
Thomas Lam Quiz 4

Quiz 4 Rubric

Problem

Let K,L ⊆ Rd be non-empty compact sets. Show that the infimum

d(K,L) := inf{∥x− y∥ : x ∈ K, y ∈ L}
is obtained.

Rubric

Most methods will likely use compactness, continuity, and then extreme value theorem.
Depending on the exact approach, these components will have varying challenge.

• For a correct method for which the continuity is the main difficulty and the compactness
is trivial (e.g. Solution 1):

– Award 6 points for identifying the methodology

– Award 1-4 points based on the correctness of the proof of continuity

• For a correct method for which continuity is pretty easy but compactness is not so
obvious (e.g. Solution 4):

– Award 2 points for stating the continuous function. (If the continuous function
is the norm function x 7→ ∥x∥, no proof is required.)

– Award 1-5 points based on the correctness of the proof of compactness

– Award 3 points for applying the extreme value theorem

• For a correct method for which continuity and compactness are both need some work
(e.g. Solution 2):

– 3 points for continuity

– 4 points for compactness

– 3 points for applying extreme value theorem

• For other solutions using extreme value theorem which do not resemble any of the
provided solutions, weight the point values for each component of the solution according
to their difficulty.

• If an outline of the proof is written and it should work in theory, award at least 3
points.

• For very different solutions (e.g. Solution 5) use your best judgment.
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Solution 1

We begin by observing that

inf
x∈K,y∈L

∥x− y∥ = inf
x∈K

(
inf
y∈L

∥x− y∥
)
.

So define a function f : K → R via f(x) = infy∈L ∥x− y∥. (This is the “distance” between
the point x and the set L.) We claim that f is continuous. Indeed, fix x0 ∈ K. Fix
ε > 0. Let x ∈ K so that ∥x − x0∥ < δ, where δ will be chosen later. We will show that
|f(x)− f(x0)| < ε. Indeed, by definition of f(x0), we may find y0 ∈ L such that

f(x0) ≤ ∥x0 − y0∥ < f(x0) +
ε

100
.

It follows that

f(x) ≤ ∥x− y0∥ ≤ ∥x− x0∥+ ∥x0 − y0∥ ≤ ∥x− x0∥+ f(x0) +
ε

100
≤ f(x0) + δ +

ε

100
.

So f(x)− f(x0) ≤ δ + ε
100

. By a symmetrical argument (instead find y ∈ L so that f(x) ≤
∥x− y∥ < f(x) + ε/100), we also have f(x0)− f(x) ≤ δ + ε

100
. Hence

|f(x)− f(x0)| ≤ δ +
ε

100
< ε,

where we have now chosen δ = ε/7.

Since f is continuous on a compact set, it has a minimum, which is what we needed.

Solution 1.5

We can prove f is continuous by instead showing that it is 1-Lipschitz. Pick x1, x2 ∈ K.
We will show that |f(x1)− f(x2)| ≤ ∥x1 − x2∥. For any y1, y2 ∈ L, we have

f(x1) ≤ ∥x1 − y1∥ ≤ ∥x1 − x2∥+ ∥x2 − y2∥,

so
f(x1)− ∥x1 − x2∥ ≤ ∥x2 − y2∥.

Taking the infimum over y2 gives

f(x1)− ∥x1 − x2∥ ≤ f(x2)

so that f(x1)− f(x2) ≤ ∥x1 − x2∥. An entirely symmetric argument (reversing the roles of
x1 and x2) shows that |f(x1)− f(x2)| ≤ ∥x1 − x2∥ as claimed.
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Solution 2

This solution uses more than one type of norm so I will be specifying the norm used
every time.

This solution also uses the extreme value theorem, but in this way:

• We show that the function f : K×L → R defined by f(x, y) := ∥x−y∥Rd is continuous
(where the topology on K × L is inherited from R2d).

(note that f has “type” R2d → R.)

• We show that K × L ⊆ R2d is compact (with respect to the topology of R2d).

To show that f is continuous, take a point (x0, y0) ∈ K×L. Then for all ε > 0, we have,
for all (x, y) with ∥(x, y)− (x0, y0)∥R2d < δ (with δ to be chosen later), that

∥(x, y)− (x0, y0)∥R2d =
√

∥x− x0∥2Rd + ∥y − y0∥2Rd < δ,

so that √
∥x− x0∥2Rd + 0 ≤

√
∥x− x0∥2Rd + ∥y − y0∥2Rd < δ

i.e. ∥x− x0∥Rd < δ, and similarly ∥y − y0∥Rd < δ. So

∥x− y∥Rd ≤ ∥x− x0∥Rd + ∥x0 − y0∥Rd + ∥y0 − y∥Rd ≤ 2δ + ∥x0 − y0∥.

