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1 Introduction

The book contains a collection of articles by participants of the Working Week
on Resolution of Singularities held at Obergurgl in Tirol, September 7-14,
1997. It is dedicated to Oscar Zariski, the founder of the school of algebraic
geometry in the United States. During his long career as a mathematician he
obtained ground-breaking results in algebra and algebraic geometry. Many
years of his career were dedicated to the desingularization problem. One
of his major achievements were the modernization of the classical theory
of blow-ups and the proof of the existence of resolutions of singularities in
dimension three.

The main focus of the book is on the substantial recent progress in the
desingularization problem resulting from a rather powerful shift of the ap-
proach to the whole subject pioneered by J. de Jong.

In order to appreciate this change we need to consider the history of
the subject. In geometry we are often dealing with objects which are locally
similar at most points but exhibit exceptional behavior at a subset of points of
smaller dimension. This subset is called the singular locus. More concretely,
let us consider a simple topological version of the desingularization problem.
Let X be a finite connected polyhedron of dimension d. Its smooth (or
nonsingular) points are those which have a small neighborhood isomorphic
to a ball. If we assume that X is a manifold without boundary and that
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every point of X lies on a simplex of dimension d then a desingularization
of X is a smooth manifold X ′ (without boundary) together with a surjective
map f : X ′ → X such that f is an isomorphism on an open, everywhere
dense subset U ⊂ X ′. Using the desingularization (X ′, f) we can distribute
the complexity concentrated at a singular point x in X over the subcomplex
in X ′ containing the preimage f−1(x).

Unfortunately, in such a natural geometric setting a resolution does not
exist in general! The simplest counterexample is given by a union of two
copies of a cone over a real manifold which is not cobordant to zero. For
example, an isolated unresolvable singularity would be a real cone over the
real(!) fourfold CP2. Thus already in dimension 5 we can build a polyhedron
which is a smooth manifold away from two singular points and which does
not admit a resolution of singularities.

Amazingly enough, resolutions do exist for polyhedra associated with so-
lutions of polynomial equations with coefficients in complex numbers. These,
very special, subsets of complex affine (resp. projective) spaces are called al-
gebraic varieties over the complex numbers. Easy examples of highly singular
varieties are subvarieties of the affine space An given by generic homogeneous
polynomials of degree ≥ 2 in n-variables. In spite of the complexity of the
singularities which can appear on algebraic varieties, H. Hironaka, a stu-
dent of Zariski, proved in the early 1960’s the existence of a resolution in
the strongest possible form. Precisely, for any projective variety X he con-
structed a smooth projective variety X ′ with a surjective (algebraic) map
f : X ′ → X such that f is an isomorphism over an open dense subset
of X. Here X ′ can be viewed, topologically, as a smooth even-dimensional
manifold. Hironaka’s construction satisfies several other properties:

• the map f is an isomorphism outside of the singular points of X;

• the preimage of the singular set is a union of smooth projective sub-
varieties of (complex) codimension one with transversal intersections
(special smooth submanifolds of codimension two);

• X ′ and f are obtained through a sequence of standard operations (blow-
ups of smooth subvarieties contained in the singular locus).

A blow-up, intuitively, replaces its center (an algebraic subvariety) by the set
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of its normal (complex) directions. In particular, one blow-up resolves the
affine cone singularities described in the example above.

The initial proof of Hironaka was quite lengthy and complicated. Hiron-
aka followed the classical path of blowing up the subvariety of most complex
singular points. The problem which was encountered by Zariski and others
was that up to dimension three the complexity of the singularity still has
some geometric flavor, but in higher dimensions it lacks a geometrically in-
tuitive characterization. Subsequently, Hironaka’s proof and its logic have
been substantially clarified (see, for example, the article of S. Encinas and O.
Villamayor in this volume, or the papers of E. Bierstone and P. Millman [2],
and M. Spivakovski [5]). The general strategy is to introduce an appropri-
ate function φ with values in a finite subset of a (lexicographically ordered)
finitely generated semigroup (vectors with entries N) and semicontinuous on
X. The value of φ at each point reflects the complexity of the singularity.
The maxima of φ are smooth inside the singular locus. Blowing up such
points reduces the global maximum of φ on X.

This ultimate solution, which works for algebraic varieties over any field
of characteristic zero, had a tremendous impact on the development of al-
gebraic geometry. In practice, it substantially simplified computations of
geometric invariants of algebraic varieties and provided a solid foundation
for the subsequent advances in algebraic geometry. Bluntly put, it is one of
the few universally useful mathematical results.

However, so far all attempts to extend the method to varieties defined over
fields of finite characteristic or discrete valuation rings of mixed characteristic
have failed. The original algorithm by Hironaka and its present modifications
lead to loops: blow-ups don’t diminish the maxima of φ.

For many years the spectacular success of the method of desingulariza-
tions by blow-ups developed by Segre, Zariski and Hironaka blinded, in a
sense, other researchers in this field. It was so natural and powerful that
other alternatives were abandoned or forgotten. This spell was broken by
Johan de Jong in 1995.

