\providecommand{\bysame}{\leavevmode ---\ } \providecommand{\og}{``} \providecommand{\fg}{''} \providecommand{\smfandname}{\&} \providecommand{\smfedsname}{\'eds.} \providecommand{\smfedname}{\'ed.} \providecommand{\smfmastersthesisname}{M\'emoire} \providecommand{\smfphdthesisname}{Th\`ese} \begin{thebibliography}{CTKS87} \bibitem[Art82]{artin} {\scshape M.~Artin} -- {\og Brauer-{S}everi varieties\fg}, in \emph{Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981)}, Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, p.~194--210. \bibitem[AT68]{at} {\scshape E.~Artin {\normalfont \smfandname} J.~Tate} -- \emph{Class field theory}, W. A. Benjamin, Inc., New York-Amsterdam, 1968. \bibitem[BEL91]{bel} {\scshape A.~Bertram, L.~Ein {\normalfont \smfandname} R.~Lazarsfeld} -- {\og Vanishing theorems, a theorem of {S}everi, and the equations defining projective varieties\fg}, \emph{J. Amer. Math. Soc.} \textbf{4} (1991), no.~3, p.~587--602. \bibitem[Bri]{bright} {\scshape M.~Bright} -- {\og Efficient evaluation of the {B}rauer-{M}anin obstruction\fg}, \emph{Math. Proc. Cambridge Philos. Soc.}, to appear. \bibitem[Bro94]{brown} {\scshape K.~S. Brown} -- \emph{Cohomology of groups}, Graduate Texts in Mathematics, vol.~87, Springer-Verlag, New York, 1994, Corrected reprint of the 1982 original. \bibitem[BSD04]{bsd} {\scshape M.~Bright {\normalfont \smfandname} P.~Swinnerton-Dyer} -- {\og Computing the {B}rauer-{M}anin obstructions\fg}, \emph{Math. Proc. Cambridge Philos. Soc.} \textbf{137} (2004), no.~1, p.~1--16. \bibitem[CF67]{cf} {\scshape J.~W.~S. Cassels {\normalfont \smfandname} A.~Fr{\"o}hlich} (\smfedsname) -- \emph{Algebraic number theory}, London, Academic Press, 1967. \bibitem[CG66]{cg} {\scshape J.~W.~S. Cassels {\normalfont \smfandname} M.~J.~T. Guy} -- {\og On the {H}asse principle for cubic surfaces\fg}, \emph{Mathematika} \textbf{13} (1966), p.~111--120. \bibitem[CLO97]{clo} {\scshape D.~Cox, J.~Little {\normalfont \smfandname} D.~O'Shea} -- \emph{Ideals, varieties, and algorithms}, second \smfedname, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. \bibitem[CTKS87]{ctks} {\scshape J.-L. Colliot-Th{\'e}l{\`e}ne, D.~Kanevsky {\normalfont \smfandname} J.-J. Sansuc} -- {\og Arithm\'etique des surfaces cubiques diagonales\fg}, in \emph{Diophantine approximation and transcendence theory (Bonn, 1985)}, Lecture Notes in Math., vol. 1290, Springer, Berlin, 1987, p.~1--108. \bibitem[CTS80]{cts} {\scshape J.-L. Colliot-Th{\'e}l{\`e}ne {\normalfont \smfandname} J.-J. Sansuc} -- {\og La descente sur les vari\'et\'es rationnelles\fg}, in \emph{Journ\'ees de G\'eometrie Alg\'ebrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979}, Sijthoff \& Noordhoff, Alphen aan den Rijn, 1980, p.~223--237. \bibitem[CTS87]{cts2} {\scshape J.-L. Colliot-Th{\'e}l{\`e}ne {\normalfont \smfandname} J.-J. Sansuc} -- {\og La descente sur les vari\'et\'es rationnelles. {II}\fg}, \emph{Duke Math. J.} \textbf{54} (1987), no.