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1. Introduction

This note, an extended version of my talk at the 9th Pan African
Congress of Mathematicians, surveys several recent advances in bira-
tional algebraic geometry. The key problem in this area is to determine
whether or not an algebraic variety X of dimension n over some field
k is k-rational, i.e., k-birationally equivalent to the simplest projective
variety, the projective space Pn. One of the motivations, going back to
the study of Pythagorean triples, i.e., solutions of the equation

x2 + y2 = z2,

is to obtain a parametrization of solutions, which in the case at hand
takes the form

(1.1) x(s, t) = t2 − s2, y(s, t) = 2ts, z(s, t) = t2 + s2.

Less known is the parametrization, with Q-rational coefficients, of

(1.2) x3 + y3 + z3 = w3

worked out by N. Elkies:

x(r, s, t) = −(s+ r)t2 + (s2 + 2r2)t− s3 + rs2 − 2r2s− r3
y(r, s, t) = t3 − (s+ r)t2 + (s2 + 2r2)t+ rs2 − 2r2s+ r3

z(r, s, t) = −t3 + (s+ r)t2 − (s2 + 2r2)t+ 2rs2 − r2s+ 2r3

w(r, s, t) = (2r − s)t2 + (s2 − r2)t− s3 + rs2 − 2r2s+ 2r3

Choosing (r, s, t) ∈ Q3 we obtain solutions of (1.2). However, even
straightforward deformations of this equation, e.g.,

(1.3) x3 + y3 + z3 = 2w3, 5x3 + 9y3 + 10z3 = 12w3,

lack such parametrizations. The first of these equations has infinitely
many Q-rational solutions, but the second has no nontrivial solutions
at all, even though it has nontrivial solutions modulo p, for all primes
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p (see, e.g., [Man86, Section VI] and [CG66])! The obstruction to
parametrizing lies in the Galois cohomology group

(1.4) H1(GQ,Pic(X̄)),

where GQ = Gal(Q̄/Q) is the absolute Galois group of Q, and Pic(X̄) is
the geometric Picard group of X, which is easily computable, knowing
the Galois action on the 27 lines on the cubic surface.

The study of rationality revolves naturally around the following is-
sues:

• Introduce computable obstructions to rationality and provide
supporting examples;
• Investigate rationality for important classes of varieties, such as

algebraic surfaces, or low-degree hypersurfaces;
• Study the behavior of rationality under basic geometric opera-

tions: fibrations, deformation and specialization.

There are several excellent surveys on these fascinating subjects,
e.g., [MT86], [Bea16], [Voi16], [dF14], [Pir16], [Has06], [Pey16], [AB17],
[CT18b], [CT18a]. Here we focus on the last of these issues, in partic-
ular, on specialization. Our presentation is inspired by our recent joint
work [HKT16b], [HT16], [HPT16b], [HPT16a], [KT17a]; we hope that
the point of view presented here might be of independent interest.

Acknowledgments: I am very grateful to Fedor Bogomolov, Ivan
Cheltsov, Brendan Hassett, Andrew Kresch, and Alena Pirutka for
discussions on related topics. The author was partially supported by
NSF grant 1601912 and by the Laboratory of Mirror Symmetry NRU
HSE, RF grant 14.641.31.0001.

2. Generalities

A smooth projective algebraic variety X over a field k of charac-
teristic zero is called rationally connected if for any pair of points
x0, x∞ ∈ X(k) there exists a k-morphism

f : P1 → X, f(0) = x0, f(∞) = x∞,

i.e., any pair of points in X(k) can be joined by an irreducible rational
curve in X, defined over k. This property is a birational invariant.
Moreover, it behaves well in families: limits of rationally connected
varieties are rationally chain-connected, and if the limit has mild sin-
gularities there exist irreducible connecting rational curves.
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An important class of geometrically (i.e., over an algebraic closure k̄)
rationally connected varieties is the class of (smooth) Fano varieties,
i.e., those with ample anticanonical class −KX . Examples of Fano
varieties are:

• The projective line P1 and its nonsplit form, a conic without
k-points.
• Del Pezzo surfaces: forms of P2, P1 × P1, and blowups of P2 in

up to 8 points in general position.
• Fano threefolds: cubics, quartics, ...

