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1. Introduction

In this paper we take a new look at the classical notions of rationality and stable
rationality from the perspective of sheaves of categories.

Our approach is based on three recent developments:

(1) The new striking approach to stable rationality introduced by Voisin and
developed later by Colliot-Thélène and Pirutka, Totaro, Hasset, Kresch and
Tschinkel.
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(2) Recent breakthroughs made by Haiden, Katzarkov, Kontsevich, Pandit
[HKKP], who introduced the theory of categorical Kähler metrics and mod-
uli spaces of objects.

(3) Developing the theory of categorical linear systems and sheaves of categories
by Katzarkov and Liu.

An important part of our approach is developing of the correspondence between
the theory of Higgs bundles and the theory of perverse sheaves of categories (PSC)
initiated in [KLa], [KLb]. In the same way as the moduli spaces of Higgs bun-
dles record the homotopy type of projective and quasi-projective varieties, sheaves
of categories record the information of the rationality of projective and quasi-
projective varieties. It was demonstrated in [KNPS15] and [KNPS13] that there
is a correspondence between harmonic maps to buildings, and their singularities
with stable networks and limiting stability conditions for degenerated categories,
degenerated sheaves of categories. In this paper we take this correspondence to a
new level. We describe this correspondence in the table below.

Table 1. Correspondence Higgs bundles ↔ Perverse sheaves of Cat

Func(Π6
1 (X, s),Vect)

groupoid category of
vector spaces

Func(Π6∞(X, s),dg Cat)

2 category dg
category

Higgs bundles Perverse sheaves of categories

Complex var. Hodge structures Classical LG models

Lyapunov exponents for Higgs bundles Lyapunov exponents for HH∗ of categories

Shiffman truncation of HN filtration
Multiplier ideal sheaf αn ⊂ · · · ⊂ α0,
where αi is the localization of αi+1

Vol. Orlov spectra

degeneration

MHS1

MHS2

degeneration

PSC1

PSC2

The meaning of Conjecture 1.3 is that it is hard to record nontrivial Brauer group
classes on the B side. From another point on the A side the existence of nontrivial
Brauer group class is recorded by the monodromy in the good deformations of
perverse sheaves of categories. Both cases of Conjecture 1.3 record nontrivial Brauer
group classes. The main technical point of the paper is that via good deformations
of perverse sheaves of categories we can record the nontrivial Brauer class for a K3
surface, and a fibration of Del Pezzo surfaces. This class is recorded by a quasi-
phantom in the deformed perverse sheaf of categories associated with the elliptic
fibrations in the deformed K3 surface - see section 5. Globally this nontrivial
Brauer group classes are recorded by the existence of basic classes with support in
codimension less than three. We suggest that this technique works in any dimension.
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The analogue of the Harder-Narasimhan filtration are pieces of localized cate-
gories - perverse subsheaves of categories which we denote by LGi(X

0). Finding
flat families of perverse sheaves of categories which have sheaves of Lagrangians
with no sections is the main goal of this paper. In this paper we describe some
technology for finding such “good” flat families of perverse sheaves of categories.
This is done by deforming LG models as sheaves of categories. The main geometric
outcomes from our work are:

Classical Categorical

W = P equality for tropical varieties “W = P” for perverse sheaves of categories

Voisin theory of deformations Good flat deformations of PSC

Canonical deformations and
compactification of moduli spaces

HN and additional filtrations of perverse
sheaves of categories

In this paper we give a few examples and outline a program. Full details will
appear elsewhere. We introduce the notion of flat family of perverse sheaf of cat-
egories. This is based on the correspondence between Higgs bundles and perverse
sheaves of categories.

Definition 1.1. A flat family of perverse sheaves of categories is a PSC
family over a graph Γ:

• •
t t = 0

•
•
•
•

Over t 6= 0 we have a local family of PSC; over t = 0 we have Sk = 1; over the
edges we have functors Np1

1 , . . . , Npr
r , deformations of PSC and a projective functor

P .

Definition 1.2. A flat family of PSC is called “good” if

(1) The equality between Leray and weight filtrations is satisfied for all t’s.
(2) Lattice conjecture holds for any t, Lt : K(Tt)→ HP∗(Tt).

We have the following parallel:

Voisin flat family PSC flat family

X
f−−→ X0

flat family

of singularities
• •

Γ

PSCt PSC0

•
•
•

Singularities of X0 are rational Good flat family of PSC

Conjecture 1.3. Let X be an n-dim manifold. Consider Db(X) ∼= FS(PSC). Let
PSCt → PSC0 be a good flat family s.t. FS(PSC)=FS(PSCt), for t 6= 0. Assume
that one of the following conditions is satisfied for PSC at t = 0:

(1) H∗(vanishing cycles)/HP∗(T0) = Tor;
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(2) L : K(T0) → HP∗(T0) has a kernel which contains a basic class with a
support with codimension 6 2.

Then X is not rational. (T0 is the category formed by the global sections of PSC0.)

In most of this paper, we study flat families and degenerations of perverse sheaves
of categories, which should be seen as an analogue of mixed non-abelian Hodge
structures. The basic class (Definition 3.14) we introduce plays a role as exten-
sions of mixed Hodge structures. The foundations of this theory will be developed
elsewhere. We define the basic class in section 3.1. We believe that this conjec-
ture holds for the examples in [Voi15], [CTP14], [Tot15]. In fact it seems that the
conditions of this conjecture are stronger than splitting of diagonal.

We start with deformations of sheaves of categories in section 2. Then we move
to the parallel between local systems and sheaves of categories in section 3. Sections
4 and 5 contain our main examples. Concluding remarks are given in section 6. In
section 6 we also give an interpretation of Conjecture 1.3 from the perspective of
categorical Kodaira dimension introduced in this paper.

Acknowledgments:
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mons research grant, NSF DMS 150908, ERC Gemis, DMS-1265230, DMS-1201475
and OISE-1242272 PASI. A. Harder was partially supported by an NSERC post-
graduate fellowship.

2. Perverse sheaves of categories

2.1. Definitions. In this section we develop the theory of sheaves of categories
and their deformations. We start with a definition:

Definition 2.1 (Sheaves of categories over Sch(A,A1, . . . ,An)).

•

A1

•

A2

A
C

A - local sheaf of categories

Ai - sheaf of vanishing cycles

A, Ai - 2 categories

F , G - 2 functors

n, m - 2 natural transformations

•
A1

•
A2

•
β1

•
βF1

F2
G1

G2

TG1
= β1 IdG1

−m1n1

F1 G1

n1

m1

nearby vanishing cycles

Theorem 2.2. The deformations of Sch(A,A1, . . . ,An) are described by :
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(1) Adding a new category β;
(2) Changes in natural transformations ni, mj.

We give some examples.

Example 2.3. We start with a simple example T 2 × T 2 - the product of two 2-
dimensional tori.

T 2 × T 2
surgery

Thurston 4-fold

Kodaira surface

HMS

In [AAKO] the following theorem is proven.

Theorem 2.4. The following categories are equivalent:

Db(T 2 × T 2,Gerbe) ∼= Fuk(Thurston) ∼= Db(Kodaira).

Example 2.5. We generalize this construction to the case of LG models.

LG model Dolg2,3 surface

•

•

•

•

Gerbe on the
sheaf of categories

Log 2

2

Log 3

3

Recall: Dolg2,3 is obtained from P̂2
p1,...,p9 by applying 2 surgeries with order 2,3.

Theorem 2.6. The mirror of Dolg2,3 is obtained from the LG model of P̂2
p1,...,p9

by adding a gerbe G on it corresponding to a log transform. In other words:

Db(Dolg2,3) = FS(LG(P̂2
p1,...,p9), G). (2.1)

We indicate the proof of the theorem in the following diagram.

· · ·

LG(P̂2
p1,...,p9)

12

· · ·

P̂2
p1,...,p9

12 fibers

· · ·

LG(C2,Gerbe)

12

|

log tr

|

log tr

The simplest sheaves of categories are objects called schobers [KS16].
5



Definition 2.7. Let f : Y → C be a proper map. Then f∗OY as a D-module
defines a sheaf of categories associated with a function f (a schober).

Example 2.8. The perverse sheaf of categories associated with the mirror of Dolg2,3

is not a schober.

2.2. Some more examples. Consider a fibration F f−→ C with a multiple n-fiber
over 0.

E × C n:1−−−−−→
(×l,×E)

F f−→ C

C

Zn

nl = 0, En = 1

Theorem 2.9. MF(F f−→ C) contains a quasi-phantom.

Proof. Indeed H∗(F , vanishing cycles) = 0, since vanishing cycles are the elliptic
curve E and H∗(E,L) = 0, for any L - nontrivial rank 1 local system.

Also K(MF(F −→ C)) = Zn. �

Proposition 2.10. There exists a moduli space of stable objects on MF(F −→ C).

Proof. Indeed these are the Zn-equivalent objects on E×C. For example, we have
M stab = E′, E′ - multiple fiber. �

Proposition 2.11. Homological mirror dual of MF(F f−→ C) is FS(F f−→ C).

Remark 2.12. Adding MF(F f−→ C) in the constructions above corresponds to
operation (1) in Theorem 2.2.

Remark 2.13. The lack of vanishing cycles in the mirror of MF(F f−→ C) can be
interpreted as the lack of sections in the sheaves of Lagrangians.

We have the following correspondence on the level of sheaves of categories related
to Fuk(E) ∼= Db(E′).

A B

•

A12 ⊗Db(E′)

∞
Db(E′)

• Db(E′)/Γ

•

12
12

rational elliptic surface

• • ∞

•
MF(F → C)

12

no vanishing
cycles

no spherical functors

|

12surgery

Log transform
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A B

• •

•
MF(F → C)2

•

•
MF(F → C)3

Dolgachev surface

global Lagrangian fibration
without a section

2 log transforms

|
2

|
3

10 • •

•
MF(F → C)2

•

•
MF(F → C)2

A10

⊗
Fuk(F )

global Lagrangian
fibration

without a section

A2 ⊗ Fuk(E)

|
2

|
2

Enriques surface

The appearance of the category MF(F → C) affects the monodromy of the
perverse sheaf of categories and as a result the intersection theory in the second
cohomology of the mirror fourfold. As a result generically we might lose some excep-
tional objects. The diagram above corresponds to a very special elliptic fibration,
see [KK].

The fibration of Lagrangians with no sections can be interpreted as normal func-
tions with no singularities.

F

C

No singularities

HP∗(F)

normal
function

We have the following correspondences:

Lag. fibrations with no sections
and trivial contribution

to vanishing cycles

Normal functions
with no

singularities

Nontrivial moduli spaces
of special stable objects

Theorem 2.14. Let X be a special (see [KK]) Dolgachev surface. Then the above
diagram holds.

Proof. We have
7



•

F

C

sheaf of categories

fibration of Lagr.
without a section

normal function
without a singularity

Modstab(2, 0, 1) = E

Donaldson proved that rk E = 2 bundles with c2(E) = 1,
∧2 E = ODolg are

isomorphic to E. �

Remark 2.15. Existence of M stab is a stronger obstruction to rationality than split-
ting of the diagonal. Indeed the diagonal splits for Dolgachev surface.

Remark 2.16. The monodromy around the fiber with multiplicity 2 affects the
monodromy in general. As a result, rational elliptic surface with one log transform
is not algebraic. In fact in general the monodromy representation of the perverse
sheaf of categories reflects the geometry of the mirror manifold X.

