\begin{info} \section{Results for the cubic $L_8$} We consider the following cubic \begin{equation}\tag{$L_8$}X_0^3+X_1^3+X_2^3+X_3^3=0 \end{equation} \subsection{The Galois group} The splitting Galois group for the cubic is given by \[G=\langle c^1\rangle. \] \subsection{The Picard group}The orbits of the 27 lines are given by \[\begin{split} O_{0}&=\{L(0,0)\},\\ O_{1}&=\{L(1,0),L(2,0)\},\\ O_{2}&=\{L(0,1),L(0,2)\},\\ O_{3}&=\{L(1,1),L(2,2)\},\\ O_{4}&=\{L(2,1),L(1,2)\},\\ O_{5}&=\{M(0,0),M(0,1)\},\\ O_{6}&=\{M(1,0),M(2,1)\},\\ O_{7}&=\{M(2,0),M(1,1)\},\\ O_{8}&=\{M(0,2)\},\\ O_{9}&=\{M(1,2),M(2,2)\},\\ O_{10}&=\{N(0,0),N(0,2)\},\\ O_{11}&=\{N(1,0),N(2,2)\},\\ O_{12}&=\{N(2,0),N(1,2)\},\\ O_{13}&=\{N(0,1)\},\\ O_{14}&=\{N(1,1),N(2,1)\}. \end{split}\] In order to describe the Picard group, we consider the cubic over $\overline {Q}$ as the projective plane blown up in six points so that the $27$ lines are given by \begin{align*} E_1&=L(0,0),&E_2&=L(1,0),&E_3&=L(2,0),\\ E_4&=M(0,0),&E_5&=M(1,0),&E_6&=M(2,0),\\ Q_1&=L(1,1),&Q_2&=L(2,1),&Q_3&=L(0,1),\\ Q_4&=M(2,2),&Q_5&=M(0,2),&Q_6&=M(1,2),\\ R_{1,2}&=L(1,2),&R_{2,3}&=L(2,2),&R_{3,1}&=L(0,2)\\ R_{4,5}&=M(0,1),&R_{5,6}&=M(1,1),&R_{6,4}&=M(2,1)\\ R_{1,4}&=N(2,1),&R_{1,5}&=N(0,1),&R_{1,6}&=N(1,1)\\ R_{2,4}&=N(0,2),&R_{2,5}&=N(1,2),&R_{2,6}&=N(2,2)\\ R_{3,4}&=N(1,0),&R_{3,5}&=N(2,0),&R_{3,6}&=N(0,0). \end{align*} where the $E_i$ are the exceptional lines, the $R_{i,j}$ is the strict lifting of the line $(P_iP_j)$ and $Q_i$ the strict lifting of the conic going through all points except $P_i$. In the basis given by the lifting $\Lambda$ of line not going through any of the six points blown up and by the $6$ exceptional lines $E_i$, the Picard group of the variety over $\mathbf Q$ is given by the matrix \[\begin{pmatrix} 0&0&-1&-1\\ 1&0&0&0\\ 0&1&0&0\\ 0&1&0&0\\ 0&0&0&1\\ 0&0&1&-1\\ 0&0&0&1\\ \end{pmatrix} \] The effective cone is generated by \[\begin{split} [O_{1}]&= e_{0},\\ [O_{2}]&= e_{1},\\ [O_{3}]&=-2e_{0}-e_{1}-2e_{2}-e_{3},\\ [O_{4}]&=-2e_{1}-2e_{2}-e_{3},\\ [O_{5}]&=-2e_{0}-e_{1}-2e_{2}-e_{3},\\ [O_{6}]&=-e_{2},\\ [O_{7}]&=-e_{3},\\ [O_{8}]&=-e_{2},\\ [O_{9}]&=-e_{0}-e_{1}-e_{2}-e_{3},\\ [O_{10}]&=-2e_{0}-2e_{1}-3e_{2}-e_{3},\\ [O_{11}]&=-e_{1}-e_{2}-e_{3},\\ [O_{12}]&=-e_{1}-e_{2}-e_{3},\\ [O_{13}]&=-e_{1}-2e_{2},\\ [O_{14}]&=-e_{0}-e_{2},\\ [O_{15}]&=-2e_{0}-e_{2}-e_{3}.\\ \noalign{and the canonical sheaf is given by}\omega_V^{-1}&=-e_{0}-e_{1}-2e_{2}-e_{3}. \end{split}\] The corresponding polyhedron may be described as \[\begin{split} X_1 &> 0,\\ X_2 &> 0,\\ X_1-2X_2 &> -1,\\ X_1+2X_2-X_3 &> -1,\\ -1/2X_3 &> -1,\\ -X_1-2X_2+1/2X_3 &> -1,\\ -2X_2+X_3 &> 0,\\ -X_1+1/2X_3 &> 0,\\ -X_1+2X_2-1/2X_3 &> -1. \end{split}\] with $ 1$ as coefficient. Thus the constant $\alpha(V)$ is $ 7/18$. \subsection{The bad places} \par At the bad place $3$ We use the following reduced form \[X_0^3+X_1^3+X_2^3+X_3^3=0 \] of type $(1,1,1,q)$. Thus the density at $p$ is $ 2$ and the zeta factor at $p$ is $ 8/27$ \subsection{Experimental curve} The following graph represents the numerical data \centerline{% {\setlength{\unitlength}{0.240900pt} \begin{picture}(600,900)(0,0) \put(50.000,88.000){\rule[-0.200pt]{120.450pt}{0.400pt}}\put(50.000,88.000){\rule[-0.200pt]{0.400pt}{192.720pt}}\put(50.000,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(50.000,47.0){\makebox(0,0)[c]{0}} \put(91.692,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(91.692,47.0){\makebox(0,0)[c]{1}} \put(133.385,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(133.385,47.0){\makebox(0,0)[c]{2}} \put(175.077,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(175.077,47.0){\makebox(0,0)[c]{3}} \put(216.769,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(216.769,47.0){\makebox(0,0)[c]{4}} \put(258.461,