There are finitely many families of Fano varieties in every dimension.
These constitute basic building blocks in the Minimal Model Program,
and one expects that every rationally-connected variety admits, bira-
tionally, a Mori fiber space structure, i.e., a fibration with generic fiber
a Fano variety. For example, in dimension 2, we are led to consider del
Pezzo surfaces or conic bundles over P1.

An algebraic variety X over a field k is called

• rational: if X is birational to Pn, over k, for some n;
• stably rational: if X × Pn is rational, for some n;
• unirational: if X is dominated by Pn, for some n.

We have logical implications:

Rational ⇒ Stably rational ⇒ Unirational ⇒ Rationally connected.

While there are examples of stably rational but nonrational, unira-
tional, but not stably rational varieties, very little is known about
unirationality; finding examples of rationally connected but not unira-
tional varieties over the complex numbers remains an elusive goal.

The above properties of X depend on the ground field k but are
preserved under field extensions. Conics C ⊂ P2 are rational over k if
and only if C(k) 6= ∅; projecting from a point c ∈ C(k) establishes an
isomorphism C ' P1, which leads to algebraic formulas as in (1.1). By a
theorem of Lüroth, for curves, the above notions of rationality coincide.
A major achievement of classical Italian geometry was the proof of
the corresponding result for algebraic surfaces over C, essentially, via
classification. In particular, cubic surfaces in (1.3) are rational over
C; however, the first is unirational but not rational over Q, as it has
nonvanishing Galois cohomology group (5), and the second is not even
unirational over Q, as it lacks Q-rational points (see, e.g., [CTKS87]).
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After unsuccessful attempts by Fano and others to provide examples
of unirational but nonrational complex threefolds, major developments
occurred in 1971-72, with the introduction of:

• Birational rigidity (Iskovskikh–Manin [IM71]),
• Intermediate Jacobians (Clemens–Griffiths [CG72]),
• Brauer groups (Artin–Mumford [AM72]).

Each of these approaches triggered important advances in algebraic
geometry: in-depth study of singularities and minimal models, abelian
varieties, and unramified cohomology.

We recall the basic definitions: Let X be a rationally connected vari-
ety. It is birationally rigid if its Mori fiber space structure is unique, and
super-rigid if its group of birational automorphisms Bir(X) coincides
with the automorphisms Aut(X). Such varieties cannot be rational
since the Cremona group Bir(Pn) is enormous, for n ≥ 2. The paper
[IM71] established birational super-rigidity of smooth quartic three-
folds.

If X is a complex projective rationally connected threefold, its in-
termediate Jacobian is the principally polarized abelian variety

IJ(X) :=
H2,1(X,C)∨

H3(X,Z)
.

For rational X, IJ(X) is isomorphic to a product of Jacobians of curves.
The paper [CG72] proved that this fails for smooth cubic threefolds.

And finally, for smooth projective X, the nontriviality of the Brauer
group

Br(X) := H2
et(X,Gm)

is an obstruction to stable rationality, and not only rationality. Note
that the second invariant does not distinguish between nonrational and
stably rational varieties [BCTSSD85a]. No examples of birationally
rigid but stably rational varieties are known; it seems plausible that
smooth projective birationally rigid threefolds are not stably rational.

Each of these invariants is essentially preserved under deformations:

• No examples of smooth families of smooth projective varieties
are known where some fibers are birationally rigid and some
are not; for example, every smooth hypersurface of degree n
in Pn, with n ≥ 4, is birationally rigid [dF13, dF16]. Small
deformations of birationally rigid threefolds are also birationally
rigid [dFH12].
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• A small deformation of a principally polarized abelian variety
which is not isomorphic to a product of Jacobians of curves
remains so.
• For smooth varieties X over C, the Brauer group has an inter-

pretation as torsion in H3(X,Z), a topological invariant.

The Specialization methods discussed in the next section provided new
powerful obstructions to stable rationality and allowed to construct
examples of smooth families of projective varieties of dimension ≥ 3
with varying rationality behavior of the fibers.

An important class of threefolds whose rationality properties are
accessible, in principle, via all three methods is the class of standard
conic bundles over smooth projective rational surfaces, e.g.,

π : X → P2,

with discriminant D ⊂ P2 (see Section 4.1 for more details). Then

• If deg(D) ≥ 12 then X is birationally rigid [Sar82].
• If D is general of degree ≥ 6 then the intermediate Jacobian

IJ(X) is not a product of Jacobians of curves; there exist X of
this type which are stably rational [BCTSSD85b].
• If deg(D) ≤ 8 then X is unirational [Mel14].
• If D has at least two smooth components D1, D2 of genus ≥

1 such that the discriminant double cover is unramified over
D1 ∩ D2 then the Brauer group Br(X) is nontrivial, and X is
not stably rational.