Remark 2.17. From now on when included in a surface with a full exceptional
collection by

•

we will mean a combination

•

•

•

•

•
E × C/Z2

E × C/Z2
E × C/Z2

and by

•

we will mean a combination

•

•

•
E × C/Z3

E × C/Z3

3. Sheaves of categories and local systems

In this section we discuss a parallel of the theory of local systems (Higgs bundles)
and sheaves of categories. Our goal is to apply this parallel to the study of Landau-
Ginzburg models and families of perverse sheaves of categories.

In this paper we will operate a definition of perverse sheaf of categories which
generalizes the definition in [KS14].

8



Definition 3.1. We define a perverse sheaf of categories as an infinity functor
from exit path category associated with a stratified space to the infinite category of
dg-categories:

Funct(ΠSch
6∞(X, s), dg Cat).

In most of our considerations, a functor would be a 2-functor.

With this definition, the parallel with the theory of non-abelian Hodge structures
and mixed non-abelian Hodge structures becomes apparent.

In most of this paper, we study flat families and degenerations of perverse sheaves
of categories, which should be seen as an analogue of mixed non-abelian Hodge
structures. The basic class we introduce plays a role as extensions of mixed Hodge
structures. We start with the following principal conjecture.

Conjecture 3.2. There is a correspondence between the theory of local systems
on topological spaces (projective varieties) and the theory of perverse sheaves of
categories on topological spaces.

Funct(ΠGroup
1 (X, s),Vect)←→ Funct(ΠSch

6∞(X, s), dg Cat)

Local system on X ↔ Perverse sheaves of Cat on a stratified space (X, s)

This correspondence allows several generalizations. The first sequence of gener-
alizations is connected with (X, s).

(1) We can make X a stratified space;
(2) We can enhance it with a group action.

The second sequence of generalizations is connected with introducing Hitchin-
Simpson theory on Funct(ΠSch

<∞(X,Strat, s),dg Cat). The last is connected with
the approach taken by Haiden-Katzarkov-Kontsevich-Pandit on defining Kähler,
Kähler-Einstein, Hermit-Einstein categories. In this case we have:

Conjecture 3.3.

(1) If (X,Strat, s) and dg Cat are holomorphic, then 2-Funct(ΠSch
<∞(X,Strat, s),

dg Cat) has a “Schober Hodge structure”.
(2) The map between two 2-functors: 2-Funct(ΠSch

<∞(X1,Strat1, s), dg Cat 1)→
2-Funct(ΠSch

<∞(X2,Strat2, s), dg Cat 2) is functorial and satisfies strictness
properties.

We now consider the elements of Funct(ΠSch(X,Strat, s),dg Cat) more closely.
We start with the definition of A∞ 2-category - our sheaves of categories. An
approach to 2-categories is as follows:

- ∀x, y ∈ C - assign an ∞-category Axy.
- ∀ x, y, z a 3-module M

Axy ⊗
M(x, y, z) Ayz

Azx
−→M(x, y, z)[ ]

- ∀ x, y, z, t a 4-module M

Axy ⊗
M(x, y, z, t) Azt

Axy
Ayz

−→M(x, y, z, t)[ ]
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- for x1, . . . , xn, · · ·
This can be done via homomorphisms x0, . . . , xn:

mn : Hom(x0, x1)→ · · · → Hom(xn−1, xn)→ Hom(x0, xn)[2− n].

(The above construction leads to a description of 2-categories of sheaves of cate-
gories.)

- We add n functors;
- We add high natural transformations on Stasheff polygons.

• •

•

Now we move to deformations of sheaves of categories. We give a stronger and
more precise version of Theorem 2.2 which we will use in section 5.

Theorem 3.4. Deformations of perverse sheaves of categories can be described by:

(1) Adding a new vertex

P••

•

•

P-module coefficients of the perverse sheaf of categories;
(2) Changing the high natural transformations associated with Stasheff poly-

gons.

In fact this phenomenon has been already studied in [DKK12].

Theorem 3.5. Deformations of the perverse sheaf of categories of classical LG
models of (see [DKK12]) 3-dimensional Fano varieties contain the moduli spaces of
LG models.

The space Map(P1,K3) can be considered as an analogue of CVHS in Simpson’s
theory.

Theorem 3.6. Let Db(X) be a category with exceptional collection (E1, . . . , En).
Assume that there exists a coefficient module P

• P

so that:

NHH∗(P )→ HH∗(E1, . . . , En, P )→ HH∗(E1, . . . , En)→
(1) Normal cohomologies NHH(P ) 6= 0;
(2) K0(E1, . . . , En) = K0(E1, . . . , En, P ).

Then P is a phantom category.

Proof. See [Kuz10a] �

According to the previous section we can describe the deformations of sheaves
of categories in at least three ways.

(1) Changing the Stasheff polytope structure;
(2) Changing natural transformations and high natural transformations;
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(3) Changing the coefficient module which amounts to changing the coefficient
in the Fukaya-Seidel category.

We propose a theory of deformations of the 2-functor F0 = 2-Funct(ΠSch
<∞(X,

Strat, s), dg Cat). We formulate the following:

Conjecture 3.7. HH∗(F0) ∼= End(IdF0) are the Hochschild homologies, which
parametrize the deformations of perverse sheaves of categories. (The theory of
deformations for n-functors should be similar.)

We take from HH∗(F0) only the deformations that preserve “W = P” and Lattice
conjecture.

As a consequence from [KLb], there exists a correspondence between multiplier
ideal sheaves and changes of coefficients in sheaves of categories:

Commutative Non-commutative

Jn ⊂ Jn−1 ⊂ · · · J0 ⊂ OX
multiplier ideal sheaf

Fn ⊂ Fn−1 ⊂ · · · ⊂ F

C C C
sequence of sheaves of category

FS(C,Fn) FS(C,Fn−1) FS(C,F)

sequence of Fukaya-Seidel
categories with coefficients Fj

Okounkov bodies Big Stasheff polytope

test configuration

⋃
i

(Stasheff polytope)
i

The changes in the Stasheff polytope produce dramatic deformations - changes
of high natural transformations via changes of sheaves of Lagrangians. Let us give
some examples.

Example 3.8 (Kodaira surface). We will start with T 2 × T 2.

T 2 × T 2 T ′2 × T ′2

Fuk(T 2 × T 2, β) Db(Kodaira surface)

Mirror

change of sheaf surgery

∼=∈

H2(O∗)

Let x1, . . . , x4 be coordinates in T ′2×T ′2 with (x1, x2, x3, x4) 7→ (x1 +1, x2, x3, x4 +
x3) invariance. We have a new sheaf of Lagrangians.

x1, x4

R2-section

Theorem 3.9. In the case of Fukaya-Seidel categories the change of module coef-
ficients of the sheaf of categories β is recorded by a new sheaf of Lagrangians (with
or without a section).
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Example 3.10. We give an example demonstrating Theorem 3.4.

A) Log transforms of P̂2
p1,...,p9 which create π1(S) = Z2.

••

•
E × C /Z2

In this case:
(1) The new module P ;
(2) The new high natural transformations produce quasi-phantom

K(Db(S)) = Z2.

B) We start with P̂2
p1,...,p9 and we apply the Halphen transform:

•
blow up

P

C

blow down

C
•

deform to
C

algebraic

In this case:
(1) The new module P ;
(2) The new high natural transformations do not create a quasi-phantom.

3.1. “Good” flat families of perverse sheaves of categories. In this section,
we define good flat families of perverse sheaves of categories. For this we need to
introduce two new notions:

(1) Lattice conjecture for perverse sheaves of categories;
(2) W = P conjecture for perverse sheaves of categories.

Lattice conjecture
In [KKP08] we have formulated the following:

Conjecture 3.11. Let T be a smooth and compact category. Then

Image of L = HP∗(T ),

here L is the lattice map:

L : K(T )
ch−→ HP∗(T ).

We extend this map to sheaves of categories. We start locally:

L : K(T )
ch−→ HP∗(T )

•

Si

vanishing cycles HP(T )

The lattice map is defined as a map to vanishing cycles, associated with spherical
functors. We have such a lattice map for non-spherical functors.
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E × C

z2

E × C /transl., -1

MF = TNi

non-spherical functor

L : K(T )
ch−→ HP∗(T )

KerL = phantom

||
0

After that we globalize:

• •
HP∗(PSH)

Γ, strat
•

•

•

We have a global monodromy map

µ : π1(Γ, strat)→ HP∗(PSC),

here PSC is the perverse sheaf of categories and Γ, strat is the symplectic base.

• •
HP∗(PSH)

•
Γ, strat

•

•

•

Si Ni

We have a monodromy equation

Sn1
1 · · ·Snr

r = N l1
1 · · ·N lp

p P1 · · ·Pq, (**)

with Pi being projection functors, between spherical and non-spherical functors.
The main result of the operator given below is change of **.

Example 3.12.

(1) Mirror of surgery

|
phantom ⊂ KerL

E × C /α

E × C

log transform

(2) Mirror of rational blow-down

•
Γ, strat

•

•

•

•

• • rational
blow-down •

•

•

•

•

•

−n ϕ

−k

•

Tor K(T ) - quasi-phantom

13



(3) Mirror of degenerations

• •

removing

removing

•

•

•
•
•

•
•

• ••

•

•

degeneration

••

creates Tor H∗(vanishing cycles).

Recall that
H∗(vanishing cycles)⊗ C = HP .

Consider a LG model with a gerbe on it, F .

Definition 3.13 (Basic class). A cycle in F which supports an object in KerL is
called a basic cycle.

In this paper we treat LG models as perverse sheaves of categories. In fact most of
the perverse sheaves of categories we study are LG models and their modifications.
The cycles in the LG models continue to exist in the perverse sheaves of categories
we consider, as supports of objects in categories. In such a way, the notion of basic
class extends to the case of perverse sheaf of categories.

We give a more precise definition now.

Definition 3.14 (Basic class).

- A basic class B is a sub PSC in

Funct(ΠSch
6∞(X ′, s′), dg Cat)→ Funct(ΠSch

6∞(X, s), dg Cat),

s.t.
X ′, s′ ⊂ X, s

and we have an identity functor

Id : F ′ → F
for every fiber of Funct(ΠSch

6∞(X ′, s′), dg Cat).

- dim of B = dim X ′ + Hom dim of F ′.

The definition of B depends on the choice of Funct(ΠSch
6∞(X, s),dg Cat) (classi-

cally on the choice of degenerations). We need only one such B of codimension 6
2 which produces a torsion in the kernel of the lattice map.

Example 3.15 (Donaldson’s basic class).

|

K(T )→ HP∗

T = (α) K(α) = Z2

E
E × C

E × C

14



E supports the phantom T , and E is a basic class under above definition.

Basic classes support moduli spaces of sheaves. We have the following analogy:

Basic classes
for perverse

sheaf of
categories

Basic classes
in

4-dimensional
topology

In fact there is a strong correspondence between symplectic fibrations and sheaves
of categories.

G Base change

|

Ker of L +projection
functor P

over
categories

| gluing

•
••
•

•
• •
•

Surgeries

Rational blow-down

Observe that all these transformations amount to changes of monodromy equa-
tions.

We move to the categorical definition of W = P .
Recall that classically for tropical varieties we have:

complex
degeneration

W - weight
filtration

t

P - Leray
filtration

In [IKMZ] it was proven that for toric varieties: W = P . For LG models of
Fano’s:

P = W

W - vanishing cycles

∞

CY

SYZ

The P filtration of ∞ = W of vanishing cycles.
Similarly

15



•
∞

W vanishing
cycles

P

CY degeneration
at infinity

we can define W = P conjecture for perverse sheaves of CY categories.
We need a notion of a good deformation of perverse sheaves of categories.

Definition 3.16. A flat family of PSC is called “good” if

(1) The equality between Leray and weight filtrations is satisfied for all t’s.
(2) Lattice conjecture holds for any t, Lt : K(Tt) 7−→ HP∗(Tt).

