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Introduction

The purpose of creating the Carnegie Mellon University Math Club Problem of the Day
(CMUMC POTD) was, in short, to help strengthen the sense of community within the CMU
math club, while also giving me a nice outlet for sharing problems that I liked. However,
finding 365 nice problems that I was fond of felt like an impossible task, and moreover I was
worried that daily problems would feel overwhelming. After all, college students are likely
too busy to fit into their schedule the task of solving a challenging math problem on top of
the ones in their assignments.

The solution to both issues was simple: Give problems every other day, on Mondays,
Wednesdays, and Fridays. There were further clear advantages of spacing out the problem
days: I could give hints on all other days of the week, and there could be more well-defined
demarcations between problem difficulties, with Monday problems being “easier”, Wednes-
day problems being of “medium difficulty”, and Friday problems being “harder”. And so,
following this structure, the CMUMC POTD started on Monday, April 25th, 2022.

Since its onset, the POTD has evolved to become a gargantuan labor of love. Over time,
I've come to realize the potential value in creating a large collection of beautiful problems, or
at the very least, problems that give a clear indication of the flavor of problems that I tend
to find beautiful. Towards the end, I was incredibly picky with choosing problems, having
kicked out countless problems whose quality I was not satisfied with.

With the POTD now complete, perhaps I can give a good indication of what sort of
problems to expect from this collection:

e Problems with a beautiful solution. These include solutions that use an incredible
insight or a clever idea, as well as solutions that may simply be aesthetically pleasing.

e Problems with natural statements. 1 find that these sorts of problems are quite fun to
think about and mull over, while waiting for the bus or trying to sleep or whatnot.
A desire for such “nice” statements is why this collection does not include very many
competition math problems, which by their very nature tend to be contrived to force
some sort of insight.

e Shocking, unbelievable problems. These are problems whose answers, to the typical
reader, sound completely wrong.

Since 170 is a large number, a few of the problems may not cleanly fall into any of these
categories. Still, I hope you'll find that the majority of them do so.
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Structure

As stated in the introduction, the problems tend to fall into three difficulties. To be
precise, it is generally the case that for each integer n > 0,

e Problem 3n + 1 is on the easier side,
e Problem 3n + 2 is of medium difficulty, and

e Problem 3n + 3 is arbitrarily hard.

Of course, there are some exceptions.

Problems that are unusually or surprisingly difficult are marked with stars. I include
these stars out of respect for your time — who would want to spend hours thinking about
a problem only to find out that they had virtually no chance of solving it? As a general
guideline starred problems (%) are (a subset of) those problems that can be expected to put
up a bit of a fight, and doubly-starred problems (s ) are problems whose solutions make
me think “Who on earth managed to come up with this???”. Ultimately this is a subjective
measure, but I hope it is useful.

The final twelve problems — Problems 159 to 170 — were all given on the same day:
Friday, April 28th, 2023.

How to Best Use This Book

For the avid problem solver: There is no need to look at the problems in the order given.
In fact, I suggest simply scrolling through the problems and seeing what catches your
eye.

For the stuck problem solver: Every problem has at least one hint. There are helpful hyper-
links to the hints after every problem statement. If you've given up, there is also a hyperlink
to the solution. I try to make sure that the solutions are well-motivated and easy to read,
with pretty pictures to boot.

For the curious reader: The solutions often contain various interesting remarks. These may
include generalizations, links to relevant papers, connections to other interesting mathemat-
ics, and the history of the problem.
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Necessary Background

The vast majority of the problems can be solved with just a standard knowledge of high
school mathematics. However, since the problem audience consisted of college undergrad-
uates, you can expect some topics from college mathematics to come up as well. These
include real analysis, topology, linear algebra, and more. (Unfortunately, lovers of abstract
algebra may find themselves disappointed with this collection. This is because I am allergic
to abstract algebra.)

Problem Sources

A source of each problem is given in their solution if I remember where I got it from.
The source I list may not be very informative. (Some problems may have multiple plausible
sources that they can be ascribed to, but I'll list just one.) Only a few of the problems
are my own creation. If a problem is marked as being “proposed” by someone, then that
someone is the original source of that problem.

Many problems have been reworded greatly from their sources. I've taken this liberty in
an effort to make problem statements a little more natural or less contrived. For example,
Problem 15 is normally phrased in terms of a line of coins, which I personally find very
difficult to wrap my head around.
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Problem 1

Good Morning. I have a cup of tea and a cup of milk, in equal quantities.

I take a spoonful of the tea and stir it into the milk. T then take a spoonful of the milk/tea
mixture and stir it into the tea.

Which cup is more contaminated?

(Hint 1)
Solution

Problem 2 (Proposed by Edward Hou)

What is the greatest “fraction” of a plane that can be covered by non-intersecting equilateral
triangles of same size and orientation?

For example, this arrangement of triangles covers “half” of the plane:

(Hint 1: Clarification: What does “fraction” mean?)

(Hint 2: Answer) (Hint 3)
Solution
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Problem 3

There is a very weird solar system that cannot be seen because the planets block out all
light from the sun. What is the minimum possible number of planets in the solar system?

(You may assume that the sun is a single point which emits rays of light.)

(Hint 1: Construction) (Hint 2: Construction)
(Hint 3: Lower Bound) (Hint 4: Lower Bound)

Solution
Problem 4

The diagram below consists of four squares. The two smallest squares have side length 1.
Find the area of the shaded triangle.

(Hint 1)
Solution
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Problem 5

Back in September, Kaz needed quarters so that he could use the washing machine. I checked
my wallet, and found that I had 16 quarters! Unfortunately for Kaz, I saw this as the perfect
opportunity to be a stereotypical logic puzzle antagonist.

I placed them on the table in a 4 x 4 grid, and observed that they made 10 lines of four: 4
horizontal, 4 vertical, and 2 diagonal. I told Kaz that he could take my quarters if he can
rearrange the 16 quarters to form 15 lines of four.

Can you help Kaz take my quarters?

(i.e. Find 16 distinct points on a plane such that there exist 15 distinct lines that each
contain at least four of the points.)

(Hint 1) (Hint 2)
Solution

Problem 6 (%)

Alice and Bob are taking a geometry test, which consists of a single question: Construct
(using a compass and straightedge) the midpoint of a segment AB, given only the points A
and B.

Alice only brought her compass, and Bob only brought his straightedge. Which of them, if
either, can pass the test?

(Hint 1: Alice) (Hint 2: Alice)

(Hint 3: Bob) (Hint 4: Bob) (Hint 5: Bob)

Solution

Problem 7

A (base ten) number N is formed by a strictly increasing sequence of digits (e.g. 2357, but
not 3558). Compute the sum of the digits of 9V.

(Hint 1)
Solution
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Problem 8

Solve for x:
Vb —x=5—2?
(Hint 1: One way) (Hint 2: Another way) (Hint 3: Yet another way)
Solution
Problem 9
Let n € N. Prove that \_”;'J is even.
(Hint 1) (Hint 2)
Solution
Problem 10

Towns A and B are tired of swimming to each other. Describe where to place a vertical
bridge across the river such that the walking distance between the towns is minimized, and
determine this minimum distance.

A

[
Ilmi

(Hint 1)
Solution
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Problem 11

Bob is in detention for failing his exam. His detention assignment is to repeatedly pick a
real number t between 0 and 1, and then draw the line segment from (¢,0) to (0,1 —¢) using
his straightedge. As Bob draws more segments of this form, they begin to bound a curve.
What is the equation of this curve?

A

1

(Hint 1)
Solution

Problem 12 (%)

Fill in the blank in the following conversation between Alice and Beth.

Alice: “Did you know that your favorite number is the sum of the ages of my stuffed
animal turtles, and that my favorite number is their product?”

Beth: “I wouldn’t know because I don’t know your favorite number. If you tell me
your favorite number and how many stuffed animal turtles you have, would I know
the ages of your stuffed animal turtles?”

Alice: “No.”

Beth: “Oh, so your favorite numberis __________|

(Hint 1)
Solution
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Problem 13

Lines are drawn through the trisection points of the sides of a square, as shown. What is
the area of the shaded region?

(Hint 1)

Solution

Problem 14 (Suggested by “tenth”)

There are two positive reals = satisfying 2% + 3'/* = 5. One of them is 1. What’s the other
one?

(Hint 1)
Solution
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Problem 15 (Suggested by Kaz)

A firefighter and a pyromaniac are running together along a circular hiking trail, lined with
2022 trees. Some of the trees are on fire.

e For each burning tree they encounter, the firefighter can choose whether or not to
extinguish the tree before they move on.

e For each not-on-fire tree they encounter, the pyromaniac can choose whether or not to
set it ablaze before they move on.

Does the firefighter have a strategy that guarantees that all flames will be vanquished at
some point?

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution

Problem 16

Prove that any function f : R — R may be written as the sum of an odd function and an
even function.

(Hint 1)
Solution
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Problem 17

You are captain of the USS Dallas, a submarine in a dark ocean searching for the Red
October, which is traveling in a straight line. Suddenly, your sonar detects the exact location
of the Red October, but not its direction of travel. Your sonar then breaks.

Since you’re an amazing captain, you happen to know the exact speed of both the USS Dallas
and the Red October (of course, all submarines travel at constant speeds at all times). In
particular, your ship can travel slightly faster than the Red October.

Can you track down the Red October?

(Hint 1: Strategy) (Hint 2: Correctness)
Solution
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Problem 18

A convex quadrilateral ABCD is given. Point P is on C'D and point @ is on AB such that
AQ - QB=CP:PD.

Prove that [APB] + [CQD] = [ABCD].
(Square brackets denote area.)

(Hint 1) (Hint 2)
Solution

Problem 19

I have two ropes. The first burns up in one minute when lit from one end, and the second
similarly burns up in two minutes. Burning rate is not necessarily uniform over the lengths
of these ropes. Can you measure 75 seconds?

(Hint 1)
Solution
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Problem 20

Sydney the squirrel is at (0,0) and is trying to get to (1,0). She can move only by reflecting
her position over any line that can be formed by connecting two lattice points, provided that
the reflection puts her on another lattice point.

Can Sydney make it to (1,0)?

(Hint 1)
Solution
Problem 21 (%)
What if Sydney need not step on lattice points?
(Hint 1: A warning!) (Hint 2: What points are reachable?)
(Hint 3: Useful results)
Solution

Problem 22

Find the shaded area.

(Hint 1)
Solution



CHAPTER 2. PROBLEMS 24

Problem 23

Given that (z + V2?2 + 1)(y + /y?>+ 1) = 1, what is the value of z + y?

(Hint 1)
Solution

Problem 24

10 crewmates fell off the USS Dallas, and now we have to save them. We have 10 giant
circular life-buoys, each of radius 10 meters. For the rescue to be a success, we need to
throw them into the ocean such that each person is inside a lifebuoy, but no two lifebuoys
intersect. Can this be done?

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution

Problem 25

Minsung is acting highly sus, which is why we need to try and prevent him from walking too
far. Once he gets 10 feet away from his spawnpoint, we’ll lose sight of him and he might be
able to murder all of us.

But for now, we can impede his movement with the following procedure: Every second,
Minsung chooses a direction to face. Then we can either let him take a 1-foot step forward,
or fire a laser gun to scare him so that he steps 1 foot backward.

Assuming ideal strategies, will this plan keep Minsung at bay indefinitely? If not, how long
will it be until Minsung gets 10 feet away from spawn and possibly murders us all?

(Hint 1)
Solution
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Problem 26 (Suggested by David Altizio)

In a certain country, a dollar is 100 cents and coins have denominations 1, 2, 5, 10, 20, 50,
and 100 cents.

Suppose that one can make A cents using exactly B coins. Prove that it is possible to make
B dollars using exactly A coins.

(Hint 1)
Solution

Problem 27 (Suggested by “Nishant”)

Does there exist a ring endomorphism of the real numbers that is not the identity?

(A ring endomorphism of the real numbers is a function f satisfying f(x+y) = f(z) + f(v),
f(zy) = f(2)f(y), and f(1) = 1.

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution

Problem 28

Call a triangle /lit if it is non-degenerate and has integer side lengths. Which quantity is
greater, if either?

e The number of lit triangles with perimeter 2019

e The number of lit triangles with perimeter 2022

(Hint 1: Answer) (Hint 2)
Solution
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Problem 29

For a positive integer n, what is the dimension of the (real) vector space formed by all n x n
magic squares?

(Recall that a magic square is a grid of real numbers, each of whose rows, columns, and main
diagonals sum to a common number. We define this vector space in the obvious way, with
entry-wise scaling and addition. )

(Hint 1) (Hint 2)
Solution

Problem 30 (Proposed by “tenth”)

The side length of the largest square is 1.

As the number of squares increases, to what limit does the area of the smallest square
approach, if any?

(The angle between each two successive squares is the same, and the “total angle of rotation”
is 90 degrees.)

.

\\\\\\%

(Hint 1)
Solution
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Problem 31

Good morning! At department tea, there are several cups of milk-contaminated tea, each
filled to the same amount. The cup I'm holding has a sixth of all the milk and a quarter of
all the tea.

How many cups are there?

(Hint 1)
Solution

Problem 32

A hallway of width a turns into another hallway of width b at a right angle, as shown. What
is the length of the longest stick I can carry through this hallway?

(Hint 1)
Solution
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Problem 33

P is a polynomial with real coefficients such that P(x) > 0 for all z € R. Prove that we can
write

P(z) = A(z)? + B(z)?

for some polynomials A, B with real coefficients.

(Hint 1)
Solution

Problem 34

Alex, Blaire, and Clara have decided to settle their differences with a three-way duel. In
some randomly-chosen firing order, they will take turns shooting at another duelist until
there is one person left standing.

It is well-known that Alex and Blaire are expert markswomen, hitting all their shots with
100% accuracy, whereas Clara can only hit her target with 50% probability.

Who is most likely to win the duel? (Assume that nobody misses on purpose.)

(Hint 1)
Solution

Problem 35

31415 people got into a nasty argument, and have decided to settle their differences with a
duel battle royale. They stand on a plane in such a way that their pairwise distances are
all distinct, and then the moment it’s high noon, everyone immediately takes out a gun and
fatally shoots the duelist closest to them.

Prove that at least one duelist is still alive.

(Hint 1: One Way) (Hint 2: Another Way)
Solution
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Problem 36

For the summer weekly pizza seminar, Ricky and Owen brought a triangular pizza. They
decide to share this pizza so that nobody else is subjected to the horror of having a triangular
pizza.

They want to cut the pizza along a straight line such that the pizza’s area and its crust are
divided into the same ratio. Prove that any such cut must pass through a common point,
and identify this point.

N
L\ e

(Preemptive Remark: The converse also holds! Any cut through this point will divide the
pizza’s area and crust into the same ratio.)

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 37

The base ten representation of the integer 22° has 9 digits, all of them distinct. Which digit
(from 0 through 9 inclusive) is missing?

(Hint 1) (Hint 2)
Solution
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Problem 38

A ship of seven Hearthians lands on a small spherical planet. One Hearthian, Arkose, explores
the planet (starting from the ship) by

1. walking 30 km in a straight line in some direction,

2. turning 90° counter-clockwise and walking another 30 km, and then

3. turning 90° degrees counter-clockwise (again) and walking another 30 km.
The Hearthians Bastite, Chert, Desmine, Esker, Feldspar, and Gabbro do the same proce-
dure, but using the numbers 40, 50, 60, 70, 80, and 90 respectively (instead of 30).

Once everyone finished their journeys, they found themselves together again, at one point!
...Well, except for one Hearthian. The Hearthians found this bizarre: Could this situation
be possible, or did they mess up?

(Hint 1)
Solution

Problem 39

Prove or disprove: Every totally-ordered family of subsets of natural numbers is at most
countable.

(A family F of subsets of N is totally-ordered if for any two sets S,T in F, we either have
S CTorSDOT. For example, the family of subsets

Fo={{},{1},{1,2},{1,2,3},{1,2,3,5},{1,2,3,5,8},-- - }
is totally-ordered. Any two sets in F are comparable by set inclusion. In contrast, the family
of subsets
F={{2},{1,2},{2,3}}
is not totally-ordered, because the sets {1,2} and {2,3} cannot be compared.)

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution
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Themed Week: Prisoners and Hats

Problem 40

A bored warden decides to play a game. He puts 10 prisoners in a single-file line, and then
places either a white or black hat on every prisoner’s head. The number of white and black
hats is not known by the prisoners. Each prisoner is only able to see the colors of the hats
in front of them.

Starting from the back of the line, the warden asks each prisoner to guess the color of their
hat. If a prisoner guesses incorrectly, they are shot. The prisoners can hear the guesses and
the shots.

What is the maximum number of prisoners that can be guaranteed to survive the game?
The prisoners may formulate a plan beforehand.

(Hint 1)
Solution

Problem 41 (Suggested by “Linus”)

A bored warden decides to play a game. He puts 100 prisoners in a single-file line, and then
on each of their heads he places one of his 101 different-colored hats. The prisoners know
what the 101 different colors are, and they know that every prisoner gets a different
hat color. Each prisoner is only able to see the colors of the hats in front of them.

Starting from the back of the line, the warden asks each prisoner to guess the color of their
hat. They may not guess a hat color that has been previously guessed. If a prisoner
guesses incorrectly, they are shot. The prisoners can hear the guesses and the shots.

What is the maximum number of prisoners that can be guaranteed to survive the game?
The prisoners may formulate a plan beforehand.

(Hint 1) (Hint 2) (Hint 3) (Hint 4)
Solution
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Problem 42 (%)

A bored warden decides to play a game. He puts a countably infinite number of prisoners
in a single-file line, in such a way that there exists a back-most prisoner. (FE.g. imagine
putting the prisoners on the natural numbers of the real line, with all of them facing in the
positive direction) The warden then places a hat on each prisoner’s head. Each hat has a
real number written on it. Each prisoner is only able to see the numbers on the hats in
front of them. Each prisoner knows where they stand in line.

Starting from the back of the line, the warden asks each prisoner to guess the real number
written on their hat. If a prisoner guesses incorrectly, they are shot.

By formulating a plan beforehand, can the prisoners ensure that only finitely many of
them die?

Oh, and one last thing: The prisoners are deaf.

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 43

Is there a differentiable function f: R — R for which

2 fle) =2
and

lim f'(z) =17

T—>00

(Hint 1: A Shocking Method)
Solution
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Problem 44

Ana and Beth decide to play a math game. Starting with Ana, they take turns saying an
integer between 1 and 9 inclusive that has not yet been said by either of them. The first
player to have said three numbers that sum to 15 is the winner. If all numbers have been
said and neither player has won, then the game ends in a draw.

Which player has the winning strategy, if either?

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 45

A unit cube is positioned somewhere in space, with some orientation. Prove that the area
of its projection unto the xy-plane is equal to the length of its projection unto the z-axis.

(Hint 1) (Hint 2) (Hint 3)
Solution
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Problem 46 (Suggested by David Altizio)

Six copies of the parabola y = 2% are arranged in the following way, tangent to some circle:

What is the radius of this cirle?

(Hint 1)
Solution

Problem 47

Let m and n be positive integers. Prove that (1—z™)"+(1—(1—x)")™ > 1 for all z € [0, 1].

(Hint 1) (Hint 2)
Solution
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Problem 48

There is a red block and a blue block of equal size. The red block is 100° C' and the blue
block is 0° C. You can cut the blocks into pieces and press pieces together. When pieces are
pressed together, they will reach thermal equilibrium.

In the end, you reassemble the red and blue blocks. Once it is reassembled, how hot could
the blue block be? What is the maximum temperature that the blue block can attain, if
any?

(Hint 1: Clarification of physics) (Hint 2: Answer) (Hint 3) (Hint 4)
Solution

Problem 49

In 1734, Euler solved the Basel Problem, which involved proving that

1+1+1+ P
12 22 32 6

Now it’s your turn. What is

1 1 1 1 0
§+3—2+§+ﬁ+"-.

(Hint 1)
Solution
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Problem 50

Ari and Beth are playing a game. Beth writes down two distinct real numbers on two cards
and gives them to Ari face down. Ari must then choose a card, look at it, and guess whether
it was the higher card or lower card. Ari wins the game if and only if her guess is right.

Can Ari follow a strategy that guarantees that her probability of winning the game is strictly
greater than 50%7?

(We know nothing about how Beth may choose the real numbers. For example, she could
be choosing them from a Gaussian distribution, or she may be dead set on choosing 0 and

1.)

(Hint 1)
Solution

Problem 51 (Suggested by Edward Hou)

A hydra happened to harness the hospitality of Hilbert’s hotel, an infinite hotel whose rooms
are indexed by the integers. Hilbert didn’t think this would be an issue until the hydra started
antagonizing the guests in room 0. Hilbert has hired you, an expert on hydras, to try and
move the hydra to another room.

If you lop a hydra head in some room n, then the hydra will grow two new heads, in rooms
n—1and n+ 1. You can also reverse this process: If there exist a hydra head in rooms n —1
and and another in room n + 1 for some integer n, and you lop them off at the same time,
then a new head grows in room n. Rooms can have multiple hydra heads.

For which integers n, if any, can we move the hydra to room n, in the sense that after some
finite sequence of hydra head-huntings, there could exist hydra heads only in room n?

(Hint 1) (Hint 2)
Solution
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Problem 52 (Suggested by “tenth”)

A triangle T is given. Prove that you can dissect T' into three pieces and rearrange them
(without any flipping) to obtain a reflected image of 7.

(Hint 1)
Solution

Problem 53

A standard 6-sided die’s sides are numbered from 1 to 6. A pair of such dice can be rolled to
obtain various sums, each having some probability of occurring. Does there exist a different
pair of 6-sided dice, with each side being a positive integer, such that the probabilities for
each sum that can be obtained by rolling them are the same as that of the pair of standard
dice?

This different pair of dice need not be identical to each other.

(Hint 1)
Solution

Problem 54 (%)

Prove that, up to similarity, there is a unique convex equilateral tridecagon whose angles are
multiples of 20 degrees.

(“Trideca-" means 13.)

(Hint 1) (Hint 2)
Solution
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Problem 55

I have a rectangular piece of paper that “fits” on my circular plate. That is, it can be placed
flatly on the plate without hanging off the edge. Prove that if I fold the paper along any
straight line, then it will still fit on the plate.

(Hint 1)
Solution

Problem 56

Baka the Bunny has a carrot. In one bite, Baka eats some random amount of it (uniformly at
random from no carrot to entire carrot). Baka continues taking bites, with each bite eating
the same amount of carrot as the first bite, until there is no longer enough carrot to take a
full bite. What is the expected fraction of the carrot eaten by Baka?

(Hint 1)
Solution
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Problem 57

Revolution has befallen the Kingdom of Mondstadt! The King is dead and the Queen has
gone into hiding.

The Queen’s only method of escape is by secretly hiding on a cargo ship that sails to Monstadt
and back once a day (see diagram). Knowing this, the Insurrection may choose to bomb any
cargo ship in an attempt to assassinate the Queen. Fortunately, you happen to know that
the Insurrection has only finitely many bombs, but you don’t know the exact number.

You may send an escape plan to the Queen for her to follow, but due to the presence of
spies, your message will be intercepted by the Insurrection.

Prove that you can save the Queen with at least 99% probability.

(Hint 1: Assumptions) (Hint 2) (Hint 3)
Solution
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Problem 58

Cherie is 5 ft tall. She looked in the mirror, and found that she could see her entire body.
What is the minimum possible height of the mirror?

(Hint 1)
Solution

Problem 59

Can you cover the plane with the interiors of finitely many non-degenerate parabolas?

(Hint 1)
Solution

Problem 60 (Suggested by “tenth”)

Let 0 < 2 < m. Initially, you have a cake with pink top and purple bottom. You now
perform a sequence of steps as follows: On the kth step, you take the z-radian slice of the
cake between (k — 1)z and kz radians, flip it over, and slot it back into the cake.

Prove that eventually (i.e. in a finite, positive number of steps), the cake returns to its
original state, with a completely pink top and completely purple bottom.

Note: x/7 is not necessarily rational.

(Hint 1: Clarification) (Hint 2) (Hint 3)
Solution
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Themed Week: Lights Out

The Lights Out Puzzle is played on an n x n grid of lights. At the start, some subset of the
lights are on. A move consists of pressing any of the lights, which flips the on/off state of
that light as well as the orthogonally adjacent lights.

Problem 61

Prove that there exists a 4 x 4 Lights Out puzzle that cannot be solved.

(Hint 1) (Hint 2)
Solution

Problem 62

Let us play with a variant now.

The Rook-Toggle Lights Out puzzle is played on an nxn board. It is identical to the standard
Lights Out puzzle, except the toggle rule is changed. In this variant, if you press a light,
then that light as well as all lights in the same row and column are toggled from on to off
and vice versa. (That is, all squares “attacked by a rook” are toggled.)

Given a board of lights, an easy run consists of pressing all lights that are on simultaneously.
Prove that any solvable n x n Rook-Toggle Lights Out puzzle will be solved in two easy runs.

(Hint 1)
Solution
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Problem 63

Finally, let us discuss the Lights Out game in full generality.

The Lights Out puzzle is played on a graph G with n vertices. Each vertex is a light that
may start on or off. In a move, you may press a light, which toggles the state of that light
and all of its neighbors.

Klaus Sutner (a CMU professor!) proved the following theorem: Every Lights Out puzzle in
which all lights start in the on state can be solved. His proof uses linear algebra, but be rest
assured that this is not necessary.

Prove the above theorem.

(Hint 1) (Hint 2)
Solution

Problem 64

There are 20 ants on the left half of a stick, facing right, and 22 ants on the right half of the
stick, facing left. They all start moving forward at the same speed. When two ants collide,
they both switch directions. When an ant reaches either end of the stick, it falls off.

a) How many ants fall off of each side?

b) How many collisions will there be?

oo oo oo — S

(Hint 1)
Solution
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Problem 65

You are given the graph of y = 3.

coordinate axes.

(Hint 1)

Problem 66

Given a compass and straightedge, construct the

Solution

A wounded king strolls the battlefield, encountering an 8 x 8 chessboard that he must cross.
The chessboard is then set on fire, with each square having a 50% chance of burning up
and becoming impassable. The king, being wounded, can only move in the four cardinal
directions, as well as up-right or bottom-left. Compute the probability that the king can

start on the bottom row of the board and reach the top.

(Hint 1: Answer) (Hint 2)

Problem 67

14 | 16 | 12
18 | 14 | 10
16 | 18 | 14

Solution

Inside of each of the nine rectangles above is the perimeter of said rectangle. ...Er, actually

one of the numbers is lying. Which one?

(Hint 1)

Solution
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Problem 68 (Suggested by Edward)

Booster is trying to find Mario, who is hiding behind one of countably many curtains indexed
by the naturals. Booster can open and close any curtain to check if Mario is there, and then
Mario will move to an adjacent curtain (i.e. a curtain whose index differs from Mario’s
current curtain’s index by exactly 1). Can Booster guarantee that he will eventually find
Mario?

(Hint 1)
Solution

Problem 69 (%)

Points A and B are 10 miles apart. You have nothing but a 1-inch straightedge and a pencil.
Construct the line segment between A and B.

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 70

Emily and Sydney take turns placing quarters on a rectangular table, such that no quarter
hangs off the edge or lies on top of another quarter. The player that cannot place a quarter
loses. Who has the winning strategy?

(Hint 1)
Solution

Problem 71

Evaluate the integral

& 2 2
/ e T dy,
0

(Hint 1) (Hint 2)
Solution
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Problem 72 ()

Do there exist uncountably many pairwise-disjoint subsets of a plane, each homeomorphic
to the letter Y7

(Hint 1: Answer) (Hint 2) (Hint 3) (Hint 4) (Hint 5)
Solution

Problem 73

An ant lies on a vertex of a unit cube. What is the length of its shortest path along the
surface to the opposite vertex?

(Hint 1: What the answer is not) (Hint 2)
Solution
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Problem 74 (Suggested by Edward)

An ant lies on a vertex of a 1 x 1 x 2 box. What point on the box is farthest (along the
surface) from the ant? Exactly how far is it from the ant?

(Hint 1: What the answer is not) (Hint 2)
Solution

Problem 75

Let P(z) be a non-constant polynomial with complex coefficients. Prove that the roots of
P’(x) lie in the convex hull of the roots of P(z).

(Hint 1) (Hint 2)
Solution

Problem 76

Let P be a convex polygon with 180-degree rotational symmetry. Prove that P may be
subdivided into parallelograms.

(Hint 1)
Solution

Problem 77

a) Fix 0 < p < 1. Given a fair coin, simulate a biased coin that flips head with probability
P.

b) Given a biased coin that flips heads with some probability 0 < p < 1, simulate a fair
coin. You do not know the value of p.

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution
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Problem 78 (Suggested by Edward)

a) Show that if A > 0 is large enough, then any collection of squares whose areas sum to
A can cover a unit square.

b) Show that if @ > 0 is small enough, then any collection of squares whose areas sum to
a can fit inside a unit square.

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 79

Magellan is trying to circumnavigate the ocean world Planet 4546B by sailing one full revo-
lution around the equator.

Magellan has three ships docked at some port, where he can supply his ships with supplies.
But, each of his ships can only carry enough supplies to sail halfway around the equator.

Can Magellan fulfill his dream?

(Hint 1) (Hint 2)
Solution

Problem 80

The derivatives of sin(x) repeat after every 4 derivatives. Can you find a smooth function
f R — R, expressed in closed form using elementary functions, such that its sequence of
derivatives repeats after every 3 derivatives?

(Hint 1) (Hint 2)
Solution
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Problem 81 (%% ) (Proposed by Edward Hou)

The circle shape can generate Venn diagrams of size at most 3.
Prove that there is a convex shape that can generate Venn diagrams of any size.

(Rigorously, show that there is a convex open K C R? such that for any n € N, you can
arrange n copies Ki, K, -+, K, of K, with translation and rotation allowed, such that for
any A C {1,2,---,n} we have that ;. , K; N [);z4 K7 is non-empty.)

(Hint 1) (Hint 2)
Solution

Themed Week: Pizza

Problem 82

It’s a Halloween pizza party! But little Timmie doesn’t like eating the crust. Ugh. Can you
divide a circular pizza into finitely many congruent pieces such that there exists a piece with
no (positive-length) crust?

(So, a piece that intersects the crust at exactly one point is okay!)

(Hint 1)
Solution
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Problem 83

N people want to split a pizza equally. But I'm bad at finding the center of a pizza. So I
just picked some point in the pizza and made 2N cuts through it at equal angles, like so:

This divides the pizza into 4N slices, and now each of the N people takes every Nth slice
(so, 4 slices each).

Prove that everyone gets the same amount of pizza.

(Hint 1: Free Hint) (Hint 2: Hint for the Free Hint) (Hint 3: Hint for the Problem)
Solution

Further Ventures:

e Can you prove also that if N > 2, then alternating the slices will evenly divide the
pizza between two people?

e Can you prove that the following pizza is evenly divided?
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Problem 84 (k%)

Allison and Beth are sharing a pizza. Beth cuts the pizza into slices (all sectors), not
necessarily all the same size. Then, starting with Allison, they alternate taking slices such
that the remaining pizza is always one contiguous piece (you can think of this as “each slice
taken is adjacent to the existing empty space”).