We will see below that conic and higher-dimensional quadric bundles
play a special role in the study of rationality.

3. Specialization

The Specialization idea, in the context of the theory of intermediate
Jacobians of complex threefolds, was introduced by Clemens in [Cle75].
It allows to reduce proofs of nonrationality of some threefolds to the
case of conic bundles. It can be summarized as follows:

Theorem 1 (Specialization method I, [Cle75], [Bea77]). Let

φ : X → B

be a flat family of projective threefolds with smooth generic fiber. As-
sume that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:
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(S) Singularities: X has at most rational double points.
(O) Obstruction: the intermediate Jacobian of a desingularization

X̃ of X is not a product of Jacobians of curves.

Then there exists a Zariski open subset B◦ ⊆ B such that for all b′ ∈ B◦
the fiber Xb′ is not rational.

This idea was developed and applied by Beauville [Bea77] to prove
nonrationality of several classes of smooth Fano threefolds, e.g., quartic
and sextic double solids. Beauville found mild degenerations of Fano
threefolds, satisfying the conditions (S) and (O) above, and admitting
conic bundle structures over P2. Intermediate Jacobians of standard
conic bundles over rational surfaces are much easier to analyze than
those of general Fano threefolds. We review this theory in Sections 4.1
and 4.3.

A novel version of the specialization idea emerged in the work of
Voisin [Voi15] in the form of integral decomposition of the diagonal:

(3.1) ∆X = [x×X] + Z ∈ CHn(X ×X), resp. H2n(X ×X,Z),

where ∆X is the class of the diagonal (either in the Chow group or
cohomology), dim(X) = n, and Z is a cycle supported on X × D,
D ( X. The failure of an integral decomposition of the diagonal is an
obstruction to stable rationality.

Theorem 2 (Specialization method II, [Voi15]). Let

φ : X → B

be a flat family of projective varieties with smooth generic fiber. Assume
that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X has at most rational double points.
(O) Obstruction: the desingularization X̃ of X does not admit an

integral decomposition of the diagonal, i.e., fails (3.1).

Then a very general fiber of φ does not admit an integral decomposition
of the diagonal, and in particular, is not stably rational.

Here very general refers to the complement of a countable union of
Zariski closed subsets of B.

Theorem 3 connected the study of (stable) rationality with develop-
ments in the theory of algebraic cycles, in particular, the work of Bloch
and Srinivas [BS83]. It also showed the way to new, more powerful and
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more direct, specialization results for (stable) rationality, relying on
the following notions:

CH0: Universal CH0-triviality [CTP16];
K0: the Grothendieck ring [NS17];

Burn: the Burnside ring [KT17a].

We now describe and compare these results. The common setup is
as follows: Let o be a discrete valuation ring, k its residue field and K
its field of fractions. Let

φ : X → Spec(o)

be a faithfully flat proper morphism, with generic fiber XK and special
fiber Xk. The specialization results state that if the generic fiber XK

is

• universally CH0-trivial,
• stably rational, or
• rational,

then so is the special fiber, provided it has mild singularities. One es-
sential difference is that in the first case, the characteristic char(k) of
k is arbitrary, while in the other two cases char(k) = 0. On the other
hand, the last two cases bypass the theory of algebraic cycles. More-
over, they suffice to essentially settle the stable rationality problem in
dimension 3. The definition of mild is also different in the three cases.

CH0: Let CH0(Xk) be the abelian group generated by zero-dimensional
subvarieties x ∈ X (e.g., points x ∈ X(k)), modulo k-rational equiva-
lence. Assuming X(k) 6= ∅, there is a surjective degree homomorphism

CH0(Xk)→ Z.
Here are examples when this an isomorphism:

• X is a unirational variety over k = C,
• X is a Kummer surface over k = F̄p [BT05]; however, this

property fails if we replace F̄p by an uncountable field.

A projective X/k is called universally CH0-trivial if for all field exten-
sions k′/k we have

CH0(Xk′)
∼−→ Z.

