
          Rational points of bounded height on hypersurfaces of dimension at most four

   Let Z be a locally closed subset of Pn  defined over Q and  H: Pn(Q) →R  be the height
function where H(x) is the maximum of xifor a primitive integral n+1-tuple (x0 ,..., xn)
representing a rational point x on Pn . We shall write N(Z,B) be the number of  rational points
of height at most B on Z. This is clearly an abuse of notation since N(Z,B) depends both on the
choice of the embedding Z⊂ Pn and the choice of coordinates of Pn. 

    We want to investigate the asymptotic behaviour of N(Z,B)  when B→∞. The following
result is due to Pila [Pi1] (cf. also [Pi2]).

Theorem 1  Let  X⊂ Pn an geometrically irreducible projective variety of degree d defined
over Q. Then ,

                                             N(X , B) = Od,n,ε(B
dim X+1/d+ε)

  It is remarkable that the implied constant does not depend on X  apart from its dependence of
the degree and dimension of X. The importance of such uniform estimates is that one can use
induction by dimension. 

  Heath-Brown [He] established uniform estimates for curves in P2  and P3 and for surfaces in
P3 which are stronger than Pila´s. Some of these estimates were generalised to curves and
surfaces of higher codimension in [Brb1] . The techniques of Heath-Brown´s paper have also
been applied to count rational points on smooth threefolds in P4 [Brw] and on general
irreducible threefolds [Brb2].

  We shall in this paper give estimates for hypersurfaces of dimension at most four which are
better than previous estimates. To obtain these, we combine techniques from [He] with new
arguments from algebraic geometry. The most important of these is a Kodaira dimension
argument which plays a central role in our estimates for smooth hypersurfaces. We obtain in
particular (see theorem 11) improvements of a well-known bound of Hua from 1938
concerning the number of non-trivial positive solutions to the diagonal equation x0

d+ x1
d + x2

d-
x3

d- x4
d- x5

d =0 when d≥ 9. 

  The following result is due to Heath-Brown [He]  in the case where C is geometrically
integral and n=2 or 3. The general case is due to Broberg [Brb1] . 

Theorem 2  Let C⊂Pn be an irreducible curve of degree d over Q. Then 

           
                                           N(C, B) = Od,n,ε(B

2/d+ε)

  For surfaces in P3 let us first quote the following result of Heath-Brown [He] .

  Theorem 3  Let X⊂P3 be a geometrically irreducible surface of degree d>1 over Q.Then,

                                          N(X, B) = Od ,ε(B
2+ε)



Browning [Brw] extended this result to surfaces  in Pn  , n>3  by means of a a projection

argument. It is easy to extend theorem 3  to the class of irreducible varieties since any

rational point on an irreducible but not geometrically irreducible variety must be singular. 

  One cannot expect any improvement on theorem 3 since N(L,B) >>B2  for any line on X

defined over Q. Let us therefore consider the complement X´ of all lines on X . The following

result is proved in [Sa].

Theorem 4  Let X⊂P3 be an irreducible surface of degree d defined over Q. Then,

             N(X´,B) = Od,ε(B
4/3+16/ 9d+ε)      if d≤ 8

             N(X´,B) = Od,ε(B
14/ 9+ε)             if d>8

We have in particular that :
                                             
         N(X´,B) = Od,ε(B

16/ 9+ε)               when    d = 4 
         N(X´,B) = Od,ε(B

76/ 45+ε)             when    d ≥ 5.

 This should be compared with the estimates on p.558 in [He]

         N(X´,B) = Od,ε(B
52/ 27+ε)               when    d = 3

         N(X´,B) = Od,ε(B
17/ 9+ε)                when    d ≥ 4

   We can also generalise the estimate  N(X´,B) = Od,ε(B
4/3+16/ 9d+ε)  in  (op.cit.) for smooth

surfaces X⊂P3 to the class of irreducible surfaces X⊂P3 which contain no line of multiplicity
d-2 or more. 

  For  smooth Q-surfaces X⊂P3 of degree > 5, Heath-Brown (th. 11 in op.cit.) obtained a better
bound . The following result [Sa] is a slight improvement of his result.

Theorem 5   Let X⊂P3 be a smooth projective surface of degree d over Q. Let U be the open
complement of all curves on X of degree at most d-2. Then,

        N(U, B) = Od,ε(B f(d)+ε)    where

         f(d)= 3/√d+2/(d-1)- 1/(d-1)√d                if d≤ 13
         f(d)=   3/√d + 2/d  - 1/2d√d                     if d≥14

 Moreover, 
                                                
             N(X´, B) = Od,ε(B f(d)+ε)                           if d<13



Remarks (a)  When d ≥ 13 , then N(X´,B) = Od,ε(B
1+ε) by a result of Heath-Brown in (op.cit).

