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Construction of regular polygons

Gauss (1796): A regular n-gon is constructible with compass and
straightedge iff n = 2m · p, where p is a Fermat prime, i.e.,
p = 22n + 1; first such primes are 3, 5, 17, 257, 65537, ...

F. Richelot (1832): Explicit construction of the 257-gon

J. Hermes (1894): Explicit construction of the 65537-gon, 10 years
of work...
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Galois groups

Let K be a field, e.g., K = Q, and

f (x) = xn + an−1xn−1 + . . .+ a1x + a0 ∈ K [x ]

a polynomial with coefficients in K . Let L ⊂ K̄ be the smallest subfield
of an algebraic closure of K containing all roots of f . The Galois group

Gal(f ) = Gal(L/K ) ⊆ Sn

is the group of automorphisms of L fixing K . It is a subgroup of the
symmetric group exchanging the roots of f .

It can be effectively
computed, e.g.,

Gal(x5 − 5x + 5/2) = S5

Gal(x16 + x15 + · · ·+ x + 1) = (Z/17Z)× ' Z/16Z, this is why
the 17-gon is constructible with compass and straightedge
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Computing the Galois group

Dedekind

Let f ∈ Z[x ] be a monic polynomial and p a prime. If

f (x) ≡ f1(x) · · · fr (x) (mod p)

then Gal(f ) contains a permutation σ that is a product of r cycles of
length ni := deg(fi ).
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Computing the Galois group

Let f1, f2, f3 ∈ Z[x ] be monic, of degree n, with

f1 irreducible (mod 2)

f2 = (linear ) · ( irreducible) (mod 3)

f3 = (degree 2) ·

(
product of one or two irreducible

polynomials of odd degree

)
(mod 5)

Put
f := −15f1 + 10f2 + 6f3.

Then Gal(f ) = Sn.

We see that already few primes determine the Galois group.
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Reciprocity

Problem

Let f ∈ Z[x ] be a monic irreducible polynomial. How does it behave
when reduced modulo p?

Example

xq−1 + · · ·+ x + 1 =

q−1∏
j=1

(x − αj) (mod p) iff p = 1 (mod q).

Example

x4 − 2 =
4∏

j=1

(x − αj) (mod p) iff ap ≡ 2 (mod 3),

for an explicit modular form
∑

n≥1 anqn of weight 2 and level 768.
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Fields and projective geometry

Milnor K-theory and Galois cohomology

Almost Abelian Anabelian geometry - Bogomolov’s program

Proofs: main steps

Applications
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Euclid (Elements, Book I)

Fields and projective geometry



What is a field, geometrically?

Addition:

Multiplication:
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More on projective geometry: axiomatization

Steiner 1832: Durch gehörige Aneignung der wenigen

Grundbeziehungen macht man sich zum Herrn des ganzen

Gegenstandes; es tritt Ordnung in das Chaos ein, und man sieht, wie

alle Theile naturgemäss ineinander greifen, in schönster Ordnung sich in

Reihen stellen ...

Staudt 1847: Ich habe in dieser Schrift versucht, die Geometrie der

Lage zu einer selbstständigen Wissenschaft zu machen, welche des

Messens nicht bedarf.

Klein, Pasch, Pieri, ...

Schur: proof of the fundamental theorem of projective geometry
from incidence axioms, Desargues and Pappus axiom

Hessenberg: Desargues follows from Pappus

Veblen 1910: What we call general projective geometry is, analytically,

the geometry associated with a general number field.

Hilbert ... Klein: When people run out of ideas they start axiomatizing.

Fields and projective geometry
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Fano plane
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Universality theorems

Configuration spaces: moduli of finitely many points with specified
alignments.

Mnëv 1988

Any scheme over Z arises as a configuration space of points in P2.

Lafforgue 2002: singularities of certain strata in some moduli
spaces arising in the Geometric Langlands Program, e.g.,
compactifications of PGLn+1

r /PGLr .