In practice, it suffices to consider k′ := k(X).
This property is a strengthening of rational connectedness: for ratio-

nally connected varieties over k we have CH0(Xk) ' Z, but this may
fail after passage to field extensions of k. In particular, unirational
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varieties are not necessarily universally CH0-trivial. Smooth projective
X/k with Br(X) 6= Br(k), or more generally, with nontrivial higher
unramified cohomology, are not universally CH0-trivial. On the other
hand, smooth k-rational varieties are universally CH0-trivial.

There is a relative version of this notion: A projective morphism

β : X̃ → X

of k-varieties is universally CH0-trivial if for all field extensions k′/k
one has

β∗ : CH0(X̃k′)
∼−→ CH0(Xk′).

For example, let

β : BlZ(X)→ X,

be the blowup of a smooth variety X in a smooth subvariety Z. Then
β is universally CH0-trivial. The following theorem reflects the fact
that, just as rational connectedness, universal CH0-triviality behaves
well under specializations.

Theorem 3 (Specialization method III, [CTP16]). Let

φ : X → B

be a flat family of projective varieties with smooth generic fiber. Assume
that there exists a point b ∈ B such that the fiber

X := φ−1(b)

satisfies the following conditions:

(S) Singularities: X admits a desingularization

β : X̃ → X

such that the morphism β is universally CH0-trivial;
(O) The group CH0(X̃) is not universally trivial.

Then a very general fiber of φ is not universally CH0-trivial and in
particular not stably rational.

Again, one would like to find appropriate degenerations to conic
bundles, specifically to those with nontrivial Brauer groups, to conclude
failure of stable rationality of a very general member of the family.

K0: Let K0(V ark) be the Grothendieck ring of varieties over k; it
is generated by isomorphisms classes of schemes of finite type over k
modulo scissor relations, with the ring structure given by producs of
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varieties. Let L be the class of the affine line. A result of Larsen and
Lunts [LL03] states that

K0(V ark)/L

is isomorphic to the free abelian group spanned by stable rationality
classes of algebraic varieties. Nicaise and Shinder [NS17] proved that
Hrushovski and Kazhdan’s motivic volume gives rise to a specialization
homomorphism

K0(V arK)/L→ K0(V ark)/L

of abelian groups, where K is the fraction field of a discrete valuation
ring o and k is its residue field, both of characteristic zero. This im-
plies specialization of stable rationality, when the special fiber has mild
singularities, e.g., rational double points.

Burn(k): Let Burn(k) be the free abelian group spanned by bira-
tionality classes of algebraic varieties. The main result of [KT17a]
states that there is a specialization homomorphism

Burn(K)→ Burn(k),

defined by a formula similar to the motivic volume formula. This im-
plies specialization of birational types, and in particular, of rationality
and stable rationality, when the special fiber has mild singularities.

Both results rely on the Weak Factorization Theorem (WF) for bira-
tional maps between smooth proper varieties [AKMW02]. Indeed, the
birational type of the exceptional divisor of a blowup of a smooth sub-
variety Z in a smooth variety X is simply the type of Z ×Acodim(Z)−1;
(WF) says that such blowups are the only steps connecting birational
varieties.

Remark 4. An important theme in higher-dimensional birational ge-
ometry is the study of G-varieties, i.e., varieties X with actions of
algebraic groups G. For example, even the classification of birational
involutions of P3 is not fully understood [Pro13]; this can be translated
to a problem about regular involutions on a rational threefold X. Such
problems amount to finding explicit G-equivariant birational maps –
very similar in spirit and technique to finding rational parametrizations.

A G-equivariant version

BurnG(K)
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of the Burnside group might help to distinguish nonequivalent actions
via specializations. The proof in [KT17a] goes through, provided one
trivializes linear actions, i.e., identifies total spaces of G-vector bundles
with total spaces of vector bundles with trivial G-action.

4. Applications

Here we work over C. We discuss applications of the Specialization
methods to the problem of stable rationality of rationally-connected
threefolds and fourfolds.

4.1. Conic bundles. A standard conic bundle structure on a smooth
projective threefold X is a fibration

π : X → S

over a smooth projective rational surface S, with generic fiber a conic.
In particular, the discriminant curve D ⊂ S is nodal. Let D̃ → D be
the discriminant double cover defined by π; note that X is determined,
birationally, by the data

(S, D̃ → D).

The intermediate Jacobian is a principally polarized abelian variety,
which is isomorphic to the Prym variety

IJ(X) ' Prym(D̃ → D).