Does Beth have a strategy that ensures that she gets to eat strictly more than half the
pizza?

(Hint 1: Answer)
Solution

Problem 85

It is given that the minimum value of * over (0,00) is M. Prove that the maximum value
of x1/* over (0, 00) is 1/M.

(Hint 1) (Hint 2)
Solution

Problem 86

Find a polygon with the following properties, or prove that it is impossible:

e The polygon has perimeter 314.
e All of the polygon’s side lengths have length 1.
e All of the polygon’s internal angles are either 90 or 270 degrees.

(Hint 1: Is it possible?) (Hint 2) (Hint 3)

Solution
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Problem 87

I'm somewhere in the interior of a square room whose walls are mirrors. Can my friends
arrange themselves inside (or on the border of) this square room in a particular way so that
I cannot see my own reflection?

(Hint 1: Answer) (Hint 2)
Solution

Problem 88 (Courtesy of Lance Lampert)

I'm standing outside a polygonal building. Prove or disprove: I must be able to see one of
its walls in entirety.

I can see this whole wall!

Mo. A—\—J

(Hint 1: Prove or Disprove?) (Hint 2)
Solution

Problem 89

The floor of my house is uneven. Show that if I buy a perfectly-shaped square table of
sufficient height, I can position it in such a way that all of the legs touch the floor.

(For rigor’s sake, you may make the following realistic assumptions: The floor is quite large
compared to the table and is Lipschitz continuous with Lipschitz constant 1 — that is, the
slope of the line between any two points on the floor will never exceed 1.)

(Hint 1)
Solution
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Problem 90

At last, a nefarious crime lord’s hiding place has been tracked down: a 1000-room palace.
The floor plan is a secret, but it is known that the palace’s adjacency graph is a tree. That
is, the rooms are connected in such a way that there is no loop of rooms.

What is the minimum number of soldiers that should be sent to infiltrate the palace in order
to ensure the crime lord’s capture? The crime lord is considered to be caught if they are
ever in the same room as a soldier.

As an example, a criminal hiding in the palace below could evade a search from one soldier,
but two soldiers can guarantee the capture.

Clarifications:
e The crime lord cannot “swap places” with a soldier while evading said soldier, like in
real life.

e Time can be interpreted in either a continuous or discrete sense as long as the above
point is obeyed.

o The crime lord’s speed can be arbitrarily large.

e The soldiers do not know anything about the crime lord’s whereabouts other than the
fact that they are present in the palace.

o There are no “hallways” between rooms. They are connected by virtue of being adjacent
to each other.

e The crime lord’s capture must be guaranteed in finite time, not just almost surely in

the limit.

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution
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Problem 91

a) The shape of Gloria’s house is a circle. She builds a fence around her house such that
all points on the fence are exactly 1 foot away from her house.

Prove that the fence is exactly 27 feet longer than the perimeter of her house.
b) What if the shape of Gloria’s house was a convex polygon instead?

c) (Bonus) What if the shape of Gloria’s house was an arbitrary bounded convex set?

(Hint 1: Part (b)) (Hint 2: Part (c))
Solution

Problem 92 (Suggested by “asbodke”)

Consider a 4 x 3 rectangle.
a) Prove that among any 7 points in the rectangle, there exist two of those points that
are at most \/5 apart.
b) Can we do better than 77

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution

Problem 93 (Suggested by “tanoshii”)

There are ”("TH) stones in piles. Every minute, we remove a stone from each pile and gather

them to form a new pile.
Prove that at some point, the piles’ sizes will forever be 1,2, ,n.

(Hint 1) (Hint 2)
Solution
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Problem 94

Choose a point uniformly at random from a 9001 x 420 rectangle. What is the probability
that this point is closer to the center of the rectangle than any of the four vertices of the
rectangle?

(Hint 1) (Hint 2)
Solution

Problem 95

a) Show that any increasing f : [0, 1] — [0, 1] has a fixed point.

b) Show that any increasing f : P(X) — P(X) has a fixed point, where X is any set.

In Part (b), P(X) denotes the power set of X, and f is increasing in the sense that if A C B
then f(A4) C f(B).

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution

Problem 96 (Suggested by “Linus”)

For a positive integer n, let o(n) be the number of odd digits of n. Is

> o(2"
5 o)

n=0

rational?

(Hint 1: Answer) (Hint 2)
Solution
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Problem 97

A group of 25 people stand in a ring on a field. All the people have different heights. Each
person is asked whether they are taller than their neighbors, shorter than their neighbors,
or in-between.

5 people said “taller”. How many said “in-between”?

(Hint 1)
Solution

Problem 98

A turtle is on a field. It crawled forward for 6 hours (the turtle’s speed can vary, and the
turtle need not always be moving). The turtle’s crawling was always watched by at least one
turtle enthusiast at all times. Each enthusiast watched the turtle crawl for an hour before
leaving, reporting that they saw the turtle crawl exactly 1 inch in that hour.

What’s the farthest distance that the turtle could have crawled during the 6 hours?
Clarification: You may assume that all relevant time intervals are closed.

(Hint 1: Answer) (Hint 2)
Solution

Problem 99

The turtle from Problem 98 is on a field again. This time it plans to crawl 1 foot in 1 hour.
The people in Problem 97 found a real number ¢ such that no matter how the turtle moves,
there will exist an interval of length ¢ (contained within the hour) during which the turtle
crawls t feet. Find all possible values of ¢.

(Hint 1) (Hint 2)
Solution
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Themed Week: Rush Hour

Problem 100

Solve the following Rush Hour variant puzzle. The rules are as follows.

e Each piece in the puzzle is a “train”.
e The goal is to move the 1 x 2 red train out of the enclosure.

e Each horizontal 1 X 2 or 1 x 3 train can only move horizontally. Ditto for the vertical
trains.

e The square 2 x 2 trains can move in any orthogonal direction.

(Click here to play)

(Hint 1)
Solution


https://thatscar.github.io/PuzzleScript/play.html?p=2f54e317366d05c01233e3443c833ac0
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Problem 101 (Suggested by “tenth”)

A rush-hour puzzle on a 2021 x 2021 grid is designed as follows: A corner of the grid is
chosen, and an edge adjacent to that corner is removed, forming the exit point. The 1 x 2
red train is then placed such that it is one square away from the exit. Lastly, the entire grid
is filled with 1 x 2 obstacle cars, except for some corner square. (The diagram below shows
an example for a smaller-sized grid.)

D

Prove that the rush-hour puzzle that we have constructed is solvable.

(Hint 1) (Hint 2)
Solution
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Problem 102 (%)

My sincerest apologies for Problem 100. Since this is the CMU Math Club, you were probably
expecting a really interesting math problem, but I gave a trivial puzzle instead. This was
undoubtedly quite disappointing. To make up for this error in judgment, I'm making today’s
problem by taking Problem 100 and pushing the red train forward by one square. This should
make the puzzle slightly easier and make for a relaxing Friday problem. Thank you for your
understanding.

(Click here to play)

(Hint 1) (Hint 2) (Hint 3) (Hint 4) (Hint 5) (Hint 6)
Solution



https://thatscar.github.io/PuzzleScript/play.html?p=c33f174a3205dfe53cd0bf33ff2c1072
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Problem 103 (Suggested by Edward Hou)

There are 100 bottles of beer on the wall. 100 bottles of beer! You can take some down,
pass ’em around, and whenever you have three empty bottles you can trade them in for one
full bottle of beer.

Your friend is willing to give you as many empty bottles as you want, as long as you return
them. How many bottles of beer can be drunk?

(Hint 1)
Solution

Problem 104

You enter your kitchen to see a disaster! Each of your n chefs started cooking a personalized
pancake on their own pan before falling asleep... and it’s about time to flip the pancakes!

To help with the flipping, you brought your own pan (for a total of n + 1 pans, one empty).
You can take any pancake-filled pan and transfer its pancake unto the empty pan by putting
the pans on top of each other and turning them around, flipping the pancake in the process.

Is it possible to execute a sequence of such moves such that each of the n pancakes ends up
in the pan it was originally in, except flipped?

(Hint 1: Answer) (Hint 2)
Solution

Problem 105
I have a 2 x 200 box.

a) Show that 400 coins of diameter 1 can fit inside the box.

b) Can we fit any more than that?

(Hint 1: Part (b) Answer) (Hint 2: Part (b)) (Hint 3: Part (b))
Solution
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Problem 106

Alyssa and Beth bought a 101 x 101 chocolate bar for some reason. They take turns taking
a piece of chocolate and breaking it up along a gridline. Whoever can’t move is the loser
(i.e. when all pieces are 1 x 1). Who has the winning strategy?

(Hint 1)
Solution

Problem 107

52023
52022

is a 1415-digit number that starts with 1. How many smaller powers of 5 (from 5° to
inclusive) also start with 17

(Hint 1)
Solution

Problem 108

Let f : [0,1] — [0,1] be continuous and strictly increasing with f(0) = 0 and f(1) = 1.
Prove that
2 » 99
> f(n/10) + £ (n/10) < o
n=1
(Hint 1) (Hint 2)
Solution

Problem 109

Let n be a positive integer. Prove that the penultimate digit of 3" is even.

(Hint 1)
Solution
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Problem 110 (k%)

Let I be an interval and f : I — I be continuous. We say that a point x € I has period £k if
the sequence z, f(z), f(f(z)),--- has period k.

Suppose that some point has period 3. Prove that there is a point with period n for all
natural n.

(Apology: Due to an error of my own, this problem is much harder than intended. It’s still
true though, and there’s an elementary proof.)

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 111 (%)

P is a regular n-gon with area 1 such that one of its sides, AB, is resting on a line. We now
roll P forwards n times. The images of point A under each of these rolls form a new n-gon

0.

A

Prove that the area of @) is 3.

(Hint 1) (Hint 2)
Solution
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Problem 112

There is a 5 x 5 grid of rooms, and between every two orthogonally adjacent rooms is a
Magic Door. If you pass through a Magic Door in one direction, you will gain a dollar. But
if you pass through that same Magic Door in the opposite direction, you will lose a dollar.

Starting with the room in the northwest corner, I wandered around the rooms, and at one
point I discovered that I had gained $8. Exploring more, I further discovered that if I walk
through any loop of doors, the net monetary gain will always be $0.

Can you figure out whether I will gain or lose a dollar if I exit the central room through its
north door?

(Hint 1)
Solution

Problem 113 (Suggested by “tanoshii”)

Let 1 < k < n. I’'m thinking of a secret number. Can I communicate with my n friends in
such a way that no k£ — 1 of them can figure it out by combining their knowledge, but any &
of them can?

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 114 (Suggested by Edward Hou)

a) You are in a circular cage with a hungry lion in the center, who can move at the same
speed as you. For many years, it was thought that you would surely be eaten if the
lion follows the simple strategy of moving towards you whilst always staying on the
line segment connecting your position with the center. It turns out that this doesn’t
work. Show that you can survive indefinitely if the lion follows this strategy.

b) Suppose now that there are two lions somewhere in the cage. Show that the lions can
coordinate in some way to eat you.

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution
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Problem 115

Rain is falling at 10 mph at an angle of 60° (directed away from you). How fast should you
run to a certain destination in front of you to minimize how wet you get?
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Assume that you are shaped like a ball.

(Hint 1)
Solution
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Problem 116

You have reached the enemy’s server room, which is a rapidly rotating circular room con-
sisting of four indistinguishable cylindrical servers arranged symmetrically in a square. At
least one server is on, but some could be off.

Each server has a power button that can be pressed to switch its state from on to off or vice
versa, but this change will not take effect until you exit the room and close the door for a
few seconds. You won'’t be able to tell which server was which upon re-entering. Moreover
there is no visual indicator for whether a server is on or off.

K—\

®@

Your goal is to turn off all the servers so that the hackers can access the mainframe and like
uh win everything. The hackers will inform you the moment all servers are off. Can you
guarantee success in some finite number of steps?

(Hint 1)
Solution
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Problem 117

You and your 2023 friends are sitting around a table. The bottle of grape juice you have is
really good, so you randomly choose one of your two neighbors to give it to. They in turn
think it’s really good, and they too pass the bottle to a random neighbor. This keeps going
until everyone tastes the grape juice.

Who is the most likely to try the grape juice last?

(Hint 1: Answer) (Hint 2)
Solution
Problem 118
A ladder slides down a wall. What shape is traced out by its midpoint?
(Hint 1)
Solution

Problem 119 (Suggested by “tanoshii”)

For which n > 3 does there exist a regular n-gon in the zy-plane whose vertices are lattice
points?

(Hint 1: Answer) (Hint 2) (Hint 3) (Hint 4)
Solution

Problem 120 (%) (Suggested by Edward Hou)

In 3D space, what is the largest number of lines that can be selected such that all the lines
intersect at one point and each pair of distinct lines intersect at the same angle?

For example, we can obtain 3 by choosing the z, y, and z axes, which all intersect at the
origin with every pair of axes intersecting at an angle of 90°.

(Hint 1) (Hint 2: Answer) (Hint 3)
Solution
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Problem 121

There are 5 apples for sale with 5 different sizes and 5 different positive integer prices from
$1 to $5. In dollars, what is the price of the apple that’s bigger than the apple that costs
more than the apple that’s smaller than the apple that’s cheaper than the apple that’s green,
given that it is red?

(Hint 1)
Solution

Problem 122

Can you drill a hole through a wooden cube such that a larger cube can be passed through
the hole?

(Hint 1: Answer)
Solution

Problem 123 (Suggested by “tenth”)

The digits of a positive integer are all greater than 5. Could the digits of its square be all
less than 57

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution
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Problem 124

How full is the wine bottle?

wi= n|-

(Hint 1) (Hint 2)
Solution

Problem 125

In an effort to commit as many FERPA violations as possible, I lazily handed back midterm
exams to the students in my recitation randomly. Each student got back an exam, but it
might not be theirs.

In one round, each student may choose a partner and switch exams with them. Prove that
everyone can get back their correct midterm exam in at most two rounds.

(Hint 1)
Solution
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Problem 126 (%) (Suggested by “tenth”)

There is a triangle with area 7" and an ellipse with area E. Their intersection has area A.
Show that % + % > A.

(Hint 1) (Hint 2) (Hint 3)
Solution
Problem 127
Find the sum of the seven marked angles.
(Hint 1)
Solution

Problem 128

Is it possible to partition the positive integers into multiple arithmetic progressions, each
with a distinct common difference?

(Hint 1: Answer) (Hint 2) (Hint 3)
Solution
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Problem 129

Detective Yohane’s area of vision is an open disk of positive radius centered at her location.
She has found a crucial clue in her investigation: A finite set of footprints in the plane!
Yohane decides to track down the murderer with the following search strategy: Every minute,
she will travel to the centroid of the set of all footprints in her vision.

Show that Yohane will eventually stop moving.

(Hint 1) (Hint 2)
Solution

Problem 130 (Suggested by David Altizio)

A triangle’s vertices are lattice points. There are no other lattice points on the triangle’s
boundary. Suppose that there is exactly one lattice point in the triangle’s interior. Prove
that this point is the triangle’s centroid.

(Hint 1) (Hint 2) (Hint 3)
Solution

Problem 131 (Suggested by Edward Hou)

I have a large supply of unit-length rods that can be linked only at their endpoints. I can
join three of them to form an equilateral triangle, which will be a rigid shape. The same is
not true if I make a unit square, since the rods can rotate about their ends to deform the
square into a parallelogram.

Is it possible to brace a unit square by adding more unit-length rods so that it becomes
rigid? The rods may intersect.

(Hint 1) (Hint 2)
Solution
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Problem 132

o0 . o0 .
Z sin n26 cos nf Z cos n26 sin nf

n

n
n=1 n=1

One of these series converges for all . The other one diverges for some §. Which is which?

(Hint 1: Answer) (Hint 2)
Solution

Problem 133 (Suggested by several people)

Two squares are overlapped as shown. The smaller square has area 16, and the gray triangle
has area 1. What is the area of the larger square?

(Hint 1)
Solution
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Problem 134

I've struck it rich! At the bottom of a circular lake, I found a treasure chest full of gold.
Unfortunately, the evil pirate king has taken notice, and has sent his army of pirates to
patrol the boundary of the lake to prevent my escape.

The pirates’ running speed is the same as the speed of my boat. If I can reach any part of
the shore that isn’t being occupied by a pirate, I'll be safe because I can outrun the pirates.

How many pirates does the pirate king need to send in order to prevent my escape?
(Open the first hint for an extension to this problem!)

(Hint 1: Answer) (Hint 2)
Solution

Problem 135 (% %) (Suggested by “tanoshii”)

1
Let S be a finite set of positive integers such that Z z > 2. Prove that two distinct subsets

kcsS
of S have the same sum.

(Hint 1) (Hint 2) (Hint 3) (Hint 4) (Hint 5)
Solution

Problem 136 (Suggested by “tenth”)

Can a closed disk be partitioned into two congruent sets?

(Hint 1: Answer) (Hint 2)
Solution
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Problem 137

I'm a disorganized and overexcited birthday party host. I have no idea how many people I
invited, and every time another guest arrives, I make a cut into the cake, thereby increment-
ing the number of cake pieces by one. I will only serve the pieces of cake once I am informed
that all guests have arrived.

Can I ensure that the largest cake piece will be strictly less than double the size of the
smallest cake piece?

(Hint 1)
Solution

Problem 138

My two friends and I found a treasure chest with 101 pieces of gold! I'm feeling awfully
generous, so I agree to take just one piece. We notice that no matter which piece I take, my
friends can distribute the remaining 100 pieces into two shares of 50 pieces, with each share
weighing the same.

Prove that all 101 gold pieces have the same weight.

(Hint 1)
Solution

Problem 139

I have a shuffled standard deck of 52 cards. I start dealing them face-up, and you can stop
me at any point before I run out of cards. You win if, at this point, the card on top of the
deck is an ace.

Under an optimal strategy, what are your odds of winning?

(Hint 1: Answer)
Solution
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Problem 140 (Suggested by Edward Hou)

Four points A, B, C, and D line in a plane. It is given that there does not exist a square
such that each of its sides (when extended) passes through one of these four points, with
different sides passing through different points.

Prove that D is the orthocenter of AABC.

(Hint 1) (Hint 2)
Solution

Problem 141

Prove Smith’s Determinant Identity:

ged(1,1) ged(1,2) ged(1,3) -+ ged(1,n)
ged(2,1) ged(2,2) ged(2,3) -+ ged(2,n)
L 2 3,3 31| = p(1)p(2)(3) - o (n),

ged(3,1) ged(3,2) ged(3,3) -+ ged(3,

ged(n,1) ged(n,2) ged(n,3) --- ged(n,n)

where ¢ is the Euler totient function.

(Hint 1) (Hint 2)
Solution

Problem 142

I'm making dumplings! I have three unmixed bowls of filling for different types of dumplings.
I need to mix each bowl by hand.

My hand gets sweaty really easily, so to prevent this from contaminating the filling, I need
to wear a latex glove. Moreover, we don’t want cross-contamination between the fillings.

Can I mix all three bowls without dirtying my hand and without any contamination, if I
only have two latex gloves at my disposal?

(Hint 1) (Hint 2) (Hint 3) (Hint 4)
Solution
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Problem 143

A number of guards were hired for the night shift at a museum. Each guard was assigned to
watch a different room. Due to boredom, each guard at some point decides to take a walk
around the museum before coming back to their assigned room, having visited every room
of the museum exactly once.

Miraculously, no two guards ever saw each other during the night. Prove that, at some point
during the night, no guard was watching their assigned room.

(Hint 1)

Solution

Problem 144 (Suggested by “tenth”)

Let T be a triangle. Amber and Beth are playing a game. In a move, Amber chooses a
point in the plane, and then Beth colors this point either red or blue. Moves of this form
are repeated until there are three points of the same color that form a triangle congruent to
T, at which point Amber wins.

a) Is there a triangle T" for which Amber can force a win?

b) Is there a triangle T' for which Beth can forever prevent Amber from winning?

(Hint 1: Part (a)) (Hint 2: Part (a)) (Hint 3: Part (b)) (Hint 4: Part (b))
Solution

Problem 145

sin(cos(z)) cos(sin(z))
Show that one of the above functions is strictly greater than the other function for all z € R.

(Hint 1)
Solution
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Problem 146

Four distinct circles of radius r are on the surface of a unit sphere such that they are pairwise
tangent. What is r?

(Hint 1)
Solution

Problem 147 (%) (Suggested by “tenth”)

There are n players that want to play a board game. They need to decide their playing
order uniformly at random, and they wish to do this by rolling n fair dice as follows: Each
player will roll the die assigned to them, and their playing order is given by the order of the
n numbers rolled.

Does there exist n dice that accomplish this task, for every positive integer n?

(To be precise: Find n finite sets Ay, As, ..., A, of real numbers such that if we pick elements
x(1),x(2),...,2z(n) from these sets, each uniformly at random, then the probability that

is exactly % for any permutation 7 : {1,2,....,n} — {1,2,...,n}.)

(Hint 1) (Hint 2)
Solution

Problem 148

On a 2023 x 2023 grid, Ashley and Beth take turns claiming (unclaimed) squares, with Ashley
going first. The game ends when all squares are claimed, and the winner is the player whose
claimed region has the greater perimeter. Which player has the winning strategy, if either?

(Hint 1)
Solution
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Problem 149 (Suggested by “tenth”)

We call a subset S of R™ a two-distance set if for some a,b > 0, we have that the distance
between any two distinct points of S is either a or b.

a) Prove that there is a two-distance set of size (}).

n+1)‘

b) Prove that there is a two-distance set of size ( )

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution

Problem 150

Ai and Beth each have 2023 dollars. They also each have a biased coin that flips heads with
probability 51%. Every second, they flip their coins. On every flip, Ai bets a dollar that her
coin comes up heads, whereas Beth bets a dollar that her coin comes up tails.

a) Ai and Beth eventually both go broke. Who was more likely to have gone broke first?

b) Suppose now that instead of flipping two different biased coins, they were flipping the
same biased coin. If Ai and Beth eventually both go broke, who was more likely to
have gone broke first?

(Hint 1) (Hint 2: Part (a) Answer) (Hint 3: Part (b) Answer) (Hint 4)

Solution

Problem 151

Angela is thinking of a polynomial P with positive integer coefficients, and Beth is trying
to guess what it is. Beth can pay Angela a dollar to know the value of P(n) for a positive
integer n of Beth’s choice. Beth can do this as many times as she wants.

Beth’s money is a bit tight, though. At most how much money does Beth need to spend to
deduce Angela’s polynomial?

(Hint 1: Answer) (Hint 2)
Solution
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Problem 152

A painting is hanging on the wall by a string over two nails. For the painting to fall, both
nails must be removed.

Wrap the string around the two nails in such a way that the painting hangs, but will fall if
either nail is removed.

(Hint 1) (Hint 2)
Solution
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Problem 153 (%)

Please complete the below wordsearch. Recall that words can only appear in any of 8
compass directions and that each word you need to find will appear exactly once. The
special properties for this wordsearch are as follows:

1. Only the letters ‘B’ and ‘E’ appear.

2. I spilled my drink over the wordsearch, so most letters are not visible. Apologies.

E WORDS TO FIND
BEE

(Hint 1) (Hint 2)
Solution

Problem 154

Let G be the graph of a quartic with two inflection points at A and B. Ray E intersects
G again at a point C'. Prove that % = ¢ where ¢ is the golden ratio.

(Hint 1)
Solution
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Problem 155

(a) Find a solution to the “differential equation”

fll@)=f"), 2€(0,00)
for f:(0,00) — (0, 00) differentiable and invertible.

(b) (Bonus) Show that the solution is unique.

(Hint 1: Part (a)) (Hint 2: Part (b))
Solution

Problem 156

z # 0 is a complex number. Given that z is a root of a polynomial whose coefficients are all
either 0 or 1, compute the greatest possible lower bound on |z|.

(Hint 1: Answer) (Hint 2)
Solution

Problem 157

Show that

o 1
| e
o (1+az¥)%

where ¢ is the golden ratio.

(Hint 1)
Solution
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Problem 158 (%)

P is a monic polynomial with integer coefficients. It is given that all of its roots are real,
are non-integers, and lie between 0 and 3.

Prove that P(¢?) = 0 where ¢ is the golden ratio.

(Hint 1)
Solution
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Grand Finale

For over a year, the POTD has been secretly creating something behind the scenes...

Problem 159: The Abyss

ERROR (problem data.txt): The file or directory is corrupted and unreadable.

Problem 160

Let B be the answer to the problem that is counter-clockwise adjacent t(izgnd at the same
altitude as) this one. W XY Z is a convex quadrilateral. Rays WX and ZY intersect at P,

—
and rays Wﬁ and XY intersect at (). Suppose that
WX=XY=YW=XP=7Q=B.

Then log (W Z) may be written as p/q where p and ¢ are positive integers and ged(p, ¢) = 1.
Compute |[p — q|.

Clarification: The “counter-clockwise” direction is from the perspective of an observer looking
down from abowve.

Problem 161

Let B and F' be the answers to the two adjacent problems below this one. AXY Z satisfies
XZ =B,YZ =F,and ZXZY = 40°. The shortest path that starts from X, visits segment
Y Z, visits segment X 7, and then ends at Y has length y/n for an integer n. What is n?
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Problem 162

Let A be the answer to the problem below this one. Let n be a positive integer. A sequence
of n squares of an n x n grid is called a snake if each square in the sequence (after the first)
is either the rightward neighbor or the upward neighbor of the previous one. It turns out
that there are A ways to partition an n x n grid into n snakes. Compute n.

Problem 163

Let B and C' be the answers to the two adjacent problems below this one. b > 2 is a positive
integer. Consider the sequence

b,b%, b bt b0,

formed by the powers of b, starting with b. Now make one list of positive integers consisting of
the lengths of these powers in base v/B, and make another list of positive integers consisting
of the lengths of these powers in base v/C'.

It just so happens that these two lists of positive integers partition the set {2,3,4,5,---}.
What is b?

Problem 164

Let A be the answer to the problem below this one. Let K be the answer to the problem
opposite this one. P is a point on the circumcircle of equilateral triangle AXY Z which lies
on the minor arc between X and Y. Given that PX = A and PY = K, what is PZ?

Problem 165

Let C' and D be the answers to the two adjacent problems below this one. Let F' be the
answer to the problem opposite this one. Let u = C + D — F. For some integers z, ¥, z, the
average of (z —y)?, (y — 2)3, and (z — x)? is u. Compute

max(zx,y, z) — min(z,y, z).
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Problem 166 (Suggested by “tenth”)

Let A be the answer to the problem below this one. In how many ways can you tile a regular
A-gon with side length 1, such that each tile is either

e an equilateral triangle of side length 1, or

e a rhombus with side length 1, all of whose angles are greater than 60°7

Problem 167

Let D and E be the answers to the two adjacent problems below this one, with £ being
counter-clockwise adjacent to D.

Consider the product
anEnHEHEH B --- (D + E* — DH((D + E*)).

What is the value of n for which the above product, when the term (n!) is removed, will be
a perfect square?

Problem 168

Let E be the answer to this problem. Beth has finally found her life’s calling: Fishing. Every
time she catches a fish, its size is independently and uniformly selected at random from [0, 1].
Yesterday she caught F — 1 red fish. What is (E[Size of the smallest red fish])~'?
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Problem 169

Let E and F' be the answers to the two adjacent problems below this one. Then the area of
the cyclic octagon below is m + nv/2 for some positive integers m and n. What is m + n?

N

A -4

Problem 170: The Peak

Use the answers to the five problems adjacent to this one.

What is the POTD’s secret agenda?

(Hint 1: Problem 160) (Hint 2: Problem 161)
(Hint 4: Problem 163) (Hint 5: Problem 164)
(Hint 7: Problem 166) (Hint 8: Problem 167)

(Hint 10: Problem 169)
(Hint 11) (Hint 12) (Hint 13)

(Hint 14) (Hint 15)

(Hint 3: Problem 162)
(Hint 6: Problem 165)

(Hint 9: Problem 168)

Solution
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Hint 1.1

The answer does not change if you don’t stir!

[Back to Problem]

Hint 2.1

By “fraction” of a plane, we mean the following: The tiling should be periodic, and if we
pick out a fundamental domain D, then the “fraction of the plane covered by the triangles”
is defined to be the fraction of D covered by the triangles.

In the example given in the problem, a fundamental domain D could be several possible
shapes, such as a regular hexagon of side length 1, or a rectangle with width 1 and height
V3 (where the equilateral triangles are taken to have side length 1).

[Back to Problem|]
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Hint 2.2

The answer is %

[Back to Problem]

Hint 2.3

For each triangle placed (shown below in gray), study how much of the red region can be
covered.

(It goes without saying that there may be other methods!)

[Back to Problem]
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Hint 3.1

What if the planets could intersect each other?

[Back to Problem]

Hint 3.2

Homothety.

[Back to Problem]

Hint 3.3

Visualize the set of all ray-of-light directions as the surface of a sphere centered at the sun.
How much of this surface can be accounted for by a single planet?

[Back to Problem]
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Hint 3.4

Any single planet cannot account for more than an open hemisphere. Can you prove that
three open hemispheres cannot cover the surface of a sphere? It may be helpful to consider
great circles.

[Back to Problem]

Hint 4.1

The area of a triangle does not change if one of its vertices slides along a line parallel to the
opposing side.

A
Y
A
y

A
y
A
y

[Back to Problem|]
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Hint 5.1
16=1+5+5+5

[Back to Problem]

Hint 5.2

Think about regular pentagons.

[Back to Problem]
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Hint 6.1

Alice can pass. This is not exactly the highlight of the problem, but the construction might
be slightly unintuitive or annoying to find.

As a first step, try constructing the reflection of A over B.

[Back to Problem]

Hint 6.2

Construct a point that is equidistant from A and the midpoint. The previous hint lets you
do this in one step.

[Back to Problem|]
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Hint 6.3

Bob will fail. Suppose for contradiction that he succeeded in constructing the midpoint. The
motto here is to try and demonstrate that “his construction could have failed”.

Start by getting Bob to draw his supposed construction on a sheet of paper.

[Back to Problem]

Hint 6.4

Once Bob proposes his scheme for the midpoint construction, the idea is to show Bob an
explicit “alternate reality” where Bob’s construction does not construct the midpoint. To be
more precise, Bob’s construction requires the selection of some number of arbitrary points.
Can you show that by moving said arbitrary points in some way, Bob’s “midpoint” will
move?

If Bob’s construction is puzzling you, perhaps take a step back to ponder.

[Back to Problem|]
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Hint 6.5

Show Bob that his construction could have failed by looking at his construction at a different
angle.

That is to say, draw his construction on a flat table, then stand up and walk away.

[Back to Problem]

Hint 7.1

9N is weird to think about, so write it in a different way.

