomial is in I,
• compute the saturation of I,
• compute the primary decomposition of an ideal I.

(See, e.g., [CLO97], [KR00].)

Lemma 7.1. Let X ⊂ PN be a projective variety, given by means of equations.
Denote by OX(1) the restriction of OPN (1) to X. Let L be an arbitrary line bundle
on X, presented (as a coherent sheaf on X) by means of homogeneous generators and
relations. Then there is, effectively, a positive integer d0 such that for all d ≥ d0 the
line bundle L ⊗OX(d) is ample and generated by global sections.

Proof. Choose finitely many sections si ∈ H0(X,OX(1)) such that X is covered by
the open subsets Xsi

where each section is nonvanishing. From the presentation of
L we have generators ti,j ∈ H0(Xsi

,L). These give rise to a covering of the affine
scheme Xsi by open affines Xti,j .

There is, effectively, a positive integer d0 such that for all d ≥ d0, one has that
ti,j ⊗ sdi is the restriction to Xsi

of a section ui,j ∈ H0(X,L ⊗ OX(d)) for each i
and j. This is achieved following the proof of [Gro60, 9.3.1(ii)]. The open subsets
Xui,j

= Xti,j
cover X, hence L ⊗ OX(d) is generated by global sections, and by

[Gro61, 4.5.2(a′)], L ⊗OX(d) is ample. �

Remark 7.2. By an effective Matsusaka theorem [Siu93] there is, for given d ≥ d0, an
effective bound r0 such that (L ⊗OX(d))⊗r is very ample for all r ≥ r0.

Proposition 7.3. Given effective divisors D and E (by means of equations) on a
smooth projective variety X (also defined by given equations) over k, such that [D] =
[E] in Pic(X), there is an effective algorithm to produce a rational function h ∈ k(X)∗

such that div(h) = D − E.
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Proof. Let H denote a hyperplane section of X ⊂ PN . By effective Serre vanishing
[BEL91, Prop. 1] we have

H0(PN ,OPN (d)) → H0(X, dH) (7.1)

surjective for d greater than some effective lower bound. Combining this with the
lower bound from Lemma 7.1 applied to L = OX(−D), we obtain d such that (7.1)
is surjective and such that we can produce a homogeneous polynomial f of degree d,
not identically zero on X, and vanishing on D. So, f vanishes on a cycle D +D′ for
some cycle D′ that can be determined effectively.

Now E + D′ is linearly equivalent to dH. By surjectivity of (7.1), there exists a
homogeneous polynomial g of degree d, not identically zero on X, contained in the
ideal of the sum of divisors E+D′. The ideals can be computed effectively, so we can
find g, and then defining h to be f/g we have div(h) = D − E. �

Remark 7.4. Since the linear system |dH −D| that arises in the proof of Proposition
6.2 is base point free, the divisor D′ in the proof can be chosen to avoid any given
finite set of points of X.

Remark 7.5. The elements f/g constructed in the proof of Proposition 6.2 do indeed
lie in O(UK)∗. However, f and g individually vanish on the residual divisor D′ that
appears in the proof. For the purposes of effective computations, we would really
require alternative representations of this rational function, such that at any point of
U there is some representative that is amenable to evaluation. A way of avoiding this
extra complication is to carry out the following steps:

(i) Fix a choice of hyperplane section H of X (in its given projective embedding),
which we assume to be defined by a linear polynomial h having coefficients in
k and included among the cycles Di.

(ii) Enlarge the collection of cycles Di by adding, for each generator of R, the
corresponding residual cycle D′ from the proof of Proposition 6.2 along with
its Galois translates.

(iii) For each additional cycleD′ (or Galois translate thereof), add a new generator
D +D′ − dH (or Galois translate thereof) to R.

(iv) For each additional generator to R, extend the definition of the splitting σ by
sending D +D′ − dH to f/hd and each Galois translate of D +D′ − dH to
the corresponding Galois translate of f/hd.

Having done this, U will be the complement of the zero locus of some homogeneous
polynomial, and all the rational functions in the image of σ will be of the form f/g
where f and g are homogeneous polynomials nonvanishing on U .