Similarly

∥x0 − y0∥Rd ≤ ∥x0 − x∥Rd + ∥x− y∥Rd + ∥y − y0∥Rd ≤ 2δ + ∥x− y∥.

Combining these two inequalities allows us to conclude |f(x) − f(y)| ≤ 2δ < ε, where we
have chosen δ = ε/20.

To show that K ×L is compact, we note that K ×L ⊆ R2d and so, by Heine-Borel, it is
sufficient to show that K × L is closed and bounded.

K×L is bounded because ifK ⊆ B(0, R1) and L ⊆ B(0, R2), thenK×L ⊆ BR2d(0,
√

R2
1 +R2

2).

To see that K × L is closed, we may show that the complement is open. Take (x, y) ̸∈
K × L. Then, this means that either x ̸∈ K or y ̸∈ L. Without loss of generality, let us
suppose x ̸∈ K. Then since Kc is open, there exists r > 0 so that B(x, r) ⊆ Kc. We claim
that B((x, y), r) ⊆ (K × L)c. This is because for any (x′, y′) which is distance < r from
(x, y), we have ∥x − x′∥ < r (why?), so x′ ̸∈ K and thus (x′, y′) ̸∈ K × L. This completes
the proof.
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Solution 2.5

We could also have shown thatK×L is closed by showing that it contains its accumulation
points. If (x, y) is an accumulation point of K × L, then B((x, y), 1/n) \ {(x, y)} intersects
K ×L for all n. Take a point (xn, yn) in the intersection. Evidently (xn, yn) → (x, y) so you
can argue that xn → x and yn → y. Since K and L are closed we must have x ∈ K and
y ∈ L, so (x, y) ∈ K × L.

Solution 2.75

We could also have shown that K × L is closed by showing that it is sequentially closed
— that is, if (xn, yn) ∈ K × L is Cauchy, and its limit is (x, y), then (x, y) ∈ K × L. The
proof is basically just the latter half of Solution 2.5.

Solution 3

Let us follow Solution 2, but prove compactness differently by showing that K × L is
sequentially compact. Indeed, take (xn, yn) ∈ K × L. Then we may extract a subsequence
xnk

which converges to x0 ∈ K, and then extract a subsequence ynkj
which converges to

y0 ∈ L. Then (xnkj
, ynkj

) → (x0, y0). (see also solution 5)

Solution 4

Define the difference set

K − L := {x− y : x ∈ K, y ∈ L}.

Then we wish to show that infz∈K−L ∥z∥ is obtained.

It is not hard to show that the norm function f(z) := ∥z∥ is continuous (you can show
that |∥x∥ − ∥y∥| ≤ ∥x− y∥ so that it’s 1-Lipschitz, for example), so it suffices to show that
K − L is compact.

Since K − L ⊆ Rd, we have by Heine-Borel that it is sufficient to show that K − L is
closed and bounded. To see that is bounded, find K ⊆ B(0, R1) and L ⊆ B(0, R2). Then
for all z ∈ K − L, we may write z as x− y with x ∈ K and y ∈ L, and now

∥z∥ ≤ ∥x∥+ ∥y∥ ≤ R1 +R2.

Thus K − L ⊆ B(0, R1 +R2).
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To see that K − L is closed, we can show that it contains all its accumulation points.
Suppose z ∈ acc(K − L). Then for every n ∈ N we can find xn ∈ K and yn ∈ L such
that ∥z − (xn − yn)∥ < 1/n. By compactness of K and L, we can extract subsequences:
xnk

→ x0 ∈ K and ynkj
→ y0 ∈ L. This gives xkj−ynkj

→ x0−y0 but also ∥z−(xkj−ykj)∥ → 0
so xkj − ykj → z, so z = x0 − y0 ∈ K − L.

(well that’s interesting, it seems like we had to use compactness to show that it’s closed...
could it be false if they are both not necessarily compact?)

Solution 5

The infimum exists and is finite, so there exists a sequence {(xn, yn)}n ∈ K×L for which

lim
n→∞

∥xn − yn∥ = inf
x∈K,y∈L

∥x− y∥.

Since K is compact, and xn ∈ K, there exists a subsequence {xnk
}k ∈ K such that xnk

→
x0 ∈ K.

Since L is compact, and ynk
∈ L, there exists a subsequence {ynkj

}j ∈ L such that

ynkj
→ y0 ∈ L. Subsequences preserve limits so xnkj

→ x0.

Subsequences preserve limits, so

lim
n→∞

∥xn − yn∥ = lim
j→∞

∥xnkj
− ynkj

∥.

Since xnkj
− ynkj

→ x0 − y0, we may appeal to the continuity of the norm to conclude that

the limit exists and is equal to ∥x0 − y0∥. This obtains the infimum.
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