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Remarks

These notes are an abbreviated take on what was done in recitation.

Notational conventions:

• The naturals start at 1.

• Increasing sequences need not be “strictly” increasing.

• The sequence a1, a2, . . . is denoted as {an}n. If the starting index must be clarified, I
may write {an}∞n=1.

• sup
x∈E

f(x) is the same as sup{f(x) : x ∈ E}.

• sup
x

f(x) is the same as sup{f(x) : x} where x is taken over the set over which f(x) is

defined. For example sup
n

an = sup{an : n ∈ N}.

• lim
n

an is a shorthand for lim
n→∞

an. Ditto for lim sup
n

an.

• log is the natural log.
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1 Sup, Inf, and Friends!

Welcome to real analysis! Real analysis is the study of real numbers. It’s important
because we actually don’t understand real numbers very well. They are very unintuitive
creatures! For example, many a middle schooler may think that

0.9 < 1.

But by now you probably know better! A good understanding of the real numbers is crucial
for doing calculus correctly.

1.1 Exercises with sup

You should think of the “sup” as a “max”. Of course, the sup isn’t always obtained. For
example, the supremum of the interval [0, 1) is 1, but 1 isn’t in the set. Thus I like to think
of sup as “the max, even if there isn’t a max”.

To work with sup, you need to be using the raw definition: It is the least upper bound.

Example 1.1: For non-empty sets S, T ⊆ R, define

S + T := {x+ y : x ∈ S, y ∈ T}.

How do sup(S+T ) and supS+supT compare? Assume that S and T are bounded
from above.

If we think of “sup” as “max” here, it’s intuitive that they are equal. Let’s try to prove
it.

Proof. To prove an equality, we want to show ≤ and ≥.

Proof of ≤: How to upper bound sup(S + T )? Let’s just start with an element z of S + T .
Then z = x+ y for x ∈ S and y ∈ T . But

x ≤ supS y ≤ supT

so z ≤ supS + supT .

This is true for all z ∈ S+T , so supS+supT is an upper bound on S+T . So it must be at
least the least such upper bound, which is sup(S+T ). Therefore sup(S+T ) ≤ supS+supT .

Proof of ≥: Now we need to upper bound supS + supT . Well, let’s start with an x ∈ S
and a y ∈ T . I know that x+ y is in S + T , so

x+ y ≤ sup(S + T ).
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But now how to get sups on the left side? Here is the trick: If we move the y over, then

x ≤ sup(S + T )− y.

For a fixed y, this is true for all x ∈ S. So sup(S + T ) − y is an upper bound on S, and
moreover needs to be at least the least such upper bound. So

supS ≤ sup(S + T )− y.

Now move the y to the other side!

y ≤ sup(S + T )− supS

This holds for all y ∈ T , so sup(S + T )− supS is an upper bound on T , and is greater than
or equal to the least such upper bound. We conclude that

supT ≤ sup(S + T )− supS

which is what we wanted. □

Remarks:

• In general, if you know that x ≤ M for all x ∈ S, you can “take the sup on the left”
to get supS ≤ M . We did this three times in the above proof.

• Similarly, if x ≥ m for all x ∈ S, we can “take the inf on the left” to get inf S ≥ m.

• Another way to do this is to make use the following characterization of sup: M = supS
iff (1) M is an upper bound on S, and (2) for all ε > 0, the intersection (M −ε,M ]∩S
is non-empty. (This means that there are elements of S that are arbitrarily close to M ,
which intuitively should mean that M is the least upper bound. As an exercise you
can try to prove that this characterization of supremum is equivalent to the definition
of supremum.)

Let’s try another example.

Example 1.2: Let an and bn be two sequences, both bounded from above. How
do supn(an + bn) and supn an + supn bn compare?

This might look like the same problem, but actually no: We only get≤. A counterexample
which shows why supn(an + bn) = supn an + supn bn may not necessarily hold is given by
an = (−1)n and bn = −(−1)n.

Let’s prove that supn(an + bn) ≤ supn an + supn bn.

