
DIOPHANTINE EQUATIONS: PROGRESS AND PROBLEMS

1. Introduction.
A Diophantine problem over Q is concerned with the solutions either in Q
or in Z of a finite system of polynomial equations

Fi(X1, . . . , Xn) = 0 (1 ≤ i ≤ m) (1)

with coefficients in Q. Without loss of generality we can obviously require
the coefficients to be in Z. A system (1) is also called a system of Diophantine
equations. Often one will be interested in a family of such problems rather
than a single one; in this case one requires the coefficients of the Fi to lie
in some Q(c1, . . . , cr), and one obtains an individual problem by giving the
cj values in Q. Again one can get rid of denominators. Some of the most
obvious questions to ask about such a family are:

(A) Is there an algorithm which will determine, for each assigned set of
values of the cj, whether the corresponding Diophantine problem has
solutions, either in Z or in Q?

(B) For values of the cj for which the system is soluble, is there an algorithm
for exhibiting a solution?

For individual members of such a family, it is also natural to ask:

(C) Can we describe the set of all solutions, or even its structure?

(D) Is the phrase ‘density of solutions’ meaningful, and if so, what can we
say about it?

The attempts to answer these questions have led to the introduction of new
ideas and these have generated new questions. On some of them I expect
progress within the next decade, and I have restricted myself to these in
the text below. Progress in mathematics usually means proven results; but
there are cases where even a well justified conjecture throws new light on the
structure of the subject. (For similar reasons, well motivated computations
can be helpful; but computations not based on a deep feeling for the structure
of the subject have generally turned out to be a waste of time.) But I
have not included those problems (such as the Riemann Hypothesis and the
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Birch/Swinnerton-Dyer conjecture) on which I do not expect further progress
within so short a timescale.

Though the study of solutions in Z and in Q may look very similar (and
indeed were believed for a long time to be so), it now appears that they are
actually very different and that the theory for solutions in Q has much more
structure than that for solutions in Z. The main reason for this seems to
be that in the rational case the system (1) defines a variety in the sense of
algebraic geometry, and many of the tools of that discipline can be used; in
contrast, in the integral case we do not know how to make significant use of
such tools. However, for varieties of degree greater than 2 it is only in low
dimension that we yet know enough of the geometry for it to be useful.

Uniquely, the Hardy-Littlewood method is useful both for integral and
for rational problems; it was designed for integral problems but can also be
applied to rational problems in projective space, because then the Fi in (1)
are homogeneous and it does not matter whether we treat the variables Xν

as integral or rational. There is a brief discussion of this method in §8, and
a comprehensive survey in [42].

Denote by V the variety defined by the equations (1) and let V ′ be any
variety birationally equivalent to V over Q. The problem of finding solutions
of (1) in Q is the same as that of finding rational points on V , which is almost
the same as that of finding rational points on V ′. Hence (except possibly for
Question (D) above) one expects the properties of the rational solutions of
(1) to be essentially determined by the birational equivalence class of V ;
and the way in which algebraic geometers classify varieties should provide
at least a first rough guide to the classification of Diophantine problems —
though they mainly study birational equivalence over C rather than over Q.
But it does at the moment seem that the geometric classification needs some
modifications and refinements if it is to fit the number-theoretic results and
conjectures.

Without loss of generality we can assume that V is absolutely irreducible.
For if V has proper components defined over Q it is enough to ask the ques-
tions above for each of the proper components; and if V is the union of
varieties conjugate over Q then any rational point on V lies on the intersec-
tion of these conjugates, which is a proper subvariety of V . Since we can
desingularize V by a birational transformation defined over Q, it is natural
to concentrate on the case when V is projective and nonsingular.

The definitions and the questions above can be generalized to an arbitrary
algebraic number field and the ring of integers in it; the answers are usually
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known or conjectured to be essentially the same as over Q or Z, though the
proofs can be very much harder. (But there are exceptions; for example, the
modularity of elliptic curves only holds over Q.) The questions above can
also be posed for other fields of number-theoretic interest — in particular
for finite fields and for completions of algebraic number fields — and when
one studies Diophantine problems it is essential to consider these other fields
also. If V is defined over a field K, the set of points on V defined over K will
always be denoted by V (K). If V (K) is not empty we say that V is soluble in
K. In the special case where K = kv, the completion of an algebraic number
field k at the place v, we also say that V is locally soluble at v. From now
on we denote by Qv any completion of Q; thus Qv means R or some Qp.

One major reason for considering solubility in complete fields and in finite
fields is that a necessary condition for (1) to be soluble in Q, for example,
is that it is soluble in every Qv. The condition of solubility in every Qv is
computationally decidable; see §2. Moreover, at least for primes p for which
the system (1) has good reduction mod p, the first step in deciding solubility
in Qp is to decide whether the reduced system is soluble in the finite field
GF(p) of p elements.

Geometers are used to studying varieties over non-algebraically-closed
fields k; what makes Diophantine problems special is the number-theoretic
nature of the fields k. But it seems that only a few of the properties peculiar
to such fields are useful in this context, so that a geometer need not learn
much number-theory in order to work on Diophantine problems. On the other
hand, a number-theorist would be wise to learn quite a lot of geometry.

Diophantine problems were first introduced by Diophantus of Alexandria,
the last of the great Greek mathematicians, who lived at some time between
300 B.C. and 300 A.D.; but he was handicapped by having only one letter
available to represent variables, all the others being used in classical Greek to
represent specific numbers. Individual Diophantine problems were studied by
such great mathematicians as Fermat, Euler and Gauss. But it was Hilbert’s
address to the International Congress in 1900 which started the development
of a systematic theory. His tenth problem asked:

Given a Diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: to devise
a process according to which it can be determined by a finite
number of operations whether the equation is soluble in rational
integers.
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Most of the early work on Diophantine equations was concerned with rational
rather than integral solutions; presumably Hilbert posed this problem in
terms of integral solutions because such a process for integral solutions would
automatically provide the corresponding process for rational solutions also,
by restricting to the special case when the equations are homogeneous. In
those confident days before the First World War, it was assumed that such an
process must exist; but in 1970 Matijasevič showed that this was impossible.
Indeed he exhibited a polynomial F (c; x1, . . . , xn) such that there cannot exist
an algorithm which will decide for every given c whether F = 0 is soluble
in integers. His proof is part of the great program on decidability initiated
by Gödel; good accounts of it can be found in [10], pp 323-378 or [9]. The
corresponding question for rational solutions is still open; I am among the
very few who believe that it may have a positive answer.

But even if the answer to the analogue of Hilbert’s tenth problem for
rational solutions is positive, one must expect that a separate algorithm will
be needed for each kind of variety. Thus we shall need not one algorithm
but an infinity of them. So number theorists depend on the development
by geometers of an adequate classification of varieties. At the moment, such
a classification is reasonably complete for curves and surfaces, but it is still
fragmentary even in dimension 3; so number theorists have to concentrate
on curves and surfaces, and on certain particularly simple kinds of variety in
higher dimension.

2. The Hasse Principle and the Brauer-Manin obstruction.
Let V be a variety defined over Q. If V is locally soluble at every place of
Q, we say that it satisfies the Hasse condition. If V (Q) is not empty then V
certainly satisfies the Hasse condition. What makes this remark valuable is
that the Hasse condition is computable — that is, one can decide in finitely
many steps whether a given V satisfies the Hasse condition. This follows
from the next two lemmas.

Lemma 1 Let W be an absolutely irreducible variety of dimension n defined
over the finite field k = GF(q). Then N(q), the number of points on W
defined over k, satisfies

|N(q)− qn| < Cqn−1/2

where the constant C depends only on the degree and dimension of W and is
computable.
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This follows from the Weil conjectures, for which see §3; but weaker results
which are adequate for the present application were known much earlier.
Since the singular points of W lie on a proper subvariety, there are at most
C1q

n−1 of them, where C1 is also computable. It follows that if q exceeds a
computable bound depending only on the degree and dimension of W then
W contains a nonsingular point defined over k.

