
Thomas Lam Homework 1

1 Homework 1

1. We claim xn monotone decreasing. Indeed, xn+1 ≤ xn iff 2 + xn ≤ x2
n iff (xn − 2)(xn +

1) ≥ 0 iff xn ∈ (−∞,−1] ∪ [2,∞). So it suffices to show xn ≥ 2 for all n. Indeed,
xn+1 ≥ 2 iff 2 + xn ≥ 4 iff xn ≥ 2. Since x0 ≥ 2 this is true by induction. So
xn decreasing. Moreover we just showed 2 is a lower bound so the limit exists. By
continuity of square root we may send n → ∞ in the recurrence to find L =

√
2 + L

and so L ∈ {−1, 2}. The case L = −1 is absurd (why?) so L = 2.

2. It converges to 0. We claim by induction that |xn| ≤ 1000√
n

for all n ≥ 1, which would
be sufficient. Clearly it is true for n = 1. Now if it is true for some n then

|xn+1| ≤
106

2n
+

1

2n
≤ 100

n
,

so we are done provided that 100
n

≤ 1000√
n+1

. This is equivalent to n + 1 ≤ 100n2 which
is true for all n.

3. If |a| > 1 then can show |xn| = |a|n → ∞. If a = −1 or a = 1 then xn = 1 for all large
enough n. Otherwise if |a| < 1 can show |xn| = |a|n → 0. The possible limits are 0
and 1.

4. Any limit L must satisfy L = L2−1.5L+1.5 which factors as (L−1.5)(L−1) = 0. So
L = 1, 1.5 are the only possible limits. To obtain them, take the constant sequences
xn = 1∀n and xn = 1.5∀n.

5. I feel like this problem has a typo in it but you basically do something similar to
problem 1.

6. see recitation notes / brightspace announcement

7. ditto

8. take some n, we claim that supk>n(akbk) ≤ supk>n ak · supk>n bk. this is because for
a particular k we have akbk ≤ supj>n aj · supj>n bj and now we may sup over k. now
send n → ∞. the assumptions in the problem ensure that the limit of the RHS exists
in [0,∞] (allowing +∞ as a sensible limit).

9. (a) the monotone behavior follows by working backwards from the desired statement
xn+1 ≤ xn using algebra. to argue the limit exists, argue that xn ≥

√
α for all n. to

compute the limit, solve L = (L+ α/L)/2. (b) use induction

10. see recitation notes

11. let xn be a bounded sequence. then there exists a bounded closed interval I containing
all xn. split I in the middle into two closed intervals I1,1 and I1,2 of half the size of I
whose union is I. one of these intervals contains infinitely many terms of xn, call it
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Thomas Lam Homework 2

I1. Split I1 into two halves, as before, and one will have infinitely many terms, call
it I2. repeating this forever we obtain a sequence I ⊇ I1 ⊇ I2 ⊇ . . . of nested closed
intervals. by the previous problem their intersection is nonempty, moreover their sizes
decrease at the rate c/2n → 0 so their intersection has exactly one element x. we claim
x is a subsequential limit of xn. indeed, define a subsequence as follows. take xn1 ∈ I1.
take xn2 ∈ I2 such that n2 > n1, which must be possible since I2 contains infinitely
many terms. and so on. by induction |xnk

− x| ≤ length(I)/2k → 0.

12. if the sequence xn is unbounded, say from above, then we can recursively take xnk
so

that nk > nk−1 and xnk
> xnk−1

. (if this is impossible then there has to be an upper
bound...) so we may presume the sequence is bounded. so it has a limit point x. if xn

contains x infinitely often then the problem is boring so assume this is not the case.
then either (−∞, x) or (x,∞) contains infinitely many points of xn. wlog the former.
then we may recursively define xnk

so that nk > nk−1 and xnk
∈ (xnk−1

, x).

13. the assumptions show that the limsup exists and is finite. for each k we have by
definition of limit that there exists NK so large that

∣∣supj≥n aj − lim sup(a)
∣∣ < 1/k for

all n ≥ Nk; in particular it’s true for n = Nk. by properties of sup there exists some
j ≥ Nk so that |aj − supj′≥Nk

aj′ | < 1/k. set jk to be this j. then by triangle inequality
|ajk − lim sup(a)| < 1/k and so ajk → lim sup(a). (jk may not be a strictly increasing
sequence of indices, to fix this we can inductively enforce that Nk > jk−1.)