These deformations control cohomologies and K-theory. Deformations used by
[Voi15], [CTP14], [Tot15] are good.

Remark 3.17. Preserving W = P property and Lattice conjecture property is anal-
ogous to the strictness property for classical MHS.

The main conjecture:

Conjecture 3.18. Let X be an n-dim manifold. Consider Db(X) ∼= FS(PSC). Let
PSCt → PSC0 be a good flat family s.t. FS(PSC)=FS(PSCt), for t 6= 0. Assume
that one of the following conditions is satisfied for PSC at t = 0:

(1) H∗(vanishing cycles)/HP∗(T0) = Tor;
(2) L : K(T0) → HP∗(T0) has a kernel which contains a basic class with a

support with codimension 6 2.

Then X is not rational. (T0 is the category formed by the global sections of PSC0.)

We believe that this conjecture holds for examples in [Voi15], [CTP14], [Tot15].
In fact it seems that this conjecture is stronger than splitting of the diagonal.

A powerful method for the creation of phantoms are matrix factorizations on
stalks and matrix factorizations with gerbes.

Consider X with a gerbe α, we get a B C∗ bundle over

X X

A1

B C∗

We have f ∈ O(X) = O(X ).

Theorem 3.19. MF (X , f) =

∞⊕
ν=1

MF ν(X , f).

Definition 3.20. We define the twisted matrix factorization for character ν,

as MF ν(X , f). These MF are defined as E0
f−→ E1, where Ei are ν-equivariant

Cm-modules.
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4. Landau-Ginzburg model computations for threefolds

In this section we connect the program described in previous sections to bira-
tional geometry and theory of LG models.

We recall some inspiration from birational geometry stemming from the work of
Voisin [Voi15], Colliot-Thélène and Pirutka [CTP14]. A variety X is called stably
non-rational if X × Pn is non-rational for all n. It is known that if a variety over
C is stably rational then for any field L containing C, the Chow group CH0(XL)
is isomorphic to Z. Under this condition, CH0(X) is said to be universally triv-
ial. Voisin has shown that universal non-triviality of CH0(X) can be detected by
deformation arguments, in particular [Voi15, Theorem 1.1] says that if we have a
smooth variety X fibered over a smooth curve B so that Xt = X and so that X0 has
only mild singularities, then if X has universally trivial CH0(X) then so does any
projective model of X0. Alternatively, this means that if one can prove that X0 is
not stably rational, then neither is X. If V is a threefold, then one can detect stable
non-rationality by showing that there exists torsion in H3(V,Z) (i.e. there exists
torsion in the Brauer group). As an example, we may look at the classical Artin-
Mumford example [AM72] which takes a degeneration of a quartic double solid to a
variety which is a double cover of P3 ramified along a quartic with ten nodes. It is
then proven in [AM72] that the resolution of singularities of this particular quartic
double solid V has a Z/2 in H3(V,Z). Voisin uses this to conclude that a general
quartic double solid is not stably rational, whereas Artin and Mumford could only
conclude from this that their specific quartic double solid is not rational.

The main idea that we explore in this section is that the approach of Voisin to
stable non-rationality should have generalization to deformations or degenerations
of Db(cohX). Via mirror symmetry, this should translate to a question about de-
formations or degenerations of sheaves of categories associated to the corresponding
LG model of X. Mirror symmetry for Fano threefolds should exchange

Heven(X,Z) ∼= Hodd(LG(X), S;Z)

Hodd(X,Z) ∼= Heven(LG(X), S;Z)

where S is a smooth generic fiber of the LG model of X. See [KKP14] for some
justification for this relationship. This is analogous to the case where X is a Calabi-
Yau threefold (see [Gro01, Gro98]). The deformations of the sheaf of categories
associated to LG(X) that we will produce are not deformations of LG models in the
usual geometric sense, but they are produced by blowing up or excising subvarieties
from X, as described in section 3. We then show that we find torsion in H2(U, S;Z)
for U our topologically modified LG model. We propose that this torsion is mirror
dual to torsion in the K0 of some deformation of the corresponding category. By
the relation above, the torsion groups appearing in the following subsections should
be mirror categorical obstructions to stable rationality of the quartic double solid
and the cubic threefold. Another way to view the constructions in the following
sections is that we are identifying a subcategory of the Fukaya-Seidel category of
the LG model of X and performing computations using this subcategory.

4.1. The LG model of a quartic double solid. Here we review a description
of the LG models of several Fano threefolds in their broad strokes. We begin with
the following situation. Let X be a Fano threefold of one of the following types.
Recall that V7 denotes the blow-up of P3 at a single point.
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(1) X is a quartic double solid.
(2) X is a divisor in P2 × P2 of bidegree (2, 2).
(3) X is a double cover of V7 with branch locus an anticanonical divisor.
(4) X is a double cover of P1 × P1 × P1 with ramification locus of of degree

(2, 2, 2).

Then the singular fibers of the LG model of X take a specific form which is inde-
pendent of X. The construction described here appears in [DHNT15] for the case
of quartic double solids. There are several fibers of each LG model which are simply
nodal K3 surfaces, and there is one fiber which is a more complicated. We assume
the complicated fiber is the fiber over 0 in C and we will denote it Y0. Monodromy
about this complicated fiber has order 2, and the fiber itself has a single smooth
rational component with multiplicity 2 and a number of rational components with
multiplicity 1. We will henceforward denote the LG model by Y , and it will be
equipped with a regular function w.

A natural way to understand Y0 is to take base-change along the map t = s2

where s is a parameter on the base Ct of the original LG model Y . Performing this
base-change and taking normalization, we obtain a (possibly) singular family of K3

surfaces Ŷ with a map ŵ : Ŷ → Cs. The (possible) singularities of Ŷ are contained

in the fiber ŵ−1(0) = Ŷ0, which is a K3 surface with several A1 singularities.

Furthermore, there is an involution ι on Ŷ from which we may recover the original

LG model Y . This quotient map sends no fiber to itself except for Ŷ0. On this fiber,

the automorphism ι acts as a non-symplectic involution on Ŷ0 and fixes a number
of rational curves.

In the Landau-Ginzburg model Y , given as the resolved quotient of Ŷ /ι, the

fiber Y0 is described as follows. In the quotient Ŷ /ι, the fiber over 0 is scheme-
theoretically 2 times the preimage of 0 under the natural map. Furthermore, there
are a number of curves of cA1 singularities. We resolve these singularities by blowing
up along these loci in sequence, since there is non-trivial intersection between them.

This blow-up procedure succeeds in resolving the singularities of Ŷ /ι and that the
relative canonical bundle of the resolved threefold is trivial. Let E1, . . . , En denote
the exceptional divisors obtained in Y under this resolution of singularities.

4.2. Torsion in cohomology of the LG model. We will now denote by U
the manifold obtained from Y by removing components of Y0 with multiplicity 1,
in other words, U = Y \ (∪ni=1Ei) where E1, . . . , En are the exceptional divisors
described in the previous paragraph. Another way to describe this threefold is

as follows. Take the threefold Ŷ described above, and excise the fixed locus of ι,

calling the resulting threefold Û . Note that this is the complement of a union of
smooth codimension 2 subvarieties. The automorphism ι extends to a fixed-point

free involution on Û and the quotient Û/ι is U . Let us denote by wU the restriction
of w to U . Our goal is to show that if S is a generic smooth fiber of wU , then there
is Z/2 torsion in H2(U, S;Z).

The group H2(U, S;Z) should be part of the K-theory of some quotient category
of the Fukaya-Seidel category of LG(X) equipped with an appropriate integral
structure.

Proposition 4.1. The manifold Û is simply connected.
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Proof. First, let Ỹ be a small analytic resolution of singularities of Ŷ and let w̃ be

the natural map w̃ : Ỹ → A1
s. Then, since the fixed curves of ι contain the singular

points of Ŷ , the variety Û can be written as the complement in Ỹ of the union of

the exceptional curves of the resolution Ỹ → Ŷ and the proper transform of the

fixed locus of the involution ι on Ŷ . This is all to say that Û is the complement of a

codimension 2 subvariety of the smooth variety Ỹ . Thus it follows by general theory

that π1(Û) = π1(Ŷ ), and so it is enough to show that π1(Ŷ ) is simply connected.
At this point, we may carefully apply the van Kampen theorem and the fact

that ADE singular K3 surfaces are simply connected to prove that Ỹ is simply
connected. Begin with a covering {Vi}mi=1 of A1 so that the following holds:

(1) Each Vi is contractible,
(2) Each w̃−1(Vi) contains at most one singular fiber of w̃,
(3) For each pair of indices i, j, the intersection Vi ∩ Vj is contractible, con-

nected,
(4) For each triple of indices i, j, k, the intersection Vi ∩ Vj ∩ Vk is empty.

(it is easy to check that such a covering can be found). Then the Clemens contrac-
tion theorem tells us that Yi := w̃−1(Vi) is homotopic to the unique singular fiber (if
Vi contains no critical point, then Yi is homotopic to a smooth K3 surface). Since
ADE singular K3 surfaces are simply connected, then Yi is simply connected. The
condition that Vi ∩ Vj is connected then allows us to use the Seifert–van Kampen

theorem to conclude that Ỹ is simply connected. �

As a corollary to this proposition, we have that

Corollary 4.2. The free quotient U = Û/ι has fundamental group Z/2 and hence
H2(U,Z) = Z/2⊕ Zn for some positive integer n.

Now, finally, we show that this implies that there is torsion Z/2 in the cohomol-
ogy group H2(U, S;Z).

Theorem 4.3. We have an isomorphism H2(U, S;Z) ∼= Z/2⊕Zm for some positive
integer m.

Proof. We compute using the long exact sequence in relative cohomology,

· · · → H1(S,Z)→ H2(U, S;Z)→ H2(U,Z)→ H2(S,Z)→ . . .

Since S is a smooth K3 surface, we know that H1(S,Z) = 0, and that the subgroup
Z/2 of H2(U,Z) must be in the kernel of the restriction map H2(U,Z)→ H2(S,Z).
Thus it follows that there is a copy of Z/2 in H2(U, S;Z), and furthermore, that
H2(U, S;Z) ∼= Z/2⊕ Zm for some integer m. �

Here U is a LGi(X
0) as in Conjecture 1.1.

Remark 4.4. In the case of the LG model of the quartic double solid, this con-
struction is strikingly similar to the example of Artin and Mumford described in
[AM72]. The authors degenerate the quartic double solid until it obtains ten nodes
and then take a small resolution of these nodes, which is topologically equivalent
to contracting ten copies of S3 and replacing them with copies of S2. These ten
copies of S3 span a subspace H of H3(X,Z) for X the quartic double solid, so that
H3(X,Z)/H ∼= Z2 ⊕ Zm. In the LG model, we have removed ten rational divisors
so that the quotient of H2(Y,Z) modulo the subgroup spanned by these ten divisors
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contains an order 2 torsion class. However, we do not know whether this is truly
mirror to the Artin-Mumford example.

4.3. The cubic threefold. A very similar construction can be performed in the
case of the LG model of the cubic threefold with some minor modifications. The
details of the construction of the LG model of the cubic threefold that are relevant
are contained in [GKR12]1. There is a smooth log Calabi-Yau LG model of the
cubic threefold, which we denote (Y,w) with the following properties:

(1) The generic fiber is a K3 surface with Picard lattice M6 = E2
8 ⊕ U ⊕ 〈−6〉.

(2) There are three fibers with nodes.
(3) The fiber over 0 which is a union of 6 rational surfaces whose configuration

is described in [GKR12]. Monodromy around this fiber is of order 3.