[Back to Problem]
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Hint 8.1

Function inverses.

[Back to Problem]

Hint 8.2

Consider fixed points of involutions! One way to solve f(f(z)) = x is by solving...

[Back to Problem]

Hint 8.3

Set both sides equal to some variable y.

[Back to Problem|]
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Hint 9.1

Can you rewrite % in a better way that is related to factorials?

[Back to Problem]

Hint 9.2

Let x = —1 in the Taylor expansion of e*. This gives a series for n!/e. Now, decide how the
non-integer terms in this series affect what the floor is.

[Back to Problem]

Hint 10.1

Find a way to simplify the matter in a way that removes the river and the bridge.

[Back to Problem|]
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Hint 11.1

If f(z) is the equation of the curve, you can interpret computing f(z) for each value of z as
a maximization problem.

[Back to Problem]

Hint 12.1

It is essential that Beth can deduce Alice’s number. So, your goal is to find a sum S
(Beth’s number) such that there is exactly one value of P (Alice’s number) and n (number
of turtles) for which the ages cannot be deduced; that is, there exist different (1, zo, -, x,)
and (y1,Ys, - ,Yn) with same sum and same product.

I have never found a short and/or elegant solution to this problem, despite outsourcing this
problem and searching the internet. So, while I would appreciate receiving a nice solution,
I advise you to not spend too much time finding one, since it may not exist. For what its
worth, the solution I have included in this book is four pages long.

[Back to Problem]
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Hint 13.1

Cut the square into pieces and rearrange them.

[Back to Problem]

Hint 14.1

If you don’t see any reasonable solution off the bat, try writing the equation in terms of
y = 2%,

[Back to Problem]

Hint 15.1

Yes.

[Back to Problem]
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Hint 15.2

Find a natural candidate for a monovariant, i.e. a quantity related to the trees that the
firefighter can always increase (or decrease, perhaps) with every “loop”.

[Back to Problem]

Hint 15.3
Binary!
Specifically, let a tree on fire represent 1, and let it be 0 if not on fire.

Then the circle of trees spell out a binary number (...in some order) that the fireman can
essentially force to increase after every loop.

[Back to Problem]
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Hint 16.1

The decomposition is unique! Try the following angle of attack: Let us suppose we have
found a decomposition f(z) = o(z) + e(x) where o is odd and e is even. What, then, can we
deduce about o and e? What could we substitute for z to give us information?

[Back to Problem]

Hint 17.1

Think about the locus of points that the Red October could be at some time ¢.

[Back to Problem]
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Hint 17.2

It is not necessarily trivial that your ship makes it over the whole circle in finite time.

In the strategy, the equation for the distance of your ship from the Red October’s last known
location at time t is clear. It remains to determine the equation for the angle along the circle.
That is, use polar coordinates. If said equation for the angle will cross 27 in finite time, then
the proof of correctness is complete.

Expect some sort of differential equation.

[Back to Problem|]

Hint 18.1

You need not be skilled in geometry to solve this problem! A key idea is to imagine P and
() to be points that are moving along their respective sides.

[Back to Problem]
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Hint 18.2

How does the area of the red triangle, [ABP], change as P moves along CD at constant
speed?

[Back to Problem]

Hint 19.1

You need to light multiples fires at once.

[Back to Problem]

Hint 20.1
Parity.

[Back to Problem|]
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Hint 21.1

The previous problem was symmetrical under translations, which allowed us to assume
without loss of generality that the point we start at is (0,0) when analyzing reflections.

Unfortunately, and perhaps surprisingly, this problem does not admit such a symmetry!
Roughly speaking, this is because a translation by a vector with rational coordinates will
offset the grid of lattice points by a non-integer amount. What this means is that if you
wish to analyze the reflection of some point (p/d, ¢/d) with rational coordinates, you cannot
assume that p = ¢ = 0 without loss of generality.

[Back to Problem]

Hint 21.2

It turns out that a point is reachable if and only if it may be written in the form (5, %),
where p and ¢ have the same parity and d is an odd sum of two squares.

By Fermat’s Theorem on the sum of two squares, we interestingly have that d is an odd sum
of two squares if and only if all primes in its prime factorization are congruent to 1 mod 4.
This may or may not be useful to you, depending on your approach.

[Back to Problem|]
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Hint 21.3

There are several approaches to the problem, though as far as I know, none of them are
“easy”. Particularly, you are doomed to have to work with some form of the point’s reflec-
tion’s coordinates, which aren’t very nice, even with complex numbers.

Two useful results to keep in mind are as follows:

e The set of positive integers that are sums of two squares is closed under multiplication.

e [f a positive integer is even and is the sum of two squares, then this property is retained
when it is divided by 2.

If you are unfamiliar with these results, try to prove them!

[Back to Problem]

Hint 22.1

This is one of those problems where you will absolutely kick yourself once you see the solution.

[Back to Problem]
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Hint 23.1

There are several nice approaches to this problem. One involves considering radical conju-
gates.

[Back to Problem]

Hint 24.1

Yes.

[Back to Problem]
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Hint 24.2

The number 10 appears three times in the problem. Two of these 10’s are useless distractions
that do nothing but inflate the difficulty. However, one of them is incredibly essential and
was very specifically chosen to make the problem work out. To figure out which “10” is the
important one, try replacing 10 with, say, 10'%°. This might give you a good idea of what
avenues of approach would be tough to work with.

[Back to Problem]

Hint 24.3
Use probability (!).

[Back to Problem|]
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Hint 25.1

There is an optimal direction for Minsung to choose at every step. Remember that the only
thing that matters is how far Minsung is from the spawnpoint.

[Back to Problem]

Hint 26.1

What special property do the coin denominations satisfy? Try a few specific examples. This
may help give you a feel for how to come up with a nice construction.

[Back to Problem]

Hint 27.1

No. The identity function on R is the only ring endomorphism on R.

[Back to Problem|]
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Hint 27.2

First prove that f(q) = ¢ for all rationals g.

[Back to Problem]

Hint 27.3

Show that f sends positive reals to non-negative reals!

[Back to Problem]

Hint 28.1

They are equal (!).

[Back to Problem|]
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Hint 28.2

Evidently, you want to construct a bijection between the two sets of lit triangles. What’s an
obvious way to try this, and what’s the only way it can “go wrong”?

[Back to Problem]

Hint 29.1

It may be slightly easier to instead find the dimension of the space of magic squares with
magic number equal to 0.

[Back to Problem]

Hint 29.2

Try using the rank-nullity theorem!

[Back to Problem|]
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Hint 30.1

If you let the “angle of rotation” be #, then you can express the “next side length” in terms
of 6.

To find the limit, I might recommend using Taylor’s theorem.

[Back to Problem]

Hint 31.1

Let n be the number of cups. You can solve for the total amount of milk and total amount
of tea in terms of n.

[Back to Problem|]
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Hint 32.1

The answer is the smallest possible length of the red segment shown below.

[Back to Problem|]
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Hint 33.1

The useful properties here are:

e The non-real roots of P come in conjugate pairs.

e The real roots have even multiplicity.

There should be a number of ways to proceed using these properties.

[Back to Problem|]

Hint 34.1

Use casework on the possible shooting orders. By symmetry, it is sufficient to determine
Clara’s probability of winning, and this helps reduce the number of cases to 3.

[Back to Problem|]
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Hint 35.1

Suppose everyone dies. What type of function is the map (z + duelist shot by x)?

[Back to Problem]

Hint 35.2

Use the extremal principle.

[Back to Problem]

Hint 36.1

To identify the point, consider the case in which the cut passes through a vertex of the
triangle. The point should be a famous triangle center.

[Back to Problem]
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Hint 36.2

It may be a good idea to prove the converse first.

[Back to Problem]

Hint 36.3

The slickest proof uses a stronger version of the converse: If X,Y lie on the boundary, then
cutting the pizza along X1 and then 7Y will divide the pizza’s area and crust into the same
ratio, where [ is the incenter!

If you don’t see where that’s going, here’s a different route: If the cut is along segment XY,
then clearly XY intersects one of the angle bisectors at a point P. You can show that P = I.

[Back to Problem]
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Hint 37.1

Think about the sum of the digits.

[Back to Problem]

Hint 37.2

Think about the remainder upon division by 9.

[Back to Problem]

Hint 38.1

The answer is yes, it is possible. You need only consider planet sizes that are “nice” in
the sense that the distances 30 km, 40 km, ..., 90 km are all integer multiples of a quarter-
revolution on a great circle of the planet.

[Back to Problem]
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Hint 39.1

The statement is false! There is an uncountable such family of subsets.

[Back to Problem]

Hint 39.2

The idea is to construct a family that has a clear bijection with the real numbers. To wit,
instead of natural numbers, consider a different countable set that is more related to the real
numbers.

For an alternative approach, think about using the fact that the infinite binary tree has
countably many nodes.

[Back to Problem]
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Hint 39.3

Think about constructions of the real numbers.

For a alternative approach, try using the fact that the infinite binary tree has uncountably
many infinite paths that start from the root.

[Back to Problem]

Hint 40.1

The prisoner that guesses first is essentially doomed as they cannot guarantee their survival.
But perhaps their answer could communicate some property about the distribution of black
and white hats.

[Back to Problem|]
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Hint 41.1
This problem is difficult.
The answer is that you can save all but one prisoner.

There is nothing special about 100. For example, the problem still works out if there are
101 prisoners.

[Back to Problem]

Hint 41.2

The key idea, once again, has something to do with whether something is “odd” or “even”.

[Back to Problem]
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Hint 41.3

Every prisoner has two reasonable guesses. Therefore, if everything is going to plan, then
every prisoner should essentially be guessing from two possible hat configurations that differ
by a single “swap”.

[Back to Problem]

Hint 41.4

Give the missing hat to the warden. Number the prisoners and the warden, as well their 101
hats, from 1 to 101. Then the function

Prisoner Number — Prisoner Hat Number

is a permutation, where we view the warden as the “101st prisoner”.

[Back to Problem]
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Hint 42.1

This isn’t technically possible in “real life” because the prisoners would require infinite
memory.

The prisoners, in their strategy, will require the axiom of choice.

[Back to Problem]

Hint 42.2

Find a sort of scheme that the prisoners can follow such that, when the guessing game starts,
the prisoners will be able to all agree on a sequence to guess. Of course, the way in which
each prisoner comes to this agreement must somehow be based only on the hats that the
prisoner can see. Moreover, the agreed-upon sequence needs to match the correct sequence
at all but finitely many numbers. That is, the guessed sequence and the correct sequence
will eventually agree forever.

The prisoners will not need any property of the real numbers, this should work for any set
of things that the warden can draw on the hats.

[Back to Problem]
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Hint 42.3

Define an appropriate equivalence relation on the set of all possible hat sequences as suggested
by the previous hint, and use the fact that equivalence relations induce equivalence classes
which partition the set of all possible hat sequences.

[Back to Problem]

Hint 43.1
Use L’Hopital’s rule (?!).

[Back to Problem]
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Hint 44.1

The game they are playing is completely identical to a much more famous two-player game
that I am certain you have heard of.

[Back to Problem]

Hint 44.2

What is a famous two-player game in which the goal is to claim three things out of nine
things in a specific way?

[Back to Problem]

Hint 44.3

Use a magic square (!).

[Back to Problem|]
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Hint 45.1

There exists an elementary solution. To be precise, you need not know anything about the
cross product, linear algebra, or anything substantial about vectors.

[Back to Problem]

Hint 45.2

Divide the area of the “shadow” into three parts. Similarly divide the “height” into three
parts.

[Back to Problem]
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Hint 45.3

Let the edges protruding from the bottom-most vertex be x, y, and z. Prove that the
“height” of z is exactly equal to the area of the “shadow” underneath the face of the cube
spanned by z and y.

[Back to Problem]

Hint 46.1

You only need to consider one parabola. Consider drawing the tangent lines from the center
of the circle to a parabola.

[Back to Problem]
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Hint 47.1

Probability.

[Back to Problem]

Hint 47.2

Consider an m x n board.

[Back to Problem]
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Hint 48.1

There almost surely exist physicists that will contest this, but for the purposes of this
problem, you can think of temperature as a measure of energy per unit mass. To reach
thermal equilibrium entails reaching a uniform distribution of energy.

Hence:

1. When a block is cut into pieces, those pieces inherit the temperature of the block.

2. When two pieces of masses m; and my and temperatures T} and 75 are pressed together,

their temperatures both become equal to % This is the arithmetic mean of

the temperatures, but weighted by the respective masses.

[Back to Problem]

Hint 48.2

The blue block’s temperature can get arbitrarily close to 100 degrees (!!).

[Back to Problem]
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Hint 48.3

Start by finding a way to do better than 50 degrees. You can do this by just splitting each
block in half and then playing with the four blocks you have.

[Back to Problem]

Hint 48.4

Apply the previous hint on itself (?!).

[Back to Problem]

Hint 49.1

Focus on the missing terms.

[Back to Problem]
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Hint 50.1

I’ll start you off with the following observation:

If the first step of your strategy is “always pick the left card”, Beth can doom you to have a
guaranteed 50% odds. She can do this by e.g. picking 0 for the left card, and then deciding
the right card to be either 1 or -1 with equal probability.

That means that the way in which Ari chooses a card cannot be deterministic. She should
pick at random. Particularly, it’s probably sensible for Ari to pick either card with equal
chance.

But now what? I'll leave that to you.

[Back to Problem|]

Hint 51.1

Create an invariant.

[Back to Problem|]
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Hint 51.2

Assign different weights to the rooms. The invariant you seek is the sum of the weights of
the rooms occupied by all hydra heads.

[Back to Problem]

Hint 52.1

If you’ve tried using the circumcenter by cutting along the circumradii, and noticed that
this doesn’t work for obtuse triangles, then I will save you some time by telling you that this
idea can’t quite be salvaged.

The working idea is not fundamentally too different. What part of the circumcenter idea
was actually important, and can you achieve it in another way?

[Back to Problem|]
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Hint 53.1

Generating functions.

[Back to Problem]

Hint 54.1

A polygon with n sides can be viewed as a sequence of n vectors that sum to 0.

[Back to Problem|]

Hint 54.2

2% — 2% + 1 is the 18th cyclotomic polynomial (!?).

[Back to Problem|]
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Hint 55.1

The plate is ceramic, but it can be made out of paper if you want.

The solution is very short.

[Back to Problem|]

Hint 56.1
If Baka cats x for the first bite, then they take [1] bites in total.

An alternative approach: Baka always takes a first bite. When z < 1/2; Baka will take
another bite. When z < 1/3...

[Back to Problem]
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Hint 57.1

You may assume that the Queen has access to a random number generator, and that she
cannot die from old age.

[Back to Problem]

Hint 57.2

What information is available to the Queen, and how can she use it?

Explosions are pretty loud.

[Back to Problem]
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Hint 57.3

The Queen should board the ship with some probability dependent on the number of ships

bombed so far.

[Back to Problem]

Hint 58.1

Try reflecting Cherie over the mirror.

[Back to Problem]

Hint 59.1

Parabolas look pretty thin if you zoom out a lot...

concrete proof?

[Back to Problem]

can you wrestle this intuition into a
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Hint 60.1

You are flipping over the piece! This is quite different from inverting the colors of a piece.

[Back to Problem]

Hint 60.2

Even if x is not a rational multiple of pi, this whole flipping process isn’t quite as convoluted
as it might seem. Try making your own “cake” from a circular piece of paper, and see what
happens. It should be quite enlightening!

[Back to Problem]
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Hint 60.3

Once you've caught on to what’s going on behind the scenes, your fastest route to a proof
is to actually prove the stronger claim that eventually all the pieces return to the same
orientation and relative placement as in the beginning, so that the cake simply went through
a rotation.

[Back to Problem|

Hint 61.1

The order of pressing lights does not matter. Thus, a solution to a Lights Out puzzle consists
of a subset of all lights that need to be pressed.

[Back to Problem|]
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Hint 61.2

Assume the contrary. Then for every initial configuration of lights, there is a solution.

[Back to Problem]

Hint 62.1

The case when n is even is very different from the case when n is odd. Some of the key
starting observations to be made are:
e When n is even, all possible initial configurations of lights constitute a solvable puzzle.
e When n > 3 and is odd, this is not the case.

e When n is odd and the puzzle is solvable, it seems to be the case that one easy run is
always sufficient.

e When n is even, it is possible that one easy run is insufficient.

[Back to Problem]
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Hint 63.1

Induction.

[Back to Problem]

Hint 63.2

Any graph with an odd number of vertices must have a vertex of even degree.

[Back to Problem]

Hint 64.1

One simple observation trivializes both (a) and (b). How can you “reinterpret” what happens
during a collision?

[Back to Problem]
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Hint 65.1

The coefficient of x2 is 0.

[Back to Problem]

Hint 66.1

The answer is 50%.

[Back to Problem]
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Hint 66.2

Invent a second king that has a goal similar to the original king, in such a way that the
original king can complete their goal iff the second king cannot.

Also, consider trying to modify the chessboard in such a way that the king’s movement is
more natural.

[Back to Problem]

Hint 67.1

Find the perimeter of the large rectangle formed by the 9 smaller rectangles.

[Back to Problem|]
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Hint 68.1

It may be helpful to view this as a game on a 2D grid. Mario starts on the top row, and
moves down diagonally. Booster’s goal is to place an obstacle on exactly one square of each
row in order to ensure that Mario will eventually run out of moves.

[Back to Problem]

Hint 69.1

This problem is impossible to solve without at least one theorem from projective geometry.

[Back to Problem]

Hint 69.2

You can try using either Pappus’s Theorem or Desargues’s Theorem.

[Back to Problem]
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Hint 69.3

Can you solve the problem if A and B are at most 1.01 inches apart? If you can, then the
problem is solved with one cute leap of logic.

[Back to Problem]

Hint 70.1

Exploit a symmetry of rectangles.

[Back to Problem]

Hint 71.1

Start by letting the integral be I and make a substitution.

[Back to Problem]
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Hint 71.2

The substitution of interest is to let u = 1/z.

[Back to Problem]

Hint 72.1

The answer is no. Any such collection of pairwise disjoint subsets must be at most countably
infinite.

[Back to Problem]

Hint 72.2

If you’ve never seen this sort of argument, you could try looking at proofs such as those in
the answers to this question for inspiration.

[Back to Problem]


https://math.stackexchange.com/questions/263606/prove-that-the-number-of-jump-discontinuities-is-countable-for-any-function
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Hint 72.3

Consider disks with rational centers and rational radii. The number of such disks is count-
able.

This is not the set that you will end up “injecting” into. Rather, this collection of disks will
be a key component in forming this set.

[Back to Problem]

Hint 72.4

Let Y be a countable set, and suppose f : X — Y is a function such that for every y € Y,
there are at most two values of z in X satisfying f(x) = y. (That is, |f~(y)| < 2 for all
yey)

Then X is countable.

[Back to Problem|]
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Hint 72.5

I really, really don’t want to give away the punchline in a hint because it’s so amazing. I will
try to be a bit subtle: It is difficult for many “Y set”s’ arms’ endpoints to be close to each
other. Draw some diagrams and try to figure out why this is the case. There is a famous
puzzle that is highly relevant.

[Back to Problem|

Hint 73.1

You can do better than 1 + /2.

[Back to Problem]
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Hint 73.2

3D can be deceiving. Try instead looking at a net of the cube.

[Back to Problem]

Hint 74.1

The answer is not the opposite vertex (!).

[Back to Problem]

Hint 74.2

First prove that the point you're looking for is on the square face opposite that of the ant.
As in the previous problem, it is useful to unfold the box.

[Back to Problem]
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Hint 75.1

Start by using the fact that if P(z) = [[,(z — ;), then

Ple)=3" —f EI:

Then let z be a root of the above, and start messing around.

[Back to Problem]

Hint 75.2

You want to write z in the form

wWiT1 + Walrg + ... + Wy,Ty
)
w1+ Wo + ...+ Wy

where the w; are positive reals. But whatever you're staring at probably doesn’t include real

stuff. How can we force real numbers to pop up?

[Back to Problem]
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Hint 76.1

Induction.

[Back to Problem]

Hint 77.1

Binary.

[Back to Problem]

Hint 77.2

Two flips at a time.

[Back to Problem|]
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Hint 78.1

Dyadic squares. Both parts are essentially the same.

[Back to Problem]

Hint 78.2

For Part (a), A > 4 is large enough.

[Back to Problem]

Hint 78.3

For Part (a), start with the largest square you have and be greedy.

[Back to Problem|]
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Hint 79.1

Magellan is ruthless and will pursue his goal at all costs, even if it involves sacrificing some
of his ships and crew.

[Back to Problem]

Hint 79.2

Take inspiration from Columbus. (Uh, not the genocide part...)

[Back to Problem]

Hint 80.1

Try finding a natural candidate expressed as a power series.

[Back to Problem]
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Hint 80.2

A trick that can be used here is called roots of unity filtering.

[Back to Problem]

Hint 81.1

Define K to be the convex hull of a bunch of points on a circle.

[Back to Problem]

Hint 81.2

Try using primes to help you. Specifically, you can weaponize the uniqueness of the prime
factorization of positive integers.

[Back to Problem]
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Hint 82.1

A piece that doesn’t contain the boundary must be congruent to a piece that does, so the
piece must have a curvy edge. Thus we have to make some curvy cuts. Start by playing
with some ways to cut a pizza with curvy cuts.

[Back to Problem]

Hint 83.1

Begin by proving the following lemma from Euclidean geometry: Suppose that ABC'D is an
orthodiagonal, cyclic quadrilateral. Then

AB%* + CD?* = BC? + AD? = 4R?,
where R is the radius of the circumcircle of ABCD.

[Back to Problem]
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Hint 83.2

Swap two chords.

[Back to Problem]

Hint 83.3

Use calculus (!).

[Back to Problem]
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Hint 84.1

The answer is yes. Though a construction is not easy to find at all!

If you give up (which is quite likely, unfortunately), here’s some unhelpful food for thought:

e Beth needs to cut the pizza into an odd number of slices. Why?

e What if we remove the restriction that Beth must dissect the pizza into sectors? That
is, what if she can cut up the pizza into slices of whatever shape she desires? Can you
find an easier construction in this case?

[Back to Problem]

Hint 85.1

There is no need for calculus.

[Back to Problem]
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Hint 85.2

1 is a bijection between (0, 00) and (0, 00).

[Back to Problem]

Hint 86.1

No. No such polygon exists.

[Back to Problem]

Hint 86.2

Try drawing a bunch of polygons satisfying the second and third properties and compute
their perimeters.

[Back to Problem]
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Hint 86.3

To prove the key claim, take a walk along the perimeter.

[Back to Problem]

Hint 87.1

Yes, my friends can arrange themselves in such a way.

[Back to Problem]
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Hint 87.2

I need at least 15 friends for this prank to be possible. If you include me, that’s 16 people
in the room.

Remember also that my friends can position themselves on the border of the room.

[Back to Problem]

Hint 88.1

Disprove it! There is a counterexample.

[Back to Problem]
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Hint 88.2

What if we replace “outside” with “inside”?

[Back to Problem]

Hint 89.1

Use the intermediate value theorem in a careful way.

[Back to Problem]

Hint 90.1

6 soldiers is the minimum.

[Back to Problem|]
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Hint 90.2

The maximum palace size that can always be searched by n soldiers is related to powers of
3, and this is reflected by the shape of the minimal palace that cannot be searched by n

soldiers.

[Back to Problem]

Hint 90.3

A search strategy could first involve identifying a chain of rooms that satisfies a key property
which allows the soldiers to use it as a backbone to act recursively.

[Back to Problem]
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Hint 91.1

It is helpful to take Gloria’s house to be a shape such as a triangle or rectangle, for use as an
example. A careful drawing of what the fence would look like in these examples will reveal
the argument.

[Back to Problem]

Hint 91.2

It is natural to attempt an approximation argument based on the conclusion of Part (b). If
this satisfies you, then you are done! Unfortunately, the proof is hard to flesh out rigorously.

There is a very wacky and completely different methodology that works beautifully. Here is
a major hint: For K C R? a bounded convex set, pick a random 1D subspace (i.e. a line
passing through the “origin”) and orthogonally project K unto said subspace. What can
you say about the expected length of the projection?

[Back to Problem]
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Hint 92.1

Pigeonhole Principle.

[Back to Problem]

Hint 92.2

Checkerboard.

[Back to Problem]
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Hint 93.1

There are several solutions, and they pretty much all rely on finding a monovariant. A
bunch of these proofs are aided by viewing each pile of stones as a “stack of boxes”, sorted
from tallest to shortest. For example, if the piles have sizes 3, 5, and 2, then this would be
represented as follows.

When modeled this way, the move done every minute consists of taking out the bottom row
of boxes, turning it upright, and appending it to the left end of the diagram. After this, you
should sort the columns in descending order again.

[Back to Problem|]
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Hint 93.2

Tilt the diagram from the previous hint 45° counter-clockwise and consider the total gravi-
tational energy of the boxes (I!!).

[Back to Problem|]

Hint 94.1

Start by solving the simpler problem: Given points A and B in the plane, what is the set
of points in the plane that are closer to A than B? When you’ve figured that out, you'll be
able to draw out the region within the rectangle given by all points that are closer to the
center than any of the vertices.

[Back to Problem]
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Hint 94.2

To find the area of this region in a slick way, try dividing the rectangle into four pieces
somehow.

[Back to Problem]

Hint 95.1

The fixed point is given by a natural supremum. You can prove that it is indeed the fixed
point via a double inequality (i.e. show > and <).

[Back to Problem]
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Hint 95.2

When structured in the right way, the solutions to (a) and (b) are pretty much exactly the
same.

[Back to Problem]

Hint 96.1

Yes, and you can compute the sum in closed form. Though, you can cut some corners if you
only care about determining if its rational.

[Back to Problem]
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Hint 96.2

One approach begins by observing that the kth digit (from the right) of 2" is odd exactly
when the (k — 1)th digit of 2"~ is at least 5.

[Back to Problem]

Hint 97.1

What goes up must come down.

[Back to Problem]

Hint 98.1

10 inches

[Back to Problem]
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Hint 98.2

Let N be the answer, in inches. To show that the turtle can’t crawl more than NV inches, try
showing that there exist N turtle enthusiasts that collectively have witnessed the entirety of
the turtle’s crawling.

[Back to Problem]

Hint 99.1

t = 1/2 is one solution. This should give you a reasonable guess for the set of all possible
values for ¢, and they are all proven to work in the same way.

[Back to Problem]
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Hint 99.2

To prove that all other values for ¢ would not be possible, a graphical approach could be
helpful.

[Back to Problem]

Hint 100.1

A 10-move solution exists. Try and raise some trains so that the bottom-right 1 x 3 train
can move all the way to the left.

[Back to Problem]

Hint 101.1

There’s a tree somewhere.

[Back to Problem|]
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Hint 101.2

The difficult part of the problem is proving that a “loop” of trains must enclose an odd
number of squares.

[Back to Problem]

Hint 102.1

God help you.

[Back to Problem]

Hint 102.2

The solution I present uses 96 moves.

[Back to Problem]
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Hint 102.3

As a start, try using Problem 100 for inspiration. In Problem 100, you were able to manip-
ulate the V' block with relative ease. What does that mean for the current problem?

[Back to Problem]

Hint 102.4

A key insight is that if you can “reverse the cycle formed by X, A, B, and C”, then this can
open up some more options. You may need to do this multiple times.

[Back to Problem]
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Hint 102.5

The first step is to move U to the bottom-right corner. This lets you apply the previous
hint.

[Back to Problem]
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Hint 102.6

If you can arrive at the below configuration, you can prove (with one more observation) that
a solution exists by a symmetry argument.

[Back to Problem]
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Hint 103.1

Calculating the result of drinking all beers at once and then trading as many as possible (so
99 beers, then 33 beers, etc.) can be quite tedious. A cleaner methodology can be revealed
by replacing 100 with a much smaller quantity.

[Back to Problem]

Hint 104.1

Yes if n is even. No if n is odd.

[Back to Problem]
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Hint 104.2

To show that n even works, find a procedure for n = 2 and extrapolate. To show that the
goal is impossible when n is odd, consider the parities of two different things. One of these
things is the number of flipped pancakes.

[Back to Problem]

Hint 105.1
Yes. (1)

[Back to Problem]
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Hint 105.2

The width of 200 sounds excessive, but it is barely enough to make the intended packing to
work.

Don’t be afraid to waste a bit of space at the beginning of the box. Such a sacrifice will
eventually pay off if it lets you make a repeating pattern of coins that’s ever so slightly denser
than the “squares” configuration.

[Back to Problem|]

Hint 105.3

A configuration that is just slightly denser uses “triangles” of coins as a unit.

(That is not to suggest that the naive 2-high “hexagonal packing” of coins will work. It
definitely doesn’t, since it only fits 399 coins. You'll somehow need to be a bit more mindful
of the space you're given...)

[Back to Problem|]
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Hint 106.1

This problem is extremely silly. If you don’t see the 1-liner yet, you're going to kick yourself
Very soon.

[Back to Problem]

Hint 107.1

It turns out that this reduces to a simple algebra problem. Think about what are the possible
values of a positive integer n if bn starts with a 1.

Be sure to use the information that 52°% has 1415 digits, and that it starts with 1. The
problem will be pretty impossible without that.

[Back to Problem|]
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Hint 108.1

Start by dividing each side by 10 for fun.

[Back to Problem]

Hint 108.2

Draw a picture!

[Back to Problem]

Hint 109.1

Multiple approaches are available. For example, an inductive proof can work. People have
also found success from playing around with modular arithmetic.

[Back to Problem]
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Hint 110.1

Prove the following lemma:

Suppose Iy, Iy, - -+ , I,y are subintervals of I such that f(I;) covers Iy fori=0,1,2,--- n—
2, and f(I,_1) covers Iy. Then we can find x € Iy such that f9(z) € I; for all i and

f™(z) = .

Once you've done that, this result can be used in a cheeky way.

[Back to Problem]

Hint 110.2

To prove the lemma, the wishful thinking is that if the image f(I;) were ezactly I;,1, then it’s
really easy. Unfortunately you only know that f(I;) covers I;11. Try to cook up a situation
that looks like “f([;) = ;11"

[Back to Problem]
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Hint 110.3

To use the lemma, note that the existence of a point with period 3 gives two highly relevant
intervals. How do they interact with each other? In particular, what relevant intervals do
their images cover?

[Back to Problem]

Hint 111.1

Sorry, it’s hard to give good hints because this problem is pretty gnarly. There exist some
purely dissective proofs, though they’re not very easy to spot. Many of the proofs I've been
given used complex numbers, though you’ll want to set it up with care to minimize how
much of a mess it is. The case where n is even may be easier. If you're not finding any of
this helpful, the next hint gives away a useful dissection.

If you find something super nice that’s not discussed in the solution, please send it over!

[Back to Problem]
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Hint 111.2

Try playing with this dissection.

A ¥

By no means does this trivialize the problem, but several solutions find this dissection helpful.