14. if an cauchy then for all ε there is Nε so that

|am − an| < ε

for all m,n ≥ Nε. in particular

an − ε < am < an + ε

for all such m,n. for fixed m, the above is true for all n large enough, so can send
n → ∞ by taking limsup and liminf, to find that

−ε+ lim sup
n

an ≤ am ≤ ε+ lim inf
n

an.

taking the two ends of this inequality shows that the limsup and liminf are within 3ε.
as ε was arbitrary we deduce they are equal.

15. AFSOC xn does not converge to x∗. then there exists ε > 0 such that infinitely many
xn’s satisfy |xn − x∗| > ε. take a subsequence from those xn’s. clearly it cannot
converge to x∗, contradiction.

2 Homework 2

1. the trick is that

an =
n∏

k=1

ak
ak−1

.
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(where we let “a0 = 1”) let L = lim sup(an+1/an). fix ε > 0, then there is Nε so that
for all n > Nε, we have an+1/an ≤ L + ε. (this is a property of limsup.) now for
n > Nε,

an =
Nε∏
k=1

ak
ak−1

n∏
k=Nε

ak
ak−1

≤
Nε∏
k=1

ak
ak−1

· (L+ ε)n−Nε .

some indices may be off by 1 but i don’t care. we get that

a1/nn ≤ C1/n
ε · (L+ ε)1−Nε/n

where Cε is a constant depending only on ε (and the original sequence but whatever).
taking limsup,

lim sup
n

(a1/nn ) ≤ L+ ε.

but ε was arbitrary.

2. (1) omitted (2) use previous problem

3. see rubric

4. note that limn

∑∞
k=n |ak+1 − ak| = 0. using this, combined with the inequality

|am − an| ≤
n−1∑
k=m

|ak+1 − ak|, n > m,

you can show that it’s cauchy, so it converges. converse is not true by taking ak =
(−1)k/k.

5. let that sum be Sn. assume for now that the limit p exists. by integration∫ n+1

1

1/
√
x ≤ Sn ≤

∫ n

0

1/
√
x

or
2
√
n+ 1− 2 ≤ Sn ≤ 2

√
n.

so
0 ≤ 2

√
n− Sn ≤ 2− 2(

√
n+ 1−

√
n).

so 0 ≤ p ≤ 2 (send n → ∞). for the lower bound just show that an is increasing and
note that a1 = 1. im too lazy to tighten the upper bound to < 2. ok now let’s go back
and show the limit exists. this is because an = an−1 +

∫ n

n−1
1/
√
x dx − 1/

√
n. show

that
∫ n

n−1
1/
√
x dx− 1/

√
n is positive (using that 1/

√
x is decreasing) and you win by

monotonicity, combined with the upper bound of 2.
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6. let that sum be Hn (this is a common notation). then for each k we have∫ k+1

k

1/x ≤ 1

k
≤
∫ k

k−1

1/x (∗)

and so, if an = Hn − log n, then by the LHS of (∗),

an+1 = an + 1/n+ log n− log(n+ 1)

= an1/n−
∫ n+1

n

1/x dx ≥ an.

so an increasing. it remains to get an upper bound. summing (∗) from k = 2 to k = n,∫ n+1

2

1/x ≤ Hn − 1 ≤
∫ n

1

1/x

and so
log((n+ 1)/2) ≤ Hn − 1 ≤ log n.

so Hn − log n ≤ 1. (rmk: γ is the euler-mascheroni constant)

7. you can show 1 + x ≤ ex by showing the minimum of ex − x − 1 is 0. (calculus 1
allowed) if we apply this then

N∏
n=1

(1 + an) ≤ exp

(
N∑

n=1

an

)
.

if
∑

an converges then the RHS converges as N → ∞ (here we appeal to continuity
or monotonicity of ex). so the LHS has an upper bound. but the LHS increases in N
so its limit as N → ∞ exists.

8. by induction

an ≤
(

1

n+ 1

)p

a0.

(this is one of those times where it’s convenient to pretend that there’s a zeroeth term
but you don’t have to do it like that if u want) we win by comparison and p-test.