By taking base change of Y along the map g : C → C which assigns λ to µ3, and
resolving g∗Y , we obtain a threefold Ŷ which is K3 fibered over C, but now has
only 6 singular fibers, each with only a node. This means that there is a birational
automorphism ι on Ŷ of order 3 so that Ŷ /ι is birational to Y . Explicitly, in
[GKR12] it is shown that the automorphism ι is undefined on nine pairs of rational
curves, each pair intersecting in a single point and all of these pairs of curves are in
the fiber of Ŷ over 0. We can contract these A2 configurations of rational curves to

get a threefold Ỹ on which ι acts as an automorphism, but which is singular. The

automorphism ι fixes six rational curves in the fiber of Ỹ over 0. After blowing up

sequentially along these six rational curves to get Ỹ ′, the automorphism ι continues

to act biholomorphically, and no longer has fixed curves. The quotient Ỹ ′/ι is
smooth, according to [GKR12], and there are seven components, the image of the
six exceptional divisors, and a single component R ∼= P1 × P1 of multiplicity three.
The rational surfaces coming from exceptional divisors meet R along three vertical
and three horizontal curves. The divisor R can be contracted onto either one of its
P1 factors. Performing one of these two contractions, we recover Y .

Now let U = (Ỹ ′/ι) \ {S1, . . . , S6}. Note that this can be obtained by blowing
up Y in the curve which is the intersection of three components of the central fiber
and removing all of the other components. Then a proof almost identical to that
of Theorem 4.3 shows that, if S is a generic fiber of w, then

Theorem 4.5. There is an isomorphism H2(U, S;Z) ∼= Z/3⊕Zm for some positive
integer m.

Therefore, if X is the cubic threefold, then there should exist a non-commutative
deformation of Db(cohX) with torsion in its periodic cyclic cohomology obstructing
stable rationality of X. Again, the cohomology group H2(U, S;Z) should be related
to the Hochschild homology of some subcategory of the Fukaya category of the LG
model of the cubic threefold.

Example 4.6. We give an interpretation of the above considerations from the
perspective of sheaves of categories. Consider the LG model of quartic double solid.
The fiber over 0 is made up of 11 rational surfaces. One of these surfaces has
multiplicity two and the others (labeled L1, . . . , L10) have multiplicity 1, as shown
in the following diagram.

1In the most recent versions of [GKR12], these details have been removed, so we direct the reader

to versions 1 and 2 of [GKR12] on the arXiv
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| || |

L1

Lk

Remove the rational surfaces L1, . . . , L10 from Y , and the map w is no longer
proper.

4.4. The quartic double fourfold. Here we will look at the LG models of the
quartic double fourfold and the quartic double five-fold. There is an analogy be-
tween the LG model of the quartic double fourfold and the LG model of the cubic
threefold, and between the quartic double fivefold and the cubic fourfold.

Here we will give a model which describes the LG model of the quartic double
fourfold, which we call X. Recall that we may write such a variety as a hypersurface
in WP(1, 1, 1, 1, 1, 2) of degree 4. Therefore, following the method of Givental, we
may write the LG model of X as a hypersurface in (C×)5 cut out by the equation

x4 + x5 +
1

x1x2x3x4x2
5

= 1

equipped with a superpotential

w = x1 + x2 + x3.

Call this hypersurface Y 0. We may write this superpotential as the sum of three
superpotentials,

wi = xi for i = 1, 2, 3.

There’s then a map from LG(X) to C3 given by the restriction of the projection

(x1, x2, x3, x4, x5) 7→ (x1, x2, x3).

The fibers of this projection map are open elliptic curves which can be compactified
in C2 to

w1w2w3x4x
2
5(x4 + x5 − 1) + 1 = 0

We may then write this threefold in Weierstrass form as

y2 = x(x2 + w2
1w

2
2w

2
3x+ 16w3

1w
3
2w

3
3)

This elliptic fibration over C3 has smooth fibers away from the coordinate axes.
We will resolve this threefold to get an appropriate smooth resolution of Y 0. We
do this by blowing up the base of the elliptic fibration and pulling back until we
can resolve singularities by blowing up the resulting fourfold in fibers.

First, we blow up C3 at (0, 0, 0), and we call the resulting divisor E0. Then
we blow up the resulting threefold base at the intersection of E0 and the strict
transforms of {wi = 0}, calling the resulting exceptional divisors Ei,0. We then
blow up the intersections of the strict transforms of wi = wj = 0 five times (in
appropriate sequence) and call the resulting divisors Eij,k, k = 1, . . . , 5. There is
now a naturally defined elliptic fibration over this blown-up threefold. Over an
open piece in each divisor in the base, the fibers of this elliptic fibration and their
resolutions can be described by Kodaira’s classification. Identifying E0 and Ei,0
with their proper transforms in R, we have:

• Fibers of type III over points in E0.
• Fibers of type III∗ over points in {wi = 0}.
• Fibers of type I∗0 over points in Eij,3.
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• Fibers of type III over Eij,2 and Eij,4
• Fibers of type I1 along some divisor which does not intersect any other

divisor in the set above.

and smooth fibers everywhere else. We may now simply blow up appropriately to
resolve most singularities in the resulting elliptic fourfold over R. We are left with
singularities in fibers over Eij,2 ∩ Eij,3 and Eij,4 ∩ Eij,3. These singularities admit
a small resolution by work of Miranda. Thus we obtain a smooth resolution of our
elliptic fourfold.

We will call this resolved fourfold LG(X). The map w can be extended to a
morphism from LG(X) to C by simply composing the elliptic fibration map from
LG(X) to R with the contraction map from R onto C and the map (w1,w2,w3) 7→
w1 + w2 + w3. The fiber over any point in C away from 0 is irreducible, and the
fiber over 0 is composed of the preimages of E0 and Ei,0 in the elliptic fibration,
along with the strict transform of the preimage of w1 + w2 + w3 = 0 in Y 0, which
is simply a smooth elliptically fibered threefold.

Therefore, the fiber over 0 is composed of 6 divisors with multiplicity 1. However,
this is not normal crossings, since the preimage of E0 in the elliptic fibration on
LG(X) is a pair of divisors which intersect with multiplicity 2 in the fiber over each
point in E0.

4.5. Base change and torsion. Just as in the case of the cubic threefold, we
may blow-up the LG model (Y,w) of the quartic double fourfold to get a fibration

over A1 which we call (Ỹ , w̃) and remove divisors from w̃−1(0) to get a (non-
proper) fibration over A1 which we denote (Ynp,wnp) so that there is torsion in
H2(Ynp,w

−1
np (s);Z) for s a regular value of w.

We outline this construction, ignoring possible birational maps which are iso-
morphisms in codimension 1. We note that over the fibration E0 in the LG model
(Y,w) expressed as an elliptic fourfold over a blow-up of C3 as described in the pre-
vious section is a fibration by degenerate elliptic curves of Kodaira type III. Each
fiber then, over a Zariski open subset of E0 is a pair of rational curves meeting
tangentially in a single point. The preimage of E0 in Y is then a pair of divisors
D1 and D2 in Y which intersect with multiplicity 4 along a surface. Blowing up Y
in this surface of intersection of D1 and D2 which is isomorphic to E0 produces a

rational threefold D′ in the blow up (which we call Ỹ ), whose multiplicity in the
fiber over 0 of the inherited fibration over C is four.

Taking base change of Ỹ along the map t 7→ s4 is the same as taking the fourfold

cover of Ỹ ramified along the fiber over 0. After doing this, the multiplicity of the
preimage of D′ is 1 and all components of the fiber over 0 except for the preimage
of D′ can be smoothly contracted to produce a fibration (Y ′,w′) over C.

The upshot of this all is that Y ′ admits a birational automorphism σ of order

4 so that Y ′/σ is birational to Ỹ . In fact, if we excise the (codimension ≥ 2)
fixed locus of σ and take the quotient, calling the resulting threefold Ynp, then

Ynp is just Ỹ with all components of the fiber over 0 which are not equal to D′

removed. The fibration map on Ynp over C will be called wnp, and we claim that
H2(Ynp,w

−1
np (s);Z) has order four torsion. To do this, one uses arguments identical

to those used in the case of the quartic double solid.
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Proposition 4.7. Letting Ynp and wnp be as above, and let s be a regular value of
w. Then

H2(Ynp,w
−1
np (s);Z) ∼= Z/4⊕ Za

for some positive integer a.

Therefore, the deformation of the Fukaya-Seidel category of (Ỹ ,w) obtained by
removing cycles passing through the components of w̃−1(0) of multiplicity 1 should
have 4-torsion in its K0. This torsion class, under mirror symmetry should be an
obstruction to the rationality of the quartic double fourfold.

4.6. Cubic fourfolds and their mirrors. In this section, we will look at the LG
models of cubic fourfolds and cubic fourfolds containing one or two planes. Since
cubic fourfolds containing one or two planes are still topologically equivalent to a
generic cubic fourfold, this is a somewhat subtle problem which we avoid by instead
obtaining LG models for cubic fourfolds containing planes which are blown up in
the relevant copies of P2.

It is known (see [Kuz10b]) that a general cubic has bounded derived category of
coherent sheaves Db(X) which admits a semi-orthogonal decomposition

〈AX ,OX(1),OX(2),OX(3)〉.

When X contains a plane, AX = Db(S, β) is the bounded derived category of β
twisted sheaves on a K3 surface S for β an order 2 Brauer class. It is known [Has99,
Lemma 4.5] that the lattice T in H4(X,Z) orthogonal to the cycles [H]2 and [P ]
where H is the hyperplane class and P is the plane contained in X, is isomorphic
to

E2
8 ⊕ U ⊕

−2 −1 −1
−1 2 1
−1 1 2


which is not the transcendental lattice of any K3 surface. It is expected that such
cubic fourfolds are non-rational. When X contains two planes, it is known that X
is then rational. According to Kuznetsov [Kuz10b], we then have that the category
A is the derived category of a K3 surface S, and by work of Hasset [Has99], we
have that the orthogonal complement of the classes [H]2, [P1], [P2] where P1 and P2

are the planes contained in X is isomorphic to

U ⊕ E2
8 ⊕

(
−2 1
1 2

)
,

which is the transcendental lattice of a K3 surface S, and generically AX =
Db(cohS) and S[2] is the Fano variety of lines in X.

Our goal in this section is to describe the mirror side of this story. In particular,
we want to observe in the three cases above, how rationality and non-rationality
can be detected using symplectic characteristics of LG models. We will construct
smooth models of smooth models of

(1) The LG model of a cubic fourfold (which we call Z0).
(2) The LG model of a cubic fourfold containing a plane P blown up in P

(which we call Z1).
(3) The LG model of a cubic fourfold containing a pair of disjoint planes P1

and P2 blown up in P1 ∪ P2 (which we call Z2).
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According to a theorem of Orlov [Orl92], the bounded derived categories of Z1

and Z2 admit semi-orthogonal decompositions with summands equal to the under-
lying cubics. Therefore, homological mirror symmetry predicts that the derived
categories of coherent sheaves of the underlying cubics should be visible in the
Fukaya-Seidel (or directed Fukaya) categories of the LG models of Z1 and Z2. In
particular, we should be able to see Db(cohS, β) in the Fukaya-Seidel category of
LG(Z1) and Db(cohZ2) in the Fukaya-Seidel category of LG(Z2).

It is conjectured by Kuznetsov [Kuz10b] that a cubic fourfold X is rational if and
only if AX is the bounded derived category of a geometric K3 surface, thus in the
case where X contains a single plane, the gerbe β is an obstruction to rationality
of X. Such gerbes arise naturally in mirror symmetry quite commonly. If we have
a special Lagrangian fibration on a manifold M over a base B, and assume that
there is a special Lagrangian multisection of π and no special Lagrangian section,
then mirror symmetry is expected assign to a pair (L,∇) in the Fukaya category of
M a complex of α-twisted sheaves on the mirror for α some non-trivial gerbe. We
will see this structure clearly in the LG models of Z0, Z1 and Z2.

