\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{10} \bibitem{bpv} W.~Barth, C.~Peters, and A.~Van de~Ven, \emph{Compact complex surfaces}, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol.~4, Springer-Verlag, Berlin, 1984. \bibitem{ctsan} J-L. Colliot-Th{\'e}l{\`e}ne and J-J. Sansuc, \emph{La {$R$}-\'equivalence sur les tores}, Ann. Sci. \'Ecole Norm. Sup. (4) \textbf{10} (1977), no.~2, 175--229. \bibitem{css} J-L. Colliot-Th{\'e}l{\`e}ne, A.~N. Skorobogatov, and Sir~Peter Swinnerton-Dyer, \emph{Hasse principle for pencils of curves of genus one whose {J}acobians have rational {$2$}-division points}, Invent. math. \textbf{134} (1998), no.~3, 579--650. \bibitem{harari} D.~Harari, \emph{Obstructions de {M}anin transcendantes}, Number theory (Paris, 1993--1994), London Math. Soc. Lecture Note Ser., vol. 235, Cambridge Univ. Press, Cambridge, 1996, pp.~75--87. \bibitem{kod} K.~Kodaira, \emph{On compact analytic surfaces {II}}, Ann. of Math. (2) \textbf{77} (1963), 563--626. \bibitem{neron} A.~N{\'e}ron, \emph{Mod\`eles minimaux des vari\'et\'es ab\'eliennes sur les corps locaux et globaux}, Inst. Hautes \'Etudes Sci. Publ. Math. No.~ \textbf{21} (1964). \bibitem{serre} J-P. Serre, \emph{Corps locaux}, Hermann, Paris, 1968. \bibitem{shaf} I.~R. Shafarevich, \emph{Lectures on minimal models and birational transformations of two dimensional schemes}, Notes by C.~P. Ramanujam, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, No.~37, Tata Institute of Fundamental Research, Bombay, 1966. \bibitem{silv} J.~H. Silverman, \emph{The arithmetic of elliptic curves}, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1992. \bibitem{tate} J.~Tate, \emph{Algorithm for determining the type of a singular fiber in an elliptic pencil}, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1975, pp.~33--52, Lecture Notes in Math., Vol. 476. \end{thebibliography}