Notes on the arithmetic of Del Pezzo surfaces of degree 2

Andrew Kresch and Yuri Tschinkel

ABSTRACT. We study the arithmetic of certain Del Pezzo surfaces of degree 2.

1. Introduction

A general smooth Del Pezzo surface of degree 2 can be realized as a double
cover of P? ramified in a smooth curve of degree 4. In this note we consider sufaces
S of the form

(1.1) w? = Az* + By* + Cz*,

where A, B,C € Z. We compute their Galois-theoretic invariant Br(S)/Br(Q) and
the obstruction to the Hasse-principle. We match our theoretical computations
with numerical data. For more background we refer to [Man86], [CTKS87].

2. Geometry
Consider the surface S given by the equation
w? = Az* + By* + Cz*

in the weighted projective space P(2,1,1,1). Let a,b,c denote some chosen 4-th
roots of A, B, C, respectively. The image in P? of the 56 exceptional curves on S
are the bitangents to the Fermat quartic curve. As is well-known, these are given
by the following equations

(2.1) dax +by=0, Sby+cz=0, daxr+cz=0, whered*=—1,
(2.2) aax + Bby +ycz =0 (o =p* =~ =1).

Multiplying the equation (2.2) by a scalar doesn’t change the line it defines, so it
is natural to index the line by an element (a, 3,7) € pi/us. Each bitangent lifts
to a pair of exceptional curves in S: for example, the preimage of the line given by
dax + by = 0 is the pair of curves with equations

w = +c222 .
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These will be denoted by L. s+. There are 24 exceptional curves lying over the
lines in (2.1). The preimage of the line (2.2) is given by

w = +v2(afBabxy + Bybeyz + ayacrz) .

The ambiguity = is resolved by scaling the tuple («, 3,7), so that we can choose +
and consider (a, 3,7) € u3/u2. The 56 exceptional curves are denoted as follows:

L.s+ : dax + by = 0, w = +c222,
Lx,é,:l: : 5by + cz = ()’ w = :tasz,
Ly,&j: : ocz +ax = (), w = :tb2 27

Logy: aar+Bby+vcz=0 w= V2(apabry + Bybeyz + ayacrz) .

The intersections are as follows: each exceptional curve has self-intersection (—1).
Each pair of curves lying above a bitangent to the Fermat quartic has intersection
number 2. Among the two pairs of curves lying above two different bitangents there
are exactly two pairs with intersection number 1 and two pairs with intersection
number zero. We list below the pairs of lines with intersection number 1. Intro-
duce the set T of tuples (a, 8,7, ', 3',7") such that («, 3,7) is not proportional to
(o, B',v") and o/, 3/3,v/7" are either pairwise distinct or R-collinear.

Lz,(s,s ' Lx,5’7625’2s = 17

Lx,é,s . Ly,6’7625’28 = ]-7

Ly,é,s . Lz,5’7625’25 = 1,
Lz,é,s : Lz,5’7s = 1, ] 7& 61,
Lz,é,s . Lw,é’,s = 17 0 7é 5/,
Lyss-Lyss = 1, §#¢,
L.ss Lag~r = 1, when Re(a™13v25) >0,

Logsy-Largy = 1, when (o, 5,7,0,6,79") € T and afBya' 'y € {£1}.

Let ¢ = e™/*. The Picard group is a free abelian group with basis:

(2 3) v = Lz,§,+ Vg = Lz7<37_ V3 = Ly7(7+ Vg = Lyvcisy_
ows=Locy vs=Loes o vr=Liig  vs=Licr o+ Loes o+ L

3. Galois group - generic case

Recall that ¢ = e™/* and let G be the Galois group of the extension K :=
Q(¢,a,b,c) over Q. The subextension Q(¢)/Q corresponds to a normal subgroup
H of index 4. The quotient group is Klein’s four-group.

In the generic case, when the |G| = 256, we have the generators

O, Tylaylb,lc

characterized by

ofa) = a o) = b o) = ¢ o) =
(@) = a 7T0) = b 7T(c) = ¢ T =
la (a) = iaa La(b) = ba la (C) = G La(C) - Ca
wl@) = a wb) = i, wl) = ¢ wl() =
tela) = a, (b)) = b tc) = ic, .(Q) = (.
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The corresponding action of G on exceptional curves is given by

g T La Ly Le
L.ss L..),s L. +),s L.iss Lz—iss Lzs—s
Lz,é,s Lm,a(é),s Lm,r(&),s Lm,é,—s Lm,ié,s Lm,—ié,s
Ly,é,s Ly,a(&),s Ly,‘r(é),s Ly,fi(;,s Ly,&,fs Ly,i&,s