Vakil: Murphy’s law - badly behaved moduli spaces, e.g., Hilbert
schemes of smooth curves in projective space, surfaces in P4, etc.
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Undecidability in Euclidean geometry

Harvey Friedman

There is a shortage of elementary decision problems known to be
recursively unsolvable. Here we give an example from Euclidean
geometry that is “almost linear” and potentially meaningful in high
school.

We work entirely in the Euclidean plane, R2. A line is a line in R2

which extends infinitely in both directions. A rational line is a line with
two distinct points whose coordinates are rational.

Let L1, ..., Lk and L′1, ..., L
′
r be lines. We say that L1, ..., Lk is equivalent

to L′1, ..., L
′
r if and only if k = r , and for all 1 ≤ i1, ..., ip ≤ k , Li1 , ..., Lip

have a common point if and only if L′i1 , ..., L
′
ip

have a common point.

Fields and projective geometry



Undecidability in Euclidean geometry

Theorem (H. Friedman, May 2009)

The following problem is not algorithmically solvable: Is a given finite
sequence of rational lines equivalent to a finite sequence of rational
lines whose intersection points are integral and include (0, 0), (0, 1)?

Fields and projective geometry



Universality theorems

to Harvey Friedman <friedman@math.ohio-state.edu>

cc Karl Rubin <krubin@math.uci.edu>,

Yuri Tschinkel <tschinkel@cims.nyu.edu>

date Tue, May 5, 2009 at 8:28 AM

Harvey,

This is great, and interests me (and I’m sure interests Karl Rubin) a
lot, since it might connect with our recent work. Do you have the
analogous theorem when you replace H10P over Z by H10P over the
ring of integers of a number field K , and simultaneously “rational” and
“integral” by “rational over K ” and “in the ring of integers of K ”?

Barry

Fields and projective geometry



Projective geometry: axiomatization

Definition

A projective structure is a pair (S ,L) where S is a (nonempty) set (of
points) and L a collection of subsets l ⊂ S (lines) such that

P1 there exist an s ∈ S and an l ∈ L such that s /∈ l;

P2 for every l ∈ L there exist at least three distinct s, s ′, s ′′ ∈ l;

P3 for every pair of distinct s, s ′ ∈ S there exists exactly one

l = l(s, s ′) ∈ L

such that s, s ′ ∈ l;

P4 for every quadruple of pairwise distinct s, s ′, t, t ′ ∈ S one has

l(s, s ′) ∩ l(t, t ′) 6= ∅ ⇒ l(s, t) ∩ l(s ′, t ′) 6= ∅.

Fields and projective geometry



Axioms

A morphism of projective structures ρ : (S ,L)→(S ′,L′) is a map of
sets ρ : S → S ′ preserving lines, i.e., ρ(l) ∈ L′, for all l ∈ L.

A projective structure (S ,L) satisfies Pappus’ axiom if

PA for all 2-dimensional subspaces and every configuration of six
points and lines in these subspaces as below

the intersections are collinear.

Fields and projective geometry
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Fundamental theorem

Reconstruction

Let (S ,L) be a projective structure of dimension n ≥ 2 which satisfies
Pappus’ axiom. Then there exists a vector space V over a field k and
an isomorphism

σ : Pk(V )
∼−→ S .

Moreover, for any two such triples (V , k , σ) and (V ′, k ′, σ′) there is an
isomorphism

V /k
∼−→ V ′/k ′

compatible with σ, σ′ and unique up to homothety v 7→ λv , λ ∈ k×.

Fields and projective geometry



Main example

Let k be a field and Pn the usual projective space over k of dimension
n ≥ 2. Then Pn(k) carries a projective structure: lines are the usual
projective lines P1(k) ⊂ Pn(k).

Let K/k be an extension of fields. Then

S := Pk(K ) = (K \ 0)/k×

carries a natural (possibly, infinite-dimensional) projective structure.
Multiplication in K×/k× preserves this structure.