We now describe how to carry out Step 4. For each divisor Di, Lemma 7.1 applied
to OX(−Di) yields d such that |dH−Di| is base point free. We may therefore choose
a member of this linear system which avoids any finite collection of points. So we can
obtain divisors D′

i, such that Di is in the Z-linear span of D′
i and a hyperplane class,

and such that no irreducible component of any Di is contained in any of the D′
j . We

then take D2 to be the collection of D′
i together with a hyperplane class, the latter

also chosen not to contain any irreducible component of any of the Di.
Now we repeat Steps 2 and 3, and also carry out steps (i)–(iv) of Remark 7.5 (which

adds extra divisors to D2), so that every rational function that has been constructed
from the divisors D′

i has the property that its numerator and denominator are both
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nonvanishing on U2. In carrying this out, we use Remark 7.4 to ensure that U2

contains the generic points of all the irreducible components of the divisors in D1.
For m = 2, . . ., dimX we recursively construct Dm+1 and repeat Steps 2 and 3

and steps (i)–(iv) of Remark 7.5 for the divisors in Dm+1, making use of Remark
7.4 to ensure that Um+1 contains all the generic points of

⋂m
i=1(X r U i). It follows

inductively that

dim
( m⋂
i=1

(X r U i)
)

= dimX −m.

At the end of the construction X is covered by the open sets U1, . . ., UdimX+1.

8. Calibration

It is necessary to produce several representatives of a given Ã ∈ Br(X)/Br(k) (Step
4) and to calibrate these classes, i.e., to compute the difference in Br(k) between two
given representatives in Br(X) of the Br(k)-coset Ã (Step 5).

Let D = {Di} and D′ = {D′
i} be two sets of divisors as at the end of Section 7. Let

U = X r
⋃
Di and U ′ = X r

⋃
D′
i. Let B̃ be an element of H1(G,Pic(XK)), with

cocycle representative β̃ (constructed in Step 1). Consider the 2-cocycles β and β′

resulting from Steps 2 and 3 applied to D and D′, respectively. These are 2-cocycles
with values in O(UK)∗ and O(U ′

K)∗, respectively.
The exact sequence (2.1) can be enlarged to an exact sequence

0 → S →
⊕
i

Z · [Di]⊕
⊕
i

Z · [D′
i] → Pic(Xk̄) → 0 (8.1)

where S contains R as a direct summand. There is also a sequence analogous to (5.2),

0 → K∗ → O(UK ∩ U ′
K)∗ → S → 0, (8.2)

and the splitting σ of Proposition 6.2 can be extended to a splitting

π : S → O(UK ∩ U ′
K)∗.

Looking at Step 2, carried out using the collection of divisors D and again using
the collection of divisors D′, we have the same 1-cocycle β̃ with values in Pic(Xk̄)
mapped to the same element of H2(G,S) represented by two different 2-cocycles with
values in S. So, these 2-cocycles differ by a 2-coboundary. We apply π (note that π
is compatible with the splitting used in Step 3 for the collection of divisors D′ only
up to multiplicative constants), to obtain

β = ι′ β′ ∂(π(θ))

for some 1-cochain θ with values in S and some 2-cochain ι′ with values in K∗. This
ι′ is a 2-cocycle, and its associated class I ′ ∈ Br(k) satisfies

B′ + I ′ = A.

Example. In the case of the diagonal cubic surface

5x3 + 9y3 + 10z3 + 12t3 = 0,

we found that with K0 = k( 3
√

2/3), we have Pic(XK0) generated by the class of the
hyperplane H (given by x = 0) and the Galois orbit of the class of the cubic curve C
which we determined in (4.6) starting from a choice of p ∈ X(K0). Additional choices
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of K0-points p′, . . ., lead to further divisors having the same class in the Picard group
as C. For instance, the point

p′ := (3ζ, 1, 0,− 3
√

12)

gives rise to the curve C ′ defined by

2x2 − 6ζxy − xz + 3ζ2 3
√

2/3xt+ 3ζyz − 9 3
√

2/3 yt+ 8z2 = 0,

4x2 − 2xz − 6ζ 3
√

2/3xt− 6yz + z2 + 3ζ 3
√

2/3 zt+ 9ζ2 3
√

4/9 t2 = 0,

−2xy − 5xz − ζ2 3
√

2/3xt+ 6ζy2 − ζyz + 3 3
√

2/3 yt− 8 3
√

2/3 zt = 0.