Lapy La-tp-1yt Lia-tip-1in-1 Liapy  Laisy  Lagiy
In the basis (2.3), the action of the various generators on the Picard group
Pic(Sk) is given by the following matrices:

-2 -1 -1 -1 -1 -1 -1 -3 -1 0 -1 -1 -1 -1 0 -2
-1 -2 -1 -1 -1 -1 -1 -3 -2 -1 -1 -1 -1 -1 -1 -3
-1 -1 -1 -2 -1 -1 -1 -3 -1 -1 -2 -1 -1 -1 -1 -3
=1 =1 0 -2 -1 -1 0o -2 [ S TS T e R S (S
ba =1 _1 -1 -1 -1 -1 0 0o -2 =1 -1 -1 -1 -1 -1 -2 -1 -3
-1 -1 -1 -1 -2 -1 -1 -3 -1 -1 -1 -1 0 -1 0 -2
-1 -1 0 -1 -1 0 -1 =2 -1 0 -1 -1 0 -1 -1 =2
3 3 2 3 3 2 2 7 3 2 3 3 2 3 2 7
-1 -2 -1 -1 -1 -1 -1 -3
0o -1 -1 -1 -1 -1 0 -2
-1 -1 -1 0 -1 -1 0 -2
[ [ TS T S [ S S
te=| -1 -1 -1 -1 -2 -1 -1 -3 ’
-1 -1 -1 -1 -1 -2 -1 -3
0o -1 -1 0 -1 -1 -1 =2
2 3 3 2 3 3 2 7
-1 0 -1 -1 -1 -1 0 -2 -1 -2 -1 -1 -1 -1 -1 -3
0o -1 -1 -1 -1 -1 0 -2 -2 -1 -1 -1 -1 -1 -1 -3
-1 -1 -1 0 -1 -1 0 -2 -1 -1 -1 -2 -1 -1 -1 -3
] -1 -1 0 -1 -1 -1 0 -2 ] -1 -1 -2 -1 -1 -1 -1 -3
=] -1 -1 -1 -1 -1 0 o0 -2 T -1 -1 -1 -1 -1 -2 -1 -3
-1 -1 -1 -1 0 -1 0 -2 -1 -1 -1 -1 -2 -1 -1 -3
0 0 0 0 0 o 1 o -1 -1 -1 -1 -1 -1 -2 -3
2 2 2 2 2 2 0 5 3 3 3 3 3 3 3 8

4. Review of group cohomology

Let G be a finite group and let M be a G-module. A standard free resolution
of Z is given as follows:
(4.1) CS:=...Z]G x G x G] — Z|G x G] — Z[G] ,
where the augmentation map Z[G] — Z is given by g — 1 (for all g € G) and where
each map in C¢ is of the form

n

(91 ga) = S (g1 G 90) -
=1

The action of g € G on any of the terms in (4.1) is the diagonal left multiplication
action. We may identify
ZIGxG] ~  @DyceqZlG],

(g’ggl) = (07"'79""70)’
where the unique non-zero entry ¢ is in the ¢g’-th position. We also identify
ZIGxGxG] = Dy gneaxa LG,

(9:99,99") —  (0,...,9,...,0),

where the unique non-zero entry g is in the (¢’, g”)-th position.
After these identifications, the complex Hom(CS, M) is identified with

(4.4) Cy=MZPuLt P oM.
g'eG (¢’,9")EGXG

(4.2)

(4.3)
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Here the g’-th coordinate of the map d° is m — m — ¢’ - m and the (¢’,¢")-th
coordinate of d' is (..., mg,...) — mgy —myr +g"-mgy-147. Of course, HY (G, M)
is identified with the i-th cohomology of (4.4). For instance, the kernel of d° is the
module M of G-invariants of M.

Now let H be a subgroup of G. Since restriction is an exact functor, C& is a
resolution of Z as an H-module. We choose a set () C G of coset representatives,
s0 G =,cq Ha

We have an isomorphism of H-modules

ZIG] ~  @ueoZlH],
(4.5) g o (b 0) )

where h appears in the ¢-th position (h € H,q € Q). Also

(4.6) Z[G X G] ~ @(q,h’,q’)eQXHxQ Z[H] y
(hg,hi'q) 0,...,h,...,0),

where h appears in the (¢, ', ¢') position. We can project the resolution C& to the
standard resolution CZ. Under the identification (4.5) the map on the degree zero
component is the sum of the |@| projection maps. Under the identifications (4.2)
and (4.6) the map on the degree 1 component sends the element (0,...,h,...,0)
from (4.6) to (0,...,h,...,0) with h in the A’ position. Applying Homg(—, M) we
get an inclusion of complexes C}; , into Hompy (CS, M), and via our identifications,

M Dy M

(4.7) lxo lxl

EBQMHGBQXHXQMH"' :

This allows us to take elements of H*(H, M), represented as cocycles via the stan-
dard resolution, and realize them as cocycles in the complex Homg (CS, M).