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(258.461,47.0){\makebox(0,0)[c]{5}} \put(300.154,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(300.154,47.0){\makebox(0,0)[c]{6}} \put(341.846,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(341.846,47.0){\makebox(0,0)[c]{7}} \put(383.538,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(383.538,47.0){\makebox(0,0)[c]{8}} \put(425.230,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(425.230,47.0){\makebox(0,0)[c]{9}} \put(466.923,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(466.923,47.0){\makebox(0,0)[c]{10}} \put(508.615,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(508.615,47.0){\makebox(0,0)[c]{11}} \put(550.000,0.0){\makebox(0,0)[c]{$\log(B)$}} \put(145.596,868.000){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(165.596,848.000){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(174.494,587.200){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(194.494,567.200){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(203.393,478.000){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(223.393,458.000){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(232.292,479.137){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(252.292,459.137){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(261.191,447.531){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(281.191,427.531){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(290.090,403.103){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(310.090,383.103){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(318.989,383.620){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(338.989,363.620){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(347.888,365.556){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(367.888,345.556){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(376.787,350.849){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(396.787,330.849){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(405.685,338.251){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(425.685,318.251){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(414.000,334.727){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(434.000,314.727){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(434.584,328.410){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(454.584,308.410){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(459.804,319.996){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(479.804,299.996){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(510.000,308.383){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(530.000,288.383){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(50.0,223.880){\rule[-0.200pt]{120.450pt}{0.400pt}} \put(40.0,223.880){\makebox(0,0)[r]{$\thetaH(V)$}} \end{picture}} } \end{info} \ifx\FirstEAVcolumn\undefined \createnewtable{EAV}{21} \forEAV \ifx\showallcolumns\undefined \def\showallcolumns{}\fi \gaddtomacro\showallcolumns{\showEAVcolumns} \fi \FirstEAVcolumn {\text{Surface}}% {H}% {n_\greeksubscript{U,\mathbf H}(B)}% {C_{\Br}}% {\alpha(V)}% {H^1(\mathbf Q,\Pic(\overline V))}% {q_0}% {\zeta^*_{\mathbf Q(q_0^{1/3})}(1)}% {q_1}% {\zeta^*_{\mathbf Q(q_1^{1/3})}(1)}% {q_2}% {\zeta^*_{\mathbf Q(q_2^{1/3})}(1)}% {\lambda'_{3}\omegaH(V(\mathbf Q_{3}))}% {C_0}% {C_1}% {C_2}% {C_3}% {\omegaH(V(\mathbf R))}% {\thetaH(V)}% {n_\greeksubscript{U,\mathbf H}(B)/\thetaH(V)B\log(B)^{3}}% {\thetaH^{\mathrm{stat}}(V)/\thetaH(V)}% \addEAVcolumn {L_8}% {100000}% {12137664}% {1}% {7/18}% {1}% {1}% {6.045998\times10^{-1}}% {1}% {6.045998\times10^{-1}}% {1}% {6.045998\times10^{-1}}% {16/27}% {3.066383\times10^{-1}}% {5.129319\times10^{-1}}% {1}% {1}% {6.121864}% {4.904057\times10^{-2}}% {1.621894}% {1.024630}%