9. we can actually show that 1 − px ≤ (1 − x)p for all x ∈ R. this is due to three
ingredients. (1) we have d2/dx2 (1−x)p = d/dx −p(1−x)p−1 = p(p−1)(1−x)p−2 ≥ 0
for all x (there may be some edge cases for, say, p = 1, but it is still true), so (1− x)p

is convex. (2) at x = 0, we have that (1−x)p |x=0 = 1 and d
dx
(1−x)p |x=0 = −p, so the

tangent line to (1− x)p at x = 0 is given by 1− px. (3) a convex function is always ≥
a tangent line to it, everywhere. this proves the inequality. (this isn’t the only way to
prove it.) now suppose that |an+1| ≤ (1− p/n)|an| and p > 1. then

|an+1| ≤ [1− p(1/n)] · |an| ≤ (1− 1/n)p|an| =
(
n− 1

n

)p

|an|.

now you can apply problem 8 (the slight mismatch in indices is not a problem. why?)
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10. first we need to handle an annoying problem: the an’s may have different signs which
will certain make manipulations and theorems illegal. let’s see if we can show that this
isn’t really the case. since the limit exists, we have for all large enough n (say, n ≥ N1)
that

n

(
1− an+1

an

)
≤ L+ 10.

so

1− an+1

an
≤ L+ 10

n

and

1− L+ 10

n
≤ an+1

an
for all n ≥ N1. now note that the left side goes to 1 as n → ∞. so, we must have

0.5 ≤ an+1

an

for all large enough n; say, n ≥ N2. since 0.5 is positive, what this implies is that for
all n ≥ N2, the sign of an is either all positive or all negative. (because if an and an+1

are ever of different signs, then their quotient is negative!) flipping all signs does not
change whether or not the series converges, so we can assume without loss of generality
that an > 0 for all large enough n (i.e. n ≥ N2).

now we can actually tackle the problem. suppose that L > 1. let ε = (L− 1)/2. then
for all large enough n (say n ≥ N ′ ≥ N),

n

(
1− an+1

an

)
≥ L− ε =

L+ 1

2
= 1 +

L− 1

2
= 1 + ε.

so

1− an+1

an
≥ 1 + ε

n
so

1− 1 + ε

n
≥ an+1

an
so (since an’s are positive)

an+1 ≤
(
1− 1 + ε

n

)
an

so (by the previous problem and the fact that 1 + ε > 1) we have convergence!

now suppose that L < 1. then

n

(
1− an+1

an

)
≥ 1

for all large enough n; say, all n ≥ N ≥ N2. (elaboration: take ε = 1−L > 0, then by

definition of limit, there is some N for which n
(
1− an+1

an

)
≤ L + ε for all n ≥ N . oh

wait, L+ ε = 1.) this implies

1− an+1

an
≤ 1

n
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so
n− 1

n
≤ an+1

an

for all n ≥ N . now for all n > N ,

an = aN

n∏
k=N+1

ak
ak−1

≥ aN

n∏
k=N+1

k − 2

k − 1
=

N − 1

n− 1
aN =

N − 1

aN
· 1

n− 1
.

so by comparison
∑

an diverges because eventually it dominates the harmonic series.

lastly suppose L = 1. we’ll come up with a sequence an which causes convergence and
another sequence which causes divergence.

a natural guess for divergence is an = 1/n. indeed for this an,

n

(
1− an+1

an

)
= n

(
1− n

n+ 1

)
=

n

n+ 1
→ 1

so this satisfies the condition L = 1.

getting a convergent example is trickier. we’d like to choose something like an = 1/n1.1,
but this probably “converges too fast” to get L = 1. so let’s try a series which converges
slower than that. we can take

an =
1

n log(n)2
,

which converges by integral test. now let’s plug it into the limit and hope we get L = 1.

n

(
1− an+1

an

)
= n

(
1− n log2(n)

(n+ 1) log2(n+ 1)

)
=

n

n+ 1

(
n+ 1− n log2(n)

log2(n+ 1)

)

=
n

n+ 1

(
1− n

(
1− log2 n

log2(n+ 1)

))
alright, we know n

n+1
→ 1, so we want to show that

(
1− n

(
1− log2 n

log2(n+1)