Fields and projective geometry
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Main theorem

Reconstructing fields

Let K/k and K ′/k ′ be field extensions of degree ≥ 3 and

ψ̄ : S = Pk(K )→Pk ′(K ′) = S ′

a bijection of sets which is an isomorphism of abelian groups and of
projective structures. Then

k ' k ′ and K ' K ′.

Fields and projective geometry



Pregeometries and geometries

A combinatorial pregeometry (finitary matroid) is a pair (P, cl) where
P is a set and

cl : Subsets(P)→ Subsets(P),

such that for all a, b ∈ P and all Y ,Z ⊆ P one has:

Y ⊆ cl(Y ),

if Y ⊆ Z , then cl(Y ) ⊆ cl(Z ),

cl(cl(Y )) = cl(Y ),

if a ∈ cl(Y ), then there is a finite subset Y ′ ⊂ Y such that
a ∈ cl(Y ′) (finite character),

(exchange condition) if a ∈ cl(Y ∪ {b}) \ cl(Y ), then
b ∈ cl(Y ∪ {a}).

A geometry is a pregeometry such that cl(a) = a, for all a ∈ P, and
cl(∅) = ∅.

Fields and projective geometry
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Examples

1 P = V /k , a vector space over a field k and cl(Y ) the k-span of
Y ⊂ P

2 P = Pk(V ), the usual projective space over a k

3 P = Pk(K ), a field K containing an algebraically closed subfield
k and cl(Y ) - the normal closure of k(Y ) in K ; a geometry is
obtained after factoring by x ∼ y iff cl(x) = cl(y).
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Combinatorial geometries of field extensions

Evans–Hrushovski 1991 / Gismatullin 2008

Let k and k ′ be algebraically closed fields, K/k and K ′/k ′ field
extensions of transcendence degree ≥ 5 over k , resp. k ′. Then, every
isomorphism of combinatorial geometries

Pk(K )→ Pk ′(K ′)

is induced by an isomorphism of separable closures

K̄ → K̄ ′.

Fields and projective geometry



K-theory

Let KM
i (K ) be i-th Milnor K-group of a field K . Recall that

KM
1 (K ) = K×

and that there is a canonical surjective homomorphism

σK : KM
1 (K )⊗KM

1 (K )→KM
2 (K )

whose kernel is generated by symbols (x , 1− x), for x ∈ K× \ 1.

Let
K̄M

i (K ) := KM
i (K )/infinitely divisible, i = 1, 2.

Milnor K-theory and Galois cohomology
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Group cohomology

Let
Hi (G ,M)

be the i-cohomology group of a finite or profinite group G , with
coefficients in a G -module M. Recall:

H0(G ,M) = MG , the submodule of G -invariants;

H1(G ,M) = Hom(G ,M), provided M has trivial G -action;

H2(G ,M) classifies central extensions

1→M→G̃→G→1,

For M = Q/Z this group is called the Schur multiplier.

if M = Z/`n and S`(G ) ⊂ G is the `-Sylow subgroup then

Hi (G ,M) ↪→ Hi (S`(G ),M), for all i ≥ 0

Milnor K-theory and Galois cohomology
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Group cohomology

We work with constant coefficients M = Z/`n, for some prime `,
trivial G -action, and write

H∗(G ) = H∗(G ,Z/`n).

Example

H∗((Z/2)r ,F2) = F2[x1, . . . , xr ], deg(xj) = 1

H∗((Z/`)r ,F`) = ∧∗(x1, . . . , xr )⊗ F`[y1, . . . , yr ],

deg(xj) = 1, deg(yj) = 2.
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Galois cohomology

Let K = k(X ) be a function field over k = F̄p, with p 6= `. Fix an
isomorphism

µ`n ' Z/`n.