(b) From   f(d) < 3/√d + 2/d   we get from theorem 5  that N(U, B) = Od,ε(B
3/√d + 2/d +ε).  This

should be compared with Heath-Brown´s estimate : N(U, B) = Od,ε(B
3/√d + 2/(d-1) +ε) . 

(c)   There are only finitely many curves on X of degree at most d-2 by a theorem of Colliot-
Thélène [Co] . U  is thus an open non-empty subset of X . 
 

  The following result is due to Broberg [Brb2]. 

Theorem 6  Let X⊂P4 be a geometrically irreducible  projective hypersurface of degree d
over Q. Then ,
        
(a)        N(X,B) =  Oε( B

(47+√721)/168 +ε)            for d=3
(b)        N(X,B) =  Oε( B

(371+5√721)/168 +ε)          for d=4 
(c)        N(X,B) = Od,ε( B

3 +ε)                          for d≥ 5

  We can improve this somewhat [Sa].

Theorem 7  Let X⊂P4 be an irreducible projective hypersurface of degree d over Q. Then ,

(a)       N(X,B) =  Oε(B
55/18 +ε)                            for d=3

(b)       N(X,B) = Od,ε(B
3+ε)                            for d≥ 4

It was already known [He] that  N(X,B) =  Oε(B
3+ε)   for quadrics in P4. For smooth threefolds

we prove in [Sa] the following result.

Theorem 8  Let X⊂P4 be a smooth hypersurface of degree d>5 over Q. Then,

          N(X, B) = Od,ε(B
15 f(d)/16+5/4+ε + B2+ε)                          where 

           f(d)= 3/√d+2/(d-1)- 1/(d-1)√d                       if d≤ 13
           f(d)=   3/√d + 2/d  - 1/2d√d                           if d≥14

By using the inequality  f(d)<3/√d + 2/d one obtains as a corollary the bound

                                 N(X, B) = Od,ε(B
45/16√d

 
+15/8d+5/4+ε + B2+ε)                           d>5

The following results for fourfolds are also proven in [Sa].

Theorem 9  Let X⊂P5 be a smooth hypersurface of degree over Q of degree d. Then the
following uniform estimates hold. 

          N(X,B)= Od,ε(B
27/10√d + 9/5(d-1) – 9/10(d-1)√d +12/5+ε )             if         6< d ≤ 13



          N(X,B)= Od,ε(B
27/10√d + 9/5d  –  9/20d√d +12/5+ε )                    if       14≤ d ≤ 25

          N(X,B)= Od,ε(B
3+ε )                                                        if         d>25

 
Theorem 10   Let X⊂P5 be a smooth hypersurface over Q given by an equation

                                              a0x0
d+...+a5x5

d=0  

where a0, ... , a5  ∈ Q . Let V⊂ X be the complement of the fifteen closed subsets given by the
equations

                         a0x0
d+ aixi

d = ajxj
d+ akxk

d =alxl
d+ amxm

d=0 

where {i,j,k,l,m}= {1,2,3,4,5}. Then,

              N(V,B)= Od,ε(B
27/10√d + 9/5(d-1) – 9/10(d-1)√d +12/5+ε )              if         6< d ≤ 13

              N(V,B)= Od,ε(B
27/10√d + 9/5d  –  9/20d√d +12/5+ε )                    if       13< d ≤ 34

              N(V,B)= Od,ε(B
131/45+ε )                                                 if        d>34

 Theorem 11         Let  nd(B) be the number of solutions in non-negative integers xi≤B , 0≤i≤5
to the equation
                                         x0

d+ x1
d + x2

d- x3
d- x4

d- x5
d = 0

Then,
                                nd(B) = Od,ε(B

27/10√d + 9/5(d-1) – 9/10(d-1)√d +12/5+ε )                   if         6< d ≤ 13
                                nd(B) = 6B3+ Od,ε(B

27/10√d + 9/5d  –  9/20d√d +12/5+ε )                 if       13< d ≤ 34               

                                nd(B) = 6B3+ Od,ε(B
131/45+ε )                                              if              d>34

Remark      Note that   27/10√d + 9/5d  –  9/20d√d +12/5<3   when d>25 so that we get an
asymptotic formula 
                                       nd(B) = 6B3+ Od,ε(B

3-δ)                                              for             d>25

This improves upon [BrwHe] where the authors get an asymptotic formula for d>32. 

Also ,                             nd(B) = Od,ε(B
7/2-1/80 +ε)                                               for              d≥9

which should be compared with Huas estimate (cf. [Hu] , [Da])
                                      
                                     nd(B) = Od,ε(B

7/2+ε)
                                     
from 1938. This was still the best known result until the paper of Heath-Brown [He] appeared
He gives there an improvement on Huas estimate for d≥24 . 
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