Applying Steps 2 and 3 to C ′ we obtain

f ′ = (2ζ + 4)x3 − 3ζx2y − 8x2z − 9xy2 + 24ζxyz + 4xz2 + (21ζ + 15)y3

− 12ζyz2 + (14ζ − 4)z3 + (4ζ + 8)t3
(8.3)

such that div(f ′/x3) = C ′ + τC ′ + ττC ′ − 3H.
The sequence (8.1) is

0 → Z⊕ Z3 → Z⊕ Z3 ⊕ Z3 → Pic(XK0) → 0

where in the middle the generators are H and the Galois translates of C and C ′. The
first generator of the rank 4 module S on the left is the previously identified cycle
C + τC + ττC − 3H, and the additional generators are

C ′ − C, τC ′ − τC, ττC ′ − ττC.

We need to construct a splitting π : Z ⊕ Z3 → O(UK ∩ U ′
K)∗. We already have the

image f/x3 for the first generator, with f as in (6.10). Images of the other generators
are readily constructed. We send C ′ − C to g/f , where

g = (8ζ + 16)x3 + (−4ζ − 8)x2y − 2x2z + (−2ζ + 2) 3
√

2/3x2t+ (2ζ + 4)xyz

+ (6ζ − 6) 3
√

2/3xyt+ (−5ζ + 6)xz2 + (ζ − 1) 3
√

2/3xzt+ (−6ζ − 3) 3
√

4/9xt2

+ (12ζ + 24)y3 + (−6ζ + 6)y2z + (−ζ − 2)yz2 + (−3ζ + 3) 3
√

2/3 yzt

+ (18ζ + 9) 3
√

4/9 yt2 + (16ζ + 24)z3 + (−8ζ + 8) 3
√

2/3 z2t+ (16ζ + 32)t3

and the remaining generators to the Galois conjugates of g/f .
The 2-cocycles C + τC + ττC − 3H used to construct f and C ′ + τC ′ + ττC ′ − 3H

used to construct f ′ differ by a 2-coboundary,

C + τC + ττC − C ′ − τC ′ − ττC ′ = Nτ (C − C ′).

We have

π(C − C ′) =
f

g
.

Consequently
f

x3
= ϑ

f ′

x3
Nτ

(f
g

)
for some constant ϑ. By an explicit computation, we find

ϑ =
ζ

4
.

Repeating everything with the point

p′′ := (3, ζ, 0,− 3
√

12)
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yields a curve C ′′ with explicit equations and a function

f ′′ = (−4ζ − 2)x3−3ζx2y − 8x2z − 9ζxy2 + (−24ζ − 24)xyz + 4ζxz2

+ (−15ζ + 6)y3 − 12yz2 + (4ζ + 18)z3 + (−8ζ − 4)t3
(8.4)

such that div(f ′′/x3) = C ′′ + τC ′′ + ττC ′′ − 3H. Continuing, we obtain a rational
function whose norm times (−15ζ2/2)f ′′/x3 is equal to f/x3.

Therefore the rational functions
f

x3
,

ζ

4
f ′

x3
,

−15ζ2

2
f ′′

x3
(8.5)

have the property that their corresponding Azumaya algebras (for the cyclic extension
K0 of k) all define (restrictions of) the same element of Br(X). Each Azumaya algebra
is defined over an open subset of X. We would like to have X covered by such open
sets. Indeed, the divisors on X defined by f , f ′, and f ′′ have trivial intersection.
All we do now is replace H by other hyperplane sections H ′ : y = 0, etc. So, in
(8.5) we replace x by the other coordinate functions, and obtain a larger collection of
Azumaya algebras which all represent the same element of Br(X) and whose domains
of definition cover X.

9. Local invariants

The classical Nullstellensatz theorem asserts that if polynomials f1, . . ., fm ∈
k[x1, . . . , xN ] define the empty scheme in affine space ANk then there exist polynomials
gi satisfying

∑
i figi = 1. An effective arithmetic Nullstellensatz theorem [KPS01] ap-

plies to a number field k with ring of integers ok. Then, assuming fi ∈ ok[x1, . . . , xN ]
for all i, there exist gi ∈ ok[x1, . . . , xN ] satisfying∑

i

figi = $ (9.1)

for some $ ∈ ok. The theorem asserts that such gi can be found, satisfying bounds
on their degrees and on the heights of their coefficients. The bounds are effective and
depend on the degrees and the heights of the coefficients of the fi.