This fails to be a product of Jacobians of curves in many cases, e.g.,
when S = P2 and D is irreducible of degree ≥ 6, which is not hyper-
elliptic or trigonal or quasi-trigonal (see, e.g., [Sho83], [Bea77]). An
extensive discussion of conjectures and results concerning rationality
and birational rigidity of conic bundles over rational surfaces can be
found in [Pro17].

The Specialization methods presented in Section 3 allowed decisive
progress on stable rationality. They shifted the focus to the construc-
tion of families of conic bundles with mild degenerations (see [KT17b,
Proposition 3.1]).

Theorem 5. [HKT16b] Let L be a linear system of effective divisors on
a smooth projective surface S with smooth and irreducible general mem-
ber. Let M be an irreducible component of the moduli space of pairs
(D, D̃ → D), where D ∈ L is nodal and reduced and D̃ → D is an étale
cover of degree 2. Assume that M contains a cover, which is nontriv-
ial over every irreducible component of a reducible curve with smooth
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irreducible components. Then a conic bundle over S corresponding to
a very general point of M is not stably rational.

For example, very general conic bundles over P2 with discriminant D
of degree ≥ 6 are not stably rational. We now focus on the case when
the base of the conic bundle is a smooth del Pezzo surface S of degree
d. When d ≤ 7, the surface S itself admits conic fibrations over P1,
where a conic is a smooth rational curve in S of anticanonical degree
two. Let D ⊂ S be a smooth curve in | − 2KS|, which has genus d+ 1.
Consider a conic bundle

X → S

with discriminant D. Note that for each conic fibration S → P1 we
obtain a fibration

π : X → P1

with general fiber a degree 4 del Pezzo surface, admitting a conic bun-
dle. We have:

(1) X is not birationally rigid.
(2) The intermediate Jacobian IJ(X) ' Prym(D̃ → D) has dimen-

sion d.
(3) When d = 1, 2, or 3 the intermediate Jacobian IJ(X) ' J(C)

where C is a curve of genus 1, 2 or 3 respectively.
(4) The Brauer group of X is trivial.
(5) For very general D, X is not stably rational [HKT16a].

4.2. Del Pezzo fibrations. Here, we consider del Pezzo fibrations

π : X → P1,

where X is a smooth projective threefold, the relative Picard rank
equals 1, and the general fiber is a del Pezzo surface of degree d. These
are rational when d ≥ 5, but need not be rational when d = 4. Let

h(X) := deg(c1(ω
3
π))

be the height (measuring the degree of coefficients of the defining equa-
tions of X, considered as a variety over k[t]). We focus on d = 4,
following [HT16] and [HKT16a]. In this case, h(X) is an even positive
integer. The moduli space of X with fixed height ≥ 12 is irreducible.

Theorem 6. Assume that d = 4 and that X is general: the discrimi-
nant is square-free and the monodromy of the family is maximal, i.e.,
the full Weyl group W (D5). Then

• If h(X) ≤ 8 or h(X) = 12 then X is rational,
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• If h(X) = 10 then X is not rational
• If h(X) ≥ 14 then a general X in the corresponding family is

not stably rational.

The case of del Pezzo fibrations of degrees d = 3, 2, and 1 has been
addressed in [KO17].

4.3. Fano threefolds. In this section, we study smooth Fano three-
folds. Their basic invariants are

• ρ = ρ(X) = rk(Pic(X)), the Picard rank,
• d = d(X) = −K3

X , the degree of the anticanonical class,
• r = r(X), the index, the largest positive integer such that
−KX = rH, for some H ∈ Pic(X).

We focus on nonrational minimal Fano threefolds (not blowups of
other Fano threefolds). There are 6 families with ρ = r = 1, corre-
sponding to

(4.1) d = 2, 4, 6, 8, 10, 14.

and 3 families with ρ = 1, r = 2, corresponding to

(4.2) d = 8 · 1, 8 · 2, 8 · 3.

Those with ρ ≥ 2 are all conic bundles, whose nonrationality follows
from the analysis of their intermediate Jacobians. However, the dis-
criminant curves in these cases are not general in the respective linear
series, and Theorem 5 does not apply. Nevertheless, we proved

Theorem 7. [HT16] Let X be a general smooth nonrational Fano
threefold. Assume that X is not birational to a cubic threefold. Then
X is not stably rational.