4.7. The general cubic fourfold. Let us now describe the LG model of the gen-
eral cubic fourfold in a such a way that a nice smooth resolution becomes possible.
Givental [Giv98] gives a description of constructions of mirrors of toric complete
intersections. A more direct description of Givental’s construction is described in
[HD15].

We begin with the polytope ∆ corresponding to P5 given by
1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

 .

Using Givental’s construction, we get a LG model with total space

Y 0 = {z + w + u = 1} ⊆ (C×)5

equipped with the function

w(x, y, z, w, u) = x+ y +
1

xyzwu
.

We will express Y 0 as a fibration over C3 by elliptic curves. Then we will use
work of Miranda [Mir83] to resolve singularities of this fibration and thus obtain a
smooth model of Y 0. This is necessary, since there are singularities “at infinity”
in the LG model provided by Givental. A more uniform construction of smooth
compactifications of the LG models constructed by Givental can be found in [Har16,
Chapter 3].

To carry do this, we decompose w into three different functions

w1 = x, w2 = y, w3 =
1

xyzwu
.

Then Y 0 is birational to a variety fibered by affine curves written as

w1w2w3zw(z + w − 1)− 1 = 0
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where w1,w2,w3 are treated as coordinates on C3. This is can be rearranged into
Weierstrass form as

y2 = x3 + w2
2w

2
1w

2
3x

2 + 8w3
3w

3
2w

3
1x+ 16w4

1w
4
2w

4
3.

The discriminant locus of this fibration over C3 has four components, and for a
generic point in each component we can give a description of the structure of the
resolution of singularities over that point in terms of Kodaira’s classification of the
singular fibers of elliptic fibrations.

• Singular fibers of type IV∗ along {wi = 0} for i = 1, 2, 3,
• Singular fibers of type I1 along the divisor cut out by the equation w1w2w3−

27 = 0.

The loci wi = 0 intersect each other of course, but DI1 does not intersect any
{wi = 0}, thus we must only worry about singularities at (0, 0, 0) and wi = wj = 0
for i, j = 1, 2, 3 and i 6= j. We blow up sequentially at these loci and describe the
fibers over the exceptional divisors. We will use Kodaira’s conventions for describing
the minimal resolution of singular fibers of an elliptic fibration.

• Blow up the base C3 at (0, 0, 0). Call the associated blow-up map f1 :
T1 → C3 and call the exceptional divisor Q. As before, if π1 is the induced
elliptic fibration on T1, then on Q there are just smooth fibers away from
the intersection of the strict transform of {wi = 0}.
• Blow up the intersections {wi = wj = 0} for i, j = 1, 2, 3 and i 6= j. Call

the associated map f2 : T2 → T1 and call the exceptional divisors Ei,j . Let
π2 be the induced elliptic fibration on T2. The fibration π2 has fibers with
resolutions of type IV over Rij .
• Blow up at the intersections of Rij and the strict transforms of {wi = 0} and
{wj = 0}. Call the associated map f3 : T3 → T2 and call the exceptional
divisors Rij,i and Rij,j respectively. Let π3 be the induced elliptic fibration
over T3, then the fibration π3 has smooth fibers over the divisors Rij,i and
Rij,j .

Thus we have a fibration over T3 with discriminant locus a union of divisors, and
none of these divisors intersect one another. Thus we may resolve singularities of
the resulting Weierstrass form elliptic fourfold by simply blowing up repeatedly the
singularities along these loci. Call this fourfold LG(Z0). By composing the elliptic
fibration π3 of LG(Z0) over T3 with the contraction of T3 onto C3 we get a map
which we call w1 + w2 + w2 from LG(Z0) to C3. We will describe explicitly the
fibers over points of w1 + w2 + w3.

• If p is a point in the complement of the strict transform of {w1 = 0}∪{w2 =
0} ∪ {w3 = 0} ∪ {w1w2w3 − 27 = 0} then the fiber over p is smooth.

• If p is in {w1 = 0}, {w2 = 0}, or {w3 = 0}, then the fiber over p is of type
IV∗. If p is a point in {w1w2w3 − 27 = 0}, then the fiber over p is a nodal
elliptic curve.

• If p ∈ {w1 = w2 = 0}, {w1 = w3 = 0} or {w2 = w3 = 0}, then the fiber over
p is of dimension 2.
• If p = (0, 0, 0), then the fiber is a threefold. This threefold is precisely the

restriction of the fibration π3 to the strict transform of the exceptional P2

obtained by blowing up (0, 0, 0).

Now we will let LG(Z0) be the smooth resolution of the elliptically fibered three-
fold over T3 described above. We compose the fibration map π3 with the map
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(z1, z2, z3) 7→ z1 + z2 + z3 from C3 to C, then we recover the map w on the open
set that LG(Z0) and Y 0 have in common. Then we obtain a nice description of
the fiber in LG(Z0) of w over 0 as a union of two elliptically fibered threefolds,
one component being the threefold fiber over (0, 0, 0) in Y , and the other being
the natural elliptically fibered threefold obtained by taking the preimage of the line
w1 +w2 +w3 = 0 in LG(Z0) under the elliptic fibration map. These two threefolds
intersect along a surface S which is naturally elliptically fibered. This surface can
be described by taking the subvariety of the exceptional divisor Q = P2 given by a
the natural fibration over a hyperplane in P2. This is an elliptically fibered surface
over P2 with three singular fibers of type IV∗ and a order 3 torsion section.

Proposition 4.8. The smooth K3 surface S of Picard rank 20 with transcendental
lattice isomorphic to the (positive definite) root lattice A2, which has Gram matrix(

2 1
1 2

)
.

This can be proved without much difficulty using the techniques described in
[HT15].

4.8. Cubic fourfolds blown up in a plane. We will apply a similar approach
to describe the LG model of the cubic fourfold blown up in a plane. We start by
expressing this as a toric hypersurface. Blowing up P5 in the intersection of three
coordinate hyperplanes is again a smooth toric Fano variety P∆ which is determined
by the polytope ∆ with vertices given by points ρ1, . . . , ρ7 given by the columns of
the matrix 

1 0 0 0 0 −1 1
0 1 0 0 0 −1 1
0 0 1 0 0 −1 1
0 0 0 1 0 −1 0
0 0 0 0 1 −1 0

 .

The vertices of this polytope (determined by the columns of the above matrix)
determine torus invariant Cartier divisors in P∆, and the cubic blown up in a
plane is linearly equivalent to Dρ3 + Dρ4 + Dρ5 . Thus, following the prescription
of Givental [Giv98] (or more precisely, [HD15]), one obtains the Landau-Ginzburg
model with

Y 0 =

{
z + w + u+

a

xyz
= 1

}
⊆ (C×)5

equipped with potential given by restriction of

w(x, y, z, w, u) = x+ y +
1

xyzwu

to Y 0. We may decompose w into the three potentials

w1 = x, w2 = y, w3 =
1

xyzwu
.

so that w = w1 + w2 + w3. Therefore, if we take the map π : Y 0 → C3 given by
(w1,w2,w3), this can be compactified to a family of elliptic curves with fiber

w1w2w3zw(z + w − 1) + 1 + aw3w = 0.
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This can be written as a family of elliptic curves in Weierstrass form as

y2 = x3 + w1w
2
2w3(w1w3 − 4a)x2 + 8w3

1w
3
2w

3
3x+ 16w4

1w
4
2w

4
3.

Away from (0, 0, 0), the singularities of this fibration can be resolved.

• I∗1 along w1 = 0 and w2 = 0
• IV∗ along w3 = 0
• I1 along

(aw2
1w

2
2w

2
3 − 8a2w1w2w

2
3 + w2

1w
2
2w3 + 16a3w2

3 − 36aw1w2w3 − 27w1w2) = 0

We first blow up the base C3 at (0, 0, 0) to obtain a fibration with smooth fibers
over the exceptional divisor. We cannot yet resolve singularities of this fibration,
since the fibers over the intersection of any two coordinate hyperplanes do not have
known resolutions. Following work of Miranda [Mir83], we may blow up the base
of this fibration again several times in order to produce a fibration over a threefold
which has a fiber-wise blow-up which resolves singularities.

We blow up the base along the lines Rij = {wi = wj = 0} to get three exceptional
surfaces Rij over which there are singular fibers generically of type IV. Blowing
up again in all lines of intersection between Rij and wj = 0 and Rij and wi = 0,
calling the resulting exceptional divisors Rij,j and Rij,i, we get an elliptic fibration
over this blown up threefold so that:

• I∗1 along w1 = 0 and w2 = 0
• IV∗ along w3 = 0
• IV along Rij .
• I0 (i.e. smooth) along Rij,j and Rij,i.
• I1 along some divisor which does not intersect w1 = 0,w2 = 0,w3 = 0 or
Rij = 0.

Therefore, one may simply resolve singularities of this fibration in the same way as
one would in the case of surfaces – blowing up repeatedly in sections over divisors
in the discriminant locus. Let us refer to this elliptically fibered fourfold as LG(Z1).
There is an induced map from LG(Z1) to C which we call w essentially comes from
the composition of the fibration on LG(Z1) by elliptic curves with its contraction
onto C3 along with the addition map (z1, z2, z3) 7→ z1 + z2 + z3 from C3 to C. This
is the superpotential on LG(Z1), and LG(Z1) is a partially compactified version of
the Landau-Ginzburg model of the cubic fourfold blown up in a plane.

The fiber of w over 0 is the union of two elliptically fibered smooth threefolds,
one being the induced elliptic fibration over the proper transform of the exceptional
divisor obtained when we blew up (0, 0, 0) in C3. The other is the proper transform
in LG(Z1) of the induced elliptic fibration over the surface z1 + z2 + z3 = 0 in C3.

These two threefolds meet transversally along a smooth K3 surface S. This K3
surface is equipped naturally with an elliptic fibration structure over P1 and inherits
two singular fibers of type I∗1, a singular fiber of type IV∗ and two singular fibers
of type I1.

Proposition 4.9. The orthogonal complement of the Picard lattice in H2(S,Z) is
isomorphic to −2 −1 −1

−1 2 1
−1 1 2

 ,

for a generic K3 surface S appearing as in the computations above.
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To prove this, one uses a concrete model of S and shows that there is another
elliptic fibration on S so that the techniques in [HT15] can be applied to show that
there is a lattice polarization on a generic such S by the lattice

E2
8 ⊕

2 1 1
1 −2 −1
1 −1 −2

 . (4.1)

Then one shows that the complex structure on the surface S varies nontrivially as
the parameter a varies, thus a generic such S has Picard lattice equal to exactly
the lattice in Equation (4.1). Then applying standard results of Nikulin [Nik80],
one obtains the proposition.

4.9. Cubic threefolds blown up in two planes. Here we begin with the toric
variety P5 blown up at two disjoint planes, which is determined by the polytope ∆
with vertices at the columns ρ1, . . . , ρ8 of the matrix

1 0 0 0 0 −1 1 −1
0 1 0 0 0 −1 1 −1
0 0 1 0 0 −1 1 −1
0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 0 0

 .

The cubic blown up along two disjoint planes is then linearly equivalent to the torus
invariant divisor Dρ3 +Dρ4 +Dρ5 +Dρ7 , therefore, by the prescription of Givental,
we may write the associated LG model as

Y 0 =

{
z + w + u+

a

xyz

}
⊆ (C×)5

equipped with the function

w(x, y, z, w, u) = x+ y +
1

xyzwu
+ bxyz.