The given Brauer group element A is unramified at all but a finite set of places
of k. Consider a fixed integral model X of X over ok. Recall, a place v of k is said
to be of good reduction when the integral model is smooth over the residue field kv.
At all but finitely many of these places, the polynomials ft and gt appearing in the
cocycles reduce to nontrivial elements of O(Xkv

). Then by purity [Gro68, (III.6.1)],
the Brauer group elements are unramified at all v-adic points of X.

Consequently, it is only necessary to carry out the local analysis, i.e., the com-
putation of local invariants (3.2) of X(kv)-points, at those v which are places of bad
reduction, places where the rational functions appearing in the cocycles fail to extend,
and real places of k.

We first treat a non-archimedean place v. Choose a valuation v1 | v of K and
an embedding K → Kv1 . The Galois group of Gal(Kv1/K) is the subgroup G1 of
elements of G which stabilize v1. The embedding KG1 → Kv1 then factors through
kv. Replacing k by KG1 we are thereby reduced to the case that v extends uniquely
to a valuation v1 of K, and Gal(Kv1/kv) = G. We then have G-equivariant inclusions

O(UK) → O(UKv1
)

for any variety U over k.



18 ANDREW KRESCH AND YURI TSCHINKEL

We fix an element A ∈ Br(X), an open covering {U j} of X, and 2-cocycle represen-
tatives {βj} with values in O(U jK)∗, as constructed in Steps 1 through 5 (so that βj

is a representative of the restriction of A to U j for each j). We may suppose each βj

is a tuple (f jt /g
j
t )t∈T for some finite index set T , indexing a basis of C2(M). We may

require that f jt and gjt should be polynomials with coefficients in the ring of integers
oK . These are constructed algorithmically, so it is possible to give an effective bound
on the valuation of the coefficients.

Lemma 9.1. Let k be a number field, K a finite Galois extension of k with Galois
group G, and let v be a non-archimedean valuation of k admitting a unique extension
to a valuation v1 on K. Fix a resolution C•(K∗

v1) for computing group cohomology
of the G-module K∗

v1 , and let us write elements of C2(K∗
v1) as tuples (αt) indexed by

t ∈ T for some finite index set T . Then there is, effectively in terms of the given data,
a number N such that every 2-cocycle (αt) with mint v1(αt−1) > N is a 2-coboundary.

Proof. By restriction of scalars, there is a smooth affine variety Z over kv such that 2-
cocycles (αt) with values in K∗

v1 map bijectively to Z(kv), where the map is kv-linear
and explicit. Let z1 ∈ Z correspond to the 2-cocycle (1). There is, furthermore,
a smooth affine variety Y over kv and a similar bijection with 1-cochains, and a
smooth surjective map of kv-varieties % : Y → Z such that 2-coboundaries correspond
to points of %(Y (kv)).

Fix coordinates for Y and Z. Equations for Y , Z, and % can be written down
explicitly. By the Inverse Function Theorem, there is an explicit v-adic neighborhood
W of z1 in Z(kv) and an analytic splitting (not needed explicitly) of % : Y (kv) →
Z(kv) on W . Hence for every kv-point of W the corresponding 2-cocycle (αt) is a
2-coboundary.

The restriction of scalars map, sending a K∗
v1-valued cocycle (αt) to a point z ∈

Z(kv), is given coordinatewise by kv-linear expressions. Since v1 is Galois-invariant,
each coordinate of z has v-adic valuation bounded from below by mint(v1(αt)) plus
an explicit constant. So there is an effective bound N such that mint(v1(αt−1)) > N
implies z ∈W , so that (αt) must be a 2-coboundary. �

Corollary 9.2. Keep the notation of Lemma 9.1. Fix an integer P , and let (αt) and
(α′t) be 2-cocycles with values in K∗

v1 with |v1(αt)| ≤ P and |v1(α′t)| ≤ P for all t.
Then there is an effective bound Q, depending on the fields kv and Kv1 and P but
not on the given 2-cocycles, such that if v1(αt − α′t) ≥ Q for all t then (αt) and (α′t)
define the same element of Br(kv).

The proof of the next result contains an algorithmic description of the computation
of local invariant in Q/Z of the element in Br(kv), given as a 2-cocycle (αt).

