The integral Hodge conjecture for threefolds

Burt Totaro

February 29, 2012

Hodge decomposition: For X a smooth complex projective variety we have

$$H^i(X, \mathbb{C}) = \bigoplus_{j=0}^{i} H^{i-j}_j(X),$$

where $H^{i-j}_j(X) := H^{i-j}(X, \Omega^j_X)$.

Fact: For any complex subvariety $Y \subset X$ of codimension i the image of $[Y] \in H^{2i}(X, \mathbb{Z})$ in $H^{2i}(X, \mathbb{C})$ lies in $H^{i,i}(X)$.

Hodge conjecture (HC): For any $u \in H^{2i}(X, \mathbb{Q})$ whose image in $H^{2i}(X, \mathbb{C})$ is in $H^{i,i}(X)$, u is the class of an algebraic cycle, i.e., a \mathbb{Q}-linear combination of codimension i subvarieties of X.

Integral Hodge conjecture (IHC): same statement for $H^{2i}(X, \mathbb{Z})$ and algebraic cycles with \mathbb{Z} coefficients.

The main evidence is the Lefschetz $(1, 1)$ theorem, i.e., the IHC is true for $i = 1$.

Corollary 1 The Hodge conjecture (with \mathbb{Q}-coefficients) is true for 1-cycles, i.e., for $H^{2n-2}(X, \mathbb{Q})$, where $n = \dim(X)$.

The first open case of the HC: 2-cycles on a 4-fold, even an abelian 4-fold. Weil described explicit Hodge classes in the middle cohomology of a special class of abelian 4-folds which are not known to be algebraic. [Bogomolov: And this is all one needs to prove in the case of abelian 4-folds. Totaro: That’s right. For other classes of abelian 4-folds (not of Weil’s type), there are not many Hodge classes, and the Hodge conjecture is known.]
Remark 1 The Hodge decomposition of $H^{2i}(X, \mathbb{C})$ is not defined over \mathbb{Q}.

For a family of smooth projective varieties $X \to B$, the Hodge decompositions on X_t vary continuously for $t \in B$, and filtrations vary holomorphically. So the HC predicts that algebraic cycles ‘jump up’ on special varieties of the family, when $H^{12}(X)$ has larger than usual intersection with $H^{2i}(X, \mathbb{Q})$. The HC is often easy to check for general varieties in a family, as there are few Hodge cycles beyond those generated by divisors.

[Graber: Given the paucity of evidence, why do people believe the Hodge conjecture? Totaro: I cannot really answer this, but it is a key ingredient in a larger framework governing cycles in algebraic geometry.]

Integral Hodge conjecture for threefolds. This is false for very general hypersurfaces in \mathbb{P}^4 of degree d for certain d ($d \geq 48$); this is due to Kollár.

For any smooth hypersurface X in \mathbb{P}^4, we have

$$H^*(X, \mathbb{Z}) = \left\{ \begin{array}{c}
\mathbb{Z} & 0 & \mathbb{Z}^N & \mathbb{Z} & 0 & \mathbb{Z} \\
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \right\}$$

and the IHC for X would predict that all of $H^4(X, \mathbb{Z}) \cong H_2(X, \mathbb{Z})$ is generated by curves in X. Note that

$$\text{deg} : H^4(X, \mathbb{Z}) \xrightarrow{\sim} \mathbb{Z},$$

and thus the IHC is true for X if X contains a line (hence for $\text{deg}(X) \leq 5$) and for some special hypersurfaces of any degree.

Conjecture 1 (Griffiths–Harris) For a very general hypersurface X of degree $d \geq 6$ in \mathbb{P}^4, every curve in X has degree $\equiv 0 \pmod{d}$.

Theorem 1 (Kollár) For X a very general hypersurface of degree 48 in \mathbb{P}^4, every curve in X has even degree. In particular, IHC is false for X.

Proof: Find a singular 3-fold $Y \subset \mathbb{P}^4$ of degree 48 such that every curve on Y has even degree. Then apply a degeneration argument, noting that any specialization of a curve of odd degree has at least one component of odd degree.

To produce the singular hypersurface Y, start with Z any smooth projective threefold and L a very ample line bundle with $L^3 = d$ (e.g., 48). Suppose
that every curve \(C \subset Z \) has \(L \cdot C \equiv 0 \pmod{e} \), for \(e \) a positive integer not dividing 6 (e.g., 4). (For example, \(Z = \mathbb{P}^3 \), \(L = O(4) \), \(d = 64 \), \(e = 4 \).

To give an example of degree 48, let \(S \) be a very general quartic surface \(S \), \(Z = S \times \mathbb{P}^1 \), and \(L = \pi_1^*O(1) \otimes \pi_2^*O(4) \) on \(Z \); then \(d = 48 \) and every curve on \(Z \) has degree a multiple of 4 with respect to \(L \).

Embed \(Z \hookrightarrow \mathbb{P}^N \) using \(L \) and take a general linear projection to a hypersurface \(Y \) in \(\mathbb{P}^4 \). We might hope that every curve \(C \subset Y \) has degree \(\equiv 0 \pmod{e} \). However, the finite morphism \(\pi : Z \to Y \) can be 2 : 1 on a surface and 3 : 1 on some curves (and show more complicated behavior over finitely many bad points). Thus every curve \(C \subset Y \) is either

\[
\pi_*(\text{curve}), \quad \frac{1}{2}\pi_*(\text{curve}), \quad \text{or} \quad \frac{1}{3}\pi_*(\text{curve})
\]

as a cycle. So every curve \(C \subset Y \) has degree a multiple of \(e/6 \).