Proof. Let’s start with some an + bn. Then

an ≤ sup
k

ak

6
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and
bn ≤ sup

k
bk

so
an + bn ≤ sup

k
ak + sup

k
bk.

This means that supk ak + supk bk is an upper bound on an + bn, so by “taking the sup” on
the left we conclude that

sup
n
(an + bn) ≤ sup

k
ak + sup

k
bk

as needed. □

Remark: Notice how I wrote an ≤ supk ak instead of an ≤ supn an. Using different letters
helps a lot to prevent confusion.

1.2 The Intuition of Limsup

You should think of limsup an as:

• the “best upper bound on the asymptotic behavior of an as N → ∞”

• the “upper bound on an near n = ∞”

• the best upper bound on the tail of an

Whereas lim is about the exact asymptotic, lim sup is only an upper bound on the
asymptotic (when the limit doesn’t exist), whereas lim inf is only a lower bound.

Limsup and liminf are really useful when we want to discuss the asymptotic behavior of
a function or sequence, but the limit doesn’t actually exist!

You can think of f(x) = sinx as a prototypical example for limsup and liminf. limx→∞ sin x
does not exist. But “in the limit it’s between −1 and 1”, in other words,

−1 ≤ lim inf
x→∞

sin x ≤ lim sup
x→∞

sin x ≤ 1.

In fact lim infx→∞ sin x = −1 and lim supx→∞ sin x = 1, and these are “obtained” because
sin x = −1 infinitely often for large x and sin x = 1 infinitely often for large x.

7
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1.2.1 Definitions

A priori the limsup is defined as

lim sup
n→∞

an = inf
n
sup
k>n

ak.

However, you should know that it is equivalent to write

lim
n→∞

sup
k>n

ak

because {supk>n ak}n is monotone decreasing in n! This monotonicity is important to keep
in mind.

Limsup can be defined in other contexts where I think it’s easier to think about. For
example, for functions,

lim sup
x→∞

f(x) = lim
N→∞

sup
x>N

f(x),

and
lim sup
x→x0

f(x) = lim
δ→0+

sup
0<|x−x0|<δ

f(x).

See the following Desmos visualizations:

• https://www.desmos.com/calculator/tiwrgpoa0x

• https://www.desmos.com/calculator/va3cdionyv

These visualizations should really help show you what limsup is intuitively.

1.2.2 Examples of why limsup is useful

Let’s try to prove the squeeze rule!

Example 1.3: Suppose that g1(x) ≤ f(x) ≤ g2(x), and both lim
x→x0

g1(x) and

lim
x→x0

g2(x) exist and are equal to L. Prove that lim
x→x0

f(x) = L.

Proof. [WRONG PROOF] Just take g1(x) ≤ f(x) ≤ g2(x) and take the limit of all three
parts, to get L ≤ lim

x→x0

f(x) ≤ L, so lim
x→x0

f(x) = L. Tada? □

This is very very very very very very very very wrong because I don’t actually
know that lim

x→x0

f(x) exists in the first place! So this is very bad and horrible and terrible.

8

https://www.desmos.com/calculator/tiwrgpoa0x
https://www.desmos.com/calculator/va3cdionyv


Thomas Lam Recitation 1 Sep. 12th 2025

...

But I do know that lim sup
x→x0

f(x) and lim inf
x→x0

f(x) exist. Because they always exist.

Proof. [Actual Proof] Taking limsup on both sides of the right inequality and liminf on
both side of the left inequality, we get the following for free:

lim inf
x→x0

g1(x) ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ lim sup
x→x0

g2(x)

Ok but, lim
x→x0

g1(x) exists, so lim inf
x→x0

g1(x) = lim
x→x0

g1(x) = L... and similarly, we know that

lim sup
x→x0

g2(x) = lim
x→x0

g2(x) = L. So actually this is just saying that:

L ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ L

So the liminf and limsup of f were equal, and in fact both are equal to L, so the limit exists
and is L. Yay! □

Motto of the above proof: “The asymptotics of f are bounded from above by L and
bounded from below by L, so the limit exists.”