Proposition 9.3. With notation as in Lemma 9.1, let an integer P be given, and
let (αt) be a 2-cocycle with values in K∗

v1 such that |v1(αt)| ≤ P for all t. Then
there is an effective computation, taking as input the collection of αt each specified to
an effectively determined degree of precision, of the local invariant of the element of
Br(kv) corresponding to this 2-cocycle.

Remark 9.4. Formally speaking, Proposition 9.3 implies Lemma 9.1. We have in-
cluded Lemma 9.1 because it admits a direct proof independent of the detailed algo-
rithmic treatment of the proof of Proposition 9.3. Lemma 9.1 is significant because
it can be used to simplify the computation in practice. Indeed the bound N arising
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in the proof of the lemma can be quite reasonable, while the algorithmic description
tends to lead to a much worse bound. See the example at the end of this section, where
such bounds are obtained, compared, and used to help complete the local analysis.

Proof of Proposition 9.3. It is possible to obtain an explicit map between the given
resolution C• and the standard resolution C•G with

C2
G(M) =

⊕
(g,h)∈G×G

M.

Thus we are reduced to the case of given cocycle data (αg,h) satisfying the standard
cocycle condition

αg,hαgh,j = αg,hj
gαh,j

for all g, h, j ∈ G. There is no loss of generality in assuming that for all g ∈ G that
αe,g = αg,e = 1, where e denotes the identity element of G. Then the identification
via crossed products

H2(Gal(k̄v), k̄∗v) = Br(kv)

associates to (αg,h) the element of the Brauer group corresponding to the central
simple algebra

A =
⊕
g∈G

Kv1 · eg

where eg are generators, subject to the relations

egeh = αg,hegh

egc = gceg

for g, h ∈ G and c ∈ Kv1 (see, e.g., [Dra83]).
Now we recall the local invariant isomorphism Br(kv) = Q/Z. There exists, up to

isomorphism, a unique unramified extension `v/kv of each degree d; such `v is cyclic
Galois over kv. Taking d such that the class of A in Br(kv) is d-torsion (e.g., we can
take d = |G|), there must exist an isomorphism

χ : A⊗kv `v →M|G|(`v) (9.2)

of the extension of A to the degree d unramified field extension `v with the |G|-by-|G|
matrix algebra over `v. The extension `v can be obtained explicitly (e.g., from a
cyclotomic extension).

We let n = |G|, and write Ak′ for A⊗kv
k′ where k′/kv is any field extension. The

first step toward the construction of an isomorphism (9.2) is to find an `v-point on
the Brauer–Severi variety associated with A. The Brauer–Severi variety of A has the
property that k′-points correspond bijectively with n-dimensional left ideals of Ak′ ,
for any extension k′/kv. This description supplies explicit equations for the Brauer–
Severi variety as a subvariety of the Grassmannian variety Gr(n, n2) over kv (see, e.g.,
[Art82]), and hence there are a priori bounds on the v-adic height of an `v-valued
solution. We let A1 ⊂ A`v denote the corresponding left ideal.

There are 1 = x1, x2, . . ., xn ∈ A`v such that if we set Ai = A1xi then the spaces
A1, . . ., An span A`v . The Ai can be found effectively, and their entries can be
effectively bounded. More precisely, if we vary over a choice of possible xi (e.g., a fixed
kv-basis of A), then for each choice we get a map (A1)n → A, given by (yi) 7→

∑
i yixi.

Such a map is represented by a matrix; now we consider the determinant of the
matrix. The tuple of determinants over all choices of xi is nonvanishing, so appealing
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to an effective Nullstellensatz we have an a priori bound on the minimum of the
determinants.

Under the isomorphism of vector spaces

A`v = A1 ⊕ · · · ⊕ An
the vector 1 ∈ A`v maps to some (e1,1, . . . , en,n) ∈ A1 ⊕ · · · ⊕ An. Now we define
χ to map ei,i to the matrix with a single entry 1 in the ith row and ith column,
and all other entries 0. The prescription ei,j ∈ ei,iA`v ∩ A`vej,j , defines the ei,j
uniquely up to scale, and we can thereby choose ei,i+1 for each i. Then the relations
ei,jei′,j′ = δj,i′ei,j′ determine all the ei,j and complete the definition of the algebra
isomorphism χ.