Kummer theory: H1(GK ) = Hom(GK ,Z/`n) = KM
1 (K )/`n

Merkuriev-Suslin: H2(GK ) = KM
2 (K )/`n = Br(K )[`n]

Voevodsky, Rost, Weibel: Hn(GK ) = KM
n (K )/`n
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Reconstructing fields

Let K and L be function fields of transcendence degree ≥ 2 over
algebraically closed fields k and l . Assume there exist isomorphisms

ψ̄i : K̄M
i (K )→ K̄M

i (L), i = 1, 2,

of abelian groups with a commutative diagram

K̄M
1 (K )⊗ K̄M

1 (K )
ψ̄1⊗ψ̄1 //

σK
��

K̄M
1 (L)⊗ K̄M

1 (L)

σL
��

K̄M
2 (K )

ψ̄2

// K̄M
2 (L).

Bogomolov-T. 2008

Then there exists a (compatible) isomorphism of fields

ψ : K → L.
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Sketch of proof

The ground field: Infinitely divisible elements

An element f ∈ K× = KM
1 (K ) is infinitely divisible if and only if

f ∈ k×. In particular,

K̄M
1 (K ) = K×/k×.
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Sketch of proof

1-dimensional subfields

Given a nonconstant f1 ∈ K×/k×, we have

Ker2(f1) = E×/k×,

where E = k(f1)
K

is the normal closure in K of the 1-dimensional field
generated by f1 and

Ker2(f ) := { g ∈ K×/k× = K̄M
1 (K ) | (f , g) = 0 ∈ K̄M

2 (K ) }.
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Sketch of proof

Reconstructing lines: Functional equations

Projective lines are intersections of well-chosen infinite-dimensional
projective subspaces P(E1),P(E2), where E1,E2 ⊂ K are 1-dimensional
subfields.

Precisely, assume that x , y ∈ K× are algebraically

independent. Let p ∈ k(x)
×

, q ∈ k(y)
×

be such that x , y , p, q are
multiplicatively independent in K×/k×. Assume that there is a
nonconstant

Π ∈ k(x/y)
× · y ∩ k(p/q)

× · q.

Assume moreover that this Π arises from infinitely many, modulo
scalars, elements p, q as above. Then, modulo k×,

Π = Πκ,δ(x , y) := (xδ − κy δ)δ, (1)

with κ ∈ k× and δ = ±1.
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Sketch of proof

Reconstructing lines: Functional equations

The corresponding p and q are given by

pκx ,1(x) = x + κx , qκy ,1(y) = y + κy

pκx ,−1(x) = (x−1 + κx)−1, qκx ,−1(y) = (y−1 + κy )−1

with
κxκy = κ.

Milnor K-theory and Galois cohomology



Anabelian geometry

Grothendieck’s Anabelian program

The Galois group of a function field determines the field.

Two group operations, + and ·, are encoded in one group.

Let K be a field with absolute Galois group GK := Gal(K̄/K ).

Let GK be the pro-`-completion of GK , for ` 6= char(K ) a prime.

Uchida, Tamagawa, Mochizuki, Pop, Königsmann, Zaidi ...:
reconstruction of function fields from the full GK or GK .

Almost Abelian Anabelian Geometry - Bogomolov’s program
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Almost abelian anabelian geometry

Let
GaK := GK/[GK ,GK ], GcK := GK/[GK , [GK ,GK ]]

be the abelianization, resp. its canonical central extension.

The group
GaK is a torsion-free Z`-module of infinite rank.

Let ΣK be the set of all topologically noncyclic subgroups of GaK that
lift to abelian subgroups of GcK .

Bogomolov’s program

The pair (GaK ,ΣK ) determines K .

Almost Abelian Anabelian Geometry - Bogomolov’s program
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Almost abelian anabelian geometry

Theorem (Bogomolov-T.) dim = 2 in 2004 / dim ≥ 2 in 2009

Let K and L be function fields over algebraic closures of finite fields k ,
l of characteristic 6= `. Assume that the transcendence degree of K
over k is ≥ 2 and that there exists an isomorphism

ψ : GaK ' GaL

inducing a bijection of sets

ΣK = ΣL.