Here’s another application. The ratio test says that if

lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

then
∑∞

n=1 an converges. At first this seems quite intimidating if you’re still getting used to
limsup. But intuitively this statement is actually quite simple! In English, all it’s saying
is this: “If a series eventually goes down faster than a geometric series, then it
converges!” The “eventually” part is the “lim”, and the “faster” is the “sup”.

In Layman’s terms, a series which (eventually) converges faster than a geometric series
must be convergent. That’s all! The limsup formalizes this statement.

1.3 A limsup exercise

Example 1.4: Let an and bn be sequences. Show that

lim sup
n

(an + bn) ≤ lim sup
n

an + lim sup
n

bn

provided that both sides exist and are finite.

Proof. Since the limsup is the lim of a sup, let’s start by working with the “inner-most
operation”, which is sup. Can we compare these two quantities?

sup
k>n

(ak + bk), sup
k>n

ak + sup
k>n

bk

9
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It turns out we can! We proved that the correct relationship is ≤ in the first section. So

sup
k>n

(ak + bk) ≤ sup
k>n

ak + sup
k>n

bk

for all n. Now we want to “send n → ∞ on each side”. This is safe because all the limits
exist. (More precisely, we want to appeal to the fact that if xn → K and yn → L and
xn ≤ yn for all n, then K ≤ L. If this wasn’t done in lecture, try to prove it!) So

lim
n→∞

sup
k>n

(ak + bk) ≤ lim
n→∞

(
sup
k>n

ak + sup
k>n

bk

)
≤ lim

n→∞
sup
k>n

ak + lim
n→∞

sup
k>n

bk.

That’s exactly what we wanted to prove!

□

1.4 Rigorous Write-up for the Quiz

Not done in recitation but I thought I should include this so you have a good sense of
what is expected.

Theorem 1.1 (1D Cantor Intersection)

Let {[an, bn]}n be a sequence of closed intervals such that [an+1, bn+1] ⊆ [an, bn] for all
n ≥ 1. Then the intersection

∞⋂
n=1

[an, bn]

is non-empty. Moreover, if limn→∞ bn − an = 0, then the intersection has a single
element.

Proof. Since [an+1, bn+1] ⊆ [an, bn] for all n ≥ 1, we have that

an ≤ an+1 ≤ bn+1 ≤ bn

for all n ≥ 1. In particular, an ≤ bn ≤ b1 for all n, which entails that b1 is an upper bound
on {an : n ∈ N}. Thus the supremum M := supn an exists.

We claim that M ∈ ⋂∞
n=1[an, bn], which will prove that the intersection is non-empty. It

suffices to prove that for all n, an ≤ M ≤ bn.

Fix n. Since M = supk ak, M is an upper bound on {ak : k ∈ N}, so M ≥ an.

10
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On the other hand, ak ≤ bn for all k (if k ≤ n then ak ≤ an ≤ bn, and if k > n then
ak ≤ bk ≤ bn), so bn is an upper bound on {ak : k ∈ N}. So bn is ≥ the least such upper
bound (the supremum), which is M . That is, bn ≥ M . This proves the claim.

Now assume that limn→∞ bn−an = 0. To prove that
⋂∞

n=1[an, bn] has exactly one element,
it is sufficient to show that if x, y ∈ ⋂∞

n=1[an, bn], then x = y.

Take such an x and y, and assume without loss of generality that x ≤ y. Note that
an ≤ x for all n, and y ≤ bn for all n. So

|x− y| = y − x ≤ bn − an

for all n. Sending n → ∞, and using the hypothesis that bn − an → 0, we conclude by the
squeeze theorem (or by fixing ε > 0 or by using lim inf, etc.) that |x − y| = 0. That is,
x = y. □

11
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2 Series and Stuff

2.1 Comparing series and integrals

Draw a picture! (I’m too tired to reproduce a diagram in these notes, sorry! The key
idea is that the series is basically a Riemann sum so draw that and the area under the curve
to compare them.)

Example 2.1: Consider the series sn =
∑n

k=1
1
k2
. Get a decent lower and upper

bound on sn. In particular can we show that sn ≤ 2?