Hassett-Tschinkel construction of counterexamples to IHC defined over \(\mathbb{Q} \):

Do the same over \(\text{Spec}(\mathbb{Z}) \), i.e., choose a hypersurface with a reduction modulo \(p \) that is a general projection.

Positive results on IHC for threefolds:

Theorem 2 (Voisin) Let \(X \) be a smooth projective threefold over \(\mathbb{C} \) which is either uniruled or strongly Calabi-Yau (\(K_X \simeq O_X \) and \(b_1(X) = 0 \)). Then the IHC is true for \(X \), i.e., \(H_2(X,\mathbb{Z}) \) is generated by algebraic curves.

Question 1 Let \(X \) be a smooth projective threefold, uniruled or simply-connected Calabi-Yau. Is \(H_2(X,\mathbb{Z}) \) generated by rational curves?

Question 2 (asked by Tschinkel) Does every simply connected Calabi-Yau threefold \(X \) contain any rational curve?

Question 2 has a positive answer for \(X \) of Picard number at least 14, by R. Heath-Brown and P.M.H. Wilson.

How about IHC for rationally connected varieties of higher dimension?

Theorem 3 (Colliot-Thélène, Voisin) There is a rationally connected (RC) 6-fold (fibered over \(\mathbb{P}^3 \) with generic fiber a quadric) for which IHC fails for codimension-two cycles.
This draws on previous work of Ojanguren and Colliot-Thélène on non-vanishing of unramified cohomology in this case. The key recent innovation is the development of links between unramified cohomology and the failure of the integral Hodge conjecture.

[Starr: How about blowing up something for which the IHC fails in projective space? Totaro: That works, but not for codimension two cycles.]

Despite Theorem 3, IHC for 1-cycles on a RC variety of any dimension looks plausible.

Theorem 4 (Voisin) If the Tate conjecture (with \mathbb{Q}_ℓ coefficients) holds for 1-cycles on all smooth projective surfaces over \mathbb{F}_q, then the IHC holds for 1-cycles on RC varieties of any dimension over the complex numbers.

Proof: The IHC for 1-cycles on RC varieties is deformation invariant. Indeed, can use very free rational curves to get curves with ample normal bundle, i.e., both

$$C + \text{very free curves} \quad \text{and} \quad \text{very free curves}$$

deform.

Voisin uses Chad Schoen’s theorem: If the Tate conjecture (with \mathbb{Q}_ℓ-coefficients) holds for all varieties [Colliot-Thélène: suffices for just surfaces] over \mathbb{F}_q then it holds for 1-cycles with \mathbb{Z}_ℓ coefficients on all varieties over \mathbb{F}_q.

Specialize your RC variety to a separably rationally connected variety over a finite field, then lift curve classes to characteristic zero. \(\square\)

Theorem 5 (Totaro) Can omit the assumption that $b_1(X) = 0$ for Calabi Yau 3-folds. In particular, IHC holds for 1-cycles on abelian 3-folds.

How to prove IHC for CY 3-folds X or uniruled 3-folds: Look at the smooth surfaces S in $|dH|$ for H ample on X, $d \gg 0$. The Lefschetz hyperplane theorem says that

$$H_2(S, \mathbb{Z}) \rightarrow H_2(X, \mathbb{Z})$$

is onto. So let $u \in H_2(X, \mathbb{Z})$ be a Hodge class. If u is the image of a Hodge class on some surface S_t in the family then we win. (This reduces us to a question about Hodge theory.)
Idea: If K_X is “negative” or trivial then

$$h^0(S, N_{S/X}) \geq h^2(S, \mathcal{O}).$$

The former measures the dimension of the deformation space of S in X; the latter how complicated the Hodge structure on $H^2(S)$ is. Essentially, $h^2(S, \mathcal{O})$ measures the number of conditions that have to be satisfied for a given integral class to be Hodge.

That inequality suggests the possibility that every homology class in $H_2(X, \mathbb{Z})$ in some open cone near $H^{1,1}(X)$ may become a Hodge class on some surface S in the family near a given one. We justify that by an infinitesimal calculation to show that the Hodge structure on the family of surfaces S is varying “as much as possible”.

[C. Xu: For RC varieties, is the effective cone generated by rational curves? J. Li: How does the simple-connectivity come in? Totaro: For a Calabi-Yau threefold X with first Betti number X not zero, we also have $H^2(X, O_X) \neq 0$. So the IHC becomes a more complicated statement to prove: we have to prove that a specified subgroup of $H_2(X, \mathbb{Z})$ is generated by algebraic curves, rather than showing that all of $H_2(X, \mathbb{Z})$ is generated by algebraic curves. Colliot-Thélène: Do you have a new proof of Voisin’s result? Totaro: No, my goal was to extend her methods to a broader class of 3-folds. McKernan: Does IHC hold for 3-folds of Kodaira dimensions 1 and 2? Totaro: There are counterexamples in those cases too, by Colliot-Thélène and Voisin. So the most one can hope would be that IHC might hold for all 3-folds of Kodaira dimension at most zero.]