Then, for some c ∈ Z×` , cψ is induced by an isomorphism of purely
inseparable closures of K and L.

Almost Abelian Anabelian Geometry - Bogomolov’s program



Sketch of proof: Kummer theory

The abelianized Galois group GaK is dual to K̂×, the pro-`-completion
of K×, and one obtains an isomorphism

K̂× ' L̂×.

In our setup, we can interpret GaK as homomorphisms

K×/k×→Z`(1),

arising from

GaK/`n 3 γn 7→
(

f 7→ γ(
`n
√

f )/
`n
√

f
)
.

Thus, GaK is dual to K×/k× = K̄1(K ).

Proofs: main steps
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Sketch of proof: K2

Consider the exact sequence

1→ZK→GcK→GaK→1.

We have a natural map

∧2(GaK )→ZK , (γ, γ′) 7→ [γ̃, γ̃′].

Put R(GcK ) := Ker(∧2(GaK )→ZK ) and let R∧(GcK ) ⊆ R(GcK )

be the subgroup generated by 〈γ, γ′〉, where γ, γ′ is a commuting pair.

Bogomolov

Let k = F̄p and K = k(X ). Then H2
nr (K ) is dual to R(GcK )/R∧(GcK ).

To summarize, ΣK carries information about K2(K ).

Proofs: main steps
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Valuations

A key ingredient of the proof is the reconstruction of valuations.

A value group, Γ, is a totally ordered (torsion-free) abelian group. A
(nonarchimedean) valuation on a field K is a pair ν = (ν, Γν)
consisting of a value group Γν and a map

ν : K→Γν,∞ = Γν ∪∞

such that

ν : K×→Γν is a surjective homomorphism;

ν(κ+ κ′) ≥ min(ν(κ), ν(κ′)) for all κ, κ′ ∈ K ;

ν(0) =∞.

Note that F̄p admits only the trivial valuation.

Proofs: main steps
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Valuations

Denote by Kν , oν ,mν and Kν := oν/mν the completion of K with
respect to ν, the ring of ν-integers in K , the maximal ideal of oν and
the residue field.

We have the following diagram

1 // o×ν // K× // Γν // 1

1 // (1 + mν)× // o×ν // K×ν // 1

Proofs: main steps



Valuations

Denote by Kν , oν ,mν and Kν := oν/mν the completion of K with
respect to ν, the ring of ν-integers in K , the maximal ideal of oν and
the residue field. We have the following diagram

1 // o×ν // K× // Γν // 1

1 // (1 + mν)× // o×ν // K×ν // 1

Proofs: main steps



Weil groups

Let K = F̄p(X ) be a function field and R a (topological) ring such
that the order of every torsion element is coprimeto p. Define the
abelian Weil group:

Wa
K (R) := Hom(K×/k×,R).

Main example:
Wa

K (Z`) = GaK .

Other interesting cases: R = Z or R = Z/`. Define

Da
ν(R) = {µ ∈Wa

K (R) |µ trivial on (1 + mν)×},
Iaν(R) = {ι ∈Wa

K (R) | ι trivial on o×ν }.

For R = Z` these are the usual decomposition and inertia subgroups
corresponding to ν.

Proofs: main steps
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abelian Weil group:

Wa
K (R) := Hom(K×/k×,R).

Main example:
Wa

K (Z`) = GaK .

Other interesting cases: R = Z or R = Z/`. Define

Da
ν(R) = {µ ∈Wa

K (R) |µ trivial on (1 + mν)×},
Iaν(R) = {ι ∈Wa

K (R) | ι trivial on o×ν }.

For R = Z` these are the usual decomposition and inertia subgroups
corresponding to ν.

Proofs: main steps



Valuations

Any homomorphism χ : Γν → R gives rise to a homomorphism

χ ◦ ν : K× → R,

thus to an element of Wa
K (R), an inertia element of ν.