Solution. By drawing a picture, we can reason that∫ k+1

k

1

x2
dx ≤ 1

k2
≤

∫ k

k−1

1

x2
dx

for all k. Now let’s sum this starting from k = 2 (we’re skipping k = 1 because otherwise
the integral on the right side explodes). This gives

1 +

∫ n+1

2

1

x2
dx ≤ sn ≤ 1 +

∫ n

1

1

x2
dx.

Evaluating the integrals,

1.5− 1

n+ 1
≤ sn ≤ 2− 1

n
.

That seems like a decent bound! ■

2.2 Estimate for the Factorial

We can use the integral technique to obtain some pretty nice bounds for n!. First we
need to turn this into a sum, so we’ll instead estimate its log:

log(n!) =
n∑

k=1

log k

Now log is increasing and so for each k we have the estimates∫ k

k−1

log x dx ≤ log k ≤
∫ k+1

k

log x dx.

We want to sum from k = 1 to k = n, but the k = 1 term makes the left bound problematic.
Instead we sum from k = 2, which is just as good because the k = 1 term is log 1 = 0.∫ n

1

log x dx ≤
n∑

k=2

log k ≤
∫ n+1

2

log x dx

12
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Evaluating the integrals,

n log n− n+ 1 ≤ log(n!) ≤ (n+ 1) log(n+ 1)− 2 log 2− n+ 1.

Exponentiating, we end up with

nne−n+1 ≤ n! ≤ 1

4
(n+ 1)n+1e−n+1.

This suggests that n! grows roughly like nne−n. It turns out that the correct asymptotic

is n! ∼ Cnn+
1
2 e−n where the constant C is

√
2π. So, we got pretty close with a relatively

elementary method!

2.3 A few exercises with series tests

Example 2.2: Find all x ∈ R for which

∞∑
n=1

nxn

n2 + x2n

converges.

Solution. We claim that it converges for all x ̸= 1.

If |x| > 1, we have that

∞∑
n=1

n|x|n
n2 + x2n

≤
∞∑
n=1

n|x|n
x2n

=
∞∑
n=1

n

|x|n

which converges by the ratio test, so by comparison, the series converges absolutely, and
thus converges.

If |x| < 1, we instead write

∞∑
n=1

n|x|n
n2 + x2n

≤
∞∑
n=1

n|x|n
n2

=
∞∑
n=1

|x|n
n

≤
∞∑
n=1

|x|n < ∞.

If x = −1, the series converges by the alternating series test.

If x = 1, then the series is
∞∑
n=1

n

n2 + 1
.

13
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This is comparable to 1/n in the limit so this should diverge by limit comparison. Alterna-
tively one can write something like

∞∑
n=1

n

n2 + 1
≥

∞∑
n=1

n

n2 + n2
=

1

2

∞∑
n=1

1

n
= +∞.

■

Example 2.3: Does
∞∑
n=1

sin(1/n2) converge?

Solution. Yes, by using sin x ≤ x (for x > 0) and comparison. ■

Example 2.4: Does
∞∑
n=1

1

n log(n)2
converge?

Solution. Yes by the integral test. If we want to be a bit more precise, we can write, for
n > 1000,

1

n log(n)2
≤

∫ n

n−1

1

x log(x)2
dx.

So
∞∑

n=10000

1

n log(n)2
≤

∫ ∞

9999

1

x log(x)2
dx.

By doing calculus (u-sub with u = log(x)), the integral converges, hence so does the sum. ■

14
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3 The Analysis Hierarchy

The bulk of (undergraduate) analysis lives in the following hierarchy of spaces.

Inner product

spaces ⟨·, ·⟩

Normed spaces ∥ · ∥

Metric spaces d

Topological spaces τ

3.1 Inner Product Spaces

These are the most specialized spaces, and are quite uncommon. Some very nice things
happen in inner product spaces, but I don’t think we’ll dive very deeply into it. You saw a
bunch of it in a class called linear algebra.

Definition 3.1 (Inner Product Space)

An inner product space is a vector space X equipped with an inner product ⟨·, ·⟩
satisfying a bunch of properties, such as ⟨tx, y⟩ = t⟨x, y⟩ for all x, y ∈ X and t ∈ R.
(there are more conditions of course but whatever you can look it up.)