~2, p.~375--492. \bibitem[dJ05]{dejong} {\scshape A.~J. de~Jong} -- {\og A result of {G}abber\fg}, 2005, preprint. \bibitem[Dra83]{draxl} {\scshape P.~K. Draxl} -- \emph{Skew fields}, London Mathematical Society Lecture Note Series, vol.~81, Cambridge University Press, Cambridge, 1983. \bibitem[Gro60]{egaI} {\scshape A.~Grothendieck} -- {\og \'{E}l\'ements de g\'eom\'etrie alg\'ebrique. {I}. {L}e langage des sch\'emas\fg}, \emph{Inst. Hautes \'Etudes Sci. Publ. Math.} (1960), no.~4. \bibitem[Gro61]{egaII} \bysame , {\og \'{E}l\'ements de g\'eom\'etrie alg\'ebrique. {II}. \'{E}tude globale \'el\'ementaire de quelques classes de morphismes\fg}, \emph{Inst. Hautes \'Etudes Sci. Publ. Math.} (1961), no.~8. \bibitem[Gro68]{gb} {\scshape A.~Grothendieck} -- {\og Le groupe de {B}rauer. {I}--{III}\fg}, in \emph{Dix Expos\'es sur la Cohomologie des Sch\'emas}, North-Holland, Amsterdam, 1968, p.~46--188. \bibitem[Gro71]{sga1} {\scshape A.~Grothendieck} -- \emph{Rev\^etements \'etales et groupe fondamental}, Springer-Verlag, Berlin, 1971, S\'eminaire de G\'eom\'etrie Alg\'ebrique du Bois Marie 1960--1961 (SGA 1), Dirig\'e par A. Grothendieck. Augment\'e de deux expos\'es de M. Raynaud, Lecture Notes in Mathematics, Vol. 224. \bibitem[Has23a]{hasse2} {\scshape H.~Hasse} -- {\og {\"U}ber die {{\"A}}quivalenz quadratischer {F}ormen im {K}\"orper der rationalen {Z}ahlen\fg}, \emph{J. Reine Angew. Math.} \textbf{152} (1923), p.~205--224. \bibitem[Has23b]{hasse1} \bysame , {\og {\"U}ber die {D}arstellbarkeit von {Z}ahlen durch quadratische {F}ormen im {K}\"orper der rationalen {Z}ahlen\fg}, \emph{J. Reine Angew. Math.} \textbf{152} (1923), p.~129--148. \bibitem[Has24]{hasse3} \bysame , {\og Darstellbarkeit von {Z}ahlen durch quadratische {F}ormen in einem beliebigen algebraischen {Z}ahlk\"orper\fg}, \emph{J. Reine Angew. Math.} \textbf{153} (1924), p.~113--130. \bibitem[Hen08]{hensel08} {\scshape K.~Hensel} -- \emph{Theorie der algebraischen {Z}ahlen}, B. G. Teubner, Leipzig, 1908. \bibitem[Hen13]{hensel13} \bysame , \emph{Zahlentheorie}, G. J. G\"oschen'sche Verlagshandlung, Berlin, 1913. \bibitem[HRR91]{hrr} {\scshape J.~Heintz, T.~Recio {\normalfont \smfandname} M.-F. Roy} -- {\og Algorithms in real algebraic geometry and applications to computational geometry\fg}, in \emph{Discrete and computational geometry (New Brunswick, NJ, 1989/1990)}, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol.~6, Amer. Math. Soc., Providence, RI, 1991, p.~137--163. \bibitem[IP99]{ip} {\scshape V.~A. Iskovskikh {\normalfont \smfandname} Y.~G. Prokhorov} -- {\og Fano varieties\fg}, in \emph{Algebraic geometry, V}, Encyclopaedia Math. Sci., vol.~47, Springer, Berlin, 1999, p.~1--247. \bibitem[KPS01]{kps} {\scshape T.~Krick, L.~M. Pardo {\normalfont \smfandname} M.~Sombra} -- {\og Sharp estimates for the arithmetic {N}ullstellensatz\fg}, \emph{Duke Math. J.} \textbf{109} (2001), no.~3, p.~521--598. \bibitem[KR00]{kr} {\scshape M.