For any $\mathfrak p$ in $\Val(F)-S$, we consider the local term of the $L$-function associated to the geometric Picard group which is defined by \[L_{\mathfrak p}(s,\Pic(\Vbar))= \frac{1}{\Det(1-(\cardinal\Ffp)^{-s}\Fr_{\mathfrak p}\mid \Pic(\calli V_{\overline{\Ffp}})\otimes_\ZZ\QQ)}\] where $ \begin{equation} \def\p(#1,#2)#3{\put(#1,#2){\makebox(0,0){$#3$}}} \begin{gathered} \begin{picture}(240,80)(0,10) \p(0,90){L(0)}\p(50,90){L'(0)}\p(100,90){L''(0)} \p(0,60){L(1)}\p(50,60){L'(1)}\p(100,60){L''(1)} \p(0,30){L(2)}\p(50,30){L'(2)}\p(100,30){L''(2)} \put(0,45){\vector(0,1){8}} \put(0,45){\vector(0,-1){8}} \put(75,45){\vector(1,1){10}} \put(75,45){\vector(1,-1){10}} \put(75,45){\vector(-1,1){10}} \put(75,45){\vector(-1,-1){10}} \p(150,90){L(0)}\p(200,90){L'(0)}\p(250,90){L''(0)} \p(150,60){L(1)}\p(200,60){L'(1)}\p(250,60){L''(1)} \p(150,30){L(2)}\p(200,30){L'(2)}\p(250,30){L''(2)} \end{picture}\\ \begin{picture}(100,90)(0,10) \p(0,90){L(0)}\p(50,90){L'(0)}\p(100,90){L''(0)} \p(0,60){L(1)}\p(50,60){L'(1)}\p(100,60){L''(1)} \p(0,30){L(2)}\p(50,30){L'(2)}\p(100,30){L''(2)} \end{picture} \end{gathered} \end{equation}