Intuitively you can think of an inner product space as “a space with a notion of angles”.
The inner product ⟨x, y⟩ measures how much x and y “agree”.

Examples:

• Euclidean space (a.k.a. RN) equipped with the standard inner product, ⟨x, y⟩ := x·y =∑
j xjyj.

15
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• The sequence space l2, consisting of all sequence of real numbers {xn}n such that∑
n |xn|2 < ∞, equipped with the inner product ⟨{xn}n, {yn}n⟩l2 :=

∑
n xnyn. Some

work needs to be done to show that this is valid.

• The space L2(R) of all square-integrable “functions” f : R → R, equipped with the
inner product

⟨f, g⟩L2 :=

∫
R
f(x)g(x) dx.

(This is a lie, hence the quotes.)

3.2 Normed Spaces

Normed spaces are much more common. A lot of analysis happens here.

Definition 3.2 (Normed Space)

A normed space is a vector space X equipped with a norm ∥ · ∥ satisfying the
following conditions:

• ∥x∥ ≥ 0 always, with ∥x∥ = 0 if and only if x = 0. (also its always finite.)

• You can take out scalars: ∥tx∥ = |t| · ∥x∥ for all t ∈ R and x ∈ X.

• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Simply stated: A normed space is a space that has a notion of size.

Every inner product space is a normed space. This is because any inner product ⟨·, ·⟩
induces a norm, given by

∥x∥ :=
√
⟨x, x⟩.

Compare this with the identity ∥x∥ =
√
x · x in Euclidean space.

Examples

• On R, the absolute value | · | is a norm.

• On RN , the usual norm is ∥x∥ :=
√∑

j x
2
j . Of course, this is just given by the usual

inner product as
√
x · x.

• For p ≥ 1, there is the Lp space, Lp(R), of all “functions” f : R → R satisfying∫
R
|f(x)|p dx < ∞,

16
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and the norm is given by ∥f∥p :=
(∫

R |f(x)|p dx
)1/p

.

Questions: (1) Why do we need to raise to the 1/p power? (2) Why is this a lie as
written?

• There are other norms on RN . These are not the ones induced by the usual inner
product, but they are still norms and can be useful.

– The taxicab norm, ∥x∥1 :=
∑

j |xj|.
– The l∞ norm, ∥x∥∞ := maxj |xj|.

– In general, for 1 ≤ p < ∞, we have the p-norm, ∥x∥p :=
(∑

j |xj|p
)1/p

. The case

p = 2 is the standard Euclidean norm.

3.3 Metric Spaces

Metric spaces are very common! They arise whenever there is some notion of “distance”.

Definition 3.3 (Metric Space)

Ametric space is a setX equipped with ametric d satisfying the following conditions:

• 0 ≤ d(x, y) < ∞, with d(x, y) = 0 if and only if x = y

• Symmetry: d(x, y) = d(y, x)

• Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Note that the underlying set X no longer needs to have a vector space structure for it to
qualify as a metric space. You just need “distance”.

Every normed space is a metric space. If you have a norm ∥ · ∥, then the “distance”
between x and y is given by ∥x − y∥. You can verify that this satisfies the properties of a
metric, so d(x, y) := ∥x− y∥ is a metric for any norm ∥ · ∥.

Examples:

• X = the tiles of a Civilization 6 board, d(x, y) = number of moves it takes to go from
x to y.

• X = Warren Weaver Hall, d(x, y) = time it takes to walk from x to y.

• RN is a metric space induced by the standard norm (or really, any of its norms).

• X = the set of all English words, d(x, y) = the number of single-letter edits you need
to turn x into y.

17
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3.3.1 Balls and Open Sets

We play with metric spaces a lot, so we’ve got a bunch of constructs in them that we
study (which, of course, also exist in normed spaces). The first is the ball,

B(x, r) := {y : d(x, y) < r}.
Balls are important because we think of them as “neighborhoods” which surround a point
x. They’re also just a very convenient notation in general.