~Kreuzer {\normalfont \smfandname} L.~Robbiano} -- \emph{Computational commutative algebra. 1}, Springer-Verlag, Berlin, 2000. \bibitem[KT04]{kt} {\scshape A.~Kresch {\normalfont \smfandname} Y.~Tschinkel} -- {\og On the arithmetic of del {P}ezzo surfaces of degree 2\fg}, \emph{Proc. London Math. Soc. (3)} \textbf{89} (2004), no.~3, p.~545--569. \bibitem[Lem03]{lemmermeyer} {\scshape F.~Lemmermeyer} -- {\og A note on {P}\'epin's counter examples to the {H}asse principle for curves of genus 1\fg}, 2003, preprint. \bibitem[Lin40]{lind} {\scshape C.-E. Lind} -- {\og Untersuchungen \"uber die rationalen {P}unkte der ebenen kubischen {K}urven vom {G}eschlecht {E}ins\fg}, 1940, Thesis, University of Uppsala. \bibitem[Log04]{logan} {\scshape A.~Logan} -- {\og \texttt{Brauer}, {M}agma package for determining the {B}rauer--{M}anin obstruction of a del {P}ezzo surface of degree 4\fg}, 2004. \bibitem[Man71]{manin} {\scshape Y.~I. Manin} -- {\og Le groupe de {B}rauer-{G}rothendieck en g\'eom\'etrie diophantienne\fg}, in \emph{Actes du Congr\`es International des Math\'ematiciens (Nice, 1970), Tome 1}, Gauthier-Villars, Paris, 1971, p.~401--411. \bibitem[Man74]{maninbook} {\scshape Y.~I. Manin} -- \emph{Cubic forms: algebra, geometry, arithmetic}, North-Holland Publishing Co., Amsterdam, 1974. \bibitem[Min90]{minkowski} {\scshape H.~Minkowski} -- {\og {\"U}ber die {B}edingungen, unter welchen zwei quadratische {F}ormen mit rationalen {K}oeffizienten ineinander rational transformiert werden k\"onnen\fg}, \emph{J. Reine Angew. Math.} \textbf{106} (1890), p.~5--26. \bibitem[P{\'e}p80]{pepin} {\scshape T.~P{\'e}pin} -- {\og Nouveaux th\'eor\`emes sur l'\'equation ind\'etermin\'ee $ax^4+by^4=z^2$\fg}, \emph{C. R. Acad. Sci Paris} \textbf{91} (1880), no.~2, p.~100--101. \bibitem[Rei42]{reichardt} {\scshape H.~Reichardt} -- {\og Einige im {K}leinen \"uberall l\"osbare, im {G}rossen unl\"osbare diophantische {G}leichungen\fg}, \emph{J. Reine Angew. Math.} \textbf{184} (1942), p.~12--18. \bibitem[Ser68]{serre} {\scshape J.-P. Serre} -- \emph{Corps locaux}, Hermann, Paris, 1968, Deuxi\`eme \'edition, Publications de l'Universit\'e de Nancago, No. VIII. \bibitem[Siu93]{siu} {\scshape Y.~T. Siu} -- {\og An effective {M}atsusaka big theorem\fg}, \emph{Ann. Inst. Fourier (Grenoble)} \textbf{43} (1993), no.~5, p.~1387--1405. \bibitem[Sko99]{skoro} {\scshape A.~N. Skorobogatov} -- {\og Beyond the {M}anin obstruction\fg}, \emph{Invent. Math.} \textbf{135} (1999), no.~2, p.~399--424. \bibitem[Sou17]{sousley} {\scshape C.~P. Sousley} -- {\og Invariants and covariants of the {C}remona cubic surface\fg}, \emph{Amer. J. Math.} \textbf{39} (1917), p.~135--146. \bibitem[Wit04]{wittenberg} {\scshape O.~Wittenberg} -- {\og Transcendental {B}rauer-{M}anin obstruction on a pencil of elliptic curves\fg}, in \emph{Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002)}, Progr. Math., vol. 226, Birkh\"auser Boston, Boston, MA, 2004, p.~259--267. \end{thebibliography}