It is a flag map
on K with values in R, i.e., every finite-dimensional Fp-subspace
V ⊂ K has a flag V = V1 ⊃ V2 . . . such that ν is constant on
Vj \ Vj+1.

Conversely, every flag map on K with values in R gives rise to a unique
valuation ν and a homomorphism χ : Γν→R as above.

Proofs: main steps
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Commuting pairs

Let K be a function field over k = F̄p. We say that noncyclic subgroup
σ ⊂Wa

K (R) is a c-subgroup if its image in Wa
E (R) is cyclic, for every

one-dimensional E ⊂ K .

These form a fan ΣK (R).

Theorem

Let R = Ẑ,Z,Z/`n, or Z`. Then

every c-subgroup σ has R-rank ≤ trdegk(K );

for every c-subgroup σ there exists a valuation ν ∈ VK such that

σ is trivial on (1 + mν)× ⊂ K×

there exists a maximal subgroup σ′ ⊆ σ of R-corank at most
one such that

σ′ ⊆ Hom(Γν ,R) ⊂ Hom(K×,R) = Wa
K (R).

Proofs: main steps
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Commuting pairs

The group σ′ is, in fact, the inertia subgroups Iaν(R) corresponding to
ν. The union of all σ containing an inertia subgroup Iaν(R) is the
corresponding decomposition group Da

ν(R).

Proofs: main steps
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Projective geometry of the Weil group

Key fact

Let γ, γ′ ∈ σ ⊂Wa
K (R) be nonproportional elements contained in a

c-subgroup σ ∈ ΣK (R). Then, for any nonconstant f ∈ K× the
restrictions of γ, γ′ to the projective line PFp(Fp ⊕ f Fp) are
proportional (modulo addition of constants).

Consider the map

K×/k× = Pk(K ) → A2(R)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Images of planes

The image of every P2(Fp) in A2(R) is contained in a union of an
affine line and a point.

Proofs: main steps



Projective geometry of the Weil group

Key fact

Let γ, γ′ ∈ σ ⊂Wa
K (R) be nonproportional elements contained in a

c-subgroup σ ∈ ΣK (R). Then, for any nonconstant f ∈ K× the
restrictions of γ, γ′ to the projective line PFp(Fp ⊕ f Fp) are
proportional (modulo addition of constants).

Consider the map

K×/k× = Pk(K ) → A2(R)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Images of planes

The image of every P2(Fp) in A2(R) is contained in a union of an
affine line and a point.

Proofs: main steps



Projective geometry of the Weil group

Key fact

Let γ, γ′ ∈ σ ⊂Wa
K (R) be nonproportional elements contained in a

c-subgroup σ ∈ ΣK (R). Then, for any nonconstant f ∈ K× the
restrictions of γ, γ′ to the projective line PFp(Fp ⊕ f Fp) are
proportional (modulo addition of constants).

Consider the map

K×/k× = Pk(K ) → A2(R)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Images of planes

The image of every P2(Fp) in A2(R) is contained in a union of an
affine line and a point.

Proofs: main steps



Projective geometry of the Weil group

Key fact

Let γ, γ′ ∈ σ ⊂Wa
K (R) be nonproportional elements contained in a

c-subgroup σ ∈ ΣK (R). Then, for any nonconstant f ∈ K× the
restrictions of γ, γ′ to the projective line PFp(Fp ⊕ f Fp) are
proportional (modulo addition of constants).

Consider the map

K×/k× = Pk(K ) → A2(R)

f 7→ (γ(f ), γ′(f ))

This maps every projective line into an affine line, a collineation.

Images of planes

The image of every P2(Fp) in A2(R) is contained in a union of an
affine line and a point.

Proofs: main steps



Projective geometry of the Weil group

Lemma

A map α : Pk(K )→R is a flag map iff the restiction to every
P1 ⊂ Pk(K ) is a flag map, i.e., constant on the complement of one
point.

