\begin{info} \section{Results for the cubic $L_2$} We consider the following cubic \begin{equation}\tag{$L_2$}X_0^3+X_1^3+5X_2^3+25X_3^3=0 \end{equation} \subsection{The Galois group} The splitting Galois group for the cubic is given by \[G=\langle c^1,\tau_2^{2}\tau_3^{1}\rangle. \] \subsection{The Picard group}The orbits of the 27 lines are given by \[\begin{split} O_{0}&=\{L(0,0),L(0,2),L(0,1)\},\\ O_{1}&=\{L(1,0),L(2,0),L(1,2),L(1,1),L(2,2),L(2,1)\},\\ O_{2}&=\{M(0,0),M(0,1),M(2,2),M(1,1),M(2,0),M(1,2)\},\\ O_{3}&=\{M(1,0),M(2,1),M(0,2)\},\\ O_{4}&=\{N(0,0),N(0,2),N(1,1),N(2,2),N(1,0),N(2,1)\},\\ O_{5}&=\{N(2,0),N(1,2),N(0,1)\}. \end{split}\] In order to describe the Picard group, we consider the cubic over $\overline {Q}$ as the projective plane blown up in six points so that the $27$ lines are given by \begin{align*} E_1&=L(0,0),&E_2&=L(1,0),&E_3&=L(2,0),\\ E_4&=M(0,0),&E_5&=M(1,0),&E_6&=M(2,0),\\ Q_1&=L(1,1),&Q_2&=L(2,1),&Q_3&=L(0,1),\\ Q_4&=M(2,2),&Q_5&=M(0,2),&Q_6&=M(1,2),\\ R_{1,2}&=L(1,2),&R_{2,3}&=L(2,2),&R_{3,1}&=L(0,2)\\ R_{4,5}&=M(0,1),&R_{5,6}&=M(1,1),&R_{6,4}&=M(2,1)\\ R_{1,4}&=N(2,1),&R_{1,5}&=N(0,1),&R_{1,6}&=N(1,1)\\ R_{2,4}&=N(0,2),&R_{2,5}&=N(1,2),&R_{2,6}&=N(2,2)\\ R_{3,4}&=N(1,0),&R_{3,5}&=N(2,0),&R_{3,6}&=N(0,0). \end{align*} where the $E_i$ are the exceptional lines, the $R_{i,j}$ is the strict lifting of the line $(P_iP_j)$ and $Q_i$ the strict lifting of the conic going through all points except $P_i$. In the basis given by the lifting $\Lambda$ of line not going through any of the six points blown up and by the $6$ exceptional lines $E_i$, the Picard group of the variety over $\mathbf Q$ is given by the matrix \[\begin{pmatrix} -3&0\\ 1&0\\ 1&0\\ 1&0\\ 1&1\\ 1&-2\\ 1&1\\ \end{pmatrix} \] The effective cone is generated by \[\begin{split} [O_{1}]&=-e_{0},\\ [O_{2}]&=-2e_{0},\\ [O_{3}]&=-2e_{0}+e_{1},\\ [O_{4}]&=-e_{0}-e_{1},\\ [O_{5}]&=-2e_{0}-e_{1},\\ [O_{6}]&=-e_{0}+e_{1}.\\ \noalign{and the canonical sheaf is given by}\omega_V^{-1}&=-e_{0}. \end{split}\] The corresponding polyhedron may be described as \[\begin{split} -X_1 &> -3,\\ X_1 &> 1. \end{split}\] with $ 1$ as coefficient. Thus the constant $\alpha(V)$ is $ 2$. \subsection{The bad places} \par At the bad place $3$ We use the following reduced form \[X_0^3+X_1^3+5X_2^3+7X_3^3=0 .\] And a direct computation gives that the density at $p$ is $ 2/3$ and the zeta factor at $p$ is $ 2/3$ \par At the bad place $5$ We use the following reduced form \[X_0^3+X_1^3+5X_2^3+25X_3^3=0 \] of type $(1,a,bp,cp^2)$. Thus the density at $p$ is $ 4/5$ and the zeta factor at $p$ is $ 24/25$ \subsection{Experimental curve} The following graph represents the numerical data \centerline{% {\setlength{\unitlength}{0.240900pt} \begin{picture}(600,900)(0,0) \put(50.000,88.000){\rule[-0.200pt]{120.450pt}{0.400pt}}\put(50.000,88.000){\rule[-0.200pt]{0.400pt}{192.720pt}}\put(50.000,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(50.000,47.0){\makebox(0,0)[c]{0}} \put(98.468,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(98.468,47.0){\makebox(0,0)[c]{1}} \put(146.936,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(146.936,47.0){\makebox(0,0)[c]{2}} \put(195.404,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(195.404,47.0){\makebox(0,0)[c]{3}} \put(243.872,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(243.872,47.0){\makebox(0,0)[c]{4}} \put(292.340,