With balls, we obtain open sets: Sets U ⊆ X such that for every x ∈ U there is a small
r > 0 such that B(x, r) ⊆ U . In layman’s terms, opens sets are the sets with “wiggle room”
everywhere. This intuition is why we like them: It allows us to make small changes in any
direction when we’re inside it.

We also get closed sets, which are defined to be the complements of open sets. (Closed
does NOT mean “not open”!)

Then we get compact sets, which are defined as those sets for which every open cover has
a finite subcover. In RN , these happen to be the closed and bounded sets, and therefore we
can think of them as sets which are restrictive, and prevent too much “change”. An instance
of this is the extreme value theorem: Any continuous function on a closed and bounded
interval must have a max and min. The closed and bounded interval here is a compact set,
and we see that it is preventing the continuous function on it from “exploding”. More on
compact sets in future recitations.

The most important types of sets are the open sets and the compact sets, for the reasons
described.

3.3.2 Properties of open sets

• The union of open sets is always open (no matter how many open sets are used!).

• The finite intersection of open sets is open.

• {} is open.

• The whole space is open.

3.3.3 The Shit Metric

I define the shit metric space as follows: It is (R2, dshit), where

dshit(x, y) :=

{
1, x ̸= y

0, x = y
.
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Verify that this is a metric!

The actual name for this is the discrete metric, but whatever. This is an important
“extreme” case to keep in mind, as it can serve as a convenient counterexample to test
any conjectures you have about metric spaces. We’ll talk more about that in future weeks,
probably.

Verify the following:

• Bshit((0, 0), 0.75) = {(0, 0)}

• Bshit((0, 0), 1.2) = R2

• Every set is open.

• Every set is closed.

• Every set is bounded.

• The only compact sets are finite sets.

3.4 Topologies

Now what if there is no notion of distance? There is an even weaker structure called a
topology : Instead of a distance, we specify what the open sets are.

Definition 3.4 (Topological space)

A topological space is a set X equipped with a topology, τ , which is a collection of sets
(the “open sets”) satisfying the properties listed in the Properties of open sets section.

It’s quite abstract and it’s normal to find it hard to imagine what kind of structure a
topology could bring to the table. Here are some intuitions:

• Topologies specify the “neighborhoods”, which therefore give some loose notion of
which points are “close” to each other.

• A topology can be thought of as specifying a notion of convergence. For example, the
topology on R “generated” by the intervals of the form (a, b] corresponds to “conver-
gence from below”, and in some sense formalizes the concept of the left-sided limit
lim
x→a−

f(x).

And of course, every metric space is a topological space.
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4 Limits and Stuff

4.1 Be suspicious!

If your proof isn’t relying on the definitions and/or theorems, that’s probably a bad sign!

Problem 1: Let A and B be compact subsets of Rn. Show that A + B := {a + b : a ∈
A, b ∈ B} is compact.

Fake Proof: Since A and B are bounded, A+B is also bounded. Since A and B are closed,
A+B is also closed. So by Heine-Borel, A+B is compact. □

Problem 2: Let f : R → R be differentiable. Suppose that f ′(a) > 0 for some a ∈ R, and
f ′(b) < 0 for some b ∈ R. Then there exists c ∈ R such that f ′(c) = 0.

Fake Proof: f is differentiable everywhere, so its derivative f ′ is continuous. So by the
Intermediate Value Theorem, f ′ has a zero. □

Problem 3: Consider the normed vector space Cb(R) of all bounded continuous functions
on the real line, equipped with the sup norm. Then the function F : Cb(R) → R defined by

F (f) := f(5)

is continuous.

Fake Proof: Note that for any f, g ∈ Cb(R), we have F (f + g) = F (f)+F (g). Moreover, for
any t ∈ R and f ∈ Cb(R), we have that F (tf) = tF (f). Therefore, F : Cb(R) → R is linear.
So F is continuous. □

4.2 Limits and Continuity

Example 4.1:
lim
x→5

x2

Solution. We claim that the limit is 25.