[Back to Problem|]

Hint 112.1

Show that the path taken between two rooms does not change the net amount of money
gained or lost.

[Back to Problem|]
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Hint 113.1

There is a mathematical object that we know very little about given only k — 1 pieces of
“information about” it. But you’d suddenly know quite a bit about it if £ or more pieces of
“information” were given about it.

[Back to Problem]

Hint 113.2

You learn about the previously hinted mathematical object in high school.

[Back to Problem]

Hint 113.3

Think about polynomials.

[Back to Problem]
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Hint 114.1

Let’s say you're at (1,0), the lion is at (0,0), and that there was no cage. Then the lion
would never catch you if you moved upwards forever.

[Back to Problem|]

Hint 114.2

Using the same methodology, it can be shown that n lions can work together to catch you if
you're stuck with them in an n-dimensional spherical cage.

[Back to Problem]

Hint 115.1

Change the frame of reference.

[Back to Problem|]
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Hint 116.1

Assume first that the number of servers that are on is even.

[Back to Problem]

Hint 117.1

All of your friends are equally likely to try the grape juice last!

[Back to Problem]
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Hint 117.2

Directly computing the probability that any particular friend tries the grape juice last is not
so bad. To start, it can be helpful to solve this variant of the “drunk walk” problem: If you
start at 0 in a number line, and move left and right with equal chances, then what are the
odds that you reach —a before reaching b7

[Back to Problem|

Hint 118.1

The ladder’s length stays constant. Can you find another length that stays constant?

[Back to Problem]
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Hint 119.1

Just n = 4, unsurprisingly.

[Back to Problem]

Hint 119.2

There is a beautiful way to prove that no n > 4 works. It’s practically a one-liner.

[Back to Problem]

Hint 119.3

Suppose there is such a regular n-gon with n > 4. Produce a smaller such regular n-gon. To
do this, you need to use a certain symmetry that exists for lattice grids.

[Back to Problem]
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Hint 119.4

A lattice point rotated 90° about a lattice point will give another lattice point.

[Back to Problem]

Hint 120.1

You can do better than 4.

[Back to Problem]

Hint 120.2

The most you can get is 6.

[Back to Problem|]
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Hint 120.3

Sorry, it’s pretty hard to give a hint for this one because it’s pretty hard. The approach I use
in the solution is a bit off the wall, but I think it’s not too unconventional in that researchers
that study similar problems also used some graph theory (!!).

You may also find it helpful to work with vectors instead of lines. That is, start by choosing
6 unit vectors, one along each line.

[Back to Problem|]

Hint 121.1

“The” is the key word.

[Back to Problem|]
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Hint 122.1

Yes, you can very much make a hole in a wooden cube whose “size” is larger than the wooden
cube itself. While this is unintuitive, this does not contradict our basic understanding of
volume because the hole, when viewed from the right angle to be seen as a square, only
needs to have side length that is larger than that of the wooden cube.

Of course, making such a hole could never work if you try to fit the hole’s “entrance” within
a face of the wooden cube. So...

[Back to Problem]

Hint 123.1

No, this is impossible.

[Back to Problem|]



CHAPTER 3. HINTS 187

Hint 123.2

It may seem difficult to obtain a contradiction based on whether the digits are all less than or
greater than 5, but it turns out that this task is easier than it sounds because not too much
clever insight is needed. If you get your hands dirty by writing some explicit expressions for
your inequalities, there’s a good chance that a proof will fall out.

[Back to Problem|

Hint 123.3

You may want to narrow down the possible units digits of a number whose square has all
digits less than 5.

[Back to Problem|]
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Hint 124.1

This is not a trick question, and in fact there are a myriad of approaches here that work!
It’s a rather quirky problem so it’s natural to experience resistance in finding a solution. I
know this isn’t much of a hint, but do give it a good attempt! Let it marinate in your head
during the day.

[Back to Problem|

Hint 124.2

Here’s one possible approach: Assume without loss of generality that the bottle’s width is 1.

[Back to Problem]
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Hint 125.1

Every permutation can be decomposed in a very useful way.

[Back to Problem]

Hint 126.1

There is an equality case!!!

[Back to Problem]
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Hint 126.2

This is a pretty challenging problem. Here are two independent suggestions that lead to
different solutions: (1) Take a configuration of the triangle and ellipse for which the quantity
% + % — A is minimized, and study how this expression changes under slight perturbations
of your choice. (2) Exploit the rotational symmetry of the ellipse.

[Back to Problem|]

Hint 126.3

One possible approach first proves the following interesting result: Any centrally symmetric
subregion of a triangle takes up at most 2/3 of that triangle’s area.

[Back to Problem|]
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Hint 127.1

Try walking along the path formed by the seven edges in a particular way.

[Back to Problem]

Hint 128.1

No, such a partition is impossible.

[Back to Problem]

Hint 128.2

It is completely possible to prove this “by hand”, using number theory and such. But there’s
a bizarre solution.

[Back to Problem]
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Hint 128.3

Consider the function ﬁ

[Back to Problem]

Hint 129.1

Find a useful monovariant. (It’s not a simple one.)

[Back to Problem]

Hint 129.2

The centroid of a set of points has a remarkable property concerning the sum of squared
distances. If you're not familiar with it, try doing some research online. At the time of
writing, it is mentioned briefly in the Wikipedia article for the centroid.

[Back to Problem]
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Hint 130.1

Use Pick’s Theorem.

[Back to Problem]

Hint 130.2

Use Pick’s Theorem again!

[Back to Problem]

Hint 130.3

Use Pick’s Theorem just one more time!

[Back to Problem]
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Hint 131.1

There are a variety of ways to do this. A somewhat minimal solution uses the fact that

VI + 2 =3

[Back to Problem]

Hint 131.2

It suffices to build a rigid structure such that two endpoints are at a distance of v/2 apart.

[Back to Problem]

Hint 132.1

The first series diverges for some 6. The second series converges.

[Back to Problem|]
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Hint 132.2

Use the product-to-sum formula.

[Back to Problem]

Hint 133.1

What triangle’s area, plus the area of the gray triangle, will give exactly half the area of the
larger square?

[Back to Problem]
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Hint 134.1

I can escape any (finite) number of pirates sent! (By the way, as a bonus, try to determine
whether or not you can escape a countably infinite number of pirates. A discussion of this
extension is included in the solution to this problem.)

[Back to Problem]

Hint 134.2

The curvature of the lake’s boundary makes the pirates slower than they seem.

[Back to Problem]

Hint 135.1

The solution is insane. Anyways, try proving the contrapositive.

[Back to Problem]
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Hint 135.2

Encode the condition “all subset sums are distinct” using generating functions. Specifically,
you will be able to say that a certain expression is bounded by ﬁ

[Back to Problem|]

Hint 135.3

Logs turn products into sums. Now, if S = {ay,as,...,an,}, what can you do to each side
of the inequality to get a factor of ai to appear?

[Back to Problem]

Hint 135.4

Integrate. (But you should divide each side by something first.)

[Back to Problem]
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Hint 135.5

If you divide and integrate correctly, an integral form for the Basel sum should appear.

[Back to Problem]

Hint 136.1

No. Such a partition does not exist.

[Back to Problem]

Hint 136.2

If O is the center of the disk, and O’ is the corresponding point in the other set, find a
property that O satisfies that O’ could not satisfy.

[Back to Problem]
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Hint 137.1

Repeatedly bisecting the largest piece almost works. What goes wrong and how do you
remedy the issue? To be more specific: If we are given a bunch of cake slices that satisfy
the requirement of the largest piece being less than double the size of the smaller piece,
and we bisect the largest piece, then why might not the resulting pieces satisfy the same
requirement?

[Back to Problem]

Hint 138.1

This is a linear algebra problem.

[Back to Problem|]
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Hint 139.1

There is no optimal strategy.

[Back to Problem]

Hint 140.1

Did you know that D is the orthocenter of AABC if and only if any one of the four points
{A, B,C, D} is the orthocenter of the triangle formed by the other three? It’s quite neat!
Anyways, for related reasons, it is sufficient to prove that AB 1 C'D. This can help narrow
down which “square candidates” are the “important” ones. In particular you now only need
to only assume that there does not exist a square such that two of whose opposite sides pass
through A and B, and whose other two opposite sides pass through C' and D.

[Back to Problem]
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Hint 140.2

My solution uses analytic geometry rather than anything particularly “nice”. How can you
in some sense “parametrize” (the side lengths of) all possible rectangles that pass through
the four points?

[Back to Problem]

Hint 141.1

Use the following identity, valid for all integers 1 < k < m:

m = o(k)

k|m

[Back to Problem]
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Hint 141.2

You can factor the matrix in question into the form AT A for an n x n matrix A. In other
words, there exist n vectors vy, vs, ..., v, € R" for which v; - v; = ged(, 5) for all 4, j.

[Back to Problem]

Hint 142.1

The answer is yes! For this to be possible, there are two unwritten assumptions that need to
be inferred about the utility of the latex gloves. If you don’t enjoy inferring such assumptions
then you ought to read the next two hints.

[Back to Problem]
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Hint 142.2

Latex gloves can be turned inside out!

[Back to Problem]

Hint 142.3

You can wear one glove on top of another.

[Back to Problem]

Hint 142.4

The solution is quite tight. The two gloves give us a total of four clean surfaces, and there
are exactly four sources of contamination in question, so they must be in bijection.

[Back to Problem]
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Hint 143.1

If the problem statement is true, then there must be a point in time during which all guards
are “on tour”. Try defining such a point in time by considering a particular “extremal”
guard (particularly, a guard which is either the first or last to do something), and then prove
that all guards are indeed on tour during this time.

[Back to Problem|

Hint 144.1

A relatively short argument shows that Amber can force a win within 7 moves.

[Back to Problem]
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Hint 144.2

Restrict the game to being played on a certain regular polygon.

[Back to Problem]

Hint 144.3

Think about some simple ways to periodically color the plane, and ponder if such colorings
admit some triangle 7" which never appears monochromatically.

[Back to Problem|]

Hint 144.4

Beth can choose a triangle 7" that will let her win by coloring the plane in stripes.

[Back to Problem]
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Hint 145.1

Use periodicity to reduce to the case that x is in some small interval, and make use of the
inequality sinz < x for z > 0.

[Back to Problem]

Hint 146.1

How many points of tangency are there?

[Back to Problem]

Hint 147.1

Induct... but not on n (!).

[Back to Problem]
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Hint 147.2

Fix n and induct on k, where P(k) is the proposition “There exist n dice for which any & of
them, when rolled, will result in any of its k! orderings with the same probability.”

[Back to Problem]

Hint 148.1

This is one of those problems where a single observation ruins your day. Focus on the gridline
segments.

[Back to Problem]
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Hint 149.1

A point in R™ has n components. By “choosing” two of these components, there is a pretty

natural way to generate (g) points. The symmetry in this construction helps it obtain the

two-distance property.

[Back to Problem]

Hint 149.2

This part is extremely cool. Stare at your construction from (a). What property does it
have and how can you exploit it?

[Back to Problem]
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Hint 150.1

The answers to both parts are very likely not what you would guess them to be. This
problem does not require any advanced topics in probability.

[Back to Problem]

Hint 150.2

They are equally likely to have gone broke first!

[Back to Problem]

Hint 150.3

Ai is more likely to have gone broke first!!

[Back to Problem]
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Hint 150.4

For Part (a), use an argument of symmetry. Or, perhaps more appropriately, construct a
natural bijection between ways that Ai goes broke first and ways that Beth can go broke
first. Once you have found the methodology for Part (a), the solution to Part (b) will be
easier to see.

[Back to Problem|

Hint 151.1

2

[Back to Problem]
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Hint 151.2

Beth should start by obtaining an upper bound on the largest coefficient of P.

[Back to Problem]

Hint 152.1

For experimentation, try finding a purse a wrapping it around your arms. There is a pretty
interesting way to mathematically approach this problem.

[Back to Problem]
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Hint 152.2

Any way to tie a rope around two nails consists of a sequence of the following four actions:

e Wrap it once counter-clockwise around the left nail.
e Wrap it once clockwise around the left nail.
e Wrap it once counter-clockwise around the right nail.

e Wrap it once clockwise around the right nail.

[Back to Problem]

Hint 153.1

The pair of diagonally-adjacent E’s causes a lot to happen. For example, what must happen
if these E’s constitute the two E’s of the BEE?

[Back to Problem]



CHAPTER 3. HINTS 213

Hint 153.2

Did you spot the hidden rectangle? Once it’s built, the bottom-most E causes a lot of chaos
if left unchecked. This tells you where the BEE should be, and it remains to actually prove
it.

[Back to Problem]

Hint 154.1

Make a sequence of assumptions that you can make about the quartic without loss of general-
ity. For example, which coefficient can you eliminate by translating the quartic horizontally?

[Back to Problem]
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Hint 155.1

Blindly guess a general form for f that’s easy to differentiate and invert.

[Back to Problem]

Hint 155.2

The idea is to start by finding some a and b such that f(z) > ax® over an interval [0,T]. T
will need to be chosen carefully.

[Back to Problem]

Hint 156.1

The infimum is 1/¢ where ¢ is the golden ratio.

[Back to Problem]
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Hint 156.2

If 2! is not a term in the polynomial, you can show that |z| > i for any root z. If instead
x! is present in the polynomial, there is a sly trick that can be applied to reduce to the case
where it is absent.

[Back to Problem]

Hint 157.1

The identity can be shown using only wu-substitution. You can start by making the substi-
tution u = 1 + x%.

[Back to Problem|]
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Hint 158.1

You can show that when z € [0, 3], we have the inequality
lz(x —1)(z — 2)(z —3)] < 1.
When does equality hold?

[Back to Problem]
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Finale Hint 1

Something called the “ratio lemma” may be of use to you, if you choose to look that up. In
the context of this problem, it is essentially the usage of the sine area formula to obtain an
expression for the ratio VZV—g Don’t be discouraged if you end up needing to find the root to
a cubic or quartic.

There exist solutions that use Menalaus’s theorem.

[Back to Problem]

Finale Hint 2

Here is a simpler problem that relies on the same premise: Within the vicinity of a straight
river lies two towns, A and B, on the same side of the river. A traveler resting at A wishes
to visit town B, stopping for water at the river along the way. How can you determine the
traveler’s shortest path? The solution to this problem is quite short and very clever. If you
can solve it, you are ready to tackle the original problem.

[Back to Problem]
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Finale Hint 3

You can guess the answer reliably by manually counting up the answer for smaller boards
up to 3 x 3 or 4 x 4. For a proof of the answer, try thinking about which sets of squares
must be occupied by different snakes.

[Back to Problem|]

Finale Hint 4

This problem is based on Beatty sequences, though the theory of such sequences is not
necessary to solve this problem. Try using the notion of asymptotic density to compute the
answer.

[Back to Problem|]

Finale Hint 5

Use a theorem related to the side lengths of cyclic quadrilaterals.

[Back to Problem|]
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Finale Hint 6

There is a rather silly factorization of the expression a® + b + ¢ — 3abc that can be applied
here to simplify the given sum of cubes. Beyond that, however, you are very unlikely to be
able to make progress on this problem without knowing the values of C';, D, and F'.

As a checksum, C'+ D — F' should evaluate to a number whose digits are all prime.

[Back to Problem|]

Finale Hint 7

This one is tough. I will tell you for free that the only regular polygons that admit such a
tiling are the regular 6n-gons for positive integer n.

There is a somewhat well-known tiling of the regular 12-gon, using squares and equilateral
triangles, that could help give some insight into the problem.

For other values of n, I think it will be very helpful to try finding the number of ways to
cover just the “outer rim” of a regular 600-gon using 600 rhombi and equilateral triangles
(so, each will share a side with the 600-gon’s boundary). This may be enough to let you
guess the answer.

[Back to Problem|]
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Finale Hint 8

It is best to obtain the values of D and E before solving this problem. Once you have them,
try pairing up adjacent factors in order to create terms that are perfect squares.

[Back to Problem]

Finale Hint 9

If you wish to solve this problem, you can use the fact that if F' is the CDF of an integrable
non-negative random variable X, then

EX :/ |~ F(t) dt.
0

If you don’t understand what that means, that is entirely fine because you do not need to
solve this problem. In fact, this problem may or may not be a waste of time...

[Back to Problem|]

Finale Hint 10

How does switching two adjacent sides of a cyclic polygon affect its area?

[Back to Problem]



CHAPTER 3. HINTS 221

Finale Hint 11

Each problem’s answer is associated with a letter from A to L. The problems are also
positioned in 3D space in some symmetrical way. The most revealing hints concerning the
shape formed by the problems are the fact that there are 12 problems and that Problem 170
states that it is adjacent to exactly 5 problems.

I will provide no more hints concerning the shape formed by the 12 problems.

[Back to Problem]

Finale Hint 12

Assigning the letters to the problems is a bit tricky. It turns out that the 12 vertices (or
faces, depending on your choice of visualization), in problem number order (159 to 170), form
a path from the bottom to the top. Moreover, the 12 vertices in letter order (A to L) will
also form a (nicer) path to the top. These two facts can help you confirm your assignment.

The letters G, H, I, J, and L aren’t referenced by any of the problems, and writing them
down isn’t necessary to solve the final problem, but their existence can be inferred.

[Back to Problem|]
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Finale Hint 13

A bunch of problems give implicit requirements for some of the letters they reference, which
will provide you with valuable information. For example, one of the problems requires that
certain letters are perfect squares.

There are other tricks too. For example, using Problem 160, you can actually solve for F
without knowing the value of B. This is very important!

[Back to Problem]

Finale Hint 14

Once you have the value of F', you have enough information to solve for B. In fact, for a
given F', Problem 161 actually puts an upper bound on B, though it might not seem like
it! The crux is that the statement of Problem 161 specifies that the path must visit the
segments ZY and ZX. Visiting their extensions does not count.

Once you have B and A, you can cleverly use the conclusion of Problem 164 to solve for C'
(as well as E and K).

[Back to Problem|]
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Finale Hint 15

Your answers to problems 161, 163, 165, 167, and 169 should all be positive integers between
1 and 26.

[Back to Problem]
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Solution 1

The cups started with the same volume. Since the cups end with the same volume, the
net amount of milk transferred to the tea must equal the net amount of tea transferred to
the milk. That is, the contamination is equal.

[ |

Remark: We did not need to use the fact that the cups were stirred. Indeed, the problem
still holds true if we do not stir, by the same logic.

Source: This is a classic. I first heard this in an old book of puzzles more than a decade ago.

[Back to Problem]
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Solution 2

We claim that the answer is %

For each triangle we place, we associate it with some empty space near it. If we can show
that the area of this empty space is at least half the area of the triangle, then we have the
at-least-2/3 ratio.

Suppose we place down a triangle such as the gray one in the above image. We claim
that at least % of the red area is blank space. This would solve the problem because this
red area cannot be associated to any other triangle that we place in this way. That is, we're
guaranteed that we’re not ”double-counting any blank space”.

First, observe that at most one triangle can intersect the red region. This is because any
triangle that does so must contain the point P in its interior. Call the triangle that intersects
the red region (if any) 7.

Next, we observe that to maximize that fraction of the red region’s area covered by T, it
must be the case that T’s bottom-left vertex lies on the bottom-left edge of the region. This
is not difficult to argue: If this were not the case, then the area covered will increase when
T is “pushed” down and/or to the left.

Thus the case of maximal area coverage must look like the diagram below.
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We see that there are two uncovered “red triangles”. It remains to show that the sum of
their areas is at most half the area of the original red region. Indeed, if their side lengths
are x and v, then the sum z + y is fixed. Their areas are proportional to 22+ v?, so we must
minimize the quantity 22 + y%. By the QM-AM inequality, the minimum exists and occurs
when z = y. It is not hard to see that when this holds, exactly half the red region’s area is
covered.

The ratio 2/3 is achieved below.

[Back to Problem]



CHAPTER 4. SOLUTIONS Solution to Problem 3 229

Solution 3

We claim the answer is 4.
Construction

Draw a tetrahedron around the sun. For each side of the tetrahedron, place a large planet
that contains that entire side but does not intersect the sun.

Since the boundary of the tetrahedron is fully contained in the union of the planets, no
ray of light will escape the sun.

The issue is that the planets may intersect. To fix this, take a planet and apply a
homothety or dilation on it, centered at the sun. This enlarges the planet, but in return we
can sent it as far away from the other planets as we want. By applying homotheties to each
planet, we can ensure that no two planets intersect. Moreover, any ray of light blocked by a
planet will still be blocked upon homothety. This finishes the construction.

Minimality
We want to show that 3 is impossible.

Associate each possible direction for a ray of light with a point on the surface of a sphere
S centered at the sun. Observe that if we have a planet centered at some point P, and P’
is the intersection of S with the light ray that goes though P, then the set of all light rays
blocked by this planet may be viewed as a strict subset of the open hemisphere on S centered
at P’

Thus, it is sufficient to show that 3 open hemispheres cannot cover the surface of S.

Suppose we could, and call the hemispheres Hi, Hs, and Hz. The boundary of H; is a
great circle C' that is not covered. Likewise, the boundary of Hs is another great circle Cy
that must intersect C at two diametrically opposite points A and B. However, the third
hemisphere Hs cannot cover both of the uncovered points A and B, contradiction.

Remarks: The problem is slightly more challenging if the sun were instead a sphere whose
surface emitted rays of light. (Note that such rays need not be collinear with the sun’s
center.) I leave this as an exercise.

In general, n + 1 is the least number of n-dimensional planets required to shield a source
of light in n dimensions.

A natural question follow-up is as follows: Among all configurations of four planets that
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satisfy the problem, what is the minimum possible value of

Largest Planet Radius
Smallest Planet Radius

(or rather, the infimum of this quantity)? The following explicit construction gives an upper
bound of (5 + v/24)3 ~ 970:

A planet of radius \/§ centered at (54 1/24) - (1,1,1)

A planet of radius /8 - (54 v/24) centered at (5+v/24) - (—1,-1,1)

A planet of radius /2 - (5 + v/24)? centered at (5 + v/24)? - (1, -1, —1)

[ ]
wl

A planet of radius (/8 - (5 ++/24)3 centered at (5 + v/24)% - (—1,1,—1)

[ J
wl

You can find a picture of this construction on the front cover of this book.
Source: I have no idea, I first heard it at AMSP

[Back to Problem|]
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Solution 4

Let us apply the principle given in the hint. Label some points as shown.

First we slide the vertex at C towards D, which is a direction that is parallel to AB. This
does not change the triangle’s area by the principle.

Next, we apply the principle again by sliding the vertex at B to E. This direction is
parallel to AD.
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Solution to Problem 4

232

E

D

We conclude that the area of the original triangle, AABC, is exactly the area of AAED,

which is clearly .

Source: Catriona Agg

[Back to Problem]
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Solution 5

Remark: This may or may not be a true story. Whether Kaz took my quarters or not is
omitted and left as an exercise.

Source: I saw this in a puzzle book a long time ago.

[Back to Problem|]
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Solution 6

Alice can pass whereas Bob is doomed to fail.
Proof that Alice can pass

First she constructs the reflection of A over B by drawing the following four circles.

Calling the reflection A’, she then draws the circle centered at A’ that passes through A, and
marks its intersections with the circle centered at A.

(L

We claim that these intersections both lie on the perpendicular bisector of M, where M is
the midpoint of AB!

This can be shown easily with coordinate geometry, but there is also a clean approach.

Without loss of generality let us assume that AB = 1. Call one of the intersections P, and
construct N on AA’ for which APAN ~ AA'NA.
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Al

We know that 2‘,}; = %, so by the similarity, ‘2—]1\37 = % But AP =1, so AN = %, which

implies that /V is the midpoint of segment AB, which has length 1.

With the claim proven, Alice may finish constructing M by drawing a circle at each
intersection that passes through A.

AN

The claim implies that the intersection of these two circles must be M.



CHAPTER 4. SOLUTIONS Solution to Problem 6 236

Proof that Bob will fail

To show that Bob will fail, we will use the idea behind projective transformations. If
you are familiar with projective geometry, then the proof is summarized in one line: “There
exists a projective transformation that fixes A and B but moves the constructed midpoint
M, and projective transformations send lines to lines”. Otherwise, fear not. There is a
perfectly elementary way to visualize the reasoning.

Let us assume for contradiction that Bob can construct the midpoint using only a straight-
edge. Then Bob can find a finite algorithm for constructing the midpoint that consists of a
combination of the following two steps:

e Pick an arbitrary point in the plane.

e Take two marked points or intersections and draw the line that connects them.

Bob wins if he can mark the midpoint as the point of intersection of two of the lines he draws.
But crucially, we moreover must have that this marked point will remain the midpoint even
if we perturb the arbitrary points that Bob picked. Otherwise, there would be no guarantee
that Bob’s scheme will construct the midpoint.

Of course, Bob must pick an arbitrary point in the plane at some point in his construction,
else there is only one line he could ever draw: The one between A and B. This is the
vulnerability we will exploit. To be precise, we will show that we can move the arbitrary
points that Bob chooses such that the supposed midpoint also moves.

Let us say, for instance, that Bob’s construction is as shown below, with the blue triangles
representing points that were selected arbitrarily.

To help illustrate the point, I have also drawn this diagram on a real-life table.
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The intuitive idea is that an observer that perceives this construction from a different angle
(in 3D space) will still see a construction that uses straight lines, but the relative lengths of
the perceived segments may not be preserved. Alternatively, one can think of this routine
as taking a picture of the construction from an angled camera. If the angle is chosen ap-
propriately, then Bob’s purported “midpoint” could fail to be the midpoint in the picture
captured by the angled camera. This is demonstrated below.
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Formally speaking, we are executing a central projection in which we select a point F' in
space (the “eye”, where we locate ourselves to view the construction), select an angled plane
P (the “lens”, where the angled version of the construction is drawn), and then map every
point X in the plane of the construction to the intersection of line FX with plane P.

When all points in lines in Bob’s construction are transformed to the new plane P in this
way, we can obtain a picture in which the purported midpoint is not the midpoint of AB.

Projection

-

More precisely, the images of the arbitrarily-selected points have moved to a set of new loca-
tions for which Bob’s construction will construct a point that is not the midpoint, showing
that his construction could have failed.

[ |
Source: Famous

[Back to Problem]



CHAPTER 4. SOLUTIONS Solution to Problem 7 239

Solution 7

The trick is to write 9N = 10N — N. Ift N = did>...d, with d < dy < ... < d,, then
9N can be though of as the result of the following stacked subtraction.

diy dy ds ... dp—1 d, O
— di dy ... dp_o d,_1 d,
7o 7 L7 ? ?
The first n — 1 digits of the answer are clear: They are dy, dy —dy, d3 —do, -+, dyy_1 — dy_a,

which is valid because the digits are increasing. As for the last two columns, they are instead
(d, — 1) — d,_1 and 10 — d,,, which is valid because the digits are strictly increasing.

From here, the digit sum is evidently

di 4 (dy —dy) + ...+ (dpey — dpo) + (dpy — 1 —dpy_y) + (10 = d,)) = =1+ 10 =[9]

Source: Kvant Magazine?

[Back to Problem]
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Solution 8

We present four different solutions. If you must read only one solution, I highly recom-
mend the fourth one.

First Solution

Let y = v/5 —x = 5 — 2% Then we have:

Subtracting, we get that (xr +y — 1)(x —y) = 0, so either x = y or z + y = 1. Thus, either
22 +x —5=0o0r 22 —x — 4 = 0. This gives the four possibilities:

—1+£+v21 1£V17
2 ’ 2

Tr =

Two of these solutions happen to be extraneous, and so the solutions are

14421 117
N 2 92 '

T

Second Solution
First, after squaring both sides, we obtain
5—x=a"—102" +25
which we can rearrange as
P(x) := 2" —102° + 2 + 20 = 0.

We would like to factor the polynomial P(z0). To find a suitable factor, observe that
f(x) := /b —x and g(z) := 5 — z? are function inverses, and so the graph of g(zx) is
obtained by reflecting the graph for f(z) over the line y = z. In particular, the graph of
f(z) intersects the line y = x exactly where g(x) does (and it is simple to argue that such
intersections must exist by the Intermediate Value Theorem), so one class of solutions to
f(x) = g(x) are those values of = for which f(z) = x. That is, x = /b — x. Hence we should
expect that 22 +x — 5 is a factor of the polynomial P(z). Indeed it is, and we will find that

P(x) = (2* + o — 5)(a* —x — 4).



CHAPTER 4. SOLUTIONS Solution to Problem 8 241

Setting each factor to 0, we can then proceed as in the first solution.

Third Solution
Let g(x) := 5 — 2?. We may write the given equation as
r=>5—(5—a%7?

or z = g(g(x)). Observe that if = satisfies z = g(x), then g(g(z)) = g(x) = x, so one class
of solutions to the original equation is given by those x satisfying x = g(x) = 5 — 22. So we
expect 2 + z — 5 to be a factor of the polynomial P(z) as defined in the second solution.
We proceed as in the second solution.

|

Fourth Solution
Eyeing the equation obtained after squaring both sides,
5—x=a*—102% + 25,
we make the insane leap that this is a quadratic. That is, a quadratic in 5.
52 — (1 + 2235+ (2* +2) =0

We now may apply the quadratic formula to solve for 5. This gives

(1+22%) £ /(14 222)2 — 4(2 + )
2

(1+22%) £ /(1 + 422 + 4ot — 4ot — 42

2
(1+22%) £ /(1 — 4z + 422

2
(14 22%) £ (1 —2z)
2

5=

Casing on the sign of (1 — 2x), we get two possible quadratics which admit four possible
solutions in total. We get the desired answer after testing them all.

[ |
Source: Probably Titu Andreescu.

[Back to Problem|]
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Solution 9

We first recall that

=D
k=0
for all x. Taking x = —1 gives
g =
e = k
and so

k”'

M8

k:O
The quantity A := Y, (— )’”,;—,' is clearly an integer. Note that when 0 < k < n — 2, we
have that ”,' is necessarily even, so the parity of A is determined by the last two terms in
the sum, which add to n — 1 (up to a sign). Hence, if n is even then A is odd, and when n

is odd then A is even.

Let f =Y p,.1(—=1)"2 be the rest of the sum. It is not hard to show that |f| <1 (by,
say, writing a geometric series as an upper bound). Now case on the parity of n.

e If n is even, then f < 0 because the first and largest term, (—1)"*17#1, is negative,

and the remaining terms decrease too rapidly to change the sign of the partial sum.
(Rigorously, you can bound the rest of the sum via a geometric series.) It follows that

Vw [A+fl=A-1,

e

which is even because A is odd.

e If n is odd, then f > 0 by a similar argument, and so

Vﬁ [A+fl=

e

which is even because A is even.

So L%'J is always even.