We split this into the sum of three functions,

w1 = x+ bxyz, w2 = y, w3 =
1

xyzwu
.

The fibers of the map (w1,w2,w3) from Y to C3 are written as a family of affine
cubics

(z + w − 1)w1w2w3zw + (1 + bw2z)(1 + aw3w) = 0

which are open elliptic curves. We may write this in Weierstrass form and use
Tate’s algorithm to show that, the singular fibers of this fibration are of types:

• I∗1 along w3 = 0 and w2 = 0
• I5 along w1 = 0
• I1 along a divisor determined by a complicated equation in w1,w2 and w3.

Elsewhere, the fibers of this map can be compactified to smooth elliptic curves.
In order to obtain a smooth model of this fibration, we will first blow up C3 at

(0, 0, 0). The induced elliptic fibration is generically smooth over this exceptional
divisor, which we call Q. In order to obtain a model of this elliptic fibration which
we may resolve by sequentially blowing up in singular fibers, we must now blow up
along the line w2 = w3 = 0. We will call the exceptional surface under this blow-
up R23. We obtain a singular elliptically fibered fourfold over this new threefold
base so that the fibers over the divisor R23 are generically of Kodaira type IV.
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Blowing up again at the intersections of R23 and w2 = 0 and at the intersection
of R23 and w3 = 0 (calling the exceptional divisors R23,2 and R23,3 respectively)
we obtain a fibration which can be resolved by blowing up curves of divisors in the
fibers over R23,w1 = 0,w2 = 0 and w3 = 0, and by taking resolution over curves in
w1 = w2 = 0 and w1 = w3 = 0 (following [Mir83, Table 14.1]). Call the resulting
fibration LG(Z2) and let π be the fibration map onto the blown up threefold. We
have singular fibers of types:

• I∗1 along w3 = 0 and w2 = 0
• I5 along w1 = 0
• IV along R23

• Fibers over w1 = w2 = 0 and w1 = w3 = 0 of the type determined by
Miranda [Mir83] and described explicitly in [Mir83, Table 14.1].
• I1 along a complicated divisor which does not intersect any of the divisors

above.

and smooth fibers otherwise.
The variety LG(Z2) admits a non-proper elliptic fibration over C3 obtained by

composing π with the blow-up maps described above. Then the fiber in LG(Z2)
over (0, 0, 0) is an elliptic threefold over a blown-up P2 base. Composing this non-
proper elliptic fibration with the map (w1,w2,w3) 7→ w1 + w2 + w3 from C3 to C
recovers the potential w. The fiber over 0 of the map w from LG(Z2) to C has
two components, each an elliptically fibered threefold meeting along a smooth K3
surface. This K3 surface, which we call S, admits an elliptic fibration over P1

canonically with two singular fibers of type I∗1, a singular fiber of type I5 and five
singular fibers of type I1.

Proposition 4.10. The orthogonal complement of the Picard lattice in H2(S,Z)
is isomorphic to 

0 1 0 0
1 0 0 0
0 0 −2 1
0 0 1 2

 ,

for a generic K3 surface S appearing as in the computations above.

Again, this result is obtained by finding an appropriate alternative elliptic fi-
bration on S and demonstrating that an appropriate lattice embeds into its Picard
lattice, then combining results of Nikulin [Nik80] and the fact that there is a non-
trivial 2-dimensional deformation of S obtained by letting the parameters a and b
vary to see that indeed, this is the transcendental lattice of a generic such S.

Remark 4.11. In the last three sections, we have glossed over the issue of providing
an appropriate relative compactification of our LG models with respect to w. In-
deed, one wants to produce a relatively compact partial compactification of the LG
models above whose total space is smooth and has at least trivial canonical class.
In the cases that we have described above, this can be done by taking a relative
compactification of C3 with respect to the map (w1,w2,w3) 7→ w1 + w2 + w3 and
writing LG(Zi) as an elliptically fibered fourfold over this variety. Performing the
same procedure as above (blowing up the base of this fibration until a global reso-
lution can be obtained by simply blowing up in fibers or taking small resolutions as
described by Miranda [Mir83], one can produce a partial compactification of LG(Zi)
so that the fibers of w are compact. Using the canonical bundle formula in [Mir83],
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one can then show that this compactification is indeed appropriate. We note that,
strictly speaking, Miranda’s work only applies to three dimensional elliptic fibra-
tions. However, since we do not have to deal with intersections of more than two
divisors in our discriminant locus, and all of our intersections are transverse, the
arguments of [Mir83] still may be applied.

4.10. Special Lagrangian fibrations. In the case of hyperkähler surfaces, spe-
cial Lagrangian fibrations can be constructed with relatively little difficulty. The
procedure is outlined in work of Gross and Wilson [GW97]. We review their work
in the following section and apply it to our examples.

Definition 4.12. A K3 surface S is lattice polarized by a lattice L if there is a
primitive embedding of L into Pic(S) whose image contains a pseudo-ample class.

For a given lattice L of signature (1, ρ− 1) for ρ ≤ 20 which may be embedded
primitively into H2(S,Z) for a K3 surface, there is a (20 − ρ)-dimensional space
of complex structures on S corresponding to K3 surfaces which admit polarization
by L. A generic L-polarized K3 surface will then be a general enough choice of
complex structure in this space.

We will follow the notation of Gross and Wilson [GW97] from here on. We choose
I to be a complex structure on a K3 surface S and let g be a compatible Kähler-
Einstein metric. Since S is hyperkähler, there is an S2 of complex structures on S
which are compatible with g. We will denote by I, J and K the complex structures
from which all of these complex structures are obtained. The complex 2-form
associated to the complex structure I is written as Ω(u, v) = g(J(u), v)+ig(K(u), v)
for u and v sections of TS . The associated Kähler form is given, as usual, by
ω(u, v) = g(I(u), v). Similarly, one may give formulas for the holomorphic 2-form
and Kähler forms associated to the complex structures J and K easily in terms of
the real and imaginary parts of Ω and ω as described in [GW97, pp. 510].

A useful result that Gross and Wilson attribute to Harvey and Lawson [HL82,
pp. 154] is:

Proposition 4.13 ([GW97, Proposition 1.2]). A two-dimensional submanifold Y
of S is a special Lagrangian submanifold of S with respect to the complex structure
I if and only if it is a complex submanifold with respect to the complex structure
K.

Using the same notation as in [GW97], we will let SK be the complex K3 surface
with complex structure K, which then has holomorphic 2-form given by ΩK =
ImΩ + iω where ω and Ω are as before. If this vanishes when restricted to a
submanifold E of S, then we must have ω|E = 0 as well. If ω is chosen generically
enough in the Kähler cone of S (so that ω ∩ L = 0) then this forces E to be
in L⊥. One can show that a complex elliptic curve E on a K3 surface satisfies
[E]2 = 0 therefore, since L⊥ has no isotropic elements, SK cannot contain any
complex elliptic curves and thus S has no special Lagrangian fibration. Therefore,
we have proven that:

Proposition 4.14. If L is a lattice so that L⊥ contains no isotropic element, then
a generic L-polarized K3 surface with a generic choice of Kähler-Einstein metric g
has no special Lagrangian fibration.

We will use this to prove a theorem regarding K3 surfaces which appeared in the
previous sections. Let us recall that the transcendental lattices of the K3 surface
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appearing as the intersection of the pair of divisors in LG(Z0),LG(Z1) and LG(Z2)
are (

2 1
1 2

)
,

−2 −1 −1
−1 2 1
−1 1 2

 ,


0 1 0 0
1 0 0 0
0 0 −2 1
0 0 1 2


In the first case, it is clear that the lattice is positive definite, therefore it cannot
represent 0, and thus Proposition 4.14 shows that in this case there is no special
Lagrangian fibration on this specific K3 surface. In the third case, we can use
[GW97, Proposition 1.3] to see that there is a special Lagrangian fibration with
numerical special Lagrangian section for a generic choice of Kähler-Einstein metric
g.

In the second case, the discriminant of the lattice (which we will call M) is −8,
and its discriminant group, which is just M∨/M , is isomorphic to Z/8 and has
generator with square 3/8. Using a result of Nikulin [Nik80], it follows that this is
not equivalent to the lattice 〈−8〉 ⊕ U . At the same time, one can conclude that
this is not the lattice 〈−2〉⊕U(2), and therefore, we cannot directly apply [GW97,
Proposition 1.3] to obtain a special Lagrangian fibration on such a K3 surface.

However, applying the method used in the proofs of [GW97, Proposition 1.1]
and [GW97, Proposition 1.3], one obtains a special Lagrangian fibration on S for
a generic choice of g so that there is no special Lagrangian section, but there is a
numerical special Lagrangian 2-section. To do this, we use the fact that (1,−1, 1)
is isotropic in this lattice.

Putting all of this together, we obtain the following theorem:

Theorem 4.15. Let S be a generic K3 surface appearing as the intersection of the
two components of the fiber over 0 of the LG models of a generic cubic Z0, a cubic
blown up in a plane Z1, and a cubic blown up in two disjoint planes Z2. Let ω
be a generic Kähler class on S and Ω the corresponding holomorphic 2-form on S.
Then:

(1) In the case where S ⊆ LG(Z0), then S admits no special Lagrangian torus
fibration.

(2) In the case where S ⊆ LG(Z1), then S admits a special Lagrangian torus fi-
bration with no Lagrangian section but a (numerical) Lagrangian 2-section.

(3) In the case where S ⊆ LG(Z2), then S admits a special Lagrangian torus
fibration with a (numerical) Lagrangian section.

The first statement in Theorem 4.15 is mirror dual to the fact that the subcat-
egory AX of Db(cohX) for X a generic cubic fourfold is not the derived category
of a K3 surface. The second statement corresponds to the fact that AX ∼= Db(S, β)
for β an order 2 Brauer class on S for X a general cubic fourfold containing a plane.
The third case corresponds to the fact that when X contains two disjoint planes,
AX ∼= Db(S) for S a K3 surface.

According to [AAK12, Corollary 7.8], there is an embedding of the (derived)
Fukaya category of the K3 surface S appearing in Theorem 4.15 as a subcategory
of the derived version of the Fukaya-Seidel category of the LG model of Z0, Z1 and
Z2 respectively. The objects in the Fukaya-Seidel category of an LG model are
so-called admissible Lagrangians, which are, roughly, Lagrangian submanifolds L
of the LG model with (possible) boundary in a fiber V of w. In the case where w is
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a Lefschetz fibration, it is well-known (see [Sei01]) that such Lagrangians (so-called
Lagrangian thimbles) can be produced by taking appropriate paths between V and
p for p a critical value of w and tracing the image of the vanishing cycle at w−1(p)
along this path.

This embedding works as follows. The central fiber of our degeneration is simply
a union of two smooth varieties meeting transversally in a K3 surface, so the van-
ishing cycle is simply an S1 bundle over the critical locus of the degenerate fiber.
In our case, this is simply an S1 bundle over a K3 surface, which is then homotopic
to S1×K3. Thus, along any straight path approaching 0 in C, we have a vanishing
thimble homotopic to D2 × K3 where D2 is the two-dimensional disc. This, of
course, cannot be a Lagrangian in LG(Zi) for dimension reasons, but if instead we
take all points in D2 ×K3 which converge to a Lagrangian ` in the K3 surface (in
some appropriate sense), then there exists a Lagrangian thimble L` whose restric-
tion to w−1(0) is `. In this way, Lagrangians in S extend to admissible Lagrangians
in LG(X) and in particular induce a faithful A∞-functor from the Fukaya category
of S into the Fukaya-Seidel category of LG(Zi), both with appropriate symplectic
forms. In particular, we have that

(1) There is no admissible Lagrangian L in LG(Z0) so that L|w−1(0) is a special
Lagrangian torus.