))
→ 1. this

means we want to show that n
(
1− log2 n

log2(n+1)

)
→ 0.

let’s show that. we have

1− log2 n

log2(n+ 1)
=

log2(n+ 1)− log2 n

log2(n+ 1)

=
[log(n+ 1)− log(n)] · [log(n+ 1) + log(n)]

log2(n+ 1)

= log

(
1 +

1

n

)
· log(n+ 1) + log n

log2(n+ 1)

≤ log

(
1 +

1

n

)
· log(n+ 1) + log(n+ 1)

log2(n+ 1)
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≤ log

(
1 +

1

n

)
· 2

log(n+ 1)

by the way there’s this inequality log(1 + x) ≤ x, try to prove it (hint: 1 + x ≤ ex).

≤ 1

n
· 2

log(n+ 1)

therefore

n

(
1− log2 n

log2(n+ 1)

)
≤ 2

log(n+ 1)
→ 0.

tada. easy problem. literally trivial.

3 Homework 3

1. by partial geometric series formula (with r = eix),

Sn =
n∑

k=1

eikx =
eix(1− einx)

1− eix
.

now you have to do stuff.

=
eix/2(1− einx)

e−ix/2 − eix/2

= eix/2
1− einx

−2i sin(x/2)

= ei(n+1)x/2 e
−inx/2 − einx/2

−2i sin(x/2)

= ei(n+1)x/2−2i sin(nx/2)

−2i sin(x/2)

so we’re basically done with that.

now

|Sn| ≤
| sin(nx/2)|
| sin(x/2)|

≤ 1

| sin(x/2)|
which is nice. in particular,∣∣∣∣∣

n∑
k=1

sin k

∣∣∣∣∣ = | ImSn| ≤ |Sn| ≤ 1/ sin(1/2).

in other words the sum of sines is bounded (!!). so that’s nice.
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to conclude that
∑

sin(n)/n converges, first use summation by parts:

N∑
sin(n)/n ∼ 1

N

(
N∑

n=1

sinn

)
−

N∑
n=1

(
n∑

j=1

sin j

)
(1/n− 1/(n+ 1))

(i write ∼ because i almost definitely screwed up the indices, but i dont care)

the first term → 0 because sum of sines is bounded and 1/N → 0. the second term
converges absolutely because

∑N
n=1 | . . . | ≤ (1/ sin(1/2))

∑N
n=1 1/n− 1/(n+ 1) < ∞.

this shows that it converges. remains to show it does not converge absolutely. to do this,
pick a positive integer nk ∈ [kπ+π/4, (k+1)π−π/4] for all k. then | sin(nk)| ≥

√
2/2.

so
∑

| sin(n)|/n ≥
∑

k | sinnk|/nk ≥
∑

k

√
2/(2nk) ≥ 0.01

∑
k

1
(k+1)π

= +∞.

2. this problem seemed silly to me

3. ditto

4. an = 1 if n odd, an = 2 if n even.

5. use the AM-GM inequality
√

|ab| ≤ 1
2
(|a|+ |b|), combined with comparison.

6. (1) true. take yn = (−1)n, xn = (−1)n/n. (2) true...? unless im missing something.

7. (1) conditionally; alternating series test; to see it doesn’t converge absolutely try show-
ing that the terms are ≥ 1/n0.6 for all n large enough. (2) conditionally; use summation
by parts as in problem 1 (3) integral test (4) conditionally; alternating series test; to
show doesn’t converge absolutely try using the bound sin(1/n) ≥ 1

100n
and compare

with an integral.

8. see rubric

9. (a) for fixed m, al,m is zero for all l > m so the limit better be 0. other limit is similar.
(b) first two limits exist and = 0 by part (a). the second one is also zero because for
all ε you can show that if l,m ≥ 100/ε then |al,m| < ε.

10. (a) you need |r| < 1 (b) ditto (c) i think it’s fine? (d) once again want |r| < 1 (e)
seems legit (f) it’s true (g) there’s no way those sums converge, cos(nx) should get
pretty close to both 1 and −1 infinitely often. not entirely sure what the point of this
problem was, i guess it’s like a “fake proof” that that sum is 1/2? so many issues come
from the fact that the correct identities only are kosher for |r| < 1 though.
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