Now let V be an absolutely irreducible variety defined over Q. If V
has good reduction at p, which happens for all but a finite computable set of
primes p, denote that reduction by Ṽp. If p is large enough, it follows from the
remarks above that Ṽp contains a nonsingular point Qp defined over GF(p).
The result which follows, which is known as Hensel’s Lemma though the
idea of the proof goes back to Sir Isaac Newton, now shows that V contains
a point Pp defined over Qp.

Lemma 2 Let V be an absolutely irreducible variety defined over Q and let
Ṽp be its reduction mod p. If Ṽp contains a nonsingular point Qp defined
over GF(p) then V contains a nonsingular point Pp defined over Qp whose
reduction mod p is Qp.

In view of this, to decide whether V satisfies the Hasse condition one only
has to check individually solubility in R and in finitely many Qp. Each of
these checks can be shown to be a finite process, using ideas similar to those
in the proof of Lemma 1.

A family F of varieties is said to satisfy the Hasse Principle if every
V contained in F and defined over Q which satisfies the Hasse condition
actually contains at least one point defined over Q. Again, a family F is said
to admit weak approximation if every V contained in F and defined over
Q, and such that V (Q) is not empty, has the following property: given any
finite set of places v and corresponding non-empty sets Nv ⊂ V (Qv) open
in the v-adic topology, there is a point P in V (Q) which lies in each of the
Nv. In the special case when F consists of a single variety V , and V (Q) is
not empty, we simply say that V admits weak approximation. In contrast
to the Hasse condition, whether V admits weak approximation is in general
not computable; for an important exception, see [39].

The most important families which are known to have either of these
properties (and which actually have both) are the families of quadrics of
any given dimension; this was proved by Minkowski for quadrics over Q and
by Hasse for quadrics over an arbitrary algebraic number field. But many
families, even of very simple varieties, do not satisfy either the Hasse Principle
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or weak approximation. (For example, neither of them holds for nonsingular
cubic surfaces.) It is therefore natural to ask

Question 1 For a given family F , what are the obstructions to the Hasse
Principle and to weak approximation?

For weak approximation there is a variant of this question which may be
both more interesting and easier to answer. For another way of stating weak
approximation on V is to say that if V (Q) is not empty then it is dense in
the adelic space V (A) =

∏
v V (Qv). This suggests the following:

Question 2 For a given V , or family F , what can be said about the closure
of V (Q) in the adelic space V (A)?

However, there are families for which Question 1 does not seem to be a
sensible question to ask; these probably include for example all families of
varieties of general type. So one should back up Question 1 with

Question 3 For what kinds of families is either part of Question 1 a sensible
question to ask?

The only systematic obstruction to the Hasse Principle which is known
is the Brauer-Manin obstruction, though obstructions can be found in the
literature which are not Brauer-Manin. Let A be a central simple algebra —
that is, a simple algebra which is finite dimensional over a field K which is its
centre. Each such algebra consists, for fixed D and n, of all n × n matrices
with elements in a division algebra D with centre K. Two central simple
algebras over K are equivalent if they have the same underlying division
algebra. Formation of tensor products over K gives the set of equivalence
classes the structure of a commutative group, called the Brauer group of K
and written Br(K). There is a canonical isomorphism ıp : Br(Qp) ' Q/Z
for each p; and there is a canonical isomorphism ı∞ : Br(R) ' {0, 1

2
}, the

nontrivial division algebra over R being the classical quaternions.
Let B be an element of Br(Q); tensoring B with any Qv gives rise to an

element of Br(Qv), and this element is trivial for almost all v. There is an
exact sequence

0 → Br(Q) →
⊕

Br(Qv) → Q/Z → 0,

due to Hasse, in which the third map is the sum of the ıv; it tells us when a
set of elements, one in each Br(Qv) and almost all trivial, can be generated
from some element of Br(Q).
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Now let V be a complete nonsingular variety defined over Q and A an
Azumaya algebra on V — that is, a simple algebra with centre Q(V ) which
has a good specialization at every point of V . The group of equivalence
classes of Azumaya algebras on V is denoted by Br(V ). If P is any point of
V , with field of definition Q(P ), we obtain a simple algebra A(P ) with centre
Q(P ) by specializing at P . For all but finitely many p, we have ıp(A(Pp)) = 0
for all p-adic points Pp on V . Thus a necessary condition for the existence
of a rational point P on V is that for every v there should be a v-adic point
Pv on V such that ∑

ıv(A(Pv)) = 0 for all A. (2)

Similarly, a necessary condition for V with V (Q) not empty to admit weak
approximation is that (2) should hold for all Azumaya algebras A and all
adelic points

∏
v Pv. In each case this is the Brauer-Manin condition. It is

clearly unaffected if we add to A a constant algebra — that is, an element
of Br(Q). So what we are really interested in is Br(V )/Br(Q).

All this can be put into highbrow language. Even without any hypothe-
ses on V , there is an injection of Br(V ) into the étale cohomology group
H2(V,Gm); and if for example V is a complete nonsingular surface, this in-
jection is an isomorphism. If we write

Br1(V ) = ker(Br(V ) → Br(V̄ )) = ker(H2(V,Gm) → H2(V̄ ,Gm)),

there is a filtration
Br(Q) ⊂ Br1(V ) ⊂ Br(V ).

Here only the abstract structure of Br(V )/Br1(V ) is known; and in general
there is no known way of finding Azumaya algebras which represent nontrivial
elements of this quotient, though in a particular case Harari [20] has exhibited
a Brauer-Manin obstruction coming from such an algebra. In contrast, there
is an isomorphism

Br1(V )/Br(Q) ' H1(Gal(Q̄/Q), Pic(V ⊗ Q̄)),

and this is computable in both directions provided Pic(V ⊗ Q̄) is known.
(For details of this, see [8].)

There is no known systematic way of determining Pic(V ⊗Q̄) for arbitrary
V , and there is strong reason to suppose that this is really a number-theoretic
rather than a geometric problem. If V is defined over Q (rather than over an
arbitrary algebraic number field) there is a tentative algorithm, depending on
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the Birch/Swinnerton-Dyer conjecture, for determining an algebraic number
field K (depending on V ) such that Pic(V ⊗ Q̄) =Pic(V ⊗K), and this may
be the right first step towards determining Pic(V ⊗ Q̄); but one hopes not,
because even for so elementary a variety as a cubic surface we may need
to have [K : Q] ≥ 51840. It seems to me likely that a better approach to
this question will be through the Tate conjectures, for which see §3; but this
is a very long-term prospect. However, it is usually possible to determine
Pic(V ⊗ Q̄) for any particular V that one is interested in.

Question 4 Is there a general algorithm (even conjectural) for determining
Pic(V ⊗ Q̄) for varieties V defined over an algebraic number field?

Lang has conjectured that if V is a variety of general type defined over an
algebraic number field K then there is a finite union S of proper subvarieties
of V such that every point of V (K) lies in S. (Faltings’ theorem, for which
see §4, is the special case of this for curves.) This raises another question,
similar to Question 4 but probably easier:

Question 5 Is there an algorithm for determining Pic(V ) where V is a va-
riety defined over an algebraic number field?

There are very few families for which the Brauer-Manin obstruction can
be nontrivial but for which it has been shown that it is the only obstruction to
the Hasse principle. (See however [12] and, subject to Schinzel’s hypothesis,
[37] and [14].) It is generally believed that the Brauer-Manin obstruction is
indeed the only obstruction to the Hasse principle for rational surfaces —
that is, surfaces birationally equivalent to P2 over Q̄. On the other hand,
Skorobogatov ([33], and see also [34]) has exhibited an obstruction to the
Hasse principle on a bielliptic surface which is definitely not Brauer-Manin.