5. Cohomology of group extensions
Assume that there is an exact sequence of groups
1-H—-G—-Q—1.

Then @ acts on the cohomology HY(H, M) for all ¢ and there is an associated
standard spectral sequence

(5.1) EPY = HP(Q, HY(H, M)) = H" (G, M) .

This leads to a 5-term exact sequence
(5.2)

0— HY(Q, M) = H'(G, M) — H'(H, M)? 2 H*(Q, M™) — H2(G, M) .

For the purpose of computing dg’l, we describe explicitly the spectral sequence
at the Ey level. There is an action of Q on the complex Hompy (CS, M), which is
induced from the G action on this complex that combines the conjugation of G on
itself with its action on M. This @ action has invariants Homg(CS, M). Moreover,
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each term is acyclic as a @-module. This leads to the Eyp-term of the spectral
sequence (5.1)

Homp (Z[G®], M) — @, Homy (Z[G?|, M) ——————— - -

<IN |

Homp (Z[G?, M) — @, Hompy (Z[G?], M)

dg’OT dngT T

Homy (Z[G], M) — @ Homp (Z[G], M) — @ o2 Homp (Z[G], M)

In the special case where G is a semi-direct product of H and (), we have
identifications (4.5) and (4.6). Now ¢ € @ acts on elements of the groups appearing
in the bottom row of (4.7) as follows:

(5.3) G- (ovmgy )= (G -mg1g-.)

(54) q . ( < Mg b gy - - ) = ( ey d . mq—lqvq—lh/q@—lql, .. )

6. Cohomology of abelian groups

For finite abelian groups G there are more efficient resolutions than the standard
resolution. In each of the following representative cases we give an alternative
resolution of Z by free Z|G]-modules together with explicit maps from the standard
resolution to the more efficient resolution. This allows us to compute the images of
cocycles from the effecient resolution in the standard resolution.

NOTATION 6.1. Let G be a finite abelian group and g € G an element of order
n. Put Ny :=1+g+-+g¢g"tand A, :=1—g in Z[G]. For g1,...,9, € G
and iy,...,i, € Z the element in C{ which, under the identification (4.2) is the
vector (0,...,1,...,0) with 1 in the (gi*g% - - - g% )-th position, is denoted ay, ;.
Similarly, given i, ..., € Z the element in C§' which, under the identification (4.3)
is the vector (0,...,1,...,0) with 1 in the (gi1 g;"’ gl gi/l g;,"’ o -gf,:’)—th position
is denoted v, i, i1, i1 -

Case 1: G =Z/n.

e = .. .zja) Y2 z16) 22 z(q) |

with quasi-isomorphism
ol cé — el

given by
ole) = Legtergt
(6.1) i Lo ifi>d
oy (i) 0 otherwise ’

where g is a generator of G.

Case 2: G=Z/n®Z/m.

Alg:hl

Cin,m] —... Z[G]g Z[G]2 (Ag Ap)

zZlGl,
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where

Alg:h] . Ny Ap 0
’ 0 —-Ay Np

with quasi-isomorphism
0_£n,m] : C.G R C£n,m]
given by
(6.2) o"Naig) = g+ +g g +gh+ o +gihiT)
where g (resp. h) is a generator of Z/n (resp. Z/m).

Case 3: G=Z/n®Z/mdZ/L.

Algshiul

Cln,m,@] — .. Z[G]G Z[G]g (Ag Ap Ay)

Z|G]
where
Ny Ay 0 A, 0 0
Alghal.— 0 —A, N, 0 A, 0
0 0 0 —-A; —Ap Ny
with quasi-isomorphism
O_Ln,m,é] : C.G R Cin,m,é]

given by

(63) o} (ai ) =
(I+g+-+g g (l+h+- -+ g WA+ + g W),
where g (resp. h, resp. u) is a generator of Z/n (resp. Z/m, 7./¢).