Fix ε > 0. And we’ll pick δ = (TBD). Now, if |x−5| < δ, we shall show that |x2−25| < ε.

Well, we can write

|x2 − 25| = |(x− 5)(x+ 5)| < δ · |x+ 5|.

That δ will be pretty small so we just need the |x+5| to be pretty small. It should be about
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10, right? Indeed,

|x+ 5| = |x− 5 + 10| ≤ |x− 5|+ |10| < δ + 10.

So provided δ ≤ 7 , we have that |x+ 5| < 17. Now,

|x2 − 25| < δ · |x+ 5| < 7δ,

which is ≤ ε provided that δ ≤ ε/7 . Ok, so since we chose δ = min(7, ε/7) , both of those

hold and so we’re good. ■

Example 4.2:
lim
x→42

1Q(x)

Solution. We claim that the limit does not exist.

Suppose the limit were L. Take ε = 1/4 or something. We want to show that for any
δ > 0, there is some x with 0 < |x− 9001| < δ such that |1Q(x)− L| ≥ ε.

To wit, take any δ > 0. There are two cases.

• If L ≥ 1/2, we use density of irrationals to pick x ∈ (9001, 9001 + δ) irrational. This
gives 1Q(x) = 0 so |1Q(x)− L| ≥ 1/2 ≥ ε.

• If L < 1/2, use density of rationals instead.

So the limit does not exist. ■

Example 4.3: Do Problem 3, but correctly.

Solution. We recall F : Cb(R) → R with F (f) := f(5). Fix f0 ∈ Cb(R). We show that F
is continuous at f0.

Fix ε > 0. Then, for all f ∈ Cb(R) with ∥f − f0∥∞ < δ, where δ shall be chosen later,
we will show that |F (f)− F (f0)| < ε.

Well, we want to show that |f(5)− f0(5)| < ε. But

δ > ∥f − f0∥∞ = sup
x∈R

|f(x)− f0(x)| ≥ |f(5)− f0(5)|.

So we may take δ = ε. ■

Example 4.4: Is Cb(R) complete?
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4.3 Exercises with Metric Spaces

Example 4.5: Let (X, d) be a metric space, and C ⊆ K ⊆ X with C closed and
K compact. Prove that C is compact.

This can be done using either sequences or open covers.

Example 4.6: Let (X, d) be a metric space, and E ⊆ X. Define the boundary of
E as follows:

∂E := {x ∈ X : B(x, r) ∩ E ̸= ∅ and B(x, r) ∩ Ec ̸= ∅ ∀r > 0}

Show that ∂E is closed.

If x ̸∈ ∂E then there is r > 0 so that either B(x, r)∩E = ∅ or B(x, r)∩Ec = ∅. Without
loss of generality let’s suppose the former happened. Then B(x, r) ⊆ Ec. We claim B(x, r) ⊆
(∂E)c. Indeed, take any y ∈ B(x, r). Then B(y,min(d(x, y), r − d(x, y))) ⊆ B(x, r) ⊆ Ec

(or alternatively B(x, r) is open so there’s gotta be some r′ so that B(y, r′) ⊆ B(x, r)), so
B(y,min(d(x, y), r − d(x, y))) ∩ E = ∅, so by definition of ∂E, y ̸∈ ∂E.

Example 4.7: Let (X, d) be a metric space, and E ⊆ X. Show that, for F ⊆ E,
the following two conditions are equivalent:

1. There exists an open set U ⊆ X such that F = E ∩ U .

2. For every x ∈ F there exists r > 0 such that B(x, r) ∩ E ⊆ F .

(If either holds, we say that F is relatively open in E, or just “open in E”.
Morally speaking, we are interpreting E as its own metric space, whose topology is
inherited from that of X by taking all the open sets in X and intersecting them with
E to form a new “restricted” topology. Think about both the conditions (1) and (2)
and see which one you find more intuitive.)

Solution. (1 =⇒ 2) easy

(2 =⇒ 1) for each x ∈ F find rx so that B(x, rx)∩E ⊆ F . Now take U =
⋃

x∈F B(x, rx).
This is open and you can show that F = E ∩ U . ■
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