Question 6 Is the Brauer-Manin obstruction the only obstruction to the
Hasse principle for all unirational (or all Fano) varieties?

We can of course ask a similar question for weak approximation. The major
difficulty in addressing such questions for a given family F is that we do not
know how to deduce anything useful from the fact that there is no Brauer-
Manin obstruction. The proofs of such results as are known all break up into
two parts:

(i) Assuming that V in F satisfies the Hasse condition, one finds a necessary
and sufficient condition for V to have a rational point, or to admit weak
approximation.
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(ii) One then shows that this necessary and sufficient condition is equivalent
to the Brauer-Manin condition.

I know of no families for which it has been possible to carry out the first part
of this programme but not the second. But there are families for which it has
been possible to find a sufficient condition for solubility (additional to the
Hasse condition) which appears rather weak but which is definitely stronger
than the Brauer-Manin condition. However, such a condition is usually not
necessary and the gap should be attributed to clumsiness in the proof.

Question 7 When the Brauer-Manin condition is trivial, how can one make
use of this fact?

3. Zeta-functions and L-series.
Let W ⊂ Pn be a nonsingular and absolutely irreducible projective variety
of dimension d defined over the finite field k =GF(q), and denote by φ(q) the
Frobenius automorphism of W given by

φ(q) : (x0, x1, . . . , xn) 7→ (xq
0, x

q
1, . . . , x

q
n).

For any r > 0 the fixed points of (φ(q))r are precisely the points of W which
are defined over GF(qr); suppose that there are N(qr) of them. Although
the context is totally different, this is almost the formalism of the Lefschetz
Fixed Point theorem, since for geometric reasons each of these fixed points
has multiplicity +1. This analogy led Weil to conjecture that there should
be a cohomology theory applicable in this context. This would imply that
there were finitely many complex numbers αij such that

N(qr) =
2d∑
i=0

Bi∑
j=1

(−1)iαr
ij for all r > 0, (3)

where Bi is the dimension of the ith cohomology group of W and the αij are
the characteristic roots of the map induced by φ(q) on the ith cohomology.
For each i duality implies that Bi = B2d−i and the α2d−i,j are a permutation
of the qd/αij. If we define the local zeta-function Z(t,W ) by either of the
equivalent relations

log Z(t) =
∞∑

r=1

N(qr)tr/r or tZ ′(t)/Z(t) =
∞∑

r=1

N(qr)tr,

9



then (3) is equivalent to

Z(t) =
P1(t,W ) · · ·P2d−1(t,W )

P0(t,W )P2(t,W ) · · ·P2d(t,W )

where Pi(t,W ) =
∏

j(1 − αijt). Each Pi(t,W ) must have coefficients in Z,

and the analogue of the Riemann hypothesis is that |αij| = qi/2. (For a fuller
account of Weil’s conjectures and their motivation, see the excellent survey
[23].) All this has now been proved, the main contributor being Deligne.

Now let V be a nonsingular and absolutely irreducible projective variety
defined over an algebraic number field K. If V has good reduction at a
prime p of K we can form Ṽp, the reduction of V mod p, and hence form the
Pi(t, Ṽp). For s in C, we can now define the ith global L-series Li(s, V ) of V
as a product over all places of K, the factor at a prime p of good reduction
being (Pi(q

−s, Ṽp))
−1 where q =NormK/Qp. The rules for forming the factors

at the primes of bad reduction and at the infinite places can be found in [31].
These L-series of course depend on K as well as on V . In particular, L0(s, V )
is just the zeta-function of the algebraic number field K.

To call a function F (s) a (global) zeta-function or L-series carries with it
certain implications:

• F (s) must be the product of a Dirichlet series and possibly some
Gamma-functions, and the half-plane of absolute convergence for the
Dirichlet series must have the form Rs > σ0 with 2σ0 in Z.

• The Dirichlet series must be expressible as an Euler product
∏

p fp(p
−s)

where the fp are rational functions.

• F (s) must have an analytic continuation to the entire s-plane as a
meromorphic function, for all of whose poles s is in Z.

• There must be a functional equation relating F (s) and F (2σ0− 1− s).

• The zeroes of F (s) in the critical strip σ0 − 1 < Rs < σ0 must lie on
Rs = σ0 − 1

2
.

In our case, the first two implications are trivial; and fortunately one is not
expected to prove the last three, but only to state them as conjectures. The
last one is the Riemann Hypothesis, which appears to be out of reach even
in the simplest case, which is the classical Riemann zeta-function; and the
third and fourth have so far only been proved in a few favourable cases.
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Question 8 Can one extend the list of V for which analytic continuation
and the functional equation can be proved? (It seems likely that any proof of
analytic continuation will carry a proof of the functional equation with it.)

It has been said about the zeta-functions of algebraic number fields that
‘the zeta-function knows everything about the number field; we just have to
prevail on it to tell us’. If this is so, we have not yet unlocked the treasure-
house. Apart from the classical formula which relates hR to ζK(0) all that has
so far been proved are certain results of Borel [6] which relate the behaviour
of ζK(s) near s = 1−m for integers m > 1 to the K-groups of OK . I would be
reluctant to claim that the L-series of a variety V contains all the information
which one would like to have about the number-theoretical properties of V ;
but one might hope that when a mysterious number turns up in the study
of Diophantine problems on V , some L-series contains information about it.

Suppose for convenience that V is defined over Q, and let its dimension
be d. Even for varieties with B1 = 0 we do not expect a product like∏

p

N(p)/pd or
∏

p

N(p)

/(
pd+1 − 1

p− 1

)
(4)

to be necessarily absolutely convergent. But in some contexts there is a
respectable expression which is formally equivalent to one of these, with
appropriate modifications of the factors at the bad primes. The idea that
such an expression should have number-theoretic significance goes back to
Siegel (for genera of quadratic forms) and Hardy and Littlewood (for what
they called the singular series). Using the ideas above, we are led to replace
the study of the products (4) by a study of the behaviour of L2d−1(s, V ) and
L2d−2(s, V ) near s = d. By duality, this is the same as studying L1(s, V ) near
s = 1 and L2(s, V ) near s = 2. The information derived in this way appears
to relate to the Picard group of V , defined as the group of divisors defined over
Q modulo linear equivalence. By considering simultaneously both V and its
Picard variety (the abelian variety which parametrises divisors algebraically
equivalent to zero modulo linear equivalence), one concludes that L1(s, V )
must be associated with the Picard variety and L2(s, V ) with the group of
divisors modulo algebraic equivalence — that is, with the Néron-Severi group
of V . These remarks motivate the weak forms of the Birch/Swinnerton-Dyer
conjecture (for which see §4) and the case m = 1 of the Tate conjecture below.
For the strong forms (which give expressions for the leading coefficients of the
relevent Laurent series expansions) heuristic arguments are less convincing;
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but one can formulate conjectures for these coefficients by asking what other
mysterious numbers turn up in the same context and should therefore appear
in the formulae for the leading coefficients.

The weak form of the Tate conjecture asserts that the order of the pole
of L2m(s, V ) at s = m + 1 is equal to the rank of the group of classes of
m-cycles on V defined over K, modulo algebraic equivalence; it is a natural
generalization of the case m = 1 for which the heuristics have just been
shown. For a more detailed account of both of these, including the conjectural
formulae for the leading coefficients, see [41] or [36].

Question 9 What information about V is contained in its L-series?