In each case, given a G-module M we apply Homg(—, M) to every complex
above. This provides a practical method for computing group cohomology of finite
abelian groups. The dual maps are notated as above but with the super- and
subscripts interchanged. For example, Afy ) @ M 2 — M3 maps the element (m, 0)
to(m+g-m+---+g"t-m,m—h-m,0).

7. Computation of Br(S)/Br(Q) in the generic case

In this section we explain the computation of H'(G, M), where M = Pic(Sk),
in the generic case. We have an exact sequence

1-H—-G—-Q—1

with H = (Z/4)® and Q = (Z/2)?. In principle, H'(G, M) can be computed using
the standard resolution (4.4). However, in this case the map d; would be given by
a 524288 x 2046-matrix, which makes direct computations impractical. Exploiting
the fact that G is an extension of one abelian group by another, we can use the
spectral sequence technique, explained in Section 5, to simpify the computation
significantly.

In the following, we will constantly refer to the diagram in Figure 1. First
we compute MH = M® = 7, spanned by the canonical class. In particular,
HY(Q,M") =0. Thus H(G, M) is equal to the kernel of the map

dyt - HY(H,M)? — H*(Q,M™) .
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The group H*(H, M) is computed by the complex on the left side of the diagram. In
this diagram the horizontal arrows labeled 0[i4 44] and x* give quasi-isomorphisms
of complexes. The linear algebra required to compute Ker(M? — M?9) is quite
modest and the cohomology group is identified as

HY(H,M)=17/2.
It remains to take a single cocycle representative of the non-zero element of

H'(H, M) and follow it through the diagram to determine whether it lies in the
kernel of dg’l.

REMARK 7.1. In this case the class is automatically @Q-invariant since Z/2 has
only the identity automorphism. In general, as we point out below, there is a place
in the diagram chase where this invariance is naturally tested (a certain element
would otherwise fail to lift).

We start with a representative in M? for the nontrivial element A € H*(H, M),
for instance

u=((0,0,0,0,—1,—1,—1,1),(0,0,0,0,—1,1,0,0), (0,0,0,0,—2,0, —1,1)).

Let v denote the image in Eé’l of v by the composite of three horizontal maps in
Figure 1. Now, we claim, v lies in the image of d(lJ’0 if and only if A is Q-invariant
(obviously true in this case). Indeed, a linear algebra solver can produce

vo = ((0,0,0,0,—1,1,0,0)**,(0,0,0,0, -1, —1, —1,1)*%))

satisfying d(l)’o(vo) = v, where each vector with superscript x4 denotes the element
in @Q M with the vector repeated. Applying the cobounday map Eé’o — Eg,o

to vy necessarily produces an element in the image of is, representing dg’l(A) in
H?(Q,M™). In the present case, we get 0; in general, a linear solver can test
whether or not it is a coboundary.

8. The non-generic case
We give examples when the Galois group is smaller than in the generic case.

ExaMPLE 8.1. Consider the case (A, B,C) = (—6,—3,2). Here there are no
local obstructions to the existence of rational points. The Galois group of the
splitting field has order 32; it is an extension of the Klein four-group by (Z/4) ®
(Z/2). However, in this way it is not a split extension. On the other hand, we can
use the split extension

1-H—-G—-Z/2-1

where H = (Z/4)?, generated by
Loty and oiLgleT

and the image of Z/2 in G is generated by o. In this case, we compute H*(H, M) =
0. By (5.2), HY(G, M) is isomorphic to H'(Z/2, M™). We find that M# has rank
2, spanned by

(1,1,1,1,1,1,1,-3) ,

(1,1,1,1,1,1,0,-2) ,
hence M¥ is isomorphic to Z @ Z', where Z' is free of rank 1 with non-trivial
Z/2-action. So, we have

HY G, M) =17/2.
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As in the generic case, we have M = Z, that is Pic(S) has rank 1.
EXAMPLE 8.2. The case (A, B,C) = (1,1,—2) is interesting because Pic(S5)
has rank 2. The Galois group G fits into an exact sequence
1-2/4—-G—7Z/2—-1

with subgroup H = Z/4 generated by (.07 and image of quotient group generated
by 7. As in example 8.1 we have H'(H,M) = 0. Now M has rank 3, with
generators

HY(G,M)=17/2
and Pic(S) has rank 2.
ExAMPLE 8.3. The case (4,B,C) = (1,1,1) yields G = Gal(Q(¢)/Q), the
Klein four-group, and we directly compute
H'(G,M) = (2/2)?,
and Pic(S) has rank 1.
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