The key finding was that families with ρ = r = 1 specialize to nodal
threefolds which are birational to conic bundles, and to which Theo-
rem 5 does apply. After that, it suffices to invoke the Specialization
theorem 3. The required conic bundle structure results from a repre-
sentation as a degree 4 del Pezzo fibration over P1; blowing up a general
section of this fibration we obtain a cubic surface over k(P1) with a line,
thus a conic bundle.

Example 8. [HT16] Let X ⊂ P4 be a smooth quartic, i.e., ρ = r = 1
and d = 4. Consider an intersection of two forms in P1×P4 of bi-degree
(1, 2)

sP 1 + tQ1 = sP2 + tQ2.
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Projection onto P1 exhibits this threefold as an intersection of two
quadrics in P4 over k(P1), i.e., a del Pezzo surface. Projection to P4

gives a nodal quartic threefold

{P1Q2 −Q1P2 = 0} ⊂ P4

with 16 nodes:

{P1 = P2 = Q1 = Q2 = 0}.

This is the desired degeneration of X.

In general, the required number n of nodes is given in the table:

d 2 4 6 8 10
n 32 + 4 16 8 4 2

The last entry in the list (4.1), with d = 14 is birational to a cu-
bic threefold. By [CG72], smooth cubic threefolds are all irrational;
determining whether or not they are stably rational remains an open
problem.

Remark 9. Let X be a cubic threefold and P ⊂ P4 a plane such that

X ∩ P = `1 ∪ `2 ∪ `3,

a triangle of lines. The fibration obtained by projecting from P

X 99K P1

is a cubic surface fibration with three fixed lines. Blowing down one of
them, we obtain a fibration

π : S → P1

where the generic fiber is a quartic del Pezzo surface with a pair of conic
bundle fibrations, summing to the anticanonical divisor. These have a
chance of being stably rational but not through the relative universal
torsor construction associated with the fibration π as in [BCTSSD85b].
Indeed, let K = k(P1) and consider the Galois module Pic(S̄), where
S is the generic fiber of S. Generically, H1(GK ,Pic(S̄)) = 0, however,
this fails over finite extensions of K. Thus, the Néron-Severi torus, i.e.,
the torus dual to Pic(S̄), is not stably-rational.
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4.4. Rationality in families. Let π : X → B be a family of projective
varieties over a field k and

Rat(π) := {b ∈ B | Xb is k-rational} ⊆ B

be the locus of k-rational fibers. We are interested in the properties of
Rat(π). Over number fields, this has attracted considerable attention,
already for conic bundles over P1 and, more generally, Brauer-Severi
fibrations. For example, it can be shown that the locus of Q-rational
fibers in a nonsplit conic bundle is infinite but thin (see, e.g., [Ser90]).
Another example, that of diagonal cubic surfaces, was mentioned in
the introduction.

Over algebraically closed k the situation is more difficult. The ratio-
nality behavior does not change in smooth families of curves or surfaces.
In dimension three, we have:

Theorem 10. [dFF13] Let π : X → B be a family of rationally con-
nected theefolds over an algebraically closed field k. Then Rat(π) is a
countable union of closed subsets of B.

Using the stable rationality construction from [BCTSSD85a] and the
Specialization methods applied to a conic bundle over a degree d = 5 del
Pezzo surface S, with degeneration over D ∈ |−2KS| as in Section 4.1,
we have:

Theorem 11. [HKT18] There exists a smooth family of complex pro-
jective threefolds with stably rational and not stably rational fibers.

In dimension 4, we were able to show that the set of rational fibers
can be dense.

Theorem 12. [HPT16a] Let π : X → B be the universal family of
bi-degree (2,2) hypersurfaces in P2×P3, over C. Then Rat(π) is dense
with respect to Euclidean topology while a very general fiber of π is not
stably rational.

The proof of this theorem has two parts: exhibiting a dense set of
rational fibers and proving failure of stable rationality for very general
fibers. For the first part, we project a bi-degree (2,2) hypersurface
X ⊂ P2 × P3 onto the first factor, it is then presented as a quadric
surface bundle over P2. Birationally, we can viewX as a quadric surface
over the function field K = C(x, y); the quadric is rational if it has a
rational point over K, which implies rationality of the total space X.
Intuitively, if the variation of a family of quadric surfaces over a field
is sufficiently large, a dense set of members of this family will have



RATIONALITY AND SPECIALIZATION 15

rational points. This intuition is justified by considering the geometry
of Noether-Lefschetz loci in the moduli space and invoking the integral
Hodge conjecture.