There is in the literature a beautiful edifice of conjecture, lightly sup-
ported by evidence, about the behaviour of the Li(s, V ) at integral points.
The principal architects of this edifice are Beilinson, Bloch and Kato. Beilin-
son’s conjectures relate to the order and leading coefficients of the Laurent
series expansions of the Li(s, V ) about integer values of s; in them the lead-
ing coefficients are treated as elements of C∗/Q∗. (For a full account see [28]
or [22].) Bloch and Kato ([4] and [5]) have strengthened these conjectures
by treating the leading coefficients as elements of C∗. But I do not believe
that anything like the full story has yet been revealed.

4. Curves.
The most important invariant of a curve is its genus. In the language of
algebraic geometry over C, curves of genus 0 are called rational, curves of
genus 1 are called elliptic and curves of genus greater than 1 are of general
type. But note that for a number theorist an elliptic curve is a curve of genus
1 with a distinguished point P0 on it, both being defined over the ground
field K. The effect of this is that the points on an elliptic curve form an
abelian group with P0 as its identity element, the sum of P1 and P2 being
the other zero of the function (defined up to multiplication by a constant)
with poles at P1 and P2 and a zero at P0.

A canonical divisor on a curve Γ of genus 0 has degree −2; hence by the
Riemann-Roch theorem Γ is birationally equivalent over the ground field to
a conic. The Hasse principle holds for conics, and therefore for all curves of
genus 0; this gives a complete answer to Question (A) at the beginning of
these notes. But it does not give an answer to Question (B). Over Q, a very
simple answer to Question (B) is as follows:
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Theorem 1 Let a0, a1, a2 be nonzero elements of Z. If the equation

a0X
2
0 + a1X

2
1 + a2X

2
2 = 0

is soluble in Z, then it has a solution for which each aiX
2
i is absolutely

bounded by |a0a1a2|.

Siegel [32] has given an answer to Question (B) over arbitrary algebraic
number fields, and Raghavan [27] has generalized Siegel’s work to quadratic
forms in more variables.

The knowledge of one rational point on Γ enables us to transform Γ
birationally into a line; so there is a parametric solution which gives explicitly
all the points on Γ defined over the ground field. This answers Question (C).

If Γ is a curve of general type defined over an algebraic number field K,
Mordell conjectured and Faltings proved that Γ(K) is finite; and a number
of other proofs have appeared since then. But it does not seem that any of
them enable one to compute Γ(K), though some of them come tantalizingly
close. For a survey of several such proofs, see [15].

Question 10 Is there an algorithm for computing Γ(K) when Γ is a curve
of general type defined over an algebraic number field K?

The study of rational points on elliptic curves is now a major industry,
almost entirely separate from the study of other Diophantine problems. If Γ
is an elliptic curve defined over an algebraic number field K, the group Γ(K)
is called the Mordell-Weil group. Mordell proved that Γ(K) is finitely gen-
erated; Weil’s contribution was to extend this result to all Abelian varieties.
Thanks to Mazur (see [25]) the theory of the torsion part of the Mordell-Weil
group is now reasonably complete; but for the non-torsion part all that was
known before 1960 is that Γ(K) can be embedded into a certain group which
is finitely generated and computable. The process involved, which is known
as the method of infinite descent, goes back to Fermat; for use in §6 I shall
illustrate it below in a particularly simple case. By means of this process one
can always compute an upper bound for the rank of the Mordell-Weil group
of any particular Γ, and the upper bound thus obtained can frequently be
shown to be equal to the actual rank by exhibiting enough elements of Γ(K).
It was also conjectured that the difference between the upper bound thus
computed and the actual rank was always an even integer, but apart from
this the actual rank was mysterious. This not wholly satisfactory state of
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affairs has been radically changed by the Birch/Swinnerton-Dyer conjecture,
the weak form of which is described at the end of this section.

I now turn to the situation in which Γ is a curve of genus 1 defined over K
but not necessarily containing a point defined over K. Let J be the Jacobian
of Γ, defined as a curve whose points are in one-one correspondence with the
divisors of degree 0 on Γ modulo linear equivalence. Then J is also a curve
of genus 1 defined over K, and J(K) contains the point which corresponds
to the trivial divisor. So J is an elliptic curve in our sense.

Conversely, if we fix an elliptic curve J defined over K we can consider the
equivalence classes (for birational equivalence over K) of curves Γ of genus
1 defined over K which have J as Jacobian. For number theory, the only
ones of interest are those which contain points defined over each completion
Kv. These form a commutative torsion group, called the Tate-Shafarevich
group and usually denoted by X; the identity element of this group is the
class which contains J itself, and it consists of those Γ which have J as
Jacobian and which contain a point defined over K. (The simplest example
of a nontrivial element of a Tate-Shafarevich group is the curve

3X3
0 + 4X3

1 + 5X3
2 = 0 with Jacobian Y 3

0 + Y 3
1 + 60Y 3

2 = 0.)

Thus for curves of genus 1 the Tate-Shafarevich group is by definition the
obstruction to the Hasse principle.

Suppose in particular that the elliptic curve J is defined over Q and has
the form

Y 2 = (X − c1)(X − c2)(X − c3)

where the distinguished point is taken to be the point at infinity. The three
points (ci, 0) on J have order 2; they are called the 2-division points. To any
rational point (x, y) on Γ there exist m1, m2, m3 and y1, y2, y3 such that

mi(x− ci) = y2
i for i = 1, 2, 3;

here the mi are really elements of Q∗/Q∗2 but it is convenient to treat them
as square-free integers. We must have m1m2m3 = m2 for some integer m,
and my = y1y2y3. Conversely the equations

Y 2
i = mi(X − ci) (i = 1, 2, 3) and mY = Y1Y2Y3

for any m, mi with m1m2m3 = m2 define a curve C = C(m1, m2, m3) and a
four-to-one map C → J . If C(Q) is not empty, its image under this map is a
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coset of 2J(Q) in J(Q), and we obtain all such cosets in this way. Thus we
could find J(Q) if we could decide which C are soluble in Q.

After a change of variables we can assume that the ci are in Z. Define
the good primes for J as those which do not divide (c1− c2)(c2− c3)(c3− c1);
then it is not hard to show that C is locally soluble at all good primes if and
only if all the mi are units at all good primes. So there are only finitely many
C whose solubility in Q is at all hard to decide.

The curves C obtained in this way are called 2-coverings of J , and the
process of obtaining them is called a 2-descent. They form a group under
multiplication of the corresponding triples (m1, m2, m3). The finite subgroup
consisting of those 2-coverings which are everywhere locally soluble is called
the 2-Selmer group. It is easily computable; and since there is a canonical
embedding of J(Q)/2J(Q) into the 2-Selmer group, this provides an upper
bound for the rank of J(Q). The descent process can be continued, though
with somewhat greater difficulty; for 4-descents see [11]. One can also carry
out 2-descents for the more general elliptic curve

Y 2 = X3 + aX2 + bX + c;

but in order to do this one requires information about the splitting field of
the right hand side.

The weak form of the Birch/Swinnerton-Dyer conjecture states that the
rank of the Mordell-Weil group of an elliptic curve J is equal to the order
of the zero of L1(s, J) at s = 1; the conjecture also gives an explicit formula
for the leading coefficient of the power series expansion at that point. Note
that this point is in the critical strip, so that the conjecture pre-supposes the
analytic continuation of L1(s, J). At present there are two well-understood
cases in which analytic continuation is known: when K = Q, so that J can
be parametrised by means of modular functions, and when J admits complex
multiplication. In consequence, these two cases are likely to be easier than the
general case; but even here I do not expect much further progress in the next
decade. In each of these two cases, if one assumes the Birch/Swinnerton-Dyer
conjecture one can derive an algorithm for finding the Mordell-Weil group
and the order of the Tate-Shafarevich group; and in the first of the two cases
this algorithm has been implemented by Gebel. (See [16].) Without using
the Birch/Swinnerton-Dyer conjecture, Heegner long ago produced a way of
generating a point on J whenever K = Q and J is modular; and Gross and
Zagier ([18] and [19]) have shown that this point has infinite order precisely
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when L′(1, J) 6= 0. Building on their work, Kolyvagin (see [17]) has shown
the following.