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(292.340,47.0){\makebox(0,0)[c]{5}} \put(340.808,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(340.808,47.0){\makebox(0,0)[c]{6}} \put(389.276,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(389.276,47.0){\makebox(0,0)[c]{7}} \put(437.744,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(437.744,47.0){\makebox(0,0)[c]{8}} \put(486.212,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(486.212,47.0){\makebox(0,0)[c]{9}} \put(534.680,88.000){\rule[-0.200pt]{0.400pt}{4.818pt}} \put(534.680,47.0){\makebox(0,0)[c]{10}} \put(550.000,0.0){\makebox(0,0)[c]{$\log(B)$}} \put(164.382,756.571){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(184.382,736.571){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(197.977,801.143){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(217.977,781.143){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(231.573,868.000){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(251.573,848.000){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(265.168,844.122){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(285.168,824.122){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(298.764,746.125){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(318.764,726.125){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(332.359,696.214){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(352.359,676.214){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(365.955,711.304){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(385.955,691.304){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(399.550,716.685){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(419.550,696.685){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(433.146,711.884){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(453.146,691.884){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(466.741,713.513){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(486.741,693.513){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(500.337,709.376){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(520.337,689.376){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(510.000,707.055){\rule[-0.200pt]{9.636pt}{0.400pt}} \put(530.000,687.055){\rule[-0.200pt]{0.400pt}{9.636pt}} \put(50.0,654.179){\rule[-0.200pt]{120.450pt}{0.400pt}} \put(40.0,654.179){\makebox(0,0)[r]{$\thetaH(V)$}} \end{picture}} } \end{info} \ifx\FirstCAXcolumn\undefined \createnewtable{CAX}{23} \forCAX \ifx\showallcolumns\undefined \def\showallcolumns{}\fi \gaddtomacro\showallcolumns{\showCAXcolumns} \fi \FirstCAXcolumn {\text{Surface}}% {H}% {n_\greeksubscript{U,\mathbf H}(B)}% {C_{\Br}}% {\alpha(V)}% {H^1(\mathbf Q,\Pic(\overline V))}% {q_0}% {\zeta^*_{\mathbf Q(q_0^{1/3})}(1)}% {q_1}% {\zeta^*_{\mathbf Q(q_1^{1/3})}(1)}% {q_2}% {\zeta^*_{\mathbf Q(q_2^{1/3})}(1)}% {\lambda'_{3}\omegaH(V(\mathbf Q_{3}))}% {p_{0}}% {\lambda'_{p_{0}}\omegaH(V(\mathbf Q_{p_{0}}))}% {C_0}% {C_1}% {C_2}% {C_3}% {\omegaH(V(\mathbf R))}% {\thetaH(V)}% {n_\greeksubscript{U,\mathbf H}(B)/\thetaH(V)B\log(B)^{1}}% {\thetaH^{\mathrm{stat}}(V)/\thetaH(V)}% \addCAXcolumn {L_2}% {20000}% {49608}% {1}% {2}% {1}% {1/125}% {6.045998\times10^{-1}}% {1/5}% {1.163730}% {5}% {1.163730}% {4/9}% {5}% {96/125}% {3.493824\times10^{-1}}% {8.704106\times10^{-1}}% {1}% {9.906098\times10^{-1}}% {1.360417}% {2.290769\times10^{-1}}% {1.093332}% {0.958517}%