Before explaining the approach of de Jong let us recall another important
development in algebraic geometry. Independently of Hironaka’s resolution
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of singularities, Deligne, Mumford, Knudsen and others were building the
theory of stable degenerations of curves and compactifications of their moduli
(natural parameter) spaces. Naturally, one wants to relate the invariants of
the degeneration to invariants of the generic fiber. It is a standard trick in
algebraic geometry to compute something on a maximally degenerated object
and then extend the outcome (by continuity) to the smooth case. But there
was no clear understanding of what justified such computations, and, not
surprisingly, some of the computations were wrong. In the theory of moduli
the main difficulty comes from the presence of automorphisms. Algebraic
curves of a given genus degenerate into rather complicated one dimensional
objects - combinations of singular curves with multiplicities. How to deal
with this? The theory of stable curves and stable degenerations, in general,
brought clarity to the subject. For every smooth family of curves C∗ → ∆∗

over a punctured disc there exists a unique relative compactification C → ∆
(at least after changing the base by a finite cyclic covering of ∆∗). Moreover,
the preimage of 0 = ∆ \ ∆∗ is a union of algebraic curves with normal
crossing and very mild (nodal) singularities such that each smooth rational
component of the preimage of 0 intersects the other components in at least
two points. Such reducible curves (appearing as limits C0) are called semi-
stable. Semi-stability is sufficient if one is interested in local properties of
degenerations (or “coarse” moduli spaces). However, if one is interested
in morphisms between degenerating families (or “fine” moduli spaces) one
needs to introduce additional data to eliminate possible automorphisms of
semi-stable curves. One approach is to fix a finite number of smooth points
on curves and to keep track of these points. A second approach involves
level structures. The corresponding moduli spaces are much more rigid. In
particular, one has two crucial properties:

• for every family C∗ of stable (punctured) curves over a (dense) Zariski
open subset B∗ ⊂ B of a normal variety B there exists a generically
finite surjective proper morphism f : B′ → B such that the pullback
of C∗ extends to a stable family over B′;

• a complete family of stable curves (over a normal connected base) is
uniquely determined by its restriction to a Zariski open subset of the
base.

Most importantly, the theory of stable curves exists for fields of any char-
acteristic. Moreover, in the case of finite characteristic p, all morphisms
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involved are separable (no p-th roots are required).

De Jong’s main observation was that this powerful theory provides a tool
for desingularization. First of all, every variety can be fibered in curves.
Secondly, using induction on dimension and base change we can assume that
the base is smooth and that the locus of nonsmooth stable curves is a divisor
with normal crossing. The resulting families of stable pointed curves have
relatively simple singularities which can be treated directly. One refers to
this resolution of singularities as resolution by “alterations”. Alterations are
not birational but only generically finite!

As it happens, Hironaka’s resolution of singularities is, in a sense, too
precise. De Jong’s alterations are sufficient for many theoretical applications
(see below).

2 Outline of the book

Roughly speaking, one can divide the articles of the book into the following
categories:

1. method of alterations and its applications in algebraic geometry;

2. applications of desingularization to differential equations;

3. valuation theory;

4. some aspects of the Zariski-Hironaka desingularization theory of alge-
braic varieties;

5. historical accounts.

The introductory lecture of J. Lipman sketches of the biography of Zariski
and his main contributions in mathematics. Zariski was a witness and active
participant of the turbulent years of the Russian Revolution and Civil War
between 1917 and 1920. In 1920 he escaped to Italy and several years later
he emigrated to the United States.

The subsequent articles are devoted to different aspects of the desingular-
ization problem in algebraic geometry and some other areas. The first half of

5



the book corresponds roughly to lectures given at the Working Week (unfor-
tunately, not all of them were included). It provides a vigorous introduction
to basic problems, classical techniques, and recent developments in the field.

The lecture of H. Hauser gives a concise historical account of the desin-
gularization problem, a list of principal contributions to its solution, selected
references, and, most importantly, a convenient dictionary of basic specific
terminology used in this book.

The lectures of D. Abramovich and F. Oort explain in a transparent
and rigorous manner the proof of the alteration theorem of J. de Jong. They
include a thorough exposition of the theory of moduli of stable pointed curves
and some results related to de Jong’s theorem, in particular several different
proofs of the weak version of Hironaka’s theorem in characteristic zero.

They are followed by two lectures by J.-M. Aroca devoted to singularities
of differential equations and their resolutions by blow-ups. In the first article
he gives a detailed proof of the Seidenberg theorem which says that after
finitely many blow-ups one can transform a complex foliation of dimension
one on a surface to a foliation with simple singularities. Simple means that
the first order part is a matrix with at least one nontrivial eigenvalue. This
implies that through every point of a foliated surface there passes a locally
holomorphic integral curve. Thus, in some cases, blow-ups suffice to reduce
these equations, at least locally, to canonical forms. There are examples
(Darboux, Jouanolou) of a codimension one foliation in a threefold without
(even formal) integral divisors through a singular point.