The action of g ∈ G on `v induces the algebra automorphism ϕg : Mn(`v) →Mn(`v)
defined by

ϕg(m) = g(χ(g
−1

(χ−1(m))))

Write
ϕg(m) = p−1

g mpg.

This is effective Skolem–Noether: for any vector w, the matrix q with vector ϕ(ei,1)w
in column i (where ei,1 denotes the matrix with 1 in row i column 1 and 0 elsewhere)
for each i satisfies ϕ(m)q = qm for all m ∈ Mn(`v), and for some choice of w the
determinant of q must have valuation less than some bound that can be made explicit.
Then take pg = q−1.

Now we follow [Ser68, §X.5]: if we define βg,h by

β−1
g,h = pg

gphp
−1
gh (9.3)

then (βg,h) is a 2-cocycle with values in `∗v for the extension `v/kv such that its class
in Br(kv) is equal to A. (As remarked in ibid., the construction applied to an algebra
defined by a 2-cocycle for the extension `v representing B ∈ H2(Gal(k̄v/kv), k̄∗v) =
Br(kv) naturally gives rise to a 2-cocycle for the class −B; this explains the power
−1 in the definition of βg,h.) Now v(βg,h) is a 2-cocycle with values in Z. Using the
long exact sequence of cohomology of the sequence

0 → Z → Q → Q/Z

and acyclicity of Q we obtain a 1-cocycle with values in Q/Z, that is, a group homo-
morphism

Gal(`v/kv) → Q/Z.
The local invariant of the algebra A (associated with the given 2-cocycle with values
in K∗

v1) is the image in Q/Z of the unique element of Gal(`v/kv) which induces the
Frobenius automorphism on residue fields (cf. [Ser68, §XIII.3]). �

We write kv-points of X as tuples

x = (x0, . . . , xN )

with xi0 = 1 for some i0 and xi ∈ ov (the ring of integers of kv) for all i. It suffices
to consider one chart at a time (i.e., choice of i0). Henceforth we work with points in
a single chart.

Set hj :=
∏
t f

j
t g
j
t . The hj are nonvanishing on U j , which cover X. So we can

apply effective Nullstellensatz (9.1) to the hj to deduce that there are homogeneous
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polynomials Hj with coefficients in ov and an equation∑
j

hjHj = Axri0

for some A ∈ ov and r. The valuations of A and of the coefficients of the Hj

are effectively bounded, as are the degrees of the Hj . It follows that for each
x ∈ X(kv) there exists j such that the cocycle (βjt ) can be evaluated at x, with
max(v(f jt (x)), v(gjt (x))) ≤ P for some effective bound P that is independent of x.

Proposition 9.5. Fix the data of Assumption 2.1 and consider A ∈ Br(X) with
representing cocycles (βjt ) from Steps 1 through 5. There is an effective bound Q′

such that if x and x′ are points of (a fixed chart of) X(kv) satisfying v(xi− x′i) > Q′

for all i, then invv(A(x)) = invv(A(x′)).

Proof. There is an effective bound P such that for some j we have

max(v(f jt (x)), v(gjt (x))) ≤ P

for all t. Hence, for large enough Q′, we also have max(v(f jt (x′)), v(g
j
t (x′))) ≤ P for

this value of j and all t. The result now follows by Corollary 9.2. �

We can now give an effective procedure to compute the local invariants of the
kv-points of X. As before, we focus on a single chart of X. Then, with Q′ as in
Proposition 9.5, we enumerate the classes of points of X(kv), where points x, x′ are
considered to lie in the same class if we have v(xi − x′i) > Q′. For each class, we
choose a representative point and compute it to a precision which is

(i) enough to identify the j such that max(v(f jt (x)), v(gjt (x))) ≤ P for all t,
(ii) enough to carry out the algorithm of Proposition 9.3.

Then we evaluate (βjt (x)) and apply the algorithm of Proposition 9.3. The output is
the local invariant of all points x′ ∈ X(kv) lying in the same class (in the sense we
have just introduced) as x.

We now treat the case of a real place v of k. Then X(kv) is a real algebraic mani-
fold, and the local invariant of the Brauer group element A is constant on connected
components. So we are reduced to determining whether none, some, or all of the
connected components of X(kv) have points where a cocycle representative of A has
values in the image of an algebraic coboundary map. For real algebraic varieties there
are effective procedures for computing the number of connected components and the
image of an algebraic map (cf. [HRR91]). So the ramification pattern of any Brauer
group element (or collection of Brauer group elements) can be determined effectively.