Counterexample: the Fano plane

(0:1:0)

(1:0:0)(1:0:1)(0:0:1)

(0:1:1) (1:1:0)

Proofs: main steps
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Geometry of collineations

Given a map
φγ,γ′ : P2(Fq)→{•, ◦, ?} ⊂ A2(F2)

such that every l ⊂ P2(Fq) is contained in an “affine line” (any subset
of two points) one of the following

γ, γ′, γ + γ′

is a flag map.

Proofs: main steps
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Geometry of collineations

Step 1. We can assume that P2(Fq) has lines of all three types and
that every line has at least two points of each type.

Step 2. Every point of type • induces a projective equivalence on lines
of type l(◦, ?), preserving the “colors” of points.

Proofs: main steps
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Geometry of collineations

Step 3. There exist related points: •, •′ ⊂ l, i.e, there exists a •′′ /∈ l
such that the lines l(•, •′′) and l(•′, •′′) are of the same type.

Step 4. There exists a projective transformation on l, with exactly one
fixed point, preserving the “colors” and transitive on the complement
to the fixed point: (

1 1

0 1

)

Proofs: main steps



Geometry of collineations

Step 3. There exist related points: •, •′ ⊂ l, i.e, there exists a •′′ /∈ l
such that the lines l(•, •′′) and l(•′, •′′) are of the same type.

Step 4. There exists a projective transformation on l, with exactly one
fixed point, preserving the “colors” and transitive on the complement
to the fixed point: (

1 1

0 1

)

Proofs: main steps



Geometry of collineations

This forces one of γ, γ′, γ + γ′′ to be a flag map on the whole P2(Fq),
and in the end on all of P(K ).

Proofs: main steps



Projective geometry of the Weil group

Proposition

Every σ ∈ ΣK (R) contains an inertia element ι = ιν for some
valuation ν of K .

The elements “commuting” with ι form Da
ν(R).

In the reconstruction of function fields from their `-Galois groups, i.e.,
when R = Z`, an isomorphism pairs

(GaK ,ΣK ) ' (GaL,ΣL)

allows to identify the intricate relations between valuations, and in the
end the projective structures of Pk(K ) and Pl(L); thus a field
isomorphism.

Proofs: main steps
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Reconstruction of function fields

As seen above, we need to reconstruct:

K×/k× from K̂×

projective lines l ⊂ P(K ), or multiplicative groups of
1-dimensional subfields.

What we see are inertia and decomposition groups of valuations on K .

Assume for simplicity that K = k(X ), where X is a surface. We see
divisorial valuations, i.e., curves on some model of K (a blowup of X ).

Proofs: main steps



Reconstruction of function fields

As seen above, we need to reconstruct:

K×/k× from K̂×

projective lines l ⊂ P(K ), or multiplicative groups of
1-dimensional subfields.

What we see are inertia and decomposition groups of valuations on K .

Assume for simplicity that K = k(X ), where X is a surface. We see
divisorial valuations, i.e., curves on some model of K (a blowup of X ).

Proofs: main steps



Reconstruction of function fields

As seen above, we need to reconstruct:

K×/k× from K̂×

projective lines l ⊂ P(K ), or multiplicative groups of
1-dimensional subfields.

What we see are inertia and decomposition groups of valuations on K .

Assume for simplicity that K = k(X ), where X is a surface. We see
divisorial valuations, i.e., curves on some model of K (a blowup of X ).

Proofs: main steps



Reconstruction of function fields

Characterizing curves of genus ≥ 1

Let E = k(C ) be the function field of a curve. Then g(C ) ≥ 1 iff there
exists a nontrivial homomorphism from GaE onto an abelian `-group
that maps all inertia elements in GaE to zero.

Indeed, every higher-genus curve over F̄p has unramified covering of
degree `.

It follows that from an isomorphism

(GaK ,ΣK )→(GaL,ΣL)

we can match higher-genus curves on models X and Y of K , resp. L.
Note that different models of the same field differ only in rational
curves.

Proofs: main steps
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Reconstruction of function field

Let
T`(X ) := lim

←−
Tor1(Z/`n,Pic0(X ){`}).

