Rational points of bounded height on hypersurfaces of dimension at most four

Let Z bealocally closed subset of P" defined over Q and H: P'(Q) R be the height
function where H(x) is the maximum of |x;|for a primitive integral n+1-tuple (Xo ..., Xn)
representing arational point x on P" . We shall write N(Z,B) be the number of rational points
of height at most B on Z. Thisis clearly an abuse of notation since N(Z,B) depends both on the
choice of the embedding Z< P" and the choice of coordinates of P".

We want to investigate the asymptotic behaviour of N(Z,B) when B—c. The following
result is dueto Pila[Pi] (cf. aso [Piy]).

Theorem 1 Let X< P"an geometrically irreducible projective variety of degree d defined
over Q. Then,

N(x ’ B) = Od7n78(Bdim X+1/d+8)

It is remarkable that the implied constant does not depend on X apart from its dependence of
the degree and dimension of X. Theimportance of such uniform estimatesis that one can use
induction by dimension.

Heath-Brown [He] established uniform estimates for curvesin P?> and P* and for surfacesin
P® which are stronger than Pila’s. Some of these estimates were generalised to curves and
surfaces of higher codimension in [Brb;] . The techniques of Heath-Brown’s paper have also
been applied to count rational points on smooth threefolds in P*[Brw] and on general
irreducible threefolds [Brby].

We shall in this paper give estimates for hypersurfaces of dimension at most four which are
better than previous estimates. To obtain these, we combine techniques from [He] with new
arguments from algebraic geometry. The most important of these is a Kodaira dimension
argument which plays a central rolein our estimates for smooth hypersurfaces. We obtain in
particular (see theorem 11) improvements of a well-known bound of Hua from 1938
concerning the number of non-trivial positive solutions to the diagonal equation x,™+ x,° + x,°-
xa'- X% xs* =0 when d> 9.

The following result is due to Heath-Brown [He] in the case where C is geometrically
integral and n=2 or 3. The general case is dueto Broberg [Brby] .

Theorem 2 Let C=P" be an irreducible curve of degree d over Q. Then

N(C, B) = Ogn(B¥Y*)

For surfaces in P° let us first quote the following result of Heath-Brown [He] .

Theorem 3 Let X=P® be a geometrically irreducible surface of degree d>1 over Q.Then,
N(X, B) = Oy (B**)



Browning [Brw] extended this result to surfaces in P" , n>3 by means of a a projection
argument. It is easy to extend theorem 3 to the class of irreducible varieties since any

rational point on an irreducible but not geometrically irreducible variety must be singular.

One cannot expect any improvement on theorem 3 since N(L,B) >>B? for any line on X
defined over Q. Let us therefore consider the complement X™ of al lineson X . The following

result is proved in [S4].

Theorem 4 Let X=P? be an irreducible surface of degree d defined over Q. Then,
N(X',B) = O (B¥319%%)  jfd<8
N(X',B) = Oq,(B" %) if d>8

We havein particular that :

N(X",B) = Og(B'® **%) when d=4
N(X',B) = Og+(B"® %% when d>5.

This should be compared with the estimates on p.558 in [He]

N(X",B) = Og(B* #*?) when d=3
N(X',B) = Og.(B*" %) when d>4

We can also generalise the estimate N(X',B) = Og,(B**"¥%"%) in (op.cit.) for smooth
surfaces X=P*tothe class of irreducible surfaces X=P>which contain no line of multiplicity
d-2 or more.

For smooth Q-surfaces X—P? of degree > 5, Heath-Brown (th. 11 in op.cit.) obtained a better
bound . The following result [Sa] is a dlight improvement of his result.