(2) There is no pair of admissible Lagrangians L1 and L2 in LG(Z1) so that
(L1)|w−1(0) is a special Lagrangian torus and (L2)|w−1(0) is a special La-
grangian section of a special Lagrangian fibration on S.

These statements should be viewed as interpretations of Theorem 4.15 in terms of
the Fukaya-Seidel category of Z0, Z1 and Z2. As claimed in section 3, the non-
existence of a family appropriate Lagrangians in the LG models of Z0 and Z1

therefore corresponds to the conjectural fact that Z0 and Z1 are non-rational.
This section gives another example of a piece of LGi(X

0) of stable objects for HN
filtration for a limiting stability conditions which serves as Conjecture 1.1 suggests
as obstruction to stable rationality.

4.11. Lagrangian fibrations and the fibers of the LG models of the cu-
bic fourfold. Here we will discuss the possibility of the existence of Lagrangian
fibrations on the fibers of the LG models of the cubic fourfolds containing one and
two planes. We note that the discussion here is related to the constructions in
[DHT16]. A Tyurin degeneration, defined in [Tyu03] is a projective degeneration
of d-dimensional Calabi-Yau manifolds V to a normal crossing union of two smooth
varieties X1 and X2 meeting along a smooth Calabi-Yau anticanonical divisor Z
in both X1 and X2 so that for i = 1 and 2, we have that Hi(Xi,OXi

) = 0. Such
varieties X1 and X2 are called quasi-Fano varieties. It is expected that there are
often (special) Lagrangian torus fibrations π1 and π2 on X1 and X2 over the open
ball Bd by real d-dimensional tori.

One expects that upon taking a real analytic blow-up of each Xi, along Z, which
we call X1 and X2, this Lagrangian torus fibration extends to a Lagrangian torus
fibrations π1 and π2 over the d-dimensional disc Dd. If we let Si be the S1 bundle
over Z homotopic to the normal bundle NZ/Xi

with the zero section removed then

the restriction of πi to the boundary of Xi is just the T d bundle over Sd−1 obtained
by composing the bundle Ui over Z with a Lagrangian fibration on Z over Sd−1.
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If V is the general fiber of a Tyurin degeneration, then X1 and X2 must satisfy
NZ/X1

⊗ NZ/X2
= OZ and therefore, we may glue the boundaries of X1 and X2

together as in [DHT16]. The result is homotopic to V , and, assuming the picture
described above regarding the special Lagrangian fibrations on X1 \ Z and X2 \ Z
is true, then V should be equipped with a topological T d fibration over Sd, where
the base is the pair of Dds glued to one another along their boundaries. This
construction has also been described by Auroux and appears in [Aur08].

Assuming that one can build such Lagrangian fibrations on X1 \ Z and X2 \ Z,
then the dual special Lagrangian fibration on V can be used to build the mirror
dual Calabi-Yau variety.

The situation that we are interested in is the Tyurin degenerations which appear
in the central fiber of the LG model of the cubic fourfolds blown up in a plane. In
this situation, we will let U1 and U2 be the two threefold components of the central
fiber which meet in a smooth K3 surface S. We will now compile some evidence that
both U1 and U2 admit Lagrangian fibrations without sections but with 2-sections.

Calabrese and Thomas [CT15] have shown that there is a K3 fibered Calabi-Yau
threefold which is twisted derived equivalent to the anticanonical hypersurface in
the cubic fourfold blown up in a plane. To construct this twisted derived equivalent
threefold, one takes a pair of cubic fourfolds passing through the same plane in P5.
This gives fiber space of cubic fourfolds over P1. Each of the fibers of this pencil
is a cubic fourfold containing a plane, so the derived category AXt

described in
Section 4.6 is the derived category of a twisted K3 surface, where α is some order
2 Brauer class αt on a K3 surface SXt . There is then an associated K3 surface
fibration over P1 whose fibers are SXt , whose total space has a smooth resolution
which is a Calabi-Yau threefold V ′. There is a global Brauer class α on V ′ so that
if V is the base locus of the pencil of cubic threefolds containing a plane (given by
Xt1 ∩Xt2 for t1 6= t2), then Db(V ′, α) is equivalent to Db(V ).

We expect that there are special Lagrangian fibrations on U1 and U2 over D3

so that the resulting glued torus fibration over S3 (as described in the paragraphs
above) admits no section but a 2-section. Furthermore, this fibration should be
not just topological, but actually a special Lagrangian fibration on a fiber W of
the LG model close enough to 0. At such a point, taking the SYZ dual should
yield the Calabi-Yau threefold V ′, not the threefold V , and the fact that there is
no section but a 2-section should imply that V ′ is not homologically mirror dual
to W , but that there is a gerbe α so that DbFuk(W ) ∼= Db(V ′, α) ∼= Db(V ). The
fact that this occurs is corroborated by the fact that we observed in Section 4.6,
that there is no section on any SYZ fibration on the K3 surface R obtained as the
intersection of U1 and U2, and, as we have already mentioned, the fact that there
exists an appropriate twisted mirror Calabi-Yau threefold. Since W can be viewed
topologically as a gluing of U1 to U2 along an S1 bundle over R, we expect that
the 2-section above induces a numerical 2-section on the induced SYZ fibration on
R, which we know must exist.

5. Justification for Conjecture 1.3

We move on to analyzing the examples from the perspective of flat families of
perverse sheaves of categories. We start with examples from sections 4.1, 4.2, 4.3,
4.4, 4.5. In this section we associate two degenerations X → X0 on B side, a good
flat family of perverse sheaves of categories, where X0 has rational singularities.
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We concentrate on the example of 4.1. Classically the deformation X → X0 was
computed by Voisin in [Voi15]. Below we describe the good flat family of perverse
sheaf of categories.

Step 1 We start with the LG model of the double solid. We represent it as a
perverse sheaf of categories PSC0.

•
0

• •∞
• Fuk(K3)/Γ•

Fuk(K3)/Γ

FS(Y1) FS(Y2)

In the fiber over zero, we have severe FS categories of rational surfaces.
Step 2 We deform PSCt as follows:

•
0

• • • •∞
•

•

FS(Y1) FS(Y2)

FS(Y3)

Step 3 We localize by FS(Yi), see Theorem 3.4.
Step 4 We get PSC0 a torsion in H∗(vanishing cycles).

• •
•

•

PSC0

Tor H∗(vanishing cycles)

So the flat family of PSC is

• • •

•

∞

•

∞

•

•

•

•

t 0

a sequence of localizations.

The deformation described here is of the type described in Theorem 2.2. There-
fore we have the following proposition.

Proposition 5.1. The flat family of perverse sheaves of categories described above
is a good flat family.

Indeed we need to check that
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(1) W = P holds;
(2) ImL = HP∗ holds.

But this is true since both Lattice conjecture and W = P are preserved under the
following categorical operations:

(1) Sums;
(2) Summands;
(3) Triangles.

So in the examples above, we localize and we create a torsion in H∗(Vanishing
cycles). So we have the conditions of Conjecture 1.3 satisfied.

In fact the above good flat family of perverse sheaves of categories has a Z2

action. We mod out the quotient by the Z2 action.

• • •

•

∞

•

∞

•

•

•

•

t 0

This new good flat family of PSC is associated with 3-dim quartic. The family
creates a torsion = Z4 in the vanishing cycle. So the conditions of the Conjecture
1.3 are satisfied. In fact the non-rationality of the 3-dim quartic implies the non-
rationality of the quartic double solid. (See section 4.5.)

Similar arguments imply non-rationality in examples from sections 4.2, 4.3, 4.4.
That implies non-rationality of all these Fano’s. Below we give an interpretation

of Theorems 4.3, 4.5. This phenomenon holds for many 3-dimensional Fano’s. In
fact in [KP12] we prove:

Theorem 5.2. Let X be a 3-dim Fano and 6= P3. Let µ0 be the monodromy of
LG(X) at 0. We have the following correspondence:

{µ0 strictly quasi-unipotent} ←→ {X not rational}.

We now give a conceptual proof of this statement.

Proof. Indeed M0 represents the functor over 0 of the corresponding perverse sheaf
of categories. Our observations show

{µ0 strictly quasi-unipotent} ←→ {Tor H(vanishing cycles) 6= 1}.
We just need to check that blow-ups and blow-downs do not create torsions. Indeed
the effect of blow-ups and blow-downs on perverse sheaf of categories is:

•∞•

LG
of blow-up

•∞
Γ
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This transformation preserves W = P and ImL = HP∗. Also torsion is not
created in H∗(vanishing cycles).

�

Observe that in higher dimensions we can create basic classes by blowing up.

Example 5.3 (P̂NDolg). Consider the blow-up of PN in the Dolgachev surface. Then
we create a perverse sheaf of categories as below:

•∞•
•
•

•

•

Γ

•

•

basic class

basic class

But in this case the codimension of basic classes is very big.
We give a perverse sheaf of categories interpretation of Theorem 4.15

- the case of 4-dim cubics with a plane.
We start with a K3 surface. The commutative K3 is obtained via gluing of two

elliptic surfaces.

•

0

•
∞

12

•

0

•
∞

12

2:1

•

0

•
∞

12

after smoothing

Similarly for non-commutative K3:

•

0

•
∞

12 •

•
E × C /Z2

•

0

•
∞

12

•

0

•
∞

12 •

•
E × C /Z2

The above sheaf of categories represents Db(K3, α), where α is a gerbe.
Now we move to the construction of a good flat family of PSC.

36



t 0
•

•

12

•

•

•

•
•
•

12

•

•

12

The above flat family produces a kernel in

L : K(T0)→ HP∗(T0)

with a support over multi-fiber.
We implement the above procedure to a 4-dimensional cubic. We give a PSC

interpretation of Theorem 4.15. We will construct a good flat family associated
with a 4-dimensional cubic containing a plane. We start with the perverse sheaf of
categories associated with such a cubic.

0

∞•

•

•

•

•

•LG1

LG2

K3
t 6= 0

Then we degenerate the K3, LG1 and LG2 using Theorem 3.4:

t 6= 0
0

LG1

LG2

∞•

•

•

•

•

•

•

•
12

•

•
12

•

•
• •

12

•

•
• •

12

•

•
12

•

•
12

•

•
• •

12

•

•
• •

12

This creates a Z2 - kernel in L : K(T0)→ HP∗(T0), and a basic class on the half
of LG1, LG2.

This basic class has a support of codimension 2.

Proposition 5.4. The above flat family of PSC is good.

Indeed the blow-ups, localizations and sums preserve the properties W = P and
ImL = HP∗.

For a 4-dimensional cubic with two planes we do not have such a kernel.

Remark 5.5. This construction works for other cubic fourfolds e.g. cubic fourfolds
which contain Del Pezzo surfaces. They are birational to Del Pezzo fibrations over
P2. In the case when the degree of these Del Pezzo surface is 6, a Cremona type of
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correspondence produces a (K3,α) - a two sheeted covering X of P2, α ∈ H(X,O∗),
α3 = 1. In this case we have that the PSC associated with (X,α) splits as:

t 6= 0
0

LG1

LG2

∞•

•

•

•

•

•

•

•
12

•

•
12

•

•
• •

12

•

•
• •

12

•

•
12

•

•
12

•

•
• •

12

•

•
• •

12

E × C/Z3

Following similar procedures as before we get a basic class of codimension 6 2
and so Conjecture 1.3 implies that this cubic fourfold is not rational. In the case of
α = 1, namely when above Del Pezzo fibration has a section then by analogy with
the two-plane case the cubic fourfold is rational. It was indicated by Tschinkel that
such example of cubic exists.