The second part is proved via the Specialization theorem 3. The key
is to produce one degeneration, satisfying properties (S) and (O), e.g.,

X ⊂ P2
[x:y:z] × P3

[s:t:u:v]

is given by

yzs2 + xzt2 + xyu2 + F (x, y, z)v2 = 0,

where

F (x, y, z) := x2 + y2 + z2 − 2xy − 2yz − 2xz.

Property (S) was checked by hand; and the computation of the ob-
struction to stable rationality, the Brauer group of X, is a special case
of an algorithm in [Pir16].

The same degeneration works if one considers the family of complete
intersections of three quadrics in P7, the very general such Fano fourfold
fails stable rationality and the rational ones are dense in moduli [HPT],
or the family of quartic double fourfolds [HPT16b]. Thus, the emphasis
shifted towards finding suitable reference varieties, with computable
obstructions and mild singularities.

More general results, extending the argument to higher-dimensional
quadric bundles, have been obtained in [Sch18], [Sch17].

5. Rationality over nonclosed fields

In this section, X is a smooth projective geometrically rational va-
riety over a field k of characteristic zero. In dimension 2, these admit
minimal models over k, which are twisted forms of P2, P1 × P1, del
Pezzo surfaces, or conic bundles over P1. Here minimal refers to the
property that X cannot be simplified, over k; for del Pezzo surfaces
this means that there is no Galois orbit of disjoint exceptional curves.
Minimal del Pezzo surfaces of degree ≤ 4 are not rational.

The stable rationality problem for del Pezzo surfaces is widely open.
A necessary condition is

Condition (H1).

H1(Gk′ ,Pic(X̄)) = 0, for all k′/k.

In the case of del Pezzo surfaces, the Galois group acts through the
symmetries of the geometric Picard lattice, preserving the intersection
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form. Such actions are computationally accessible. In particular, con-
dition (H1) holds for del Pezzo surfaces of degree ≥ 5, and indeed, exis-
tence of k-points implies rationality in these cases. On the other hand,
there are examples of minimal del Pezzo surfaces of degrees 1 ≤ d ≤ 4,
or conic bundles with at least 4 degenerate fibers, failing (H1) and thus
stable rationality over k.

A classification of Galois actions satisfying (H1) can be found in
[TY18]; surprisingly, the list of such actions is rather small. One of the
outputs of this classification is the following strengthening of a theorem
of Segre: A minimal cubic surface is not stably rational. There is only
one case, mentioned in Theorem 13, when the necessary condition (H1)
is known to be also sufficient; in this case, the Galois group acts through
the symmetric group S3.

Theorem 13. Let X be a smooth del Pezzo surface with X(k) 6= ∅.

• d ≥ 5: X is k-rational.
• d = 4: If X admits a conic bundle over k, and satisfies Condi-

tion (H1), then X is stably rational over k.
• d = 4, 3, 2: X is k-unirational.
• d = 1: If X admits a conic bundle over k then X is k-unirational

[KM17].

One way of viewing Theorem 13 is to note that, geometrically, del
Pezzo surfaces of degree ≥ 6 are toric, and that all 2-dimensional al-
gebraic tori are rational over their field of definition. Consider, for
example, a del Pezzo surface of degree 6. The 6 exceptional curves
are intrinsically defined, over the ground field. Their complement is
a principal homogeneous space for a 2-dimensional torus, if there is
a k-point, the complement is a torus, and necessarily k-rational. The
case of degree 5 is interesting: this surface is, geometrically, isomorphic
to M0,5, the moduli space of 5 points on P1, which is also a quotient
of the Grassmannian Gr(2, 5) by a 4-dimensional torus, and the Galois
action factors through S5. In degree ≤ 4, the Galois actions are more
complicated, the surfaces more twisted, and stable rationality largely
unexplored.

What can we say about smooth, geometrically rational Fano three-
folds X with X(k) 6= ∅? There do exist nonrational tori in dimension 3
(classified in [Kun87]) and nonrational forms ofM0,6 [FR18]. Standard
rationality (and unirationality) constructions rely on the existence of
lines, and the variety of lines is typically of general type, thus need not
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have k-rational points. It would be interesting to explore an analog of
Theorem 13 in dimension 3.
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