Theorem 2 Suppose that the Heegner point has infinite order; then the
group J(Q) has rank 1 and X(J) is finite.

Kolyvagin [24] has also obtained sufficient conditions for both J(Q) and
X(J) to be finite. The following result is due to Nekovar and Plater.

Theorem 3 If the order of L(s, J) is odd then either J(Q) is infinite or
X(J){p} is infinite for every good ordinary p.

If J can be parametrized by modular functions for some arithmetic subgroup
of SL2(R) then analytic continuation and the functional equation follow; but
there is not even a plausible conjecture identifying the J which have this
property, and there is no known analogue of Heegner’s construction.

In the complex multiplication case, what is known is as follows.

Theorem 4 Let K be an imaginary quadratic field and J an elliptic curve
defined and admitting complex multiplication over K. If L(1, J) 6= 0, then

(i) J(K) is finite;

(ii) for every prime p > 7 the p-part of X(J) has the order predicted by the
Birch/Swinnerton-Dyer conjecture.

Here (i) is due to Coates and Wiles, and (ii) to Rubin. For an account of the
proofs, see [29]. Katz has generalized (i) and part of (ii) to behaviour over
an abelian extension of Q, but with the same J as before.

In general we do not know how to compute X. It is conjectured that
it is always finite; and indeed this assertion can be regarded as part of the
Birch/Swinnerton-Dyer conjecture, for the formula for the leading coefficient
of the power series for L1(s, J) at s = 1 contains the order of X(J) as a
factor. If indeed this order is finite, then it must be a square; for Cassels
has proved the existence of a nonsingular skew-symmetric bilinear form on
X with values in Q/Z. Thus finiteness implies that if X contains at most
p− 1 elements of order exactly p for some prime p then it actually contains
no such elements; hence an element which is killed by p is trivial, and the
curves of genus 1 in that equivalence class contain points defined over K. For
use later, we state the case p = 2 as a lemma.
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Lemma 3 Suppose that X(J) is finite and the quotient of the 2-Selmer
group of J by its soluble elements has order at most 2; then that quotient is
actually trivial.

This result will play a crucial role in §§6 and 7.

5. Generalities about surfaces.
Over C a full classification of surfaces can be found in [1]. A first coarse
classification is given by the Kodaira dimension κ, which for surfaces can
take the values −∞, 0, 1 or 2. What also seems to be significant for the
number theory (and cuts across this classification) is whether the surface is
elliptic — that is, whether over C there is a map V → C for some curve C
whose general fibre is a curve of genus 1. The case when the map V → C
is defined over the ground field K and C has genus 0 is discussed in §6; in
this case the Diophantine problems for V are only of interest when C(K)
is nonzero, in which case C can be identified with P1. When C has genus
greater than 1, the map V → C is essentially unique and it and C are
therefore both defined over K. By Faltings’ theorem, C(K) is then finite;
thus each point of V (K) lies on one of a finite set of fibres, and it is enough to
study these. In contrast, we know nothing about the case when C is elliptic.

The surfaces with κ = −∞ are precisely the ruled surfaces — that is,
those which are birationally equivalent over C to P1 × C for some curve C.
Among these, by far the most interesting are the rational surfaces, which are
birationally equivalent to P2 over C.

Surfaces with κ = 0 fall into four families:

• Abelian surfaces. These are the analogues in two dimensions of elliptic
curves, and there is no reason to doubt that their number-theoretical
properties simply generalize those of elliptic curves.

• K3 surfaces, including in particular Kummer surfaces. Some but not
all K3 surfaces are elliptic.

• Enriques surfaces, whose number theory has been very little studied.
Enriques surfaces are necessarily elliptic.

• bielliptic surfaces.

Surfaces with κ = 1 are necessarily elliptic.
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Surfaces with κ = 2 are called surfaces of general type — which in math-
ematics is generally a derogatory phrase. About them there is currently
nothing to say beyond Lang’s conjecture stated in §2.

In the next two sections I shall outline what can at present be said about
rational surfaces and K3 surfaces respectively; these appear to be the two
most interesting families of surfaces for the number-theorist. In both cases
many of the most recent results depend on one or both of two major conjec-
tures. One of these (for the reason given near the end of §4) is the finiteness
of the Tate-Shafarevich group; the other is Schinzel’s Hypothesis, which we
now describe. It gives a conjectural answer to the following question: given
finitely many polynomials F1(X), . . . , Fn(X) in Z[X] with positive leading
coefficients, is there an arbitrarily large integer x at which they all take prime
values? There are two obvious obstructions to this:

• One or more of the Fi(X) may split in Z[X].

• There may be a prime p such that for any value of x mod p at least
one of the Fi(x) is divisible by p.

Clearly the second obstruction can only happen for p ≤
∑

deg(Fi). Schinzel’s
Hypothesis is that these are the only obstructions: in other words, if neither
of them happens then we can choose an arbitrarily large x so that every Fi(x)
is a prime. There are various more complicated variants of this hypothesis
(including ones in other algebraic number fields), but they all follow fairly
easily from the hypothesis in its original form.

No one in his right mind would attempt to prove Schinzel’s Hypothesis;
indeed one instance is the notoriously intractable twin primes problem, which
is the special case when the Fi are the two polynomials X + 1 and X − 1.
But probabilistic arguments suggest that the hypothesis is in fact true. At
the very least it would be perverse to look for counter-examples to results
which have been proved subject to Schinzel’s Hypothesis.

6. Rational surfaces.
From the number-theoretic point of view, there are two kinds of rational
surface:

• Pencils of conics, given by an equation of the form

a0(u, v)X2
0 + a1(u, v)X2

1 + a2(u, v)X2
2 = 0 (5)
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where the ai(u, v) are homogeneous polynomials of the same degree.
Pencils of conics can be classified in more detail according to the num-
ber of bad fibres.

• Del Pezzo surfaces of degree d, where 0 < d < 9. Over C, such a sur-
face is obtained by blowing up (9− d) points of P2 in general position.
It is known that Del Pezzo surfaces of degree d > 4 satisfy the Hasse
principle and weak approximation; indeed those of degree 5 necessarily
contain rational points. Del Pezzo surfaces of degree 2 or 1 have no
aesthetic merits and have attracted little attention; it seems sensible
to ignore them until the problems coming from those of degrees 4 and
3 have been solved. The Del Pezzo surfaces of degree 3 are the non-
singular cubic surfaces, which have an enormous but largely irrelevent
literature, and those of degree 4 are the nonsingular intersections of two
quadrics in P4. For historical reasons, attention has been concentrated
on the Del Pezzo surfaces of degree 3; but the problems presented by
those of degree 4 are necessarily simpler.

We consider first pencils of conics, and assume that (5) is defined over Q,
the argument for an arbitrary algebraic number field not being essentially
different. We can require the coefficients of the ai(u, v) to be in Z. Since the
Hasse principle holds for conics, it is enough to choose u = u0, v = v0 in such
a way that (5) is locally soluble at 2,∞ and all the odd primes which divide
any of the ai(u0, v0). As it stands, this appears to involve arguing in a circle;
the way to make the argument respectable is as follows.