Theorem 5 Let XcP*be a smooth projective surface of degree d over Q. Let U be the open
complement of all curves on X of degree at most d-2. Then,

N(U, B) = Og(B "@*%) where

f(d)= 3/\d+2/(d-1)- 1/(d-1)Vd if d< 13
f(d)= 3/d+ 2/d - 1/2dVd if d>14
Moreover,

N(X', B) = Oq.(B "@*%) if d<13



Remarks (a) Whend> 13, then N(X',B) = Oq.(B***) by aresult of Heath-Brown in (op.cit).
(b) From f(d) <3/d+2/d we get from theorem 5 that N(U, B) = Og,(B¥'4* 29*%). This
should be compared with Heath-Brown’s estimate : N(U, B) = Od,s(BSNd A ey

(c) Thereareonly finitely many curves on X of degree at most d-2 by atheorem of Colliot-
Thélene[Co] . U isthusan open non-empty subset of X.

The following result is due to Broberg [Brby].

Theorem 6 Let X=P*be a geometrically irreducible projective hypersurface of degreed
over Q. Then,

(a) N(X,B) — Og( B(47+ \/721)/168+5) fOI’ d:3
()  N(X,B)= Of BETHSV2DI88+  for g=4
(©)  N(X,B)= Oy B**9 for d>5

We can improve this somewhat [Sa].
Theorem 7 Let XcP*be an irreducible projective hypersurface of degree d over Q. Then,
(@ N(X,B)= O, B*8"9 for d=3
(b))  N(X,B)= 044B>) for d>4

It was aready known [He] that N(X,B) = O4B**9) for quadricsin P*. For smooth threefolds
we provein [Sa] the following result.

Theorem 8 Let XcP* be a smooth hypersurface of degree d>5 over Q. Then,

N(x’ B) - Od'g(B:LS f(d)/16+5/4+8 + BZ+&) Where
f(d)= 3/vd+2/(d-1)- 1/(d-1) vd if d< 13
f(d)= 3/vd+ 2/d - 1/2dd if d>14

By using the inequality f(d)<3/vd + 2/d one obtains as a corollary the bound
N(x B) - Od (B45/16\/6 +15/8d+5/4+ ¢ + BZ+£,) d>5
The following results for fourfolds are also provenin [Sa].

Theorem 9 Let XcP° be a smooth hypersurface of degree over Q of degree d. Then the
following uniform estimates hold.

N(X,B)= Od’é(BZWJ.OVG + 9/5(d-1) —9/10(d-1)1/ﬂ +12/5+€) If 6< d S 13



N(X,B)= Od’ABz7/10m+ 9/5d — 9/20d W +125+g) if 14<d< 25
N(X,B)= Og AB*¢) if d>25
Theorem 10 Let XcP° be a smooth hypersurface over Q given by an equation

X'+ ...+ 8pXs'=0

where a,, ..., & € Q . Let Vc X be the complement of the fifteen closed subsets given by the
eguations

aXo'+ ax’ = gx+ axd =ax+ amXm'=0

where {i,j,k,|,m}={1,2,3,4,5}. Then,

N(V B)= Od 6(827/101/6+ 9/5(d-1)—9/10(d-1)1/ﬂ +12/5+€) If 6< d < 13
N(V,B)= Od'g(Bzmovm 95 - 920014125 5 if  13<d<34
N(V,B)= Og (B3V%*¢) if  d>34

Theorem 11 Let ny(B) be the number of solutions in non-negative integers x,<B , 0<i<5
to the equation
X't X0+ %% X X% %"= 0

Then,
nd(B) — Od 8(827/101/6 + 9/5(d-1) — 9/10(d-1) vl +12/5+€) if 6<d<13
nd(B) - 6B’3+ Od (827/101/ﬂ+ 9/5d — 9/20d\/ﬁ +12/5+8) If 13< d_< 34
na(B) = 6B+ Oy (BXV4%*¢) if d>34

Remark  Notethat 27/10vd+ 9/5d — 9/20dvd +12/5<3 when d>25 so that we get an
asymptotic formula
ny(B) = 6B%+ Oy (B¥) for d>25
Thisimproves upon [BrwHe] where the authors get an asymptotic formulafor d>32.
Also, na(B) = Og (B"#18*9) for d>9
which should be compared with Huas estimate (cf. [Hu] , [Da])
nd(B) = Od’é(B7/2+£,)

from 1938. Thiswas still the best known result until the paper of Heath-Brown [He] appeared
He gives there an improvement on Huas estimate for d>24 .
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