We believe this is one of many similar examples - other examples when the cubic
contains Del Pezzo surfaces of other degrees. It is conceivable that in all these
examples as in the case of a cubic containing a plane, diagonal splits.

6. Conclusions

In this section we give some comments and outline directions for future research.

6.1. Deformations of perverse sheaves of categories. Our observations sug-
gest the following correspondence:

•P

Deformations

new module
new high natural
transformation basic classes

P

P

Monodromy
equations

Sn1
1 , . . . , S

nj

j

= N l1
1 . . . , Np1

p
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Here Ni are the non-spherical functors.

Proposition 6.1. The modules P which determine deformations correspond to
basic classes.

• •∞
Basic class with codim > 2 ∈ KerL

blow up

We also have:

Proposition 6.2. Basic classes with big support (codim 6 2) do not correspond to
blow-ups.

In [KLb] we define the categorical multiplier ideal sheaf. We have a correspon-
dence:

{Jk ⊂ · · · ⊂ J1 ⊂ J} ↔ {T /KerN lj1
1 ···N

jr
r S

i1
1 ··· ,S

ik
k P1···Pq

⊂ T /KerS1S2
⊂ T /KerS1

}.

This suggests a conjecture:

Conjecture 6.3. We have a correspondence:

{N lj1
1 · · ·N jr

r S
i1
1 · · ·S

ik
k P1 · · ·Pq} ←→ {Orlov spectra}.

We propose the following conjecture:

Conjecture 6.4. Let X be a Fano s.t. there exists a deformation

(1) X → X0 and Br(X0) 6= 1;
(2) ∆ ⊂ X ×X does not split.

Then there exists a good deformation T of Db(X) and a basic class B, codimB 6 2.

The main point of this paper is to point out that the flat family of PSC gives
more options than the usual commutative deformations.

Of course the question remains how to produce an invariant from Ker(L) for
deformations. We have the following conjecture:

Conjecture 6.5.

Ker(L) of
deformed MF or

Fukaya-Seidel
categories

Orlov
spectra

additional
filtration on

limiting stab.
conditions

We will explore this correspondence in a future work.
An important step in studying this correspondence is the following: Clemens-

Schmid sequence.
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P1,2 P1

P2

W1,2 W1

W2

Conjecture 6.6. Under deformations of perverse sheaf of categories the P and W
filtrations follow “Clemens-Schmid” sequence.

We also have a Clemens-Schmid sequence:

HP1,2 HP1

HP2

K1,2K1

K2

Lattice

conjecture

Conjecture 6.7. The Lattice conjecture respects the Clemens-Schmid sequence.

We propose a theory of lattice maps.

Theorem 6.8. The Lattice theorem is preserved under

(1) Localizations;
(2) Sums;
(3) Summands;
(4) Triangles.

Remark 6.9. The Lattice conjecture can be extended to the l-adic situation. Then
the lattice map

L : K(J )→ HPl-adic(J )

sees the torsion in K(J ). HPl-adic was defined by Toën and Vezzosi.

As noticed before we have a presentation of the group K with generators (N1,
. . . , Nk, S1, . . . , Sm, P1, . . . , Pq) with a relation

N l1
1 · · ·N

lk
k S

r1
1 · · ·Srmm P1 · · ·Pq = 1.

We have a representation ρ : K → GL(HH∗(Ft)), t 6= 0. Consider a relative
nilpotent completion.

1 Ni Γρi GL(HH)

K
ρ

Here {Ni, ρi} is an injective system of nilpotent groups. Define relative completion
Γρ by Γρ = lim

ρi
Γρi .

Question 6.10. Does Γρ see the phantoms?

Question 6.11. Does Lattice conjecture allow us to define mixed non-commutative
Hodge structure over Z?

Question 6.12. Do we create a “Schematization” of PSC in the same way as in
[KPT08]?
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In other words we propose a parallel between perverse sheaves of categories and
non-abelian Hodge theory. The theory of windows from [BFK12] and of categorical
base loci from [KLa] can be formulated in the language of PSC. In the case of
windows we create:

∞
PSC associated with the window

In the case of base loci we create a PSC associated with the categorical base loci.
We finish the paper by introducing an approach to canonical degenerations and

compactifications of moduli spaces based on perverse sheaves of categories. Our
approach is inspired by [GGLR]. We take the point of view that the canonical
degeneration is dictated by the HN and additional filtrations associated with the
Hermitian-Yang-Mills (HYM) metric on perverse sheaves of categories. The HYM
metric on perverse sheaves of categories established in [HKKP] is an analogue of
Hermitian metric in the case of Higgs bundles. We have the following correspon-
dence:

Voisin flat family PSC flat family

Higgs bundles PSC

Hermitian forms HYM metric on PSC

HN filtrations
HN filtrations + additional

filtrations and degenerations

Example 6.13. Let us consider LG model of genus 2 curve. According to [AAK12]
we have a degeneration:

•

•

•
•

•

•
•

•

•
•

•
•

(We describe only the singular set.)

Examples in previous section suggest that in the case Db(X) = FS(Γ,F) we
have:

Conjecture 6.14. HN and additional filtrations determine a canonical degenera-
tion.

In the case of Riemann surfaces we get classical Deligne-Mumford degenerations.

Conjecture 6.15. The basic classes of big codimension serve as obstructions to
HN and additional filtrations.

6.2. Categorical Kodaira dimension. In this section, we introduce the notion
of categorical Kodaira dimension for perverse sheaves of categories. Our definition
is based on [KLa].

As we noticed in section 4.5 we have a sheaf of Lagrangians with no section in
the case of a cubic containing a plane. We will try to explain this phenomenon in
the language of perverse sheaf of categories.
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This idea is very simple:
Replace

Lagrangian fibrations with no section on K3

K3

and replace

Brauer class of fibrations of Del Pezzo’s

P2

• •

by

• ••

•

•
•

•
•

Serre functors of degenerated K3.
These K3 with a gerbe degenerate as perverse sheaves of categories to categories

with phantoms and nontrivial Serre functors. The creation of nontrivial canoni-
cal class produces nontrivial Serre functor - monodromy around infinity which we
record via introduced below CKD - categorical Kodaira dimension.

K3 •

∞

•

nontrivial Serre

Our idea is again parallel to the idea of Voisin.

X −→ X0 Br(X0) 6= 1

PSC −→ PSC1∪ PSC2

where

- PSC1 has a nontrivial Serre functor;
- jump of categorical Kodaira dimension;
- small codimension basic class.

We recall that deformations of sheaves of categories are determined by:

(1) Introducing additional module P ;
(2) Changing the high normal functions.

We have introduced in [KLa] the following correspondence:

42



Classical Categorical

KX - canonical line bundle ϕS - Serre functor

dim H0(nKX) - Kodaira
dimension

dim of space of natural
transformations

We define:

Definition 6.16. Categorical Kodaira dimension of category (CKD) is such
d so that

min
F

Exti(F , ϕkSerre(F))

dk

is bounded.

Here F is the coefficient sheaf in the perverse sheaf of categories.
Classically this is the Kodaira dimension of Db(X) of X.

Example 6.17 (Dolgachev surface).

•

0

•
∞

12 •

•

•

•

The functor ϕS has more sections due to additional natural transformations con-

nected with the quasi-phantom. The Kodaira dimension of P̂2
p1,...,p9 is −1. Adding

a phantom and getting Dolg2,3 makes Kodaira dimension 1.

Conjecture 6.18. Creating a phantom increases the categorical Kodaira dimen-
sion.

Example 6.19 (K3 with a gerbe).

•

0 ∞
12

0 - classical Kod dim

•

•

•

•

•

•

•

12

•

12

•

•

•

•

•

•

Classical Kod dim = -1 Classical Kod dim = 1

Classically we have that Kodaira dimension is upper semi-continuous. Under
deformations it could only go down. The above example suggests that for defor-
mations of perverse sheaves of categories the Kodaira dimension could jump. We
summarize this observation in the table below:

43



Classical Kodaira dimension Categorical Kodaira dimension

Kodaira dimension KD

X

X2

X1

KD(X) > KD(Xi)

Categorical Kodaira dimension
of PSC, Γ(PSC)=T , CKD(T )

T

T1

T2

in the case when jump occurs

Max GAP(T ) + CKD(T )
6 CKD(Ti), i = 1 or 2

Conjecture 6.20. Consider a PSC and a degeneration PSC1 and PSC2. Let
T , T1, T2 be the corresponding categories of global sections. Then we have Max
GAP(T ) + CKD(T ) 6 CKD(Ti), i = 1 or 2 in the case when jump occurs.

Here Max GAP is the maximum length of the gap in the Orlov spectrum.
Indeed

•

• •

•

•
•

• • •

•

•

a sheaf of categories over 2-dimensional base such that each fiber is quasi-phantom
creates a jump of 2. In dimension n we have a similar situation. This can be used
in studying non-rationality in higher dimensions.

Now we move to the analysis of birational transformations.

(1) Blow up

•

•

•

(2) Flop

• • •
1-dim family of PSC

circuit

t = −1 t = 0 t = 1

•

•
• • •

(3) Sarkisov link

44



•

•
2-dim circuit

2-dimensional family of categories

For more explanations in details of the connection between moduli spaces of LG
models and sheaves of categories and birational transformations, see [DKK12]

Conjecture 6.21. Degenerations of PSC associated with birational transformation
do not create jumps of CKD in codim 6 2.

We return now to Conjecture 1.3. We can reformulate it as follows:

Conjecture 6.22. Let Bt be a basic class of codim 6 2 in a good family of PSC.
Assume N → Bo = B1∪B2 and CKD(Bi) for some i is bigger than CKD(B). Then
X is not rational.

On the B side it is hard to record geometrically this jump in CKD. In the case
of the family of Del Pezzo’s over P2:

Del Pezzo6

2-Brauer class

•

The Brauer class in a spread over P2. The mirror image of this spread is the
basic class. Similar story holds in dim 3.

Del Pezzo

P1

•

Mirror

Basic class

The following parallel came from a conversation with P. Griffiths.

Classical degenerations Degenerations of PSC

Combinatorial date Combinatorial data

Extensions of MHS Basic classes

Canonical ring data jumps in CKD

Of course the semistable degenerations should correspond to semistable sheaves
of categories - see [HKKP]. In fact we propose a conjecture:

Conjecture 6.23. There exists a correspondence:
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Classical
degenerations with
multi-dimensional

base

Sheaves of
categories over

high dimensional
stratified complex

It seems that in high dimensional case we need more than just combinatorics. It
seems the perverse sheaves of categories provide the additional tools. We demon-
strate this in the example of 2-dimensional LG model for P3.

We have:

P3

Q2 Q1

E

⊂ ⊃
⊃ ⊂

Here Q1, Q2 are quadrics in P3 and E = Q1 ∩Q2 is an elliptic curve.
We have:

Db(P3)

Db(Q1) Db(Q2)

Db(E)

On the A side we have:

FS(P3)

FS(Q1) FS(Q2)

Fuk(E′)

On the level of sheaf of categories we have:

• • ∞

Fuk(E′) ∼= Db(E)
HMS

•

•

•

•

•

•

curve of singularities

•

•

•

•

•

•

•· · ·
•

•

•

•

•

•

•

R in C2

• •

compactification

So we indeed have a theorem which confirms our discussion from section 3.1:

Theorem 6.24. P (R) = W (H(LG(P3),Compactification)).
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Here P (R) is the Leray filtration of the fibration of the elliptic curve over C2 and
W (H(LG(P3),Compactification)) is the weight filtration on the compactification of
the LG model.
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