The lecture notes by S. Encinas and O. Villamayor on constructive desin-
gularization detail recent improvements of Hironaka’s approach, giving algo-
rithms for the desingularization of an embedded variety.

The article by G. Bodnár and J. Schicho provides a computer algorithm
for the desingularization of an affine hypersurface.

The article of V. Gossard contains a refined version of the desingulariza-
tion of surfaces, following Zariski’s program.
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The lecture notes of D. Cox give an introduction to toric varieties, their
singularities and toric resolutions. Toric varieties are irreducible algebraic
varieties equipped with an action of an algebraic torus (product of several
copies of C∗) with a finite number of orbits. Geometric properties of toric
varieties (including their singularities) admit a purely combinatorial descrip-
tion. This class of varieties is an ideal testing ground for conjectures: it is
sufficiently rich to capture many interesting geometric phenomena and at the
same time sufficiently rigid to allow explicit constructions.

The article of B. van Geemen and F. Oort considers compactification of
the moduli scheme of curves with non-trivial level structures. They show
that there exist natural (though singular) compactifications which are not
moduli spaces.

The article of T. Geisser discusses several applications of de Jong’s theo-
rem. The first is the non-negativity of local intersection multiplicities in the
case of mixed characteristic. Their algebraic definition, in an abstract setting,
was given by J.-P. Serre as an Euler characteristic of some explicit derived
functor. As intersection multiplicities they ought to be non-negative, but this
was not at all clear from the definition. The second application is a theorem
about singular cohomology of algebraic varieties (defined by A. Suslin and
V. Voevodski). De Jong’s theorem implies that singular cohomology (with
finite coefficients) for any separated scheme over an algebraically closed field
(of characteristic prime to the order of the coefficient ring) coincides with
étale cohomology. Further, one obtains a description of Chow groups with
finite coefficients as étale cohomology. There are several other applications
to relations between different cohomologies and monodromy representations.

R. Goldin and B. Tessier describe a simple toric resolution of a plane
curve singularity.

The second article of H. Hauser carefully explains the geometric picture
of the resolution of an embedded singular surface.

The short paper by de Jong gives an application of his alteration theorem
to Dieudonné modules.
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The paper by F.-V. Kuhlmann deals with valuation theory and its con-
nections with logic (model theory for fields).

L. D. Tráng considers M. Spivakovski’s approach to surface singularities.

The paper by J. Lipman studies the classical question of a simultaneous
resolution of equisingular points. The notion of equisingularity was intro-
duced by Zariski in order to express the intuitive idea that the singular locus
admits a natural stratification by algebraic subsets of points with similar
complexity of their neighborhoods. Lipman discusses several approaches to
the proper definition of this notion.

G. Müller describes resolutions of weighted homogeneous singularities.

F. Pop gives a survey of birational abelian geometry and applications
of alterations to the problem of reconstruction of function fields from their
Galois groups.

The paper of H. Reitberger recalls several failed attempts to prove reso-
lution of singularities before Hironaka.

The concluding article of M. Vaquié contains the classical treatment of
the valuation theory.

3 Comments

Let us make an informal comment on the idea of alterations. Morally, it
is the search for good covering varieties. Phrased in this way, the theory of
alterations hints at the existence of a relatively small class of algebraic vari-
eties which dominate all other algebraic varieties. A prototype in arithmetic
is a consequence of a theorem by a (recently deceased) Russian mathemati-
cian G. Belyi, which was noticed by Yu. Manin: for any algebraic curve
C defined over a number field there exists a modular curve X0(N) and an
unramified covering X → X0(N) such that X dominates C (in fact, there
are even smaller families of curves with this property). A part of Belyi’s ar-
gument (and de Jong’s lecture at the conference at Santa Cruz) inspired the
approach of the first author and T. Pantev to desingularizations. Precisely,
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any projective algebraic variety is (after blow-ups of some smooth points)
a finite covering of a P1-fibration over a projective space, ramified only in
sections (!) of this fibration. In particular, any isolated singularity is a cov-
ering of a neighborhood of a smooth point ramified in a family of smooth
hypersurfaces. This example indicates that the method of alterations has
some hidden potential which remains to be explored.

4 Conclusion

As one can see from our description, many of the articles of the book are either
expositions of classical results or useful variations of well known topics. In
our opinion, the core of the book is the papers discussing different aspects
of de Jong’s alteration theory and its applications, especially the excellent
lecture notes of D. Abramovich and F. Oort. Unfortunately, the presentation
of applications of alterations is relatively short. We would have welcomed
some comments on the central role of certain classes of singularities and
their explicit desingularizations in the minimal model program pursued by
Sh. Mori, J. Kollár, and many others (see [4]).

A curious reader will certainly enjoy the multifaceted view of the subject
- the emerging internal diversity of the field may provide inspiration to a
wide range of mathematicians, from graduate students to experts.

5 Postscriptum

In the autumn of 1981, the first author visited Zariski at his residence
with a message from the Harvard Mathematics Department that Zariski was
awarded the Wolf prize. “Too late!” exclaimed the 82-year old mathemati-
cian.
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