If you wish to see the details on some of the claimed bounds, this is for you. To see that

|f| < 1, write
A
<2
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When £ > n + 1, we have that

n! 1 < 1
E (n+1D)(n+2)---(k) = (n+ 1k’
SO )
- 1 Pt 1
1<) — =M =<
k=n+1 (n - 1> 1 - n+1 n
The other bound I used without proof was that
> n! 1
> D<=
Pt k! n+1

For this, we simply use the result we just proved — that Y .- 1 Z—: < % — but replace n
with n + 1. This gives Y50, @FU < —. Thus

i(_l)kn_!< - n_!: 1 i(n+1)!< 1 _ 1 ‘
ket 2 k' — kert2 k! n+1 vo, k! (n + 1)2 n4+1

This shows the bound and that it is, in fact, quite loose.
Source: I saw this on Math Stack Fxchange.

[Back to Problem|]
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Solution 10

Become God and delete the river by slamming the two landmasses together.

'

.B .B

This decreases the length of the shortest path from A to B by 1 (why?). Since the shortest
distance is now clearly 5, the original minimum distance was @

To determine where to place the bridge, we draw the straight-line path from A to B in
the transformed problem.

RS

\\

N

oy

Then, for this path to correspond naturally to a valid path in the original problem with the
river, we must place the vertical bridge where this path intersects the blue segment (where
the river used to be).

A

S|

B

To be precise, the bridge must be placed % miles east of Town A.

[Back to Problem]
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Solution 11

The line from (0,1 —¢) to (¢,0) is given by y = =2z +1—t =2+ 1 — (t + %). For some
fixed = € [0,1], we are interested in finding the line (i.e. the value of ¢) that obtains the
maximum possible y value at that x. By AM-GM

x+1—(t+§) Se+l-2ft-T—w+1-2Va=(1-Va)

with equality obtained at ¢t = y/z. So the equation of the curve is given by y = (1 — /x)%.
This magically rearranges to |/z + y/y = 1|

[ |
Source: Back in middle school, I had graph paper and I was really bored.

[Back to Problem|]
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Solution 12

In this solution, the curly brackets {-} denote multisets instead of sets.

As per the hint, we must find a positive integer S such that there is exactly one ordered
pair of positive integers (P,n) for which there exist two distinct ways to partition S into a
sum of n positive integers whose product is P.

We claim that the only possible value for S is S = 12.
Claim 1: S =12 is a valid solution to the problem.

Various mathematical acquaintances and I have tried various approaches for demonstrat-
ing this without an extreme amount of casework. Alas, although there were a few successes,
they were just not as elegant or short as getting our hands dirty and listing out (essentially)
every possible partition of 12. So let’s just do it.

We can skip partitions of 12 into a sum of 1 or 2 integers. That is, it is impossible for
n =1orn = 2. For n = 1, there is obviously only one way for an integer to equal 12, so
we need not consider n = 1. As for n = 2, you will have a difficult time finding two distinct
solutions to the system a + b =S and ab = P.

Thus we may start checking partitions of 12 from n = 3.

The chart begins on the next page.
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n | Partition of S = 12 into n terms | Product (P)
3 11,10 10
3 1,2,9 18
3 1,3,8 24
3 14,7 28
3 1,5,6 30
3 22,8 32
3 2.3,7 42
3 24,6 48
3 2,5,5 20
3 3,36 54
3 345 60
3 444 64
4 1,1,1,9 9
4 1,1,2,8 16
4 1,1,3,7 21
4 1,1,4,6 24
4 1,1,5,5 25
4 1,227 28
4 1,2,3,6 36
4 1,245 40
4 1,335 45
4 1,3,4,4 48
4 2,2.2.6 48
4 2,2,3,5 60
4 9.2.4.4 64
4 2.3,3,4 72
4 3333 81

(Continued on next page)
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Partition of S = 12 into n terms

Product (P)

5@@@0000000000\]\1\1\]\1\]\1@3@@@@@@@@@@@@@@OTOTOTOTOTOT3

[ —Y
N = O

11,1,18
1,1,1,2,7
1,1,1,3,6
1,1,1,4,5
1,1,2,2,6
1,1,2,3,5
1,1,2,4,4
1,2,2,2,5
1,2,2,3.4
22224
2,2,2,3.3
1,1,1,1,1,7
1,1,1,1,2,6
1,1,1,1,3,5
1,1,1,1,4,4
1,1,1,2,2,5
1,1,1,2,3,4
1,1,2,2,2.4
1,1,2,2,3,3
1,2,2,2.2,3
2229222
1,1,1,1,1,1,6
1,1,1,1,1,2,5
1,1,1,1,1,3,4
1,1,1,1,2,2,4
1,1,1,1,2,3.3
1,1,1,2,2,2.3
1,1,2,2,2.2,2
1,1,1,1,1,1,1.5
1,1,1,1,1,1,2,4
1,1,1,1,1,1,3,3
1,1,1,1,1,2,2,3
1,1,1,1,2.2,2.2
1,1,1,1,1,1,1,1,4
1,1,1,1,1,1,1,2,3
1,1,1,1,1,1,2,2.2
1,1,1,1,1,1,1,1,1,3
1,1,1,1,1,1,1,1,2,2
1,1,1,1,1,1,1,1,1,1,2
1,1,1,1,1,1,1,1,1,1,1,1

8
14
18
20
24
30
32
40
48
64
72

7
12
15
16
20
24
32
36
48
64

6
10
12
16
18

DO
N

— = w
H N R WD oo © 0oy

We see that there is exactly one pair of rows that have the same value of n and product P.
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Thus S = 12 is a valid solution.

It is important to note the details of this solution: The value of n is 4 and the two possible
multisets of ages are {1,3,4,4} and {2,2,2,6}.

Claim 2: No value of S less than 12 can be a valid solution.

Suppose some S < 12 is a valid solution. Then there exists n, P, and two distinct
multisets of ages {x1,za,- -+ ,x,} and {y1, 99, -+, y,} that both have sum S and product P.
(The two multisets need to be unique, but we won’t need this.)

But now the two multisets {12 — S, z1, 29, -+ ,2,} and {12 — S, y1,9s, - , Yy} contain
positive integers, have the same number of elements, have the same product, and each sum
to 12. This pair of multisets is a different one from the one we found before — {1, 3, 4,4} and
{2,2,2,6} — because they share a common element (12 — S), whereas the pair of multisets
we found before does not. This contradicts the validity of S = 12 as a solution.

Claim 3: No value of S greater than 12 can be a valid solution.

To rule out S = 13, note that there are at least two pairs of multisets with the same
number of elements, same product, and sum 13:

o {1,1,3,4,4} and {1,2,2,2,6}

e {2,2,9} and {1,6,6}
To rule out any S > 14, we have the following general construction of two such pairs:

o {1,3,4,4,15— 5} and {2,2,2,6,15 — S}

e {2,2,9,15— S} and {1,6,6,15 — S}
In conclusion, there is exactly one value of S that works: S = 12. That is:

e Beth’s favorite number is 12.
e Alice’s favorite number is the product, , and is the number that must fill the blank.

e The two possible multisets of stuffed animal turtle ages are {1,3,4,4} and {2,2,2,6}.
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Remarks: As is apparent, the proof is not pretty, and I do not know of a more elegant proof.
But what would a solution look like? That is, how would one go about finding the answer
of §' =127

For sure, the easiest way to do this is to tell the computer to do it. But if we are stuck
on an island, then an intuitive line of reasoning could begin by observing that there are two
forces at play. The first is one that we have identified in the proof above: If S is too large,
then there are “too many partitions of S”, and we can expect that there will be multiple
pairs of partitions with the same cardinality and product. In contrast, if S is too small, then
there will be no such pairs.

To more carefully formalize this, we may begin by classifying the possible values of S into
three categories.

Let us say that S = k has multiplicity m if there are exactly m distinct pairs of
partitions of £ with the same number of elements and product.

e S =k is a non-solution if it has multiplicity 0.
e S =Fkis a strong solution if it has multiplicity 1.

e S =Fkis a weak solution if it has multiplicity at least 1.

Our goal is to seek a value of S that is a strong solution. We can show that small values of
S are non-solutions and large values of S are weak solutions, so that a strong solution must
be a carefully-selected in-between value which strikes some sort of balance.

Indeed, we can observe that the sequence of multiplicities for the values S = 1,2,3,---
must be increasing. This is because if S = k has multiplicity m, then we may append the
element 1 to each of the 2m partitions of k to obtain a collection of m pairs of partitions of
k + 1 satisfying the required conditions. Hence the multiplicity of S = k41 must be at least
m, the multiplicity of S = k.

It follows that if there exists a strong solution, then the smallest weak solution must be
a strong solution. Thus, for simplicity, one can focus on finding the smallest weak solu-
tion, i.e. the smallest value of S which admits two distinct partitions {xy, s, -+ ,2,} and
{y1,y2, -+ ,yn} with the same product. The advantage of this assumption is that for S to
be minimal, it cannot be the case that the two partitions have an element in common. Oth-
erwise, we could simply remove said common element from both partitions. The products
of the new multisets will still be equal, as will the sum, which will have decreased.

From this assumption, we can eliminate quite a few possible values for the product P
when S is minimal. For example, we now know that at least one of the partitions of S in
question cannot have a 1, and this fact can be used to show that P cannot be a product of
three primes. (Sketch: If it were, then, letting the primes be p,q,r, one of the two partitions
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must be {p,q,r}, since this is the only one that does not use 1’s. The other partition is
either {1,1,pqr} or {1,p,qr} up to reoredering, so we either have p+q+r =141+ pqgr or
p+q+r = 1+p+qr, neither of which are possible because you can show that p+q-+r < 24pqr
andp+q+r<l+p+qr.)

This fact is extremely helpful, as now some of the first few possible values for P are
16,24, 32, 36, 48, 54, 56,60, - - - . The “correct” value, P = 48, is not too far down this list.
So, while this methodology is far from concrete, a hopeful solver could reasonably come up
with P = 48 provided that there is an efficient way to eliminate values of P that do not
correspond to weak solutions for S.

One way to approach this is by finding a simple upper bound for S. It is plausible to
stumble upon an upper bound of 13 by observing that S = 13 is a weak solution, witnessed
by the pair of partitions {1,6,6} and {2,2,9}. Though, finding this requires a knack for
intelligent guesswork that I do not possess. Is there another approach? This, I leave to the
reader. I hope the ideas presented here were interesting nonetheless.

Source: John Conway

[Back to Problem|]
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Solution 13

We divide the 3 x 3 square into the following three pieces.

We now rearrange the pieces by moving the top triangle to the bottom and the right triangle
to the left side.

From this, it is clear that the shaded region occupies 1/10 of the area of this figure. Since

the area of the original square was 9, the shaded area is {9/10

Source: Adapted from the 2002 Lomonosov Tournament
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[Back to Problem|]
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Solution 14

Let y = 2°. Then z = log, y = 2% 50 we are solving:

log 2’
log 2
Y+ 3lesv =5
Move the y over and take the log:
log 2

3logy = § — Y
log <3%) = log(5 — y)
log 2

log 3 = log(5 —
gy % 0g(5 —y)

log2 - log 3 = log(5 — y) log(y)

Now it is clear that y = 2,3 are solutions. This corresponds to x = 1,log, 3, respectively. So

the other solution is |log, 3|.
[

[Back to Problem]
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Solution 15

Draw a “finish line” on the hiking trail, so that we may view the game as occurring in
“laps”. The fireman’s strategy is amusingly simple: On every lap, extinguish every tree until
the pyromaniac sets a tree on fire (and do nothing for the rest of the lap). That’s it!

To show that this works, consider the binary number N formed by viewing each burning
tree as a 1, each extinguished tree as a 0, and reading the digits from the end to the start.

So the first tree is worth 1, the second tree is worth 2, etc. until the last tree, which is worth
92021

If the pyromaniac doesn’t set any trees on fire during a lap, then the fireman’s strategy
extinguishes everything, meaning we’re already done. So we can assume that the pyromaniac
tries to set something on fire on every lap.

In this case, we have on every lap that the last tree whose state is changed is some tree
that the pyromaniac sets on fire (because the fireman does nothing after some tree is set on
fire). Since this tree has the highest place value in the binary representation of N among all
trees whose states were changed, we deduce that N must have increased during the lap.

N cannot increase forever because it is capped by 22922 — 1. So eventually it must neces-
sarily hit 22022 — 1, meaning that all trees are on fire at the end of the lap. The fireman can
then extinguish all the trees in one lap.

Remarks: There is also an inductive approach. Credits to “InductionEnjoyer” for spotting
this. We strengthen the problem to showing that for any tree T', the firefighter can always
reach the state where the firefighter and pyromaniac are leaving tree T, and all trees are
extinguished.

Clearly this is true if there is only 1 tree. Assume that the firefighter can complete their
goal at any particular tree if there are n trees. Now suppose there are n + 1 trees.

The firefighter applies the inductive hypothesis to the n trees other than 7', so that all
trees other than T are extinguished and the firefighter and pyromaniac are leaving the tree
before T, so that the next tree they arrive at is T'. There are now two cases.

e T is on fire at this time. Then the firefighter simply extinguishes it and they move on
from 7', completing the induction.

e T is not on fire at this time. Then the only way to prevent the firefighter’s goal from
being completed is for the pyromaniac to set 7" on fire. Since the pyromaniac can’t
extinguish T, the firefighter then repeats their strategy so that they once again reach
the state where they reach T with all other trees extinguished. Now the firefighter
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extinguishes T" and moves on from 7', completing the induction.

It turns out that the strategy generated by this induction is the same as the explicit strategy
that we constructed from before.

[Back to Problem]
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Solution 16

If you are like me and unable to pull a construction out of thin air, here is a cute approach.
Suppose there were indeed a decomposition f(z) = e(z) + o(x) for some even e(x) and an
odd o(x). This equation holds for all z, so if I replace x with —z then it should still be true:

f(=z) = e(—z) + o(—x)
This simplifies to
f(=x) = e(z) — ofx).

But now we have

{f@%=d@+o@)
f(—x) = e(x) — o(x)

which is a system of equations in the two “variables” e(x) and o(z)! Solving, we get:

o) L)+ S )

This is what e(z) and o(x) would have to be if the described decomposition existed. It

remains to verify that these are indeed even and odd respectively. Fortunately, they are!
[ |

Source: Folklore

[Back to Problem|]
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Solution 17

Let the speeds of the Red October and USS Dallas be vy and vy, respectively. So, vy >
vy > 0. Without loss of generality, we may say that the Red October was detected at the
origin (0, 0).

The locus of points that the Red October can be at some time ¢ is a circle centered at
(0,0) whose radius is expanding at a rate of v;. Tracking down the Red October means that
we must eliminate every possible angle that it could have taken by traversing this expanding
circle a full 27 radians. Evidently we must first make contact with the expanding circle to
begin traversing its circumference, so the first step of our strategy is to send our ship straight
towards (0,0) until we hit the imaginary expanding circle. We say that this occurs at time
t = 0 and that, without loss of generality, we make contact with the circle at (Rp,0).

We now derive parametric equations in polar form that describe our path from here on
out. We will follow the path of the expanding circle counter-clockwise, and this necessitates
that our distance from (0, 0) is increasing at a rate of vy. Thus the equation for r(t) is:

r(t) = vit + Ry

It remains to find (¢), i.e. our angular velocity.

We obtain this by using the fact that we are traveling at speed v,. We can quickly
derive a formula for our speed in parametric form: We know that x = rcosf hence 2’ =
r’ cos@ —rf sinf. Similarly 3/ = r’sin @ +r6’ cosf. Squaring these equations and adding, we

obtain v3 = (r')2 + r?(¢')?. Clearly r'(t) = v; and 7(t)® = (vt + Ry)?. Hence:
vy = v} + (vt + Ro)*0'(t)?
02— 2
9/ t) = 2 1
( ) ’Ult + RO

Here it is clear why we needed vy > v;.

Integrating:
t \/m (%) 2 (%1
(1) = 6(0 +/#,d: (—) —11 (—t+1)
(> ( ) 0 U18+R0 s (%1 o8 Ro

It remains to verify that we obtain 0(¢) = 27 in finite time. Indeed we do, since log increases
to oo (albeit at a turtle’s pace)! Thus we indeed eventually traverse the entire circle, thereby
checking every possible angle. Ergo, our strategy eventually lets us crash into the Red
October.

|

Source: I saw this on the Data Genetics blog.

[Back to Problem]
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Solution 18

At t = 0, let P start at C and @ start at A. We then let P move toward D at speed
|C'D| and let move @ move toward B at speed |AB|. Thus, P and @ end up at D and B
respectively at time ¢t = 1.

It suffices to prove that the problem statement holds for all time ¢.
CLAIM: [ABP] and [CQD] change linearly with time.

Proof. View AB as the base of APAB, so that the height is the altitude from P. Note then
that the height is changing linearly with time because P is moving along a line. Thus so is
the area. The logic for AQCD is the same.

CLAIM: We are done.

Proof. [APB| + [CQD] = [ABCD] holds at the beginning of time and at the end of time.
But by the previous claim, the quantity [APB] 4+ [CQD] changes linearly with time. We
deduce that in fact, this quantity must be constant with time, because it takes the same
value [ABCD] at two distinct times.

Thus [APB] + [CQD] = [ABCD] for all time, which is what we wanted.

Source: I saw this in some random corner of AoPS.

[Back to Problem]
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Solution 19

Yes we can.

e Begin by setting three fires at once: Two on both ends of the 1-minute rope, and a
third on one end of the 2-minute rope.

e After 30 seconds have elapsed, the 1-minute rope will be burnt up, and there will be
90 seconds left on the 2-minute rope. At this point in time, set the other end of the
2-minute rope on fire.

o After 45 seconds have elapsed, the remaining 90 seconds of the 2-minute rope will

have burnt up.

In sum, this procedure achieves 30 4+ 45 = 75 seconds of burning time, as needed.
[ |

Source: Classic

[Back to Problem|]
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Solution 20

We claim that Sydney cannot reach (1,0).

Call a point (a,b) even iff @ and b have the same parity. We claim Sydney can only reach
even points.

To see this, assume Sydney moves from an even to an odd point. Without loss of generality
let us suppose that the even point was (0, 0), and that she moves to an odd point (a, b). Then
the equation of the perpendicular bisector, which can be written as 2(ax + by) = a® + b?,
must pass through an integer point (z,vy).

But then 2(ax + by) would be even, so a® + b* would have to be even, so a + b must be
even, so a and b have the same parity. This contradicts the premise that (a,b) is odd.

Since (1,0) is an odd point, Sydney cannot reach it.

Source: Thomas Lam, USAMTS

[Back to Problem]
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Solution 21

It is still impossible.
Credits to “axcaea” for this approach.

Let us begin by proving some well-known lemmas. The interested reader should note that
their proofs may be simplified using the fact that Z[i] is a UFD.

Suppose that = and y can each be written as the sum of two squares. Then the same
is true of their product.

Proof.  Write z = a® + b*> = |a + bi|* and y = ¢* + d* = |c + di|*. Then
zy = |(a + bi)(c + di)|* = |ac — bd + (ad + be)i|* = (ac — bd)* + (ad + bc)?,

which completes the argument. O

Suppose that x is even and can be written as the sum of two squares. Then the same
is true of 3

Proof.  Write z = a® + b?. If a and b are both even then we may simply divide each side
by 4 to see that § = (%)2 + (%)2 is a sum of two squares, thus (z/4)(1% + 1?) is a sum of two
squares by the previous lemma. If a and b are both odd, then write

s (a—0)*+ (a+0b)?
_ 5 :

1 1
r=a*+b=|a+bi]* = 5|(1+z')(a+bz’)|2 = 5|a—b+(a+b)z‘|

o /2= (55" + (24)" 0

Back to the problem. We claim that

S = {(g, %) . d is an odd sum of two coprime squares, and p = ¢ (mod 2)}
is the set of all points reachable by Sydney. Of course, it is not necessary for us to show that
all points in S are indeed reachable. For the sake of the problem, it is sufficient to show that
Sydney cannot escape S, since (1,0) € S. So we shall just prove this direction and leave the
reachability as an exercise to the curious reader.

Let (p/d,q/d) € S. Suppose ax + by + ¢ = 0 is the equation of a line that connects two
lattice point. It is sufficient to show that the reflection of (p/d, q/d) over this line will remain
in S.
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Since ax + by + ¢ = 0 has an integer solution for x and y, it must be the case that
ged(a, b) | ¢. By dividing out by the GCD, we may assume without loss of generality that
ged(a, b) = 1.

We now leave it to the reader to check that the coordinates of the reflection in question

are: (p(ag — %) — 2b(ag + ¢) —q(a® — b?) — 2a(bp + c))
d(a® + 1?) ’ d(a? +0?)

There are now two cases to check.

1. If 2 | ab, then since ged(a,b) = 1, exactly one of a, b is even and the other is odd. So
d(a®+ b%) is odd. But d is a sum of two squares, so by the first lemma we may deduce
that d(a? + b?) is also a sum of two squares.

As for the numerators, the fact that a®> — b? is odd implies that the first numerator
has the same parity as p, and the second numerator has the same parity as q. These
have the same parity by the assumption that p = ¢ (mod 2). We conclude that the
reflection is in .S in this case.

2. If 24 ab, then d(a? + b?) is even, but a quick mod 4 argument reveals that it has only
one factor of two. The numerator also has a factor of 2, since a? — b?> must be even. So
we may reduce each fraction by dividing by 2 to write the coordinates as

<p(a2 —0?)/2 —blag+c) —q(a® —b*)/2 —a(bp + c))
d(a® + b?)/2 ’ d(a®+ b?)/2 '

Now, d(a* +b*)/2 must be odd, and since d(a® + b*) is a sum of two squares, the same
is true for d(a® + b*)/2 by the second lemma.

As for the numerators, a® — b? is divisible by 4, so both p(a® — 5?)/2 and q(a® — b*)/2
are even. And, since a,b =1 (mod 2), we have that

blag+c)=ag+c=q+c=p+c=bp+c=albp+c) (mod 2).
So again, the numerators have the same parity, and thus the reflection is in S.

This completes the proof.
[ |

Remarks: This problem has a funny history. My original solution to this, claiming the
answer of “yes” was incorrect as it had fallen for the trap mentioned by the first hint. After
outsourcing the problem, we found at least two more proofs claiming an answer of “yes” and
at least two more proofs claiming an answer of “no”, all of which were wrong.

Source: Me!

[Back to Problem]
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Solution 22

The shaded area is obtained by simply adding up the areas of the first and third circles
and subtracting out the second circle! So the answer is 5127 + 4827 — 4227 = | 31417 |.
[ |

[Back to Problem]
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Solution 23

The key observation is that (va2 4+ 1 —xz)(vz? + 14+ 2) = 1. So if we multiply both sides
by (Va2 +1—z), we get

Y+ VR l=vVa2 41—
Likewise, if we instead multiplied both sides by (1/y2 + 1 —y), we'd get

T+Ve4+1l=\y2+1—y.

Adding these two equations together, we conclude that x + y = 0.

Source: The earliest source I could find was the 1985 Norway Math Olympiad

[Back to Problem]
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Solution 24

The idea is as follows: Tile R? with a triangular packing of radius-10 circles. We show
that we can translate this tiling so that each crewmate is in a circle. This is done by picking
a random translation of the tiling, and proving that it covers more than 9 crewmates in
expectation. We then select those circles containing crewmates to be the buoys, and we are
guaranteed that we use no more than 10 buoys because there are only 10 crewmates.

To wit, if we pick a random translation of the tiling (by, e.g. choosing one circle’s center
uniformly at random from some fundamental domain of the tiling, and extending this to a
full tiling with a consistent orientation), then the probability that a particular crewmate is
saved is given by the efficiency of the tiling, i.e. the “ratio” of the plane taken up by the
circles’ interiors.

To find this “ratio”, we take a nice fundamental domain such as the shape of the colored
regions above. We now determine what fraction of this domain is taken up by the circle.

Using underhanded tricks, this can be done very quickly. Specifically, the total area can be
found by dividing the circle into 6 sectors and rearrarranging them so that the region becomes
two equilateral triangles. From this argument, we may find the ratio to be ﬁg ~ 0.9069.

To finish, we denote by A,, the event that crewmate n is saved. By linearity of expectation,
we deduce that the expected number of crewmates saved upon picking a random arrangement
of buoys is given by:

10 10 10
EY 14, =) Els, =Y P(A,) ~ 10(0.907) = 9.07 > 9
n=1 n=1 n=1

So there must exist an arrangement that saves more than 9 crewmates. That’s equivalent to

saving all the crewmates, hence we have proven that it is possible.
|
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Remark: 1t is possible to do better than 10! If n is the most number of crewmates that can
be saved if they all fall into the water, then according to the paper http://2012.cccg.ca/
papers/paper13.pdf, we have that 12 < n < 44.

Source: Naoki Inaba

[Back to Problem|]
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Solution 25

Minsung can escape within 100 seconds.

In the optimal strategy, we always make Minsung move in the direction that is “most
angled toward the center/spawnpoint”. Hence, Minsung’s optimal strategy is to actually
move at a “right angle” from the center. That is, he always faces in a direction v such that
v is perpendicular to the line segment connecting the center and Minsung.

Inductively, by using the Pythagorean theorem, we deduce that after ¢ seconds, Minsung
will be v/t feet away from the center. Solving the equation v/t = 10 for ¢, we get that
Minsung might murder us all after ¢ = 100 seconds.

[ |
Source: Classic.

[Back to Problem|
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Solution 26

Suppose the B coins I use to make the A cents are worth ¢, cs, -+, cp in cents. Then:
01+CQ+...+CB:A

The A coins we will use to make B dollars are as follows:

100

e ¢; coins worth
C1

e ¢, coins worth 1%

e ¢ coins worth 1%
cB

Indeed, there are ¢; + ¢co + ... + ¢g = A coins here. Moreover, their total worth is

C1 (ﬂ) + Co (@> +...+¢cpB (@) =100B
C1 Co Cp

which is B dollars.

[Back to Problem]
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Solution 27

The answer is no. The identity function on R is the only ring endomorphism on R. Let
f R — R be a ring endomorphism. We will show that f(z) = z for all z € R.

Step 1: We show that f is the identity on rationals.

Clearly f(2) = f(1) + f(1) = 2. Inductively we see that f(n) = n for all naturals n.
Moreover f(0 +0) = f(0) + f(0), so f(0) = 0, and from here we see that f(n 4+ —n) =
f(n) + f(—n) so that f(—n) = —f(n). Thus f is the identity on integers. Lastly, for any
rational m/n, where m is an integer and n is natural, we may write

Fm/n) + f(m/n)+ ...+ f(m/n) = fm/n+m/n+...+m/n) = f(m),

[14 7

where the represents continuing on for n terms. Here we may deduce that f(m/n) =
f(m)/n =m/n, so indeed f is the identity on rationals.

Step 2: We show that f sends positive reals to non-negative reals.
If z > 0, then x = y? for some y. Hence f(z) = f(v*) = f(y)f(y) > 0.
Step 3: Now we may finish.

Take any real z, and suppose f(x) # . Then, appealing to the symmetry f(—z) = —f(x),
we may suppose without loss of generality that f(z) < z. Now find a rational ¢ with

fz) <qg<x.

Since ¢ < z, we have x — ¢ > 0, so by Claim 2 we have that f(x —¢) > 0. So f(z) >
f(q) = ¢ by Claim 1. But f(z) < ¢, contradiction.
[ |

[Back to Problem|]
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Solution 28

We claim that the numbers are actually equal.

For each lit triangle of perimeter 2019, add 1 to each of its sides. Then:

1. Tt is still a triangle, because if a +b > ¢, then (a+ 1)+ (b+ 1) > (¢ + 1)

2. The perimeter is now 2022.

So it becomes a lit triangle of perimeter 2022.

We claim that every lit triangle of perimeter 2022 can be obtained in this way! This
would show that there is a one-to-one correspondence, so that the number of lit triangles of
perimeters 2019 and 2022 respectively are equal.

To see this, suppose otherwise. Then there is a lit triangle of perimeter 2022 that cannot
be obtained using the above procedure. This entails that if we subtract 1 from each side,
then we obtain an invalid triangle.

Take such a triangle with sides a,b, and ¢, so that a + b + ¢ = 2022. Without loss of
generality, let us assume that c is the longest side. Then a 4+ b > ¢, and moreover ¢ would
be the longest side of the hypothetical triangle with sides (¢ — 1), (b—1), and (¢ — 1). This
would be a valid triangle if and only if (¢ — 1) 4+ (b — 1) > (¢ — 1). We are assuming that
it is not valid, hence (a — 1)+ (b—1) < (c—=1),ora+b < c+1. Buta+b > ¢ so
c+1<a+b<c+1 Wededucethata+b=c+ 1.

Adding ¢ to both sides, we obtain 2022 = a+b+c = 2¢c+1, thus 2022 is odd, contradiction.
[ |

Source: 2022 ICMC, Constantinos Papachristoforou

[Back to Problem|]



CHAPTER 4. SOLUTIONS Solution to Problem 29 272

Solution 29

It suffices to find the dimension of V{, the space of n X n magic squares with magic number
exactly equal to 0, via the natural isomorphism Vj & R = V where V is the space of magic
squares.

We now define a linear transformation T : R™*" — R2+1 ag follows: For A € R, T(A)
is the column vector whose components are the sums of the rows, columns, and diagonals of
A, except the last row. That is, the components are the sums along the following lines:

We note that the null space of T is precisely V. By the rank-nullity theorem, it follows
that:

dimVy =n? —rkT
So it suffices to find the rank of T". In fact, we claim that 7" has full rank.

To prove this, we only need to show that for every line above, we can find a matrix such
that that line has sum 1 (... or any non-zero real) and all other lines have sum 0. What’s
nice is that throwing out the last row makes this quite feasible!
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-1
i 2 | 4] 2
B 21-11-1
_2 -11 -1 __1 5 -1
1 111

As suggested in the above graphic, the scheme is as follows:

e For any row, we can find a cell that lies on neither diagonal and then place a 1 in it.
Then, place a —1 in the bottommost cell below 1.

e For a column that is neither the first nor last, we may simply place down a 1 on its
bottommost cell. Otherwise, we can do a strange thing, as shown, provided that n > 4.
The case n = 3 is scary, and is also shown.

e For a diagonal, we may simply build a 2 x 2 square of 1’s and —1’s, provided that
n > 4. The case n = 3 is not hard.
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This proves that, indeed, T has full rank, so that dimVy = n? — (2n +1) = n? — 2n — 1.
Hence, dimV =1+ dimV, = for n > 3, whereas for n = 1,2 we see that the

dimension is 1.