Assume that (5) is everywhere locally soluble. By absorbing suitable fac-
tors into the Xi, we can ensure that the ai(u, v) are square-free and coprime.
To achieve this, we have to drop the condition that the ai(u, v) are all of
the same degree; but it is still true that their degrees are all even or all
odd. Denote by B the set of bad places, which turns out to consist of 2,∞,
the primes which divide the discriminant of a0(u, v)a1(u, v)a2(u, v) and the
primes which do not exceed the degree of that product. Let S be the space of
all pairs of coprime integers u0, v0, with the topology induced by the places
of B; and let S0 be the subset of S consisting of the points at which (5) is
locally soluble at every place in B. By hypothesis, S0 is not empty; and it is
open in S. To obtain solubility in Q, we have to choose u0, v0 in S0 so that
(5) is locally soluble at each good prime p0 which divides one of the ai(u0, v0);
for solubility at the other good primes is trivial, and we have already taken
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care of the bad places. Let c(u, v) be the irreducible factor of that one of
the ai(u, v) for which p0|c(u0, v0), and to fix ideas assume that c(u, v) divides
a2(u, v); here c(u, v) is unique because p0 does not divide the discriminant of
a0a1a2. The condition of local solubility at p0 is

(a0(u0, v0)a1(u0, v0), c(u0, v0))p0 = +1 (6)

where the outer bracket is the Hilbert symbol. So a necessary condition for
the solubility of (5) is that all the conditions like∏

(a0(u0, v0)a1(u0, v0), c(u0, v0))p = +1 (7)

hold simultaneously for some (u0, v0) in S0, where the product is taken over
all p which divide c(u0, v0).

What is unexpected is that this turns out to be useful, because of the
following lemma. The proof of the lemma is straightforward, since the func-
tion Φ behaves like a quadratic residue symbol and can be evaluated by a
Euclidean algorithm process very like that which is used for such symbols.

Lemma 4 Let F (u, v), G(u, v) be homogeneous polynomials in Z[u, v], with
deg(F ) even. Let B be a finite set of places of Q which contains 2,∞ and
all the primes which divide the discriminant of FG. For any coprime u0, v0

in Z, write

Φ(B; F, G; u0, v0) =
∏

(F (u0, v0), G(u0, v0))p (8)

where the outer bracket on the right is the Hilbert symbol and the product
is taken over all primes p not in B such that p|G(u0, v0). Then Φ(u0, v0) is
continuous in the topology on S, and computable.

In this result we take F = a0a1, G = c; we noted above that deg(a0a1) is
necessarily even. It follows that a necessary condition for the solubility of
(5) is that there is a point (u0, v0) in S0 such that Φ(u0, v0) = +1 for all Φ
which can be generated from (5) in this way. This condition is computable,
and it is unsurprising (though not obvious) that it turns out to be equivalent
to the Brauer-Manin condition for (5).

If one assumes Schinzel’s Hypothesis, this condition is also sufficient. For
suppose that u0, v0 have been so chosen that there is only one good prime p0

which divides c(u0, v0); then the product in (7) reduces to the left hand side
of (6), and so (6) holds for this prime. Now choose an open set N ⊂ S0 such
that (7) holds throughout N for each c(u, v); by a slightly modified version
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of Schinzel’s Hypothesis we can choose (u0, v0) in N so that every c(u0, v0)
is the product of one good prime and possibly some factors in B. As c runs
through all irreducible factors of a1a2a3, p0 runs through all those primes for
which we have to verify (6). Thus (5) is everywhere locally soluble for the pair
u0, v0, and therefore globally soluble. With minor modifications, the same
argument shows that (subject to Schinzel’s Hypothesis) the Brauer-Manin
obstruction is also the only obstruction to weak approximation.

If there is no Brauer-Manin obstruction, this construction finds infinitely
many conics in the pencil which contain rational points. But, somewhat
unexpectedly, even if we know some conics of the pencil which are soluble,
without Schinzel’s Hypothesis we do not know how to generate more such
conics.

Question 11 Given a pencil of conics and finitely many conics in the pencil
each of which contains rational points, can we generate further conics of the
pencil which contain rational points without using Schinzel’s Hypothesis?

If we know even one rational point on a Del Pezzo surface V of degree 3
or 4, we can obtain an infinity of curves of genus 0 each of which lies on V ,
though they will be singular and for degree 3 it will usually not be true that
each point of V (Q) lies on at least one curve of the family. But without such
a point, the best we can do is to find on V a family of curves of genus 1. At
first sight, it would seem that in these circumstances nothing resembling the
argument above can be applied; for an essential component of that argument
was that conics satisfy the Hasse principle, and this is not true for curves of
genus 1. However Lemma 3 provides us with a way round this obstacle.

The arguments involved are applicable to some surfaces V which are not
necessarily rational, but which are elliptic with a fibration V → P1. Consider
a pencil of curves Cλ of genus 1, each of which is a 2-covering of its Jacobian
Jλ. If we can choose λ in such a way that Cλ is everywhere locally soluble
and at least half the elements of the 2-Selmer group of Jλ are soluble (and
if we assume the finiteness of the relevent Tate-Shafarevich group), then it
will follow from Lemma 3 that Cλ is soluble. For this machinery to have
any chance of working, we must be able to implement the 2-descent on Jλ

in a manner which is uniform in λ. This more or less requires Jλ to have its
2-division points defined over Q(λ) and therefore to have the form

Y 2 = (X − c1(λ))(X − c2(λ))(X − c3(λ)) (9)
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where the ci(λ) are in Q(λ); but an additional trick, given in [2], enables the
method to be used even if Jλ has just one 2-division point in Q(λ).

The details of this method are unattractive, but the strategy is as follows.
(For a full account, see [13].) Without loss of generality we can assume that
the ci(λ) are in Z[λ]. For any particular integral value λ0 of λ, the bad
places for the equation (9) are the bad places for the system together with
the primes which divide one of the ci(λ0) − cj(λ0). It was explained in §4
how to implement the 2-descent for (9). We shall eventually use Schinzel’s
Hypothesis to choose λ0 so that the value of each irreducible factor of any
ci(λ)−cj(λ) at λ = λ0 is the product of some bad primes for the system with
one good prime. We call the latter a Schinzel prime; though it is a good
prime for the system, it is a bad prime for the curve obtained by writing
λ = λ0 in (9). The effect of restricting λ0 in this way is that we know those
2-coverings of (9) for λ = λ0 which are locally soluble at all good primes for
the curve; they form a finite group of 2-coverings C ′λ of Jλ which does not
depend on the choice of λ0 provided it satisfies the condition above.

This group certainly contains the original Cλ and the 2-coverings which
correspond to the 2-division points. The next step, which involves a sophis-
ticated analysis of the 2-descent process and also requires us to introduce
additional well chosen bad primes for the system, is to find local conditions
on λ0 at the bad primes of the system which ensure that for λ = λ0

• the only elements of this group which are locally soluble at all the bad
places of the system lie in the subgroup generated by the original Cλ

and the 2-coverings generated by the 2-division points; and

• the original Cλ is locally soluble at all the bad places of the system.

This is not always possible; if it is impossible, that provides an obstruction to
this method of attack on the problem though not necessarily to the solubil-
ity of the system. In general this obstruction is not much stronger than the
Brauer-Manin obstruction, and in some cases they are provably the same;
so this is not too serious a blemish on the method. If we achieve the two
properties above then solubility at the Schinzel primes turns out to be auto-
matic. (This is an example of what seems to be a rather general phenomenon,
that the number of related things which go wrong must be even.) With our
enlarged set of bad places for the system, we now choose λ0 to satisfy the
local conditions and the Schinzel condition in the previous paragraph. By
Lemma 3, the curve (9) is soluble for this value of λ. But in contrast to what
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happens for pencils of conics, this kind of argument appears to provide no
information about weak approximation.

Question 12 Can one modify the method above so that it works without any
assumption about the 2-division points of Jλ?

Unfortunately it is not known (and probably is not even true) that an
arbitrary Del Pezzo surface of degree 4 contains a pencil of curves of genus 1
of this particular type — and the situation for Del Pezzo surfaces of degree 3
is much worse, in that the natural curves to consider are 3-coverings rather
than 2-coverings.