We have
0→K×/k×→Div(X )→Pic(X )→0

which gives rise to the diagram

0 → K×/k× ⊗ Z`
ρX ,`−→ Div0(X )`

pic`
� Pic0(X ){`}

↓ ↓ ↓

T`(X ) ↪→ K̂×
ρ̂X−→ D̂iv0(X )

p̂ic−→ 0.

Proofs: main steps
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Reconstruction of function fields

We have two notions of support for f̂ =
∑

m am(f )Dm ∈ K̂×:

suppK (f̂ ) := {ν ∈ DVK | [f̂ , Iaν ] 6= 0}
suppX (f̂ ) := {Dm ⊂ X | am(f ) 6= 0}

If X contains only finitely many rational curves, then there is an
intrinsic notion of finite support: finite support on ν ∈ DVK
corresponding to curves of genus ≥ 1. This allows to reconstruct
“honest” functions f inside K̂×. ...

Proofs: main steps



Reconstruction of function fields

We have two notions of support for f̂ =
∑

m am(f )Dm ∈ K̂×:

suppK (f̂ ) := {ν ∈ DVK | [f̂ , Iaν ] 6= 0}
suppX (f̂ ) := {Dm ⊂ X | am(f ) 6= 0}

If X contains only finitely many rational curves, then there is an
intrinsic notion of finite support: finite support on ν ∈ DVK
corresponding to curves of genus ≥ 1. This allows to reconstruct
“honest” functions f inside K̂×. ...

Proofs: main steps



Main points of the proof

Rational curves play a crucial role in anabelian geometry.

1-dimensional subfields

uniruled divisors complicate the identification of

K× ⊗ Z×(`) ⊂ K̂×.

Proofs: main steps



Main points of the proof

Rational curves play a crucial role in anabelian geometry.

1-dimensional subfields

uniruled divisors complicate the identification of

K× ⊗ Z×(`) ⊂ K̂×.

Proofs: main steps



Unramified cohomology

Let ν be a divisorial valuation of K . We have a natural homomorphism

∂ν : Hi (GK )→Hi−1(GKν ),

where Kν is the residue field at ν. After Bloch-Ogus (1974) and
Colliot-Thélène-Ojanguren (1989), unramified cohomology is

Hi
nr (GK ) :=

⋂
ν

Ker(∂ν) ⊂ Hi (GK ).

By definition, this is a birational invariant and we may write H∗nr (X ); it
vanishes for rational varieties.

Applications



Universal spaces for unramified cohomology

Let k = F̄p, ` 6= p. Let K = k(X ) be the function field of an algebraic
variety of dimension ≥ 2 and GK its absolute Galois group.

Bogomolov-T. 2012

If α ∈ Hi
nr (GK ,Z/`n) then there exist

a surjective homomorphism GK→G a onto finite abelian `-group,

projective G a-representations P(Vj) over k ,

an explicit open G a-stable subset

P◦ ⊂ P :=
∏
j

P(Vj),

and a rational map % : X→P◦/G a

such that α is induced from P◦/G a.

Applications



“Section conjecture”

Bogomolov-T. 2011

Assume that K , L are function fields over algebraic closures of finite
fields k , l , respectively. Assume that

ψ1 : K×/k× → L×/l×

is a noninjective homomorphism such that

(a) for any one-dimensional subfield E ⊂ K , there exists a
one-dimensional subfield F ⊂ L with

ψ1(E×/k×) ⊆ F×/l×,

(b) ψ1(K×/k×) contains at least two algebraically independent
elements of L×/l×.

Applications



“Section conjecture”

Bogomolov-T. 2011

Then

1 there is a valuation ν of K such that ψ1 is trivial on

(1 + mν)×/k× ⊂ o×ν /k×;

2 the restriction of ψ1 to

K×ν /k× = o×ν /k×(1 + mν)× → L×/l×

is injective and satisfies (a).

Applications
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