[Back to Problem]
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Solution 30

If the square “rotates” n times, then the angle between two consecutive squares is 5-. By
geometrical and symmetrical reasoning, we see that if the side length of some square is z
then the next side length y must satisfy

(55) T veos (57
Sln COS =X
ysmAp yeos o,

thus the ratio between the side lengths of two consecutive squares is just —————.
sm(2—)+cos( )

n “rotations”, we see that the side length of the last square is given by (2 )+COS =
2n 2n

After

:”\*

remains to compute lim,, (Sln ( ) + cos (%))7%

Letting x = 7, this limit will be equal to lim,_,o (sinx + cos IL‘)_g, if it exists. We may
write this as:
. ™ .
exp [hm ——log (sinx + cos .21:)]
x—0 x

Applying Taylor’s Theorem, we may now write sinz = x4 o(x) and cosx = 1+ o(z) to write
the desired as: .
= exp Lljlg(l) - log (1 + 2+ 0(1:))]

We may moreover write log(1 4+ y) = v+ o(y), and we may take here y = x + o(z) to obtain:

= exp [}Cgr% —g (x4 o(x) + o(x + o(x)))]

= exp [lim = (2 + o(x)|
M}

=exp |lim —7 —
x—0 x

Which is exp(— "| by definition of little-o.
[ |

Remarks: The knowledgeable reader may have found this problem familiar! Indeed, it bears
a strong resemblance to the following problem:

On each corner of a unit square lies an ant. Starting at the same time,
each ant moves directly towards their counter-clockwise neighbor at
a speed of 1. When they meet at the center, how far has each ant
travelled?

The limiting curve that you have witnessed in this problem is precisely the path taken by
these ants, albeit cut short after 90° have been traversed about the center.
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We can derive the equation of the curve in a cute way. First, observe that it should not
be important that the ants move at a constant speed — as long as they all share the same
speed, it should be the case that they trace out the same curve. Now, overlay the complex
plane unto the square, with the square’s center being 0. If an ant is at z € C, then it is
moving towards ¢z. The observation lets us take the ant’s speed at such a location to be
liz — z|, so that its path z(¢) will modeled by the differential equation

Z(t) =iz(t) — z(t) = (i — 1)2(¢).
This naturally solves as z(t) = z(0)e(—1t,

With this parametrization of the curve, we have that t lives in [0,00). Writing it as
z(t) = z(0)ete™, we see that the distance to the center exponentially decays whereas the
angular velocity is constant. This formula directly shows that the distance to the center
upon a quarter rotation is given by |2(0)|e~™/2, which is consistent with our deductions in
the original problem’s solution.

[Back to Problem]
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Solution 31

Let t be the total amount of tea (in cups), and m be the total amount of milk (in cups).
Then t + m = n, where n is the number of cups. Moreover, we are given that % +% =1

We know that there’s some positive amount of tea. After all, it’s not a department milk!
So, t > 0, and in particular, /4 > ¢/6. Thus

so that 6 > n.

Similarly, we know there’s some positive amount of milk, because there is some “contam-
ination” as stated in the problem. So m > 0 and in particular m/4 > m/6. This gives

us
1_m+t<m+t_n
6 4 4 4 4
so that 4 < n.

Since 4 < n < 6, we must have .

I leave it as an exercise to demonstrate that there indeed exist 5 cups of milk-contaminated

tea that satisfies the problem’s conditions.
[ |

Source: Folklore

[Back to Problem|]
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Solution 32

You can argue that the longest such stick length is equal to the minimum possible length
of the red segment shown below.

With the angle § marked as shown, it is clear that this length is given by — + Sif’l 5 One can
use calculus to minimize this quantity. Alternatively, by Holder’s inequality with exponents

3/2 and 3, we can more directly write

2/3
a2/3 3/2 p2/3 3/2 ) , T
——7a — /3 in2/3 2/3 | 12/3
((0082/39) + (Sin2/39) ((COS 0)" + (sin 9)) > a?® 4 3,

This rearranges to 5 + Siﬁ 5 > (aQ/ 34 b/ 3)3/ 2| and by examining the equality case one

can see that this lower bound is indeed obtainable.

Remarks: If you have not heard of it, this is an easy variant of the Moving Sofa Problem,
which asks for the area of the largest region that can be passed through this bend of the
hallway. Mathematicians have had a lot of fun drawing interesting telephone-like shapes
that can get through, but the problem is still officially open at the time of writing. Recently,
Jineon Baek has claimed a very promising resolution to the problem (https://arxiv.org/
abs/2411.19826).

Here’s a fun variant: What is the maximum area of a rectangle that can be carried through
such a bend?

Source: Folklore

[Back to Problem]
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Solution 33

Claim: The set of all P € R[z] that are the sum of two squares is closed under multiplication.

Proof. Take P = A%+ B? and Q = C? + D?. Then by magic:

PQ =|A+iB]*|C +iD|* = |(AC — BD) +i(BC + AD)|> = (AC — BD)? + (BC + AD)?
O

Without loss of generality suppose P is monic. Since P > 0, its roots come in conjugate
pairs, and by multiplying such corresponding terms in the factorization of P, we see that
P is a product of quadratics 22 + bz + ¢, each of which is non-negative. From discriminant
analysis it follows that b? — 4¢ < 0, so particularly we may write

22 +bo+c = (z+b/2)2 + /e — ()22

which is a sum of two squares. Now inductively apply the claim!

[Back to Problem|]
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Solution 34

We compute Clara’s probability of winning. If she goes second or third with probability
%, then the first shooter (either Alex or Blaire) must shoot the other expert markswoman
or else she guarantees her own death. Then it will be Clara’s turn, and her probability of
winning will be exactly the probability that she lands the shot on the other living duelist,
i.e. %

If Clara goes first with probability %, it actually doesn’t matter who she decides to fire at.
If she shoots at Alex, Blaire, or even herself (), she will lose if she lands the hit. Conditioned
on the event that she misses (with probability %), we reduce to the case in which Clara goes

1

third, and we know her survival probability here is 3.

Altogether, Clara’s odds of winning are
2 1 n 111 5
32 322 12
By symmetry it follows that Alex and Blaire each have survival odds of %. Despite having

the worst aim, Clara is the most likely one to get out alive.
|

Source: I found this in a puzzle book.

[Back to Problem]
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Solution 35

Solution 1
Let X be the set of duelists and define the map f: X — X via:
f & — duelist shot by z

If we assume that nobody is alive, then f is a surjection. By finiteness it follows that f is
actually a bijection.

Thus we may view f as a permutation that can be decomposed into cycles. Since 31415 is
odd, there is at least one odd cycle (x; o ... xx). k # 1 because nobody shoots themselves,
so k > 3.

Now, by virtue of the shooting cycle, we see that
d(zy,x9) > d(xg,x3) > ... > d(xp_1,2) > d(T), 71) > d(271, 2),

contradiction.

Solution 2

Assume for contradiction that everyone dies. First, observe that there are 31415 bullets
and 31415 people. So it cannot be the case that someone is shot more than once, since then
someone must be shot less than once, i.e. not at all.

By finiteness, we may find the two duelists that are of the shortest distance apart. By
minimality, these two duelists shoot each other. By the observation, nobody else shoots
these two duelists. Thus we may essentially ignore these two duelists. Inductively repeating
this argument, we eventually end up with one person. They must die, but they can’t shoot
themselves, contradiction.

|

Source: Folklore

[Back to Problem]
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Solution 36

The miracle point in question is the incenter.

The credits for this approach go to “tenth”. We will start by showing a strong variant of
the converse.

Lemma 1

Let AABC be a triangle with incenter I. Let X,Y be points on the boundary of
AABC. Then cutting AABC along segment X/ and then along segment 1Y will
divide the area and perimeter of AABC' into the same ratio.

A

B C

Proof.  The key idea is to subdivide the regions into triangles along the angle bisectors, as
shown.

B C

If we view each triangle as having height equal to the inradius r (and thus having a base along
the perimeter of the triangle), then we can see that its area is § multiplied by the length of

. . . . . Area . .
the perimeter it occupies. Thus, for any triangle, the ratio Gccupied berimeter 18 constant, being

equal to r/2. It follows that the ratio {3 Ocﬁgeﬁr;&;rimeter is also r/2, and the blue region is

no different. O
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With this proven, we are ready to solve the problem swiftly and with style. Suppose that
we cut the pizza along segment XY, and that this cut divides the area and perimeter of the
pizza into the same ratio.

Consider also cutting the pizza along segments X1 and Y. As we have just shown, this
also divides the pizza’s area and perimeter into the same ratio.

But both the XY cut and the X1 and IY cuts divide the pizza’s perimeter into the same
ratio! Thus, by the previous two paragraphs, they must divide the pizza’s area into the same
ratio.

This can only be possible if AXYT has zero area. That is, X,I,Y are collinear, so XY
passes through the incenter.
|

Source: This is called Haider’s Theorem.

[Back to Problem]
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Solution 37

The missing digit is 4.

The key property that we will use is that an integer n and the sum of the digits of n will
always have the same remainder upon division by 9. Let us calculate the remainder of 2%
upon division by 9.

One simple way to determine this is to seek a pattern in the remainders among the powers
of 2. If you know modular arithmetic, this gives a swift way to evaluate the remainder:

2% =4.8"=4.(-1)=-4=5 (mod 9)
So the remainder is 5.

We know that if all ten possible digits were present, then the digit sum would be 45,
which is divisible by 9. So, the missing digit must be a digit d such that 5+ d is divisible by
9. There is only one digit for which this holds: .

|

Source: Classic

[Back to Problem]
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Solution 38

The situation encountered by the Hearthians is possible, and it turns out that Desmine
must be missing.

The key ideas are:

e If you do the exploration procedure with a distance that is not an integer multiple of
the distance along a quarter turn on the planet, then your path is likely too chaotic to
expect being able to reunite with many other Hearthians.

e Doing the exploration procedure with a number of quarter turns around the planet
that is congruent to 0, 1, or 3 mod 4 will return you to where you started. If instead
it is congruent to 2, you actually end up on the antipode of where you started.

This may be hard to believe, so I will sketch out why this is true. Imagine that a
Hearthian starts at the north pole.

— If this Hearthian returns to the north pole after travelling x km forwards, then
evidently they will still arrive at the north pole again after turning, travelling x
km forwards, turning, and travelling x km forwards again.

— If this Hearthian does a single quarter-turn around the planet by walking forwards
x km, then they will arrive at the equator after the first leg of their exploration
procedure. After turning 90° counter-clockwise, the direction they face will be
aligned with the equator, and so they will remain on the equator after waking
x km forwards. Finally, after turning 90° counter-clockwise again, they will be
facing north, and so walking x km forwards will get them back to the north pole.

— If this Hearthian does a half-turn around the planet by walking forwards x km,
then they will find themselves at the south pole after the first leg of their explo-
ration procedure. The direction they turn does not matter: After travelling z km
again in any direction, they arrive at the north pole, thus after yet another z km
in any direction, they end their journey at the south pole.

— If this Hearthian does a three quarters-turn around the planet by walking for-
wards x km, then as in the one quarter-turn case, they will arrive at the equator.
Following the same logic reveals that they indeed will end up at the north pole
at the end of their journey.

So doing the procedure with 1, 3, 4, 5, 7, 8,9, 11, 12, ... quarter turns will take you to
where you started. Inspired by the subsequence of numbers 3, 4, 5, 7, 8, 9, we can take the
quarter-turn length to be 10 so that Desmine (the one with the 60) ends up at the antipode
but everyone else ends up reunited back at the ship.

|
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Remarks: The radius of the planet is not unique. For example, the radius could also be such
that the length of a quarter-turn is %.

It is also true that Desmine is the only Hearthian that could be missing as a result of
this procedure. I will spare the details, but it turns out that if we assume that the ship is at
the north pole, then the z-coordinate (which I take to be up and down) of one’s location at
the end of the exploration procedure can be modeled by the function f(6) := cos®# + sin® 6,
where 6 is the “angle” traversed in in a single leg of the procedure. It follows that showing
uniqueness reduces to proving that if 6 is such that exactly 6 of the 7 values in the list
[f(360), f(460),---, f(90)] are equal to each other, then the odd element out must be f(66).

Unfortunately, this seems difficult to prove without computational aids.
Source: Konstantin Knop

[Back to Problem]
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Solution 39

The statement is false! We present two different methodologies for constructing an un-
countable totally-ordered family of subsets of N.

Solution 1

Using a bijection, it is sufficient to tackle the problem when “natural” is replaced with
“rational”. For each z € R we take the Dedekind cut D, := {q <z : ¢ € Q}. We can then
take our family to be

F:={D,:z € R}

Clearly this is uncountable and is a totally-ordered family of subsets of the countable set Q.
[

Solution 2

Using a bijection, it is sufficient to answer the problem replacing the naturals with the
nodes of an infinite binary tree. The family of infinite paths starting from the root is
uncountable, but not totally-ordered. To fix this, we simply add to each path all elements
to the “left” of the path.

[ |

Source: I saw this on Math Stack Exchange

[Back to Problem|]
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Solution 40

We may save 9. Clearly this is the maximum we can guarantee saving because there is
no guarantee that the first prisoner can get their hat color right, by virtue of having no
information about their hat. To save everyone else, the first prisoner says “black” if they see
an odd number of black hats, and “white” otherwise.

Then the second prisoner can deduce their hat color — if they see an odd number of
black hats, then they must be wearing white. Otherwise, they must be wearing black. Now
consider any prisoner P thereafter. By listening to the correct guesses of the prisoners behind
them and counting the hats in from of them, P will be able to compute the number B of
black hats excluding P’s and the first prisoner’s hats. So the number of black hats excluding
just the first prisoner is either B or B+ 1, depending on whether P has a white or black hat,
and this can be disambiguated by the first prisoner’s information on whether this number is

even or odd.
[ |

Source: Classic

[Back to Problem]
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Solution 41

Recall that a permutation can be either odd or even. A permutation is even if it is created
via an even number of swaps (“transpositions”), and odd otherwise. It is a theorem that no
permutation can be both odd and even, so this is a well-defined characterization.

A key consequence is that if you take an even permutation and perform one additional
swap, then the result is an odd permutation, and vice versa.

Starting from the back of the line, number the prisoners from 1 to 100. In some order,
number the hats from 1 to 101. Mark the warden as “prisoner 101” and give him the missing
hat.

Using the idea of even and odd permutations, the plan is as follows: Viewing the 101 hats
as a permutation of the integers from 1 to 101, prisoner 1 will guess that the permutation is
even and guess their hat according to this assumption. That’s it.

Note that prisoner 1 sees all hats except their own and the warden’s, so from their per-
spective, there are exactly two possible sequences for the hats, and they differ by exactly one
swap. Thus, of the two possibilities that prisoner 1 sees, one represents an even permutation
and the other is odd. Hence their assumption that the permutation is even corresponds to
a well-defined guess for their hat.

For example, if there are 4 prisoners and prisoner 1 sees
? 2 3 4,

then prisoner 1 guesses 1, because this corresponds to the identity permutation (in which
prisoner 1 wears hat 1 and the warden wears hat 5), which is even.

Prisoner 1 may or may not get shot. If they are not shot, then everyone knows that the
permutation is indeed even. Otherwise, it must be odd.

Now we get to prisoner 2. We claim that prisoner 2 knows either prisoner 1’s hat or the
warden’s hat. To see this:

e If prisoner 1 was not shot, then obviously by virtue of hearing their correct guess,
prisoner 2 knows prisoner 1’s hat.

e If otherwise prisoner 1 was shot, then let the hat they guessed be A. Let the hat
they’re actually wearing be B. The two possibilities were that either prisoner 1 was
wearing A and the warden was wearing B, or the other way around. By virtue of
hearing the shot, we know that the former was not the case, so it must be the latter,
which implies that the warden is wearing A. That is, the warden is wearing the hat
guessed by prisoner 1.
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Thus, there are only two hat colors that prisoner 2 does not know: That of their own,
and that of one other person. So, prisoner 2 is also guessing between two possible sequences,
and they differ by a single swap. Since they know the parity of the permutation, they may
disambiguate between the two possibilities and guess correctly.

Inductively, prisoner k can guess correctly. This is because prisoners 2,3,--- , k — 1 all
guess correctly, and by the same logic, we can argue that prisoner k£ can either deduce
prisoner 1’s hat or the warden’s. So again, prisoner k needs to decide between two possible
sequences of hats that differ by a single swap, which can be disambiguated because prisoner
k knows the parity of the permutation.

In all, we see that all prisoners after prisoner 1 will be guaranteed survival. This is clearly
the best possible outcome because prisoner 1 has no such guarantee of survival no matter
the strategy. Hence 99 prisoners may be saved.

[Back to Problem|]
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Solution 42

Let X be the set of all possible hat sequences. Define an equivalence relation ~ on X as
follows: A ~ B if and only if A and B are eventually the same. That is, they only differ in
finitely many places.

The relation ~ partitions X into equivalence classes. The prisoners, in the planning
phase, will apply the axiom of choice to agree on a representative of each class.

When the game starts, the hats form some sequence S € X. Every prisoner, by virtue of
being able to see the tail of the sequence S, knows the equivalence class of S under ~, and
can therefore obtain the agreed-upon representative T' of the class [S].. Every prisoner will
then guess their hat in accordance to the sequence T

Since S ~ T, we have that S and T will eventually be the same. That is, S and T will
differ only in finitely many places, so only finitely many prisoners can die under this scheme.

[Back to Problem|]
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Solution 43

Solution 1

An incredible approach uses L’Hopital’s rule. Suppose such a function f existed. Then

2= li_)m f(x)

= lim —f(x)e
T—00 er
d T
= lim % d(x)e (L’Hopital’s rule)
T—>00 %ex
/ x T
= lim flw)e” + fw)e (Product rule)
T—00 et
— Tim
= lim f(z) + f(2)
=1+2

contradiction.

To rigorously justify the application of L’Hopital’s rule, we need to check that

e f(x)e” is differentiable and approaches oo as r — oo,
e ¢” is differentiable and approaches oo as x — 0o, and

o lim, . w exists and is finite.

Of course, all these are true.

Solution 2

The main purpose of this problem was to show off Solution 1, but it is more of an amusing
parlor trick then an instructive methodology. A more typical approach is as follows. Suppose
for contradiction that such a function f exists. Then there exists N > 0 so large that

o |f(z)—2| <1foralx>N,and
o |f'(z) =1 < 3 forallz > N.

Now take a = N and b = N 4 100. By the Mean Value Theorem, there exists ¢ € (a,b) such

that ) - fla)  F) - f(a)
o= =10
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Since ¢ > N, we have that |f’(c) —1| < 3. Thus ‘% - 1’ < 3. In particular, W >
5, and so f(b) — f(a) > 50. But now

50 < f(b) = fa) <[f(b) = fla)] < |f(b) = 2[ +[2 = f(a)] <2
because a,b > N, contradiction.

Remarks: Let’s consider an alternate variant that can’t be treated using the approach in
Solution 2: Suppose that f : R — R is differentiable such that there exists the limit

lim f(z)+ f/(z) = L,
T— 00
with L finite. Prove that
lim f(z) =L and lim f'(z) =0.

T—00 T—00

The intent behind this formulation is to force the methodology used in Solution 1. At
first glance, this may seem successful. However, it is not so straightforward. To wit, here is
an incorrect solution.

“If we apply L’Hopital’s rule as in Solution 1, we can write

lim f(z) = lim 20 2y L@ J;f/(”’")ex = lim f(z) + f'(x) = L,

T—00 T—00 e T—00 e

as needed.”

The error is that the application of LL’Hopital’s rule was not justified. The issue is that
we do not know that f(x)e* — oo as x — oc.

To apply L’Hopital’s rule, we would be just as happy if it were the case that f(x)e* — —oo
as x — oo. So it suffices to prove that f(z) is either bounded from below or bounded from
above over all x > 0. This is because if, for example, f(z) > —M for all z > 0, then we may
take g(x) := f(xz) + M + 1 so that g(x) > 1. We have that g(z) + ¢'(x) - L + M + 1 and
g(x)e* — 0o as x — 0o, so we may apply the trick with L'Hopital’s rule to g!

Suppose for contradiction that f(z) is unbounded from above and unbounded from below
over x > 0. Then it is not hard to show that there exists an increasing sequence of local
maxima x, of f, with z,, — oo and f(z,) — oo. Intuitively, this is because for f to be
unbounded from above and unbounded from below, it must obtain higher and higher peaks
(as well as lower and lower valleys), and we select x,, to be the z-coordinates of these peaks.
It then follows that

00> L= lim f(z) + f(x) = lim f(r,)+ f/(2,) = lim f(2,) = oo,
T—00 n—o00 n—o0
contradiction.

[Back to Problem]
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Solution 44

We claim that there is no winning strategy because the game must end in a draw assuming
perfect play from both players. This is because the game is isomorphic to Tic-Tac-Toe.

The first observation is that there are exactly 8 ways to make 15. That is, there are
exactly 8 three-element subsets of {1,2,--- 9} that sum to 15. Here they are:

e 1,59
e 2,5, 8

3,5,7

4,5,6

3, 4,8

2,4,9

2,6,7
e 1,6,8

It turns out that these eight triplets of digits are exactly the triplets that show up among
the rows, columns, and two diagonals of a 3 x 3 magic square!

=~ O N
w Ot
o = O

Thus, if we view the game between Ana and Beth as taking turns claiming digits from this
magic square, then this reduces to Tic-Tac-Toe because the eight possible lines of victory in
the board are exactly the eight possible obtainable sums by the claim.

[ |

Remarks: This is a remarkable connection. Though, some may argue that this may not
entirely be a coincidence! See this blog post for an explanation.

Source: Probably John Conway

[Back to Problem|]
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Solution 45

Let us first tackle the cube’s “height”, i.e. the length of its projection unto the z-axis.
Note that the entirety of this height is traversed via the following path along the cube’s
edges, from the bottom to the top.

The desired “height” of the cube is given by the sum of the “heights” of these three edges.
For easier analysis, we may shift these edges downwards so that they protrude from the
bottom-most vertex.

As in the diagram, we call the red, orange, and yellow edges x, y, and z, respectively. Let
the “height” of the x, y, and 2z edges be h,, h,, and h,, respectively. Then the “height” of
the cube is hy + hy + h..
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Putting this aside, let us now tackle the cube’s “shadow”. If you view a cube from any
perspective, you always see three faces (or less), each being a rhombus. The cube’s shadow
is no different — it is a hexagon which can be partitioned into three rhombi, each being the
projection of a different lower face.

As in the diagram, we label the area of the “shadow” under the face spanned by the y and z
edges as A,. Defining A, and A, similarly, we see that the total area of the cube’s “shadow”
is A, + Ay, + A,.

We claim that h, = A,. To prove this, we orient our perspective to view the cube from
the “side”, so that the y and z edges coincide to form a line segment orthogonal to z.
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Mark the angle 6 as in the diagram. Then, from the lengths triangle formed on the left, we
have that

sin(90° — 0) = T

The triangle formed on the right, on the other hand, displays a proportional relationship
between areas instead of lengths. To be precise, it relates the area of the face spanned by y
and z (which is 1) to the area of the shadow of this face (which is A,) via the cosine of the
angle between this face and the ground. We get that

cosfh = ==

T
But sin(90° — 0) = cos 6, so indeed h, = A,.

By symmetrical reasoning, we have h, = A, and h, = A., and so we may conclude that
hy 4+ hy +h, = A, + Ay + A,. That is, the “height” is numerically equal to the area of the

shadow.
[ |

Remarks: The following generalization is true.

Theorem 1

Let m,n € N. Suppose that a unit cube C lies in R™ x R" with some orientation.
Then the m-dimensional measure of the projection of C' unto R™ (the subspace formed
by the first m components) is equal to the n-dimensional measure of the projection of
C unto R" (the subspace formed by the last n components).
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To build up to the proof of this, let us first present two lemmas, both of which are
fascinating results in and of themselves.

Lemma 1 (Sylvester’s Determinant Identity)

Let A be an m X n matrix and B be an n X m matrix. Then
det(l,, + AB) = det([,, + BA),

where [ denotes the k£ x k identity matrix.

Proof.  Consider the block-form (m +n) x (m + n) matrix

I, A
-B I,)

We evaluate the determinant of this matrix in two different ways. Using “row reduction”,
we have on one hand that

L, A\ I, A _ I, A _
det(_B In)_det(—B+BIm In+BA)_det<O [n+BA>_det(I”+BA)'

On the other hand, we can use “column reduction” to get that

In A\ ., (I.+AB A\ . (I.+AB A\ _
det <—B In)—det (—B+[nB [n)—det( 0 ]n)—det(fm—i-AB).

Lemma 2 (Complementary submatrices of a unitary matrix have same determinant)

(2

be an (m + n) X (m + n) unitary matrix, where A is an m x m square matrix and D
is an n x n square matrix. Then |det A| = |det D].

Proof.  We have
T — ATA+CTC ATB+CTD
~ \BTA+D'C BB+ DD
and
JUT — AAT + BBT ACT + BDT
—\cAT + DBT CcCT+DDT)"
Since U is unitary, both of the above products must be the (m+n) x (m+n) identity matrix.
In particular, it follows that BB + DTD = I,, and AAT + BBT = I,,. Now, by Sylvester’s
Determinant Identity,

| det A]* = det(AAT) = det(I,, — BB") = det(I,, — B'B) = det(D" D) = | det D|?.
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It turns out that this lemma implies the theorem.

Proof.  Without loss of generality, we may let 0 be a vertex of C'. Then there are m +
n edges protruding from 0, which we may view as a set of m + n orthonormal vectors
V1, Vo, Uppgn € R,

Let U = [v1 vy *++ Upyn). That is, U is the matrix whose ith column is v;. Then U is a
unitary matrix.

There are (mnt”) m-~dimensional faces of C' that include 0, since each such face corresponds

to the “span” of a selection of m of the vectors vy, -+, Uyin.

It happens to be the case that the projections unto R™ of all (m;g") such m-dimensional

faces will partition the projection of C' unto R™. We defer the work of reasoning this out to
the reader (who hopefully can think in n+4m dimensions...). What’s important is that due to
this, the m-dimensional measure of the projection of C' unto R™ is the sum of the measures of
the projections of the (mnt”) m-~dimensional faces. Analogously, the n-dimensional measure
of the projection of C' unto R" is the sum of the measures of the projections of the (m:{n)
n-dimensional faces.

To prove this, we use an approach that mirrors the solution to the original problem!
Instead of pairing a 2D face with a 1D edge of equal measure after projection, we can pair
an m-dimensional face with an n-dimensional face of equal measure after projection.

We pair these faces in the obvious way: Let {v; : i € S} be a selection of m vectors that
determine an m-dimensional face F' of C, for a subset S C {1,2,--- ,m 4+ n} of m indices.
Then we may pair this with the n-dimensional face F’ spanned by the unused n vectors,
i.e. {v;:i ¢ S} We claim that the projection of F' unto R™ has the same measure as the
projection of F’ unto R™.

The projection of F' unto R™ is the m-dimensional parallelepiped formed by the m vectors
in {v; : © € S}, but with their last n components removed. That is, the m vectors that
determine this parallelepiped are given by {(vi1,vig, -+ ,vim) : i € S}. Naturally, these
vectors form an m x m matrix A whose determinant | det A| is the m-dimensional measure
of the parallelepiped. Moreover, A is the submatrix of U whose columns’ indices are given
by S and whose rows are the first m rows.

Similarly, the projection of F’ unto R™ is the n-dimensional parallelepiped formed by
the n vectors {v; : i € S}, but with their first m components removed. With these com-
ponents erased, these n vectors form an n x n matrix D whose determinant |det D| is the
n-dimensional measuure of the parallelpiped.

Crucially, A and D are complementary square submatrices of U in the sense that the rows
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and columns that they extract are all distinct. It follows by Lemma 2 that |det A| = | det D|

(rearranging rows and columns as necessary so that it may be applied), and this concludes
the proof. O

[Back to Problem|]
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Solution 46

Suppose the center of the circle is (0,0). Let the radius of the circle be r. Then the
equation of the parabola is given by y = 224 1. Moreover, the line y = v/3z must be tangent
to the parabola. It follows that the quadratic

\/gx:x2+r

must have exactly one root, and hence must be a perfect square trinomial. This occurs

2 |3
exactly when r = (\/75) =1l

[Back to Problem]
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Solution 47

On each square of an m xn board, place a biased coin that comes up heads with probability
x. Flip all the coins.

Let A be the event that in each of the n columns, there exists a tails. Let B be the
event that in each of the m rows, there exists a heads. Note that P(A) = (1 — 2™)", and
P(B) = (1 — (1 —x)")™. Moreover, A and B encompass the entire probability space! That
is, no matter how the coins flip, either A happens or B happens or both. Thus

P(A) +P(B) > P(AUB) = P(Q) = 1,

which is the desired inequality.

Source: I saw this problem in the Czech Republic Math Olympiad, but it may be older.

[Back to Problem]
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Solution 48

For simplicity, let us replace “100” with “1”, so that the red block’s temperature begins
at 1 degree and the blue block’s temperature begins at 0 degrees. We’ll show that the blue
block’s temperature can get arbitrarily close to 1.

Represent the blocks’ temperatures as an ordered pair (Red Temperature, Blue Temperature),
so that at the start their temperatures are (1,0). We first claim that we can go from (1,0)
to (3/8,5/8). To see this, split each block into halves, so that the temperatures are

10
10

with the red blocks on the left. Hit the top blocks together to get

1/2 1/2
1 0

and now hit each block with the block diagonally opposite them to get

1/4 3/4
3/4 1/4

Lastly, hit the bottom two blocks together to get

1/4 3/4
1/2 1)2

Merging back, we indeed end up with (3/8,5/8).

In general, suppose we have found a way to go from (1,0) to (1 — z,z). Then by scaling
the temperatures up, we can go from

(CL - ba 0) - ((1 - I)((l - b),CL’(CL - b))’
and by adding a temperature of b to all blocks, we see that we can go from
(a,b) = ((1 — z)a + zb,za + (1 — x)b).

Call this the X-procedure. Let’s retry the previous procedure we came up with by using the
X-procedure in place of hitting two blocks together normally.

—_ =
o O
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Apply the X-procedure on the top blocks.

l—2x =z
1 0

Apply the X-procedure between the top-left and bottom-right.

(1—x)? x
1 z(1—x)

Apply the X-procedure between the bottom-left and top-right.

(1—2)* 2z —2a?
l—x+2% 2(1—2)

Apply the X-procedure between the bottom blocks.

(1—x)? 2r — x?

something awful 2z — 322 + 223

Bringing the blocks together again, the temperature of the blue block is then 2z — 222 4 3.
Let this expression be f(x).

We have shown that, if we can execute the heat transfer (1,0) — (1 — z,z), then we
can execute the heat transfer (1,0) — (1 — f(x), f(z)). Inductively, it follows that we can
execute the heat transfer (1,0) — (1 — f®™(z), f™(z)) for all n, where f™ is f composed
with itself n times. It remains to prove that

lim f™(1/2) = 1.

n—oo

First we show that the limit exists. Indeed, by writing f(z) = = + z(1 — x)?, we see that
f(z) > = for all x € [0, 1], which entails that the sequence {f((1/2)},, must be increasing.
So the desired limit exists and is some real number L. Now, write

FO/2) = F(F™(1/2)) = 20T (1/2) — 2£™(1/2)% + £(1/2)°.

Sending n — oo gives
L =2L—2L%+ L3,

so either L =0 or L = 1. The case L = 0 is quite obviously deranged, so the limit is L =1,
concluding the proof.

