Quiz 5 Rubric

Problem

Show that every compact metric space is separable.

Rubric

I'd be surprised if there were any other way to solve this problem.

- (5 points) Using the compactness
 - Award **3 points** if the student tries to use compactness via its definition (every open cover has a finite subcover).
 - If this is done by placing a small ball centered at every point, instead award the full 5 points.
 - Compactness can be sidestepped by using that the space is totally bounded.
 Award this full points.
- (5 points) Constructing the countable dense set
 - Award **3 points** for correctly claiming that a subset that the student constructs is countable and dense.
 - Award **2 points** for showing that the subset is indeed dense.
 - A rigorous proof that it is countable is not needed provided that it is indeed countable.

Thomas Lam Quiz 5

Solution

Let the compact metric space be (X, d). For each $n \in \mathbb{N}$, we have

$$\bigcup_{x \in X} B(x, 1/n) \supseteq X,$$

so $\{B(x,1/n)\}_{x\in X}$ is an open cover of X. Since X is compact, it follows that there exists a finite subcover, $\{B(x_{n,k},1/n)\}_{k=1}^{m_n}$. Let

$$E := \left\{ x_{n,k} : 1 \le k \le m_n, \ n \in \mathbb{N} \right\}.$$

It is not too hard to see that E is countable. We claim that E is dense (in X). To see this, take some $x \in X$ and r > 0. We will show that B(x, r) intersects E.

Find $n \in \mathbb{N}$ such that 1/n < r. Then

$$\bigcup_{k=1}^{m_n} B(x_{n,k}, 1/n) \supseteq X,$$

so since $x \in X$, we have $x \in B(x_{n,k}, 1/n)$ for some $1 \le k \le m_n$. But now $d(x, x_{n,k}) < 1/n < r$, so $x_{n,k} \in B(x,r)$, meaning that $B(x,r) \cap E \ne \emptyset$. This completes the proof.