Example. We carry out the local analysis in the Cassels–Guy example

5x3 + 9y3 + 10z3 + 12t3 = 0 (9.4)

to deduce that this cubic surface X violates the Hasse principle. The original proof
of this fact from [CG66] is based on ideal class group computations. The work of
Colliot-Thélène, Kanevsky, and Sansuc [CTKS87] treated diagonal cubic surface us-
ing the Brauer–Manin obstruction; however they used more complicated (non-cyclic)
Azumaya algebras.

The base field is k = Q(ζ) with ζ = e2πi/3. We have produced an element
A ∈ Br(X) which generates Br(X)/Br(k) ∼= Z/3Z. On various open subsets, A
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is represented by cyclic Azumaya algebras, for the field extension k( 3
√

2/3), of the
function field elements

g1 :=
f

x3
, g2 := 2ζ

f ′

x3
, g3 := −60ζ2 f

′′

x3

where f , f ′, and f ′′ are the polynomials of (6.10), (8.3), and (8.4).
We proceed with the evaluation of the functions gi at v-adic points of X. The

equation (9.4) has good reduction outside of the primes 2,
√
−3, and 5. Since the

functions gi reduce to nontrivial rational functions on the reduction at any place v
outside these primes, it follows that A is unramified at any point of X(kv).

Consider first v = 2. We proceed to evaluate the functions gi at 2-adic points of
X and compute the local invariants of the resulting 2-cocycles. Every point of X(k2)
with 2-adic integer coefficients must have x and y not divisible by 2, so we are free to
consider x = 1 throughout the analysis. It suffices to consider y, z, and t mod 8, as
we see in the following computations. For all y, z, and t satisfying (9.4) mod 8, there
is always some i such that gi is of the form 2n(1 + 2a) with a ∈ o2 and 0 ≤ n ≤ 2.
Any number of this form is a norm, since 2 is the norm of 2+ 3

√
12+ 3

√
18 and for any

a ∈ o2 the number 1 + 2a is a cube in k2. So the corresponding 2-cocycle is always
trivial, and the local invariant at all 2-adic points of X is 0.

Now consider the place v =
√
−3. Again, we may suppose x = 1. We observe

that at all points of X(kv) the value of g1 is
√
−3 times a unit u ∈ o∗v. To determine

the required precision, we make some remarks concerning norms for the extension
kv( 3

√
2/3)/kv. We have that

√
−3 is a norm,

√
−3 = N

(
−1− 2ζ + (1− ζ) 3

√
2/3

)
,

and that any u ∈ o∗v congruent to 1 mod 9 is a cube in kv. Consequently it suffices to
evaluate (1/

√
−3)g1 modulo 9, and for this it suffices to consider y, z, and t modulo

9
√
−3. It results that (1/

√
−3)g1, modulo 9, always equals one of the following:

ζ, 4ζ, 7ζ, 3 + ζ, 3 + 4ζ, 3 + 7ζ. (9.5)

The equation from the previous paragraph expressing 2 as a norm is valid in kv, and
we also have

N
(
1 + (−1− 2ζ

)
3
√

2/3) = 3 + 4ζ.

Consequently, all numbers in (9.5) are of the form ζ times a norm. By the algorithm
of Proposition 9.3, the local invariant of the cyclic division algebra defined by ζ is
computed to be 2/3. So the local invariant at all v-adic points of X is 2/3.

We remark that the application of Proposition 9.3 in the previous paragraph to
compute a v-adic local invariant requires solving for the isomorphism (9.2) to certain
precision in order to ensure that the subsequent steps of the algorithm lead to a
meaningful evaluation. The observed loss of significance in computing βg,h (9.3) from
χ is on the order of 310, meaning that according to the algorithmic description of
the computation we would require y, z, and t to such a high precision (the a priori
bounds are of course much worse). This is in contrast to the analysis from Lemma
9.1, which implies that values modulo 9

√
−3 suffice.

Finally, the field k5 contains 3
√

2/3, so the 5-adic analysis is trivial. At any adelic
point of X, the sum of local invariants is 2/3. In conclusion, the surface X defined
by (9.4) violates the Hasse principle.
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