[ |
Source: Puzzling Stack Ezchange

[Back to Problem|]
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Solution 49

We are given that

1 n 1 n 1 n 2 (%)
12 22 32 6
Multiply each side by 1/4, we can get
1 L 1 n 1 + 2 (%)
22 42 62 24

By subtracting (sx) from (), we conclude that

1+1+1+ _7'('2 7'('2_7'('2
1232 42 6 N '

[Back to Problem|]
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Solution 50

As suggested by the hint, Ari first flips a fair coin to decide which card she chooses. The
remainder of her strategy is as follows: If the real number on that card is ¢, then Ari will
guess “Higher!” with a probability P(t) that we will define later.

Let us show that this works. Suppose that the two cards chosen by Beth are x and y,
with z > y. Then the probability that Ari wins under this strategy is

5 Pla)+ 5 (1= P(y))

If you work out the algebra, this probability is strictly greater than % exactly when P(x) >

P(y). So Ari’s scheme reduces to the following problem: Find a function P : R — [0, 1] such
that whenever x < y, we have P(z) < P(y), i.e. P is strictly increasing.

This is clearly possible! For example, Ari can choose

1 arctan(z)
+
2 T

Source: Classic?

[Back to Problem|]
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Solution 51

Claim: The hydra can be moved only to rooms that are multiples of 6.

Proof. For each integer n, we assign a weight w,, to room n as follows:

(1, n=0 ( )
V2, n=1 ( )
~1++v2, n=2 (mod 6)
—1, n=3 ( )
( )
( )

—V2, n=4

\1—\/5, n=>5

Observe that w,,_1 +w,+1 = w, for all integers n. Thus the sum of the weights of the rooms
occupied by the hydra heads (counting multiplicity) does not change with every move you
make. Since we start with one hydra head in room 0, the starting weight sum is 1, so at
the end, if there are only A > 0 hydra heads left in some room n (and nowhere else), then
h -w, = 1. By our choice of weights, this is only possible if n is a multiple of 6 and h = 1.

Claim: All multiples of 6 may be achieved.

Proof. The proof is by painful example. Here is one (half of a) procedure that works for
moving the hydra from 0 to 6.

1
—_

_ = O =IO
—_ O == OOk O OoOIN
— O~ = OO OoOlw

O =R =, OO OoO kOOl
— == = == O OO OO O ot

o

(@)
O R = = OOF,OOOO O
S OO OO OO OO OO oo
O DD DO OO OO OO OO OO

S OO OO OO OO O

—_
_ o O O =

The last row is symmetrical with respect to the midpoint between 0 and 6, so by sym-
metrically reversing the steps we have done, we will end up with a single hydra head in room
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6. Inductively, this implies that all multiples of 6 can be reached.

Remarks: Here are other interesting approaches that work:

e One could have used the weights w,, := w", where w is a primitive 6th root of unity.
Then the sum of all weights is always equal to 1, due to the miraculous identity

wn—l +wn+1 — wn’

which can be easily verified “visually”. Of course, this entails that the hydra can only
remain in room numbers that are multiples of 6.

e For any particular moment in time, let a, be the number of hydras in room n. Then
the distribution of hydras may be represented as a “polynomial”

P(z) = Z anx".

At the start, we have P(x) = 1. Then, every move adds or subtracts a multiple of
22 — x4+ 1. Thus 22 — x + 1 divides P(z) — 1 (or rather, > — z + 1 divides the
numerator of P(x) — 1 when expressed as an irreducible rational function). It follows
that P(e”/3) = 1 at all times.

If all hydra heads end up in some room k, then P will take the form P(z) = azz". So
apek™/3 = 1. This is possible only when a; = 1 and k is a multiple of 6.

Source: Andreas Blass, Seven Trees in One

[Back to Problem|]
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Solution 52

Cut T along the inradii. “Swapping” the two orange and purple pieces below will execute
the desired reflection.

Remarks: Cutting T along the circumradii does not work if 7" is obtuse! Unfortunately, this
approach cannot be salvaged as far as I'm aware.

[Back to Problem]
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Solution 53

It turns out that such a pair of dice exists. In fact, there is only one such pair of dice!

A 6-sided die whose sides are a, b, ¢, d, e, f may be represented as the polynomial 2% + z° +
2¢ 4+ 2% 4+ 2° + 2/, in the sense that the coefficient of 2™ is the number of ways that n may
be achieved. This sort of property is preserved if we consider multiple dice by multiplying
the corresponding polynomials!

For instance, the standard 6-sided die is represented as x + 2% + 2 + 2* + 2% + 25. Thus,
the possible outcomes for rolling two standard 6-sided dice is represented by the polynomial
(z + 2% + 23 + 2% + 2° + 2%)%. Our goal is to write this polynomial as the product of two
other polynomials P(z) and Q(z), each with positive coefficients summing to 6 (and with
no constant term since we want positive integer sides for the dice). Manipulating:

, 21
(z —1)?
22z —1)2(2* + 2+ 1)}z + 1) (2* —x — 1)?
(z —1)?
=22+ + 1) (2 + 1) (2 -2 +1)°

(z + 2%+ 2% + 2% 4+ 2° + 29)

To ensure that P and ) have no constant term, they should each get a factor of x. Next,
if we plug in 1 into the above expression, we get something that looks like (1?)(3%)(2%)(1%).
This tells us that each of P and @ need to take a factor of 22+ z 4 1 and a factor of z + 1 in
order to have a coefficient sum of 6. It remains to donate the two (z* — z + 1) factors. But
if we divide those evenly then we just end up with the original dice. So the only reasonable
distribution of the factors is as follows:

P(x) =z(z+1)(2* + 2 + 1)
Qz) =x(x+1)(2* + 2+ 1)(2* — 2+ 1)
Expanding using Mathematica or something, this gives the generating functions:
ot a2+ 2® a2+ 1!
¥+ 28+ 2 a2t 2 2t
Magically, these satisfy the conditions we need! Hence there indeed (uniquely) exists another

such pair of dice, and their sides are 1,2,2,3,3,4 and 1, 3,4,5,6, 8.
[ |

Source: This pair of dice is known as the Sichermann Dice.

[Back to Problem]
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Solution 54

If we imagine walking along the sides of the tridecagon, then our movement along each
side may be represented as a vector, and these 13 vectors sum to 0. We may enforce that the
angles of the tridecagon are multiples of 20 degrees by taking the vectors to be 18th roots
of unity:.

To ensure convexity, the order in which we arrange the roots of unity to form the
tridecagon must be by increasing or decreasing argument. Moreover, we cannot use a root
of unity twice, otherwise this scheme would force the two repetitions of the root of unity to
be adjacent, and hence forming a single side rather than two.

So, the problem reduces to finding a 13 distinct 18th roots of unity that sum to 0. This
further reduces to just finding 5 such roots of unity that sum to 0.

The claim is that if we can find 5 such roots of unity, then two of them sum to 0 and the
other three also sum to 0 (and thus form an equilateral triangle in the complex plane). By
inspection, this would indeed imply that our desired tridecagon is unique up to similarity.

Let ¢ be a primitive 18th root of unity, and suppose that (¢ + (¢2 4+ (3 + (4 + (%5 =0
for distinct integer powers 0 < e; < 18. If we assume that e5 = 0, then it suffices to prove
that either 9 € {ey, ea,e3,e4} or 6,12 € {eq, e, e3,€4} (why?).

Let P(z) = 2 42>+ 2% + 2% +1. Then P € Q[z] and ( is a root of P, so the cyclotomic
polynomial @5 = 2% — 23 4+ 1 divides P. Let P/®5 = Q.

Let Q = Qo + Q1 + @2, where @); is the polynomial formed by the terms of () whose
exponents are congruent to ¢ mod 3. Similarly let P = Fy + P, + P». Then

D15Q0 + P15Q1 + P15Q2 = Fo + Py + Ps.

The terms on the LHS whose exponents are multiples of 3 are precisely those terms in
the polynomial ®,3()y because ®5’s terms all have degrees that are multiples of 3. Thus
q)ngg = Po. Slmllarly, q)ISQl = P1 and (I)ngQ = PQ.

This tells us that Py(¢) = P1(¢) = P,(¢) = 0. Translating back to English, what this
means is that among the 5 roots of unity we’ve chosen to sum to 0,

e the ones that are of the form ¢(** sum to 0,
e the ones that are of the form ¢***! sum to 0, and

e the ones that are of the form ¢3**2 sum to 0.

The five roots of unity are divided among these three “classes” of roots.
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To finish, note that none of these classes may have all five of the chosen roots, because
then these roots are five vertices of a regular hexagon, and hence have no hope of summing
to 0. And, trivially, none of these classes may have exactly one of the roots. It follows that
the only possible distribution for the roots is “0, 2, 3”7, in some order. If you think hard, this
is exactly what we wanted to show.

[ |

A remark from “tenth”: If you want to show that 2® — 2® + 1 is irreducible for the sake of
lowering the amount of “technology” used in this proof, then here you go!

The observation to make is that, over the field F5, we amusingly have that 2¢ — 2% +1 =
(x 4+ 1)5. This motivates looking at the shifted polynomial (z —1)% — (z — 1)3 + 1. If this is
irreducible, then 2° — 22 + 1 must be too.

By the observation, all coefficients of this shifted polynomial are divisible by 3 (sans the
leading coefficient). Also it is not hard to see that the constant term is not divisible by 9.
Thus, this polynomial is irreducible by Eisenstein’s Criterion. Voila!

Source: Math Prize for Girls

[Back to Problem|]
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Solution 55

Get a paper plate of the same radius as the original plate. When you fold the rectangular
paper, fold the paper plate along the same crease!

The folded rectangular paper clearly still fits on the folded paper plate. Moreover, the
folded paper plate must fit on the original plate. By “transitivity of fitting”, the folded
rectangular paper still fits on the original plate.

—

-
NG

4

=
/

Remarks: By the exact same reasoning, the problem still holds when the paper is non-
rectangular!

Source: Art of Problem Solving Forums

[Back to Problem|]



CHAPTER 4. SOLUTIONS Solution to Problem 56 314

Solution 56

Here is a clever approach that minimizes computation. The expected fraction is given by
the integral fol x EJ dx. To evaluate this slickly, we use the crazy identity

1 o
==Y x-1, 11(z).
LUJ ; (03]
This is because of the motto “Baka takes a bite, and if < 1/2 then Baka takes another

bite, and if x < 1/3 then Baka takes another bite, ...” and so on.

Now integrate and apply monotone convergence:

/ {de—/Zmlixx

:g/olxq(&l](x)dx

n

o0

1/n
= / x dx
0

n=1

1
2n? 12

M8

1

n

Remarks: What a crazy answer from a numberless problem!

[Back to Problem|]
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Solution 57

The plan is “simple”: If n ships have been bombed so far, then the Queen should board
the ship with probability p, that we shall choose later. We will construct the sequence
{pn}>2, so as to ensure that the probability of survival is at least 1 — e.

Seeing this plan, suppose that the Insurrection has b bombs and chooses to bomb ships
r1 < 29 < ... <z € N. The probability that this kills the Queen is given by:

(1 —po)™ 'po + (1 — po)™ (1 — py)*2~""py

(1= po)™ (1 = p1)™ ™ (1 — p2)™ ™ 'po + ...
<po+p1+p2+...
Taking po = €2, p1 = €%, py = €*,- -+ we get that

2

P(Queen Dies) < 15 <e,

so indeed the Queen gets out alive with probability at least 1 — ¢.

[Back to Problem]



CHAPTER 4. SOLUTIONS Solution to Problem 58 316

Solution 58

Suppose the mirror were a distance L away from Cherie. (We will see that L does not
matter!)

Let the mirror have infinite height. The minimum height that the mirror could be is given
by the height spanned by Cherie’s perceived image in the mirror.

Now replace the mirror with glass and place a doppelganger of Cherie across the glass at
distance L.

By similar triangles, we can compute the height spanned by Cherie’s image to be exactly
half her real height.

5 ft

Source: Me

[Back to Problem]
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Solution 59

Note that a parabola cannot cover all but a finite length of a given ray unless the ray is
parallel to the axis of symmetry (This follows from a rate of growth argument; x> has higher
order of growth than any linear function ax + b.).

Find an infinite set of rays, none of which are parallel to each other. A finite covering of
the plane must cover these rays.

For each ray there must exist a parabola whose axis of symmetry is parallel to it. Other-
wise every parabola will only intersect at most a finite length of the ray, which is bad because
rays are infinite and we only have a finite number of parabolas.

But no two rays are parallel, so no parabola can have axis of symmetry parallel to more
than one ray. It follows that there are at least as many parabolas as rays. Contradiction,
because there are infinitely many rays.

[ |
Source: VJIMC

[Back to Problem|
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Solution 60

This solution is a highly visual one. Let us start by discovering what precisely is going
on behind the scenes.

Let’s start with one flip.

Now, let us keep flipping until the next piece we flip overlaps with the first piece that we
flipped.

From this point forward, we need to be more careful. As we keep going, any black/gray line



CHAPTER 4. SOLUTIONS Solution to Problem 60 319

represents a cut in the cake as it would in real life. Without further ado, let us do another
flip, but slowly!

Left: I've outlined in purple the slice that we’re about to flip.
Center: I've executed the flip.
Right: The outline is removed.

Notice that we not only inverted the colors. We also had to reflect the piece! That’s what
it means to flip a slice of cake. Consequently, the very first cut we’ve ever made has
moved as a consequence of this flip.

Let’s keep doing this for a bit so you can see the pattern.
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We have arrived at yet another critical point. What happens now?

Here’s the big revelation: After this point, no additional cuts in the cake are ever
made! We're now just taking existing pieces (two at a time) and flipping them over. See

for yourself!
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At last, we can piece together the story of what’s really going on: There are always two
“small pieces” together, and each flip “moves” one of those small pieces to be next to the
next small piece, via flipping over that small piece with the adjacent “big piece”.

With this insight in hand, we may now proceed to form a proof.

Let’s start from the beginning, with all the cuts we’re ever going to make already filled
in. I’ll also number the slices.

Instead of doing a flip, we are going to do a flip and a rotation, such that the two small
slices are always at the top of the cake.

@GP

This sequence of moves executes a permutation on the slices! Since a permutation on a finite
set must have a finite order, we see that by repeating this permutation over and over again,
we eventually must have all the pieces end up where they started.
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But are the orientations (i.e. the colors) of the pieces correct? They might not be. If so,
then the long sequence of moves thus far simply executes an algorithm that flips some of the
slices. Hence, by executing repeating all those moves just once more, we will flip those same

slices, thereby ending with a cake whose top has returned to its original color.
[ |

[Back to Problem]
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Solution 61

Suppose that every initial configuration of lights may be solved. Then there exists a func-
tion f from the set of initial configurations (which has size 2'9) to the set of possible solutions
(which, as in Hint 1, has size 2'°) for which f(z) is a solution to the initial configuration z.

But f must be an injection, because the same solution cannot solve two different boards.
We deduce that actually f is a bijection. This implies that no initial board can be solved in
two different ways.

We arrive at a contradiction by looking at the all-lights-off board, in which one solution
is to do nothing, and another solution is to press the following lights:

Remarks: There is a much more remarkable fact about the 4 x 4 standard Lights Out puzzle.

Theorem 1 (Chasing Lights)

Suppose that a given 4 x 4 Lights Out puzzle has a solution. Then the puzzle may be
solved by the following naive process:

1. Start with the first row.
2. For each light that is on in this row, press the light below it.

3. Repeat Step 1 for the next row.

There is a natural proof that involves some linear algebra. Here is a more elementary one.

Proof.  Take such a solvable puzzle. It suffices to show that it has a solution that does not
involve pressing any lights in the top row. This is because if no lights are to be pressed in
the first row, then the lights that are pressed in the second row of the solution must precisely
be those lights that are under a light that is on in the first row. After pressing those lights,
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the solution no longer involves pressing any lights in the second row, and we repeat this
reasoning for each subsequent row.

Take a solution. If the solution involves pressing the first light in the first row, then add
the following light-presses to the solution:

We can do this because pressing these lights does not ultimately change the state of any of
the lights.

Likewise, if the solution involves pressing the second light in the first row, then add the
following light presses to the solution:

The cases in which the solution involves pressing the third or fourth light in the first row are
handled symmetrically. Hence we can obtain a solution that does not press any light in the
first row. ([l

The theory shown here is merely the tip of the iceberg. For more, I highly recommend the
article Two Reflected Analyses of Lights Out by Oscar Martin and Cristébal Pareja-Flores.

[Back to Problem|]
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Solution 62

There are two cases to consider: When n is odd, and when n is even.
Case 1: n is odd

We proceed via a sort of “induction”. Clearly, if all lights are off at the start, then the
puzzle is solved in an easy run by virtue of being already solved. This is the “base case”.
Now for the “inductive step”, we show that if some solvable puzzle is solved in an easy run,
then this property is preserved after pressing any light. Since every solvable puzzle can be
obtained by starting from an empty board and pressing a finite sequence of lights, this would
solve the problem.

We say that two distinct lights are neighboring or neighbors if they are in the same row
or the same column.

Consider a puzzle that is solved in one easy run. Then all its lights are turned off, so
every light has an even number of neighbors that are on (regardless of whether that light is
on or off!). Now press a light L. We need only show that all lights still satisfy this property.

Take a light K distinct from L.

e If K is not a neighbor of L, then exactly two neighbors of K are toggled, so its number
of neighbors that are on has changed by either —2, 0, or 2. Hence the number of such
neighbors remains even.

e If K is a neighbor of L, then n — 1 of its neighbors are toggled. Since n — 1 is even,
the parity of the number of neighbors that are on must remain even.

As for L itself, it has 2n — 2 neighbors, all of which are toggled after pressing L, and 2n — 2
is evidently even.

Case 2: n 1s even

There are multiple approaches to this case. Here, I present the one that I believe to be
the most interesting.

The first observation is that every initial configuration of lights constitutes a solvable
puzzle. This is because we can toggle any individual light L by pressing L and all neighbors
of L. By reasoning as in the previous problem, it follows that every puzzle has a unique
solution.

Incidentally, the pattern of lights that need to be pressed to toggle a light L is the same
pattern of lights that are toggled when L is pressed. This motivates an interesting notion
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of duality: For a board of lights X, let X’ be the board of lights where a light is on iff it
is one of the lights pressed in the solution to X. Then X and X’ have the same effect on
each other: Toggling a light on X’ corresponds to pressing the corresponding light on X,
and toggling a light on X corresponds to pressing the corresponding light on X!

This symmetry between the board X and its dual board, X', presents several miracles:

e By definition, the on-lights in X’ constitute the solution to X. But likewise, the
on-lights in X constitute the solution to X".

e Duality is an involution: We have that (X’)" = X. This follows by the previous bullet
and the uniqueness of solutions.

e Duality is linear: For boards X and Y, we have that X' + Y’ = (X +Y). Here,
addition is done in the sense that “On” is 1 and “Off” is 0, over the field Fy (so that
1+1=0).

Now let us exploit this symmetry for an elegant proof. For a board X, let E(X) be the
board obtained after an easy run. We need to show that E(E(X)) = 0, where 0 is the
all-off board. But a board is solved in one easy run exactly when it is equal to its dual (i.e.
E(Y)=0 < Y =Y"), so it suffices to show that E(X) = E(X)'.

Intuitively speaking, the argument is as follows: An easy run on X simply changes the
solution X’ by adding X to it, and by duality we can argue that it also changes the original
board by adding X’ to it. More precisely, we first observe that

EX)=X+X. (%

That is, the solution to the board after an easy run is changed by an addition of X, which
is evident because an easy run consist of pressing those lights that are on in X, and pressing
each such light corresponds to a simple toggle in the dual.

Now, we take the dual of each side of (%) to obtain
E(X)=X+X/,

where we have applied the fact that duality is an involution and is linear. But now we are
done since
EX)=X"+X=X+X=FEX).

Remarks: This was the main result in a research project I did in 10th grade. It turns out
that the result itself is more well-known than I thought it was back then, but I still quite
like the ideas behind the proof.
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There’s more, though! Going back to the standard Lights Out rules, where pressing a
light toggles only that light and its orthogonally-adjacent neighbors, we can still define the
notion of an easy run. It turns out that in this case, easy runs still have the potential for
solving puzzles. To be specific: In 2011, Bruce Torrence proved that if n is such that an
n x n standard Lights Out puzzle can be solved for every possible initial configuration of
lights, then repeatedly applying easy runs will eventually solve any puzzle.

Source: Me

[Back to Problem|]
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Solution 63

We proceed by induction. The case n = 1 is kinda easy. Now suppose that we may solve
the all-on Lights Out for n — 1 lights.

Fix a light L. Then by the hypothesis, we may press some lights so that all lights other
than L are toggled off. If this process toggles L off, then we already win. Thus we may
assume that the lights we pressed ended up toggling only those n — 1 lights besides L.

The same logic may be applied to all other lights, so we may assume that we have the
power to toggle any n — 1 lights of our choice.

Claim 1: We may assume that n is odd.

This is because if n is even, then we may toggle all n subsets of n — 1 lights. This toggles
every light n — 1 times, which is odd, so this constitutes a solution.

Claim 2: We have the power to toggle any two lights of our choice at once.

Suppose the two lights we’d like to toggle are L and K. Toggle all lights except L, and
then toggle all lights except K. Tadal

Claim 3: There is a vertex with even degree.

If all vertices have odd degree, then the sum of the degrees is odd (because n is odd by
the assumption permitted by Claim 1). But the sum of the degrees is twice the number of
edges by the handshake lemma, and hence must be even, contradiction.

Now we may use Claims 2 and 3 to finish. Start with all lights on.

By Claim 3, find a vertex/light L with even degree. Press it. This turns L and all
neighbors of L off. L has an even number of neighboring lights, so by Claim 2, we are able
to toggle all of L’s neighbors back to on. This means that L is off whereas all the other n —1

lights are on. As we established at the beginning, we may toggle all those n — 1 lights off.
|

[Back to Problem]
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Solution 64

Instead of ants turning around upon collision, it is equivalent to let them pass through
each other.

Part (a)

Under this new framing, it is clear that 22 ants fall off the left end, whereas 20 ants all
off the right end.

Part (b)

Under this new framing, every ant on the left passes through (i.e. “collides”) with every
ant on the right (though, this isn’t true under the old framing). Thus there are 20 x 22 = 440
“collisions” in total.

[
Remarks: Can you figure out which ant(s) endure the most collisions?

Source: Classic

[Back to Problem]
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Solution 65

Draw a line L that intersects that graph at three points A, B, C. The x-coordinates a, b, ¢
of these points must be the roots of the cubic polynomial z* — (mx +n), where mx +n is the
equation of the line L. By Vieta’s Formulae, it follows that a + b 4+ ¢ = 0. Thus the center
of mass of the three points A, B, and C' lies on the y-axis! Construct® said center of mass.

Repeating this procedure, we now have two points on the y-axis, and so by connecting
them we will have constructed the y-axis. Construction of the x-axis quickly follows.

*To construct the center of mass, one way is as follows: Since you can construct paral-
lelograms, you can definitely construct A + B + C, where the “0 vector” can be anywhere
you want. By scaling, you can then construct f”gic, which must be the center of mass no
matter where you place the “0 vector”.

[ |
Source: Heard this from an internet acquaintance, who in turn saw this on Reddit.

[Back to Problem|]
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Solution 66

Invent a second king that’s trying to get from the left side to the right side. The second
king moves like the first king, but steps only on burning squares.

We claim that the first king can reach the top side if and only if the second king cannot
reach the right side. If this is true, then we can conclude by symmetry that the probability
is exactly 50%.

To prove this, we first modify the chessboard by shifting each row so that both king’s
movements consist of simply moving to an adjacent square.

Red: Square that is on fire

Viewing the board as such, the proof becomes quite simple.

Suppose that the first king can reach the top edge. Then his path clearly blocks the
second king from reaching the right edge.

Conversely, suppose that the second kind cannot reach the right edge. Then the first king
can find a path to the top edge by following the boundary of the set of all squares that can

be reached by the second king.
[ |

Remarks: What we have done was reduce the problem to the game of Hex, which is played
on a board of hexagons.

The Hex Theorem states that a draw is impossible in the game of Hex. A fascinating fact
is that this theorem is equivalent to Brouwer’s Fixed Point theorem!

[Back to Problem]
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Solution 67

If none of the numbers are lying, then any three numbers that lie in three different rows
and columns must sum to the perimeter of the outer rectangle. Note that in the following
two cases, the sum of the indicated numbers is the same, and equal to 42:

16 | 12
18 10
16 | 18
14 12
18 | 14

18 | 14

If any of those green numbers were lying, then these sums wouldn’t agree. So they’re all
telling the truth, and moreover the outer perimeter is 42.

The liar is either the 12 or one of the 18s. To narrow it down, sum these three numbers:

14 12
18 | 14 | 10
15 | 18

These three sum to 48. Treasonous! We know that the green 16 and green 14 are truthful,
thus the 18 marked in red is the liar, and really should be 12.
[ |

Source: Georgia Southern Math Tournament

[Back to Problem|]
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Solution 68

Booster can find Mario, guaranteed.
The core mechanism behind Booster’s strategy is the following claim:

Claim: If Mario is behind curtain n, and Booster opens curtains m,m—1,m—2,...;1
for some m > n with the same parity as n, then Booster will find Mario.

Proof.  Act out the procedure with your fingers until you are convinced. OJ
From this, we get the next claim.

Claim: For any positive integer NV, if it is assumed that Mario is behind one of
the first N curtains, then Booster has an algorithm to catch Mario.

Proof.  First, Booster guesses that Mario is on an even parity. Then Booster opens every
curtain from 2N to 1 (the choice of 2V is extremely sub-optimal). This would find Mario if
he’s indeed on an even parity. If Booster does not find Mario, then we now know that Mario
was on an odd parity. In fact, he still is. More specifically, Mario must be behind an odd
curtain between 1 and N + 2N = 3N. So if Booster opens every curtain from 4N + 1 to 1,
then he will find Mario.

If Booster still doesn’t find Mario, then Booster has verified that Mario was not in the
first N curtains. O

Now we construct Booster’s algorithm.

0. Let N =1. Let C be the number of curtains opened thus far.

1. Booster checks if Mario started within the first N curtains by assuming that Mario is
currently within the first N + C curtains, and using the claim to test this hypothesis.

2. If Mario is not found, we increment N, update the value of C', and loop back to Step
1.

Note that Step 1 works because if Booster has opened C' curtains so far, then Mario must
be within the first N + C' curtains, assuming that Mario started within the first N curtains.

Eventually, N will equal Mario’s starting curtain, and then on that loop of the algorithm,

Booster will catch Mario. It just might take a very long time.
[
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Remarks: As per the hint, Booster’s strategy can be viewed as constructing increasingly-long
diagonal “barriers” on an infinite grid. One of these diagonals must “catch” Mario, who is
descending downwards diagonally.

Red: Mario’s position Black: Curtain checked by Booster

[Back to Problem]
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Solution 69

Let us instead suppose that A and B are only just out of reach — say, at most 1.5 inches
apart.

1in

Now, since A and B are not too far apart, we may identify two points C' and D that are
both within one inch of both A and B. (Also, we must ensure that C' and D are within 1
inch.)

Next, we extend ray AC' slightly to a point F. Likewise we extend ray BD slightly to a
point F'. (We must ensure that £ and F' are within 1 inch.)

E
C
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If the steps thus far were followed sufficiently delicately, then our straightedge will be long
enough to connect C' with F' and E with D. We label their intersections with AD and C'B
respectively as X and Y, respectively.

1in

As suggested above, we claim that P lies on AB, so that we may connect A with P and P
with B to construct the line segment between A and B.

This follows from Pappus’s Theorem from projective geometry. To be specific, let Z be
the intersection of AB and EF. Then Pappus tells us that the points X = AD N CF,
Y = CBNED, and Z = ABN EF are collinear. This implies that AB, EF, and XY are
concurrent at the point Z. Hence, in fact, Z = P, so P is collinear with A and B.

Our work thus far gives a scheme for connecting two points that are just out of reach —
say, at most 1.5 inches apart. Now we may finish with absurdity: If we can connect any two
points that are at most 1.5 inches apart, then this means that we can simulate a 1.5-inch
straightedge by using a 1-inch straightedge. Scaling up the argument, it follows that we can
use a 1.5-inch straightedge to simulate a (1.5)?-inch straightedge. So our 1-inch straightedge
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can simulate a (1.5)?-inch straightedge. Inductively, we deduce that we can simulate a (1.5)"-
inch straightedge for all positive integers n. That is, arbitrarily large straightedges can be
simulated. In particular, we must be able to connect any two points in the plane, no matter
their distance.

Remarks: If you enjoyed that, here is a variant. You are on a plane and have been tasked
with drawing the ray AB until it hits a point C far into the distance using your straightedge
(which, in this problem, is as long as you would like). Unfortunately, about halfway through,
you have come to a standstill: A sleeping cat!

This is a serious problem. If you were to continue extending this ray, your pen would
touch the cat and wake it up, which is unacceptable. Can you find a way to continue the ray
past the cat? That is, using only your straightedge, can you construct the rest of the ray’s
extension (sans the area around the cat)?

[Back to Problem|]
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Solution 70

Emily wins (provided that the table can fit at least one quarter).

She starts by placing a quarter right in the center of the table. Then, if Sydney places a
quarter centered at a point P, then Emily will place a quarter at the reflection of P about
the center. It is clear that whenever Sydney can move, Emily must be able to execute her
move as well, so Emily cannot lose. So she has to win because the game eventually ends.

[Back to Problem|]
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Solution 71

Let the integral be I, so that

Now add the above two equalities to obtain

x 1
2 = / <1 - —2) e~ 7 .,
0 x

At first this looks dumb. But if we rewrite the integrand as

> 1
2] = / (1 + _2) e—(x—l/:c)2_2 dz,
0 T

then miraculously we see that the u-substitution u = x—1/z is applicable because Z_: = 1—{—%2!
Now we have that .
21 = / e 2 dy = \/_2%
oo e

by the Gaussian integral (note the new limits on the integral). Thus |[ =

N3
2e2 |

Remarks: This is also a textbook application of the miraculous Glasser’s Master Theorem.

Theorem 1 (Glasser’s Master Theorem)

Suppose that f: R — R is integrable. (That is, |

(e o]
—00

/_Zf(:c—i) da:z/:;f(x)dx.

Essentially, if the integrand is a function of = — %, then x — - can be replaced with x
without any fuss.

|f(z)] dx < 00.) Then

[Back to Problem]
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Solution 72

Define a rational ball to be a ball (i.e. a circle) whose radius is rational and whose center
has rational coordinates. Evidently, there exist countably many rational balls.

For each “Y-set”, draw three pairwise-disjoint rational balls containing its endpoints, such
that each of the balls does not intersect either of the other two “branches” of the Y-set.

Define the map f which sends each “Y-set” to the 3-tuple of rational balls around its
endpoints (in any order). Evidently, the number of such tuples is countable.