However, for Del Pezzo surfaces of degree 4 some progress has been made.
Salberger and Skorobogatov [30] have shown that the Brauer-Manin obstruc-
tion is the only obstruction to weak approximation. As for the Hasse prin-
ciple, the present situation is as follows. A Del Pezzo surface of degree 4
defined over the algebraic number field K has the form

V : F1(X0, . . . , X5) = F2(X0, . . . , X5) = 0,

where the coefficients of F1 and F2 are in K. By a linear transformation
defined over an extension K1 of odd degree over K, we can separate off one
of the variables; and over K1 we can find a pencil of curves Cλ of genus 1 on V
for which each Jλ has one 2-division point defined over K1(λ). Using the trick
described in [2], and subject to an obstruction typical for the method, it can
now be shown that V contains a point defined over K1. A straightforward
geometric argument, which does not rely on K being an algebraic number
field, now shows that V contains a point defined over K. Unfortunately
the overall arguments are so complicated (and so unnatural) that it is not
clear whether the obstruction to the method is still simply the Brauer-Manin
obstruction to the solubility of V over K; but even if it is stronger, it is not
much stronger.

To use and then collapse a field extension in this way is a device which
probably has a number of uses. For such a collapse step to be feasible, the
degree of the field extension needs to be prime to the degree of the variety;
and this leads one to phrase the same property somewhat differently.

Question 13 Let V be a variety defined over a field K, not necessarily of a
number-theoretic kind. For what families of V is it true that if V contains a
0-cycle of degree 1 defined over K then it contains a point defined over K?
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As stated above, this is true for Del Pezzo surfaces of degree 4. For pencils
of conics it is in general false, even for algebraic number fields K. For Del
Pezzo surfaces of degree 3 the question is open: I expect it to be true for
algebraic number fields K but false for general fields.

A variant of the method above can be applied to diagonal cubic surfaces

V : a0X
3
0 + a1X

3
1 = a2X

3
2 + a3X

3
3 , (10)

subject to one very counterintuitive condition, which is that K, the field of
definition of V , must not contain the primitive cube roots of unity. Write V
in the form

a0X
3
0 + a1X

3
1 = λY 3, a2X

3
2 + a3X

3
3 = λY 3 (11)

where λ is at our disposal. We now have two pencils of curves of genus 1, each
of which is a

√
−3-covering of its Jacobian; and we have to apply the method

simultaneously to both curves. This introduces considerable additional com-
plications, for which see [40]; and the obstruction to the method, though
weak, is certainly strictly stronger than the Brauer-Manin obstruction. The
reason for the condition on K is that otherwise the curves (11) would admit
complex multiplication, and the latter acts on the

√
−3-Selmer groups; thus

the order of the latter would always be an odd power of 3, whereas it has to
be reduced to 9 for the method to work. (Here one factor 3 arises because of
the 3-division points on the Jacobian defined over Q(

√
−3).) On the other

hand, in this argument we only need apply Schinzel’s Hypothesis to the single
polynomial X, so that it can be replaced by Dirichlet’s theorem on primes
in arithmetic progression.

All this relates to Question (A). For Question (B) the only known results
are for quadrics, for which see the remarks after Theorem 1. It seems reason-
able to ask whether there is an analogous result for other kinds of rational
surfaces; this is another problem for which the first step should probably be
to use numerical search to generate a plausible conjecture. For this purpose,
one needs to examine a system with not too many parameters; and this leads
to the following question:

Question 14 For the surface V given by (10) with the ai in Z, is there a
polynomial P in the |ai| such that if V is soluble in Z then it has such a
solution for which each summand is absolutely bounded by P?

The ideal answer to Question (C) would be to provide a birational map
V → P2 defined over Q. However, it can be shown that such a map exists
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for nonsingular cubic surfaces V if and only if V (Q) is not empty and V
contains a divisor defined over Q which consists of 2, 3 or 6 skew lines. (For
Del Pezzo surfaces of degree 4, the second condition must be replaced by the
statement that V contains a divisor defined over Q which consists of one or
more skew lines.) For Châtelet surfaces, which have the form

X2(X
2
0 − cX2

1 ) = f(X2, X3)

where c is a non-square and f is homogeneous cubic, it is known that there
is a finite set of parametric solutions (each in 4 inhomogeneous variables)
such that each point of V (Q) is represented by one of them, though in an
infinity of different ways. But in general more than one parametric solution
is needed, and parametric solutions in only 2 variables cannot play a useful
part in the process.

Question 15 Is there a larger class of cubic surfaces (ideally, the class of
all nonsingular cubic surfaces) for which analogous results hold?

The question of parametric solutions is linked to the idea of R-equivalence.
Let V be a variety defined over Q; then R-equivalence is defined as the
finest equivalence relation such that two points given by the same parametric
solution are equivalent. Alternatively, it is the finest equivalence relation such
that for any map f : P1 → V and points P1, P2, all defined over Q, the points
f(P1) and f(P2) are equivalent. A good deal is known about R-equivalence
on cubic surfaces; in particular, it is shown in [39] that the closure of an
R-equivalence class in V (A) is computable, and that the closures of two
R-equivalence classes are either the same or disjoint.

Question 16 Is the set of R-equivalence classes on a nonsingular cubic sur-
face finite? Can there be two distinct R-equivalence classes which have the
same closure in V (A)?

7. K3 surfaces and Kummer surfaces.
K3 surfaces are the simplest kind of variety about whose number-theoretic
properties very little is known; indeed they still present many unsolved prob-
lems even to the geometer. There are infinitely many families of K3 surfaces;
the simplest of them, and the only one which will be considered in the present
article, consists of all nonsingular quartic surfaces. An important special type
of K3 surfaces consists of the Kummer surfaces, a phrase which can carry
either of two related meanings:
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• The quotient of an Abelian surface A by the automorphism −1; this
has 16 singular points corresponding to the 16 2-division points of A.

• The nonsingular surface obtained by blowing up the 16 singular points
in the previous definition.

One advantage of Kummer surfaces in comparison with general K3 surfaces
is that for the former it is easy to determine Pic(V̄ ).

Some K3 surfaces contain one or more pencils of curves of genus 1, and
these pencils may even be of the kind discussed in the previous section; but
one should not confine one’s attention to K3 surfaces with this additional
property. For the time being, there is merit in concentrating on diagonal
quartics

V : a0X
4
0 + a1X

4
1 + a2X

4
2 + a3X

4
3 = 0, (12)

because these contain few enough parameters to make systematic numerical
experimentation possible. However, the number theory of such surfaces may
be exceptional, because the geometry certainly is. Indeed Pic(V̄ ) has rank
20, which is the largest possible value for any K3 surface, and it is generated
by the classes of the 48 lines on V̄ ; moreover V is a Kummer surface up to
isogeny, and indeed is the Kummer surface of E × E where E is an elliptic
curve which admits complex multiplication. One consequence of this is that
V is rigid in the sense of algebraic geometry.

There is an obvious map from V to the quadric surface

W : a0Y
2
0 + a1Y

2
1 + a2Y

2
2 + a3Y

2
3 = 0.

If a0a1a2a3 is a square, each of the two families of lines on W is defined over
the ground field, and each such line lifts to a curve of genus 1 on V ; moreover
the Jacobians of these curves have the form (9), so that the methods of the
previous section can be applied.

Martin Bright [7] has computed and tabulated Br1(V )/Br(Q) for all V of
the form (12); it is necessary to do this by computer, because there are 546
distinct cases. I had previously shown in [38] that over Q the Brauer-Manin
obstruction is the only obstruction to the Hasse principle in the most general
case in which a0a1a2a3 is a square. (Most general in this context means that
none of the ±aiaj is a square and a0a1a2a3 is not a fourth power.) It seems
reasonable to hope that the same property will still hold in all the cases
for which a0a1a2a3 is a square; but there are too many of them to examine
individually. On the other hand, there is strong numerical evidence that
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when a0a1a2a3 is not a square the obstruction coming from Br1(V ) is not in
general the only obstruction to the Hasse principle.

Question 17 What is the additional obstruction in this case?

One particularly interesting example is the surface

X4
0 + 2X4

1 = X4
2 + 4X4

3 ; (13)

this has two obvious rational points, but appears to have no others.

8. Density of rational points.
So far I have ignored Question (D). It differs from the others in that it is not
a birational question, but is associated with a particular embedding of the
variety V in projective space. For simplicity we work over Q. A point P in
Pn defined over Q has a representation (x0, . . . , xn) where the xi are integers
with no common factor; and this representation is unique up to changing
the signs of all the xi. We define the height of P to be max |xi|; a linear
transformation on the ambient space multiplies heights by numbers which
lie between two positive constants depending on the linear transformation.
Denote by N(H, V ) the number of points of V (Q) whose height is less than
H; then it is natural to ask how N(H, V ) behaves as H → ∞. This is the
core question for the Hardy-Littlewood method, which when it is applicable
is the best (and often the only) way of proving that V (Q) is not empty. In
very general circumstances that method provides estimates of the form

N(H, V ) = leading term + error term.

The leading term is usually the same as one would obtain by probabilistic
arguments. But such results are only valuable when it can be shown that
the error term is small compared to the leading term, and to achieve this the
dimension of V needs to be large compared to its degree. The extreme case
of this is the following theorem, due to Birch [3].

Theorem 5 Let r1, . . . , rm be positive odd integers, not necessarily all dif-
ferent. Then there exists N0(r1, . . . , rm) with the following property. For any
N ≥ N0 let Fi(X0, . . . , XN) be homogeneous polynomials with coefficients in
Z and deg Fi = ri for i = 1, . . . ,m. Then the Fi have a common nontrivial
zero in ZN .
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The proof falls into two parts. First, the Hardy-Littlewood method is used
to prove the result in the special case when m = 1 and F1 is diagonal — that
is, to show that if r is odd and N ≥ N1(r) then

c0X
r
0 + . . . + cNXr

N = 0

has a nontrivial integral solution. Then the general case is reduced to this
special case by purely elementary methods. The requirement that all the ri

should be odd arises from difficulties connected with the real place; over a
totally complex algebraic number field there is a similar theorem for which
the ri can be any positive integers.

Question 18 In Theorem 5, can the condition that all the ri are odd be
replaced by the requirement on the Fi that the projective variety given by
F1 = . . . = Fm = 0 has a nonsingular real point?

The Hardy-Littlewood method was designed for a single equation in which
the variables are separated — for example, an equation of the form

f1(X1) + . . . + fN(XN) = c

where the fi are polynomials, the Xi are integers, and one wishes to prove
solubility for all integers c, or all large enough c, or almost all c. But it has
also been applied both to several simultaneous equations and to equations in
which the variables are not separated. The following theorem of Hooley [21]
is much the most impressive result in this direction.

Theorem 6 Homogeneous nonary cubics over Q satisfy both the Hasse prin-
ciple and weak approximation.

It appears that the Hardy-Littlewood method can only work for families
for which N(H, V ) is asymptotically equal to its probabilistic value; in par-
ticular it seems unlikely that it can be made to work for families for which
weak approximation fails. Manin has put forward a conjecture about the
asymptotic density of rational solutions for certain geometrically interesting
families of varieties for which weak approximation is unlikely to hold: more
precisely, for Fano varieties embedded in Pn by means of their anticanonical
divisors. For simplicity, we describe his conjecture only for Del Pezzo surfaces
V of degrees 3 and 4. To ask about N(H, V ) is now the wrong question, for
V may contain lines L defined over Q, and for any line N(H, L) ∼ AH2 for
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some nonzero constant A. This is much greater than the order-of-magnitude
estimate for N(H, V ) given by a probabilistic argument. For the latter sug-
gests an estimate AH

∏
(N(p)/(p + 1)), where the product is taken over all

primes less than a certain bound which depends on H. In view of what is
said in §3, this product ought to be replaced by something which depends
on the behaviour of L2(s, V ) near s = 1. More precisely, the way in which
the leading term in the Hardy-Littlewood method is obtained suggests that
here we should take s − 1 to be comparable with (log H)−1. Remembering
the Tate conjecture, this gives the right hand side of (14) as a conjectural es-
timate for N(H, V ). But if this argument were valid, L would contain more
rational points than V , even though V ⊃ L. Manin’s way to resolve this
absurdity is to study not N(H, V ) but N(H, U), where U is the open subset
of V obtained by deleting the 27 or 16 lines on V . Manin conjectured that

N(H, U) ∼ AH(log H)r−1 where r is the rank of Pic(V ); (14)

and Peyre [26] has given a conjectural formula for A. (But note that there
exist Fano varieties of dimension greater than 2 for which (14) is certainly
false; and it is not clear how Manin’s conjecture should be modified to
cover such cases.) Various people have proved this conjecture for the cone
X0X1X2 = X3

3 , and Rudge has sketched a proof for the singular cubic surface

X0X1X2 + X0X1X3 + X0X2X3 + X1X2X3 = 0,

to which attention had been drawn by Birch.

Question 19 Are there nonsingular Del Pezzo surfaces of degree 3 or 4 for
which the Manin conjecture can be proved?

In the first instance, it would be wise to address this problem under rather
restrictive hypotheses about Pic(V ), not least because the Brauer-Manin
obstruction to weak approximation occurs in the conjectural formula for A
and therefore the problem is likely to be easier for families of V for which
weak approximation holds. A one-sided estimate for one such family is given
in [35].

For Del Pezzo surfaces, the value of c for which N(H, U) ∼ AH(log H)c

is defined by the geometry rather than by the number theory, though that
is not true of A. For other varieties, the corresponding statement need no
longer be true. We start with curves. For a curve of genus 0 and degree d,
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we have N(H, V ) ∼ AH2/d; and for a curve of genus greater than 1 Faltings’
theorem is equivalent to the statement that N(H, V ) = O(1). But if V is
an elliptic curve then N(H, V ) ∼ A(log H)r/2 where r is the rank of the
Mordell-Weil group. (For elliptic curves there is a more canonical definition
of height, which is invariant under bilinear transformation; this is used to
prove the result above.)

For pencils of conics, Manin’s question is probably not the best one to ask,
and it would be better to proceed as follows. A pencil of conics is a surface V
together with a map V → P1 whose fibres are conics. Let N∗(H, V ) be the
number of points on P1 of height less than H for which the corresponding
fibre contains rational points.

Question 20 What is the conjectural estimate for N∗(H, V ) and under what
conditions can one prove it?

It may be worth asking the same questions for pencils of curves of genus 1.
For surfaces of general type, Lang’s conjecture implies that questions

about N(H, V ) are really questions about certain curves on V ; and for
Abelian surfaces (and indeed Abelian varieties in any dimension) the ob-
vious generalisation of the theorem for elliptic curves holds. But K3 surfaces
pose new problems — and not ones on which any practicable amount of com-
putation is likely to shed light. If V is a K3 surface, then we have to study
not N(H, V ) but N(H, U) where U is obtained from V by deleting the curves
of genus 0 on V defined over Q, of which there may be an infinite number.
One can expect that N(H, U) ∼ A(log H)c for some constants A and c; and
it seems reasonable to hope that c will be a half-integer. The surface (13)
suggests that we can have c = 0, and it must be certain (though perhaps
difficult to prove) that c can sometimes be strictly positive.

Question 21 Can the value of c be obtained from the L-series L2(s, V )?

Question 22 If V is a Kummer surface obtained from the Abelian surface
A, is c related to the rank of the Mordell-Weil group of A?
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