As suggested in the hints, we were motivated to try and construct an injection from
the collection of Y-sets to a countable set, and the initial hope is that f is the desired
injection. Unfortunately, f is not an injection. There could exist distinct Y-sets x,y for
which f(z) = f(y), as shown below.
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However, I claim that we can’t do better! That is, there do not exist distinct Y-sets x, y, z for
which f(z) = f(y) = f(2). That is, there do not exist three distinct Y-sets whose endpoints
circles are identical. Proving this is sufficient for showing that the domain of f is at most
countable, which is what we want to show.

To see this, suppose that we have indeed found three such distinct Y-sets.

??

Inside each ball, erase all parts of the Y-sets, and replace those parts with radii to the center.
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The condition that each ball does not intersect any of the other two branches ensures that
after this operation, the three sets are still homeomorphic to the letter Y.

Now, place a house on the center of each circle and a utility at the “3-way crossing point”
of each Y-set.

M

By the assumption that none of the Y-sets cross each other (i.e. are disjoint), we see that

we have constructed a solution to the three utilities problem (!!!), contradiction.
|

[Back to Problem]
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Solution 73

The shortest distance between two points is a straight line, but there is no straight line
between a cube’s opposite vertices that does not exit the cube’s surface. Fortunately, this
issue can be solved by unfolding the cube.

No matter how you unfold the cube, the ant will be at least a “knight’s move” away from

the opposite vertex, and this distance is v/5.
[ |

[Back to Problem|]
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Solution 74

We begin by computing the shortest distance to the opposite vertex.

Let us unfold the box as below, where some faces of the box are repeated.

The ant begins at the red point and seeks to reach the vertex opposite this point, which can
be represented by any of six green points in the above unfolding, as depicted.

With some thought, it is not hard to see that the six paths above (drawn with dashed
lines) are the only six sensible paths to the opposite vertex, and the shortest paths among
these have length 21/2. This is the shortest distance to the opposite vertex.

This is crucial for our arguments, as we can notice that all points on the four 1 x 2 faces
are with 2v/2 of the ant’s starting position.



CHAPTER 4. SOLUTIONS Solution to Problem 7/

345

We deduce that the point on the surface that is farthest from the ant must lie somewhere

on the 1 x 1 face opposite the ant.

Let us now unfold the box in a different way, as below.

C
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Here, it is the ant’s starting vertex which is being duplicated (with six different labels from
A to F'), and the purple point P is an arbitrary point on the opposite 1 x 1 face. As before,
there are six sane paths that the ant could choose to travel to P, as shown. We seek to select
P so that the shortest of these paths is maximized in length.

To that end, we make two observations:
1. The distances from A and F' to P in the above net will always be strictly greater than

the distances from B and F to P, respectively. So we may disregard the paths from A
and F.

2. If the point P maximizes the shortest path, then it must lie on the blue segment.
Otherwise, the shortest path may be increased by moving P slightly towards the blue
segment.

From this, we find that the point P that maximizes the distance is given by the intersection
of the blue segment and the perpendicular bisector of segment BC'.

C

e

F

Working out the coordinate geometry or otherwise, we find that P must be a quarter of the



CHAPTER 4. SOLUTIONS Solution to Problem 7/ 347

130
way up the blue segment, and its distance from any of B, C, D, or E will be |
|
Remarks:
° @ is indeed larger than the distance to the opposite vertex, 2¢/2, but just barely —

the difference is about 0.022.

e For a1 x 1 x 1 box, the farthest point is the opposite vertex. For a 1 x 1 x 2 box, this
is not so. Is there a critical value 1 < A < 2 for which the farthest point for a 1 x 1 x A

box switches from being the opposite vertex to a point strictly on the opposite face?
Yes, there is, and this value is A = “%m.

Source: This is called Kotani’s Ant.

[Back to Problem]
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Solution 75

You cannot stop me from assuming that P is monic, so let us do so. Suppose that the
roots of P are rq,--- ,7,, so that we may write

n

P(z) = H(:U —7)

i=1

by the Fundamental Theorem of Algebra. Then by the product rule, we have that

Let z be a root of P'(x), so that

Either z is a root of P (in which there is nothing to prove), or we may divide each side by
P(z) to obtain

Now take the conjugate of each side,

and rationalize (...realize?) the fractions by multiplying the top and bottom of each by
(z —7;) to obtain

This now rearranges to

L 1|z —m; .
> (et

which implies that z is a convex comblnatlon of the {r;} because

n

Z 1/|Z—7“1 -1
23 1 ]z— 7"]‘2

Source: This is the Gauss-Lucas Theorem.

[Back to Problem]
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Solution 76

This will be a “proof by demonstration” because I cannot be bothered to formalize this.

Let us suppose that this is our polygon.

The key idea is to draw the segments obtained by “sliding down three sides”.

The dashed segments partition the top region into parallelograms. As for the bottom region,
it is a smaller polygon with 180-degree rotational symmetry, so we may induct down on the
number of sides to partition it into parallelograms.

[Back to Problem]
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Solution 77

Part (a)
Instead of Heads/Tails, use 0/1 for the sides of the fair coin.

Let a binary expansion of p be p = (0.dydads - - - )2. We keep flipping our fair coin until
the binary sequence generated by our results is different from dy, do, ds, - - - .

At any step, we will stop flipping with 50% odds, so we must eventually stop flipping the
coin almost surely (i.e. with probability 1). We claim that our final flip is 0 (i.e. Heads)
with probability p.

Indeed, our final flip is 0 iff we stopped at the kth flip with di, = 1. So the probability is

given by
1
>
k‘!dkil

since there is a probability of 1/2* that we stopped at the kth flip. By definition of binary
expansion, this sum is exactly p.

Part (b)

Flip the coin twice. If the results are the same, then flip the coin twice again. Keep doing
this until the results are different, which will eventually happen with probability 1. We claim
that when this happens, these two flips are equally likely to be HT or TH. Indeed, this is
true because HT and T'H are equally likely to occur among any two flips, so conditioned on
the event that we got either HT or T'H, the odds of getting either are 50 : 50.

|

Remarks: By combining both parts, we see that one can simulate any biased coin using any
biased coin, as long as all probabilities are strictly between 0 and 1. Moreover, the simulation
is possible even if the provided biased coin’s probability of flipping heads is unknown.

The problem also shows that you can simulate a fair coin by using a fair coin, but this is
not as groundbreaking.

[Back to Problem|]
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Solution 78

Part (a)
We claim that A > 4 is large enough.

First, some housekeeping: Suppose the side lengths of our collection of squares are given
by ay,as,---. We may assume countability, because the sum of uncountably many positive
reals cannot be finite. We can also assume that a; < 1 for all 7, otherwise this is dumb. Since
Yoo ai = A >4, we may find n so large that Y af > 4.

From the above, we see that we may replace “collection” with “finite collection” in the
problem (at least, for proving that A > 4 works). We want this so that we may apply an
inductive argument.

This also lets us strengthen the claim we are proving as follows: If the sum of the areas
of a finite collection of squares is 4Ns?, and none of the squares has area greater than s,
then we may cover N squares of side length s with them. This would solve the problem.

It’s sufficient to prove the case for s = 1 by scaling. Again, let the side lengths be
ai, -+ ,an, so that > a? > 4N. Suppose a; is the largest sidelength. Find k& € N for

which 5 < a1 < . Subdivide the N unit squares into N(2¥)? squares of side length 1/2".
We'll use the square with side length a; to cover exactly one of these.

Now there are 4N — 1 more squares of side length 1/2* to cover. Moreover, the sum of
the areas of the rest of the squares we may use for covering is

n 1 1 2
Za3>4N—a§>4N—4k—_1:4(4kN_1) (27:> _
1=2

Thus, by taking s = 1/2* in the claim we’re proving and using induction (the number
of covering squares we may use has decreased), we can cover the rest.

Part (b)

We can show that 0 < a < 1/4 is small enough by using the same argument as above,

replacing > with < and replacing “cover” with “fit”.
|

[Back to Problem]
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Solution 79

Magellan captains a ship A and orders some of his crew on ship B to follow him as he
sails forward. Once they’'re a quarter of the way along the equator, both ships A and B are
halfway through supplies, so Magellan plunders the supplies of ship B so that ship A has
full supplies.

Once Magellan is halfway across the equator, where he again is halfway through his
supplies, he magically orders the third ship C' to start sailing backwards, so that once
Magellan is 3/4 done with his circumnavigation, he will rendezvous with ship C, which
is halfway through their supplies. Since Magellan has no more supplies, he steals ship C’s
supplies so that he finishes the circumnavigation.

[Back to Problem|]
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Solution 80

A nice candidate for such a function would be

n

fla)=>" én)l,

n=0

but this is not in closed form.
The trick is that we may write f(x) as

3

fx) =

where w is a primitive third root of unity! To see why this works, expand e*, e“*, and ew’e
into power series, add them up, and watch the magic.

To simplify, we may write

1 3
=~ | e* +2e7%/% cos ix .
3 2

This is in a nice closed form! Also, one might notice that some of these terms here are

useless, so for maximal simplicity we may take the function |e~*/2 cos <7x> , and this

works!

[Back to Problem]
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Solution 81

Let pi be the kth prime. For all n € N, define

1 1 1 1
={1/nfUS ——+—:keN — <=
= {/n} { 1+k:pn "n+ 1+kpn n}
Let S = (J)~, Sn. (Note that S is closed because it contains all its accumulation points,

which all have the form 1/n.) Then, identifying the points on the boundary of a circle with
the interval (0, 1], we define our convex set K to be the convex hull of S.

To construct a Venn-diagram with N copies of K, we take (for i = 1,2,--- ,N) K@ to
be K “rotated back by 1/i", so that the “1/i” point of K@ lies on top of the “1” point of

K. Analogously, let us define S —1/i+ S, and SO := —1/i+ S =J>2, S»’. We claim
that K@ KGO ... KW+D forms the desired Venn diagram.
To see that our construction works, consider any subset A of {2,3,--- | N +1}. We claim

that there exists x € (0, 1] such that:

o v#1/ifori=2,3,---,N+1 (this ensures that = is not an accumulation point!)
e xcSWforalliec A
ez ZSWforallig A

Letm = l_LeApZ Then we simply take z = k where k is large enough so that x <

The bound x < ensures that x € (; %) 1 fori=2,--- N+ 1

(N+1)

(N+1)

Consider i € A. To see that » € SO, We claim that = € Si(i)l' Indeed, * + =% € i
because m” is large enough to ensure % + mk < and p; divides m*. Thus after rotating

back we have - € Si(i)l.

zl’

Consider i € A. Then x ¢ S® because we may follow the reasoning above, and then note
that p; does not divide mF.

We conclude that (., KN Miga (K )¢ is non-empty for all A. Hence we have formed

a Venn diagram using N copies of K.
[ |

Remarks: The convex set we have constructed looks something like the figure on the next
page.
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The red points are the points represented by {1/n : n € N}. As you may have noticed, not
all of them are drawn due to a shortcoming of the algorithm used to generate the figure.

CMU Alumni Isaac Browne and Edward Hou have shown a stronger construction that
solves an infinite version of the problem, that is, they found a sequence { K;};cn of congruent
open convex sets such that for any finite A C N, the intersection (¢, K; N (V;z4 K7 is
non-empty. This was proposed as Problem 12424 for the American Mathematical Monthly.
You can find a solution here (“A Universal Venn Diagram”).

[Back to Problem]
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Solution 82

Remarks: What if Timmie is even pickier than usual, and doesn’t want any part of the
crust, not even a point? It turns out that it is still possible to satisfy Timmie! It’s quite a
bit harder though. See the paper https://arxiv.org/pdf/1512.03794 .pdf for some ways
to do it, and more!

[Back to Problem]


https://arxiv.org/pdf/1512.03794.pdf
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Solution 83

The problem in question is one variant of the “Pizza Theorem”. We begin by proving a
key lemma.

Lemma 1

Suppose that ABC'D is an orthodiagonal, cyclic quadrilateral. Then
AB? + CD? = BC? + AD* = 4R?,

where R is the radius of the circumcircle of ABCD.

Proof.

Swap chords AB and AD, so that A becomes A’. We claim that ZA’BC' is a right angle, so
that A'C' is a diameter. Indeed, observe that

/A'BD = /ADB = Z/ACB,
So LA'BC = ZA'BD + /DBC = LZACB + ZDBC = 90°.
From this claim, we now have
A'B? 4+ BC? = A'C? = 4R?

and
A'D?> + CD? = AC? = 4R?.

Substituting back A’B = AD and A’D = AB proves the desired equalities. O

We now may resolve the original problem. Fix some arbitrary “right-angled cross”.
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Ao

Co

If we “rotate” the cross by some angle 6, then a certain amount of area is displaced.

Note that if we can prove that the shaded area depends only on the radius R and the angle
f, then we are done!

We find the area by integration. Let A(t) be the point on the arc between Ay and A(6)
such that ZAgX A(t) =t. So, A(0) = Ay and, well, A(0) = A(F)... Define B(t), C(t), and
D(t) similarly.

By polar integration, the area of the “A”-shaded region is given by the integral

1
/ — X A(t)* dt,
0 2

where X A(t) denotes the length of the segment connecting X and A(¢). Hence the total
shaded area is

%/9 XA + XB(t)* + XC(t)* + XD(t)* dt.



CHAPTER 4. SOLUTIONS Solution to Problem 83 359

But the segments X A(t), X B(t), XC(t), X D(t) are equally spaced, at angles of 90°. Thus
by the lemma, we have that

XA)* + XB(t)? + XCO(t)> + XD(t)* = 4R*.

Therefore the area is just 1 foe 4R? dt = 2R*@. This indeed depends only on R and 6, proving

the Pizza Theorem.
[ |

Remarks: A more “romantic” version of the Pizza Theorem (and, perhaps, the version that
is more popular) goes as follows: Let N > 2. If 2N cuts are made at equal angles through
a point, dividing the pizza into 4N slices, then taking alternate slices will share the pizza
among two people. More succinctly, the number of slices created in this manner must be
one of 8,12,16,20,---.

Unfortunately, this version of the Pizza Theorem is not implied by the version we have
proven, as shown by the case depicted above with 12 slices (N = 3).

On the bright side, we can still apply the same calculus approach: It is sufficient to show
that for any point X in a circle, if we draw 2N rays at equal angles emanating from X that
hit the circumference at points A, Ay, - -+, Asn, then

2N
>
i=1

is a constant in the sense that it does not depend on which 2N rays we draw.

The following beautiful approach is due to “tenth”. Assume that the labeling of the
points Aq, Ay, .-+, Asn is in counter-clockwise order.
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As

We first pair up the terms in the sum as

2N N
D OXAT =D XA+ XA
=1

i=1
The key idea is that
XA+ XAZ v = (XA — XAiin)? 4+ 2(XA) (X Aiyn)-

The product (X A;)(X A;yn) is the power of X with respect to the circle (to be precise, it is

R?* — OX?), so it is a constant. As for (XA; — X A;, y)?, this is the square of the distance

between X and the midpoint of A;A;, n, which we shall denote as M; for i =1,2,--- ,N. It
N

is now sufficient to prove that the sum Z X M? is a constant.
i=1

The conclusion follows by two miracles.

Miracle 1: The midpoints My, My, --- , My form a regular N-gon! Proof: ZOM;X = 90°
for all ¢ by virtue of M; being the midpoint of a chord, so the points My, My, --- , My are
concyclic with O and X. Then the regularity of polygon M; M, --- My follows from the fact
that the cuts were made at equal angles.
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Miracle 2: This lemma exists!

Lemma 2

Let X, My, Ms,--- , My be points. Then the sum

N
> xM?
=1

depends only on the distance between X and the centroid of the points
M17M2a”' 7MN-

I leave it to the reader to verify this (...or perhaps this fact will come up in a different
problem in this book, where it shall be proven?). Now, since M;Ms--- My is regular, its

N

centroid coincides with its circumcenter, which is the midpoint of OX. So the sum Z X M;?
i=1
depends only on the distance between X and this midpoint, which is a constant OTX.

This completes the proof. But what goes wrong when N = 17 The issue is that when
N =1, the centroid of the “regular 1-gon” M; (which is M itself) no longer coincides with
the circumcenter of AOX M, due in part to the fact that a regular 1-gon does not have a
well-defined circumcenter. A similar issue occurs for N = 2, but this case is handled just
fine by the original problem.

FEven More Remarks: The Pizza Theorem generalizes slightly to very poorly-made pizzas.
Consider, for example, the following pizza with Dg symmetry.

Amazingly, when we divide this pizza into 8 slices as shown, we once again obtain equal
shares by alternating slices.
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To demonstrate this, we begin by drawing a circle centered at the center of this oddly-
shaped pizza, large enough to contain the point through which the cuts intersect.

By the Pizza Theorem, the pizza contained inside the circle is equally shared. So it remains
to show that the pizza outside the circle is equally shared. This is far easier to argue once
we remove the inside of the circle.

The divisions of the remaining pizza consist of 8 segments from the circle to the crust. As
we move a pair of opposite such segments towards the middle (such as the two blue segments
above), we can see that neither color gains nor loses pizza. Doing this for every such pair,
we may reach a configuration in which the cuts are perfectly symmetrical, so that we may
conclude that, in fact, the amount of pizza of each color is equal.
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In general, if we include more cuts, then the shape of the pizza must exhibit an appropriate
amount of symmetry in accordance to the version of Pizza Theorem that is applied.

Source: Pizza Theorem

[Back to Problem]
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Solution 84

The answer is yes. Here is a construction.

2

The numbers indicate the sizes of the slices. Realistically, Beth cannot make a slice of size
0, but she could make those slices have some negligible size such as 0.01 instead. This does
not change the strategy.

Let us now describe Beth’s strategy. There are two cases, based on the first slice Allison
chooses.

Case 1: Allison chooses a slice of size 0

If this is the case, then Beth two-colors the remaining slices in an alternating fashion.

q"

She then determines which color contains more pizza than the other, and proceeds to take
slices of only that color. This ensures that she gets all slices of said color, and Allison gets
the slices of the other color.
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All slices are of integer size and the total size of the pizza is 9, so there necessarily will
be one color that contains strictly more than half the pizza (to be precise, one color must
have size at least 5).

Case 2: Allison chooses a slice of positive size

Beth’s strategy here is more complicated. Refer to the above coloring of the pizza which
partitions the pizza into three colored “wedges”. We also have labeled all 15 pieces with
letters for convenience.

e Beth starts by taking the 0 slice that is adjacent to the edge of the colored wedge that
Allison ate from. For example, if Allison ate slice I, then Beth takes slice J.

e From then on, there are three cases:

— If they have finished eating one colored wedge, and the other two colored wedges
are untouched, then Beth takes the slice from the wedge of smaller size. For
example, if the green wedge is all finished, and both the red and blue wedges are
untouched, then Beth takes slice F.

— If Beth can avoid eating from an untouched wedge, then she will.

— If neither of the above points apply, Beth simply “copies” Allison by always taking
the slice adjacent to the one that Allison picks.

The key idea is that this strategy ensures that Beth can claim two things:
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e The largest wedge untouched by Allison’s first bite (either the blue or green wedge)

e Either the other wedge untouched by Allison’s first bite, or the rest of the wedge that
Allison first ate from.

This will always ensure that Beth gets at least g of the pizzal

Let us go through a quick example: If Allison starts with slice N, then Beth takes slice
O. Beth can now guarantee that she will get slices G and I, and she will also either get slices
B and D or the slice L. Indeed, if Allison takes M, then Beth can claim L, and if otherwise
Allison wants to prevent Beth from claiming L, then Allison must take slices A and then C,
conceding to Beth the B and D slices. In any case, Allison will eventually be forced to take
F or J because it will be Allison’s turn once the red and blue wedges are finished, so Beth

can guarantee herself all positive slices of the green wedge.
[ |

Remarks: g is the best Beth can ensure! This was conjectured by Peter Winkler and proven
by Knauer, Micek, and Ueckerdt in 2011. See the following paper for the proof and more:
https://arxiv.org/pdf/0812.2870.pdf

[Back to Problem|]
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Solution 85

The map 1/z is a bijection on (0,00). Thus, the minimum of x” is the minimum of
(1/x)Y* which is equal to # This minimum is equal to the reciprocal of the maximum

value of /%, Thus the maximum value of z'/* is the reciprocal of the minimum of z*, which
is 1/M.

Source: Shamelessly stolen from user “juliankuang” of AoPS , who allegedly came up with
this in the shower.

[Back to Problem|]
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Solution 86

Suppose for contradiction that such a polygon existed. Imagine that I start on one of the
vertices, and then traverse the perimeter until I come back to where I started.

Let L, R, U, and D be the number of units [ move left, right, up, and down, respectively.

Since I came back to where I started, we have L = R and U = D. And, since the sides
alternate between horizontal and vertical, we must have L + R = U + D. By some algebra,
we may deduce from these facts that L = R=U = D.

Since L + R+ U + D is the perimeter, we conclude that the perimeter is divisible by 4.
But 314 is not divisible by 4, contradiction.
|

Source: The Brilliant.org community. Rest in peace.

[Back to Problem]
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Solution 87

My friends can indeed arrange themselves in such a way, and 15 friends is sufficient to do
this.

“

—
——

— yrifa
= "\\wr{//éz—"

=
E N N )
EE = |
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= = m

e
::./:H/:

The gray square is the original mirror room, the black dot is me, and the 15 dark blue squares
are my friends. All other squares depict reflections of the mirror room, and the green rays
are the possible lines of sight from me to a reflection of myself. Each such ray is blocked by
a friend, as needed.

To be more precise: If we view the room as [0, 1]* and T decide to stand at (a,b), then my
friends will stand at the following locations:
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e The four corners

e (a,0), (a,1), (0,b), and (1,b)

e (1-a,0),(1—a,1),(0,1—=0),and (1,1 —10b)
e (1—a,b), (a,1 —b),and (1 —a,1 —b)

Now, why does this work? First, note that the coordinates of any of my reflections will take
the form (2m 4 a,2n £ b) for integers m and n. The key claim is that there will be a friend
blocking my line of sight to (2m =+ a,2n + b) at precisely the midpoint! (Or the midpoint is
a reflection of me, in which case we induct downwards.)

Indeed, the midpoint of the segment connecting (a,b) and (2m %+ a,2n £b) is (m or m +
a,n orn +b). This gives 16 cases since we also must consider the parities of m and n.
When all cases are reduced to an equivalent point inside the unit square, we obtain the 16
coordinates of me and and my 15 friends.

[ |
Source: The Leningrad Olympiad, but it is likely more famous.

[Back to Problem|]
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Solution 88

Remarks: The least number of sides you can get for a counterexample is 8. Probably.
Someone claimed a proof but didn’t give one. Maybe you can prove it!

[Back to Problem]
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Solution 89

We begin with an intuitive sketch for the process. Let A, B,C, D be the bottoms of the
table’s legs, in counter-clockwise order.

1. Place the table somewhere so that the two opposite corners A and C touch the floor.
It’s alright if the B and D legs clip through the floor.

2. Pivot the table about AC until the B and D are the same vertical distance above/below
the floor. Assume without loss of generality that they’re both above the floor after the
pivoting, and let the points on the floor under B and D at this time be B’ and D'
View these two points as fixed.

3. (The key step) “Rotate” the table continuously so that A and C' are always touching
the floor, and B and D are always the same distance vertically above the floor, until
points A and C' arrive at points B’ and D’ respectively.

4. Now B and D must be under the floor (Why?), so by the Intermediate Value Theorem
there must have existed a time during the “rotation” during which both of them are
on the floor.

This is not completely rigorous since it is not clear that we can “rotate” the table continuously
in the manner described. To finish, we must sketch out this process precisely. That is: Given
that A and C' are on the floor, and B and D are the same vertical distance above the floor,
we can move A, B, C, and D continuously so that ABC'D remains a square of the same size,
A and C always remain on the floor, B and D always remain the same vertical distance
above/below the floor, and A and C switch positions at the end.

In general, if it is only given that the floor is continuous, then this is quite a difficult issue
to tackle. We will see that the Lipschitz condition on the floor will make this much more
feasible.

First, note that it suffices to find a continuous motion of the two points A and C' so that
they stay on the graph, switch positions, and their distance is fixed throughout. If so, then
at all times there are unique positions for B and D so that ABC'D is a square and B, D are
the same distance above the graph. The composition of continuous functions entails that
these positions move continuously.

The following key result allows us to “rotate” C' around A (and vice versa).
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Lemma 1

Let f : R? — R be a 1-Lipschitz continuous function and fix a point zy € R?. Fix
R > 0 and let S be the set of points in R? x R = R? at a distance R from (x, f(xo)).
For each 6 € R, let V() := {xq + (tcosf,tsinf) : t > 0} be the ray emanating from
7o at the angle . Then, for all # € R, there exists a unique point g(d) € R? on the
surface S whose projection unto R?, (g1(6), g2(9)), lies in V' (#). Moreover, g : R — R3
is a continuous function.

The rigorous statement above is quite atrocious. Intuitively, the picture to have in mind
is as follows: Draw a sphere around some point on the graph of f. Then the sphere should
intersect the graph at some curvy “ring”.

Proof. For existence and uniqueness of the point ¢(#), it is sufficient to consider the
case # = 0 by symmetry, in which case we need only consider the cross section of f and S
obtaining by intersecting these surfaces with the xz-plane.

To wit, we may rephrase the problem as follows: Let f : R — R be a 1-Lipschitz
continuous function, let xg € R, let R > 0, and let S be the circle of radius R centered at
(20, f(z0)). Then S intersects the graph of f at exactly two points: One to the “left” of xy,
and one to the “right” of zy. Particularly, the case § = 0 concerns itself with the existence
and uniqueness of such an intersection to the “right” of x,.

Roughly speaking, the existence is quite simple and comes from applying the Intermediate
Value Theorem or the Jordan Curve Theorem properly. For uniqueness, we suppose there
are two distinct intersections at (yi, f(y1)) and (yz, f(y2)) with y1,y2 > xo. Observe that
Y1 = To+ %, otherwise the two points xg and y; fail the Lipschitz condition on f. The same
is true for y5. But now we may argue that the circle S is “too steep” between xy + \% and
ro + R, so that the points yy, y» fail the Lipschitz condition.

g(f) must be continuous because f is. |

To be precise, the sort of “rotation” that this Lemma allows us to execute is as follows:
We may slide C' continuously along the intersection between the graph of f and the surface
S of points of distance v/2 from A. And, viewed from above, this motion for C' will appear
to be “circling around A”.

We may now describe the procedure for swapping A and C.

1. “Rotate” C about A as described above until C' is a distance of v/2 from its starting
position. An application of the Intermediate Value Theorem will show that this is
possible.

2. “Rotate” A about C until A arrives at the starting position of C'.

3. “Rotate” C about A until C' arrives at the starting location of A.
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This completes the proof.
|

Remarks: The proof sketch works quite well in practice. If you have a well-shaped table that
is wobbling on an uneven ground, it can be stabilized by “rotating” the table.

The Lemma is extremely false when f is not assumed to be 1-Lipschitz (Do you see why?).
See the paper https://arxiv.org/pdf/math/0511490.pdf for the general proof.

One of the authors of said paper happens to be the Youtuber “Mathologer”! Naturally,
he made a video about the problem at https://www.youtube.com/watch?v=aCj3qf(68mO.
A very nice exercise from the video (which is certainly nicer to rigorously reason about than
the problem!) is as follows: Given any bounded figure, prove that there exists a square all
of whose sides are tangent to the figure.

Lastly, the solution I wrote completely ignored any issues that could occur with the legs
or top of the table intersecting the graph of f. I will leave it to you to think about whether
or not this could be a problem.

[Back to Problem]
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Solution 90

We claim that 6 soldiers is the minimum number of soldiers required to ensure the capture.
Sufficiency of 6 soldiers

For each positive integer n, let f(n) be the greatest positive integer for which n soldiers
can guarantee the capture of any criminal hiding in a tree-shaped palace of f(n) rooms. We
seek to show that f(6) > 1000.

For a room R of a tree-shaped palace, the branches from R are the connected components
of rooms that arise when R is deleted from the palace. For example, if S is a neighbor of R,
then the set of all rooms that can be reached from S without passing through R is a branch
of R. The number of branches of R is equal to the degree of R.

The key observation is as follows.

Claim: Suppose that within a tree-shaped palace, there exists a path of distinct
rooms Ry, Ry, -, R,, that, when deleted from the palace, will result in the palace
being split into smaller connected components of rooms, each with no more than
f(n) rooms. Then n + 1 soldiers can guarantee the capture of a criminal in this
palace.

This is because, given the existence of such a path of rooms Ry, -, R,,, a strategy for
the n + 1 soldiers is as follows:
1. Soldier 1 waits at room Rj.

2. For each room R besides Ry that is adjacent to Ry, the other n soldiers check if the
criminal lies within the branch of R; that lies past R. This branch has no more than
f(n) rooms, so n soldiers are sufficient.

3. Soldier 1 advances to room R, and the rest of the n soldiers checks each branch of R,
besides the ones that contain R; and Rjs.

4. Soldier 1 advances to room R3, and we continue until all rooms are searched.

This observation lets us prove the essential result we require.
Claim: For each positive integer n, we have f(n+1) > 3f(n) + 3.

To show this, we take a tree-shaped palace of 3f(n)+ 3 rooms and show that there exists
a path of rooms that splits the palace into components of size no more than f(n).

We generate this path via the following algorithm.
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Main Algorithm

1. Start with any room. Call it S;. Set m = 1.

2. Consider the branches of S,, that do not include the tentative path thus far (i.e.
Sla e 7Sm—1)-

3. If each such branch has size at most f(n), then we terminate the algorithm, with the
desired path being Sy, --- , Sp.

4. If there is exactly one branch of S,, of size greater than f(n), then we take S,,.1 to be
the neighbor of S,, leading into this branch, increment m, and loop back to Step 2.

5. Otherwise, there are exactly two branches with size greater than f(n), and particularly
their sizes are at least f(n)+1. It follows that the branch of S, containing the tentative
path thus far has size at most 3f(n)+3—(f(n)+1+ f(n)+1+1) = f(n). Armed with
this deduction, we cancel the current path and construct a new one as follows: Run
the subroutine (described below) on each of the two branches of size at least f(n) + 1
to obtain two paths from R := 5,,, each of which splits their respective branches into
further branches of size at most f(n).

6. Concatenate these two paths with R to form the desired path and terminate.
Subroutine

1. Let Ry be the room leading into the branch of R on which we call this subroutine. The
branch has at least f(n)+ 1 rooms and at most 3f(n)+3— (f(n)+1+1)=2f(n)+1
rooms. Set m = 1.

2. Consider the branches of R, that do not include the path thus far (i.e. Ry, , Rip—1).

3. If each such branch has size at most f(n), then we terminate the algorithm, with the
desired path being Ry,--- , R,,.

4. Otherwise, there is exactly one branch with more than f(n) rooms. Take R,,.; to be
the neighbor of R,, that leads into this branch, increment m, and loop back to Step 2.

The correctness of this algorithm is mostly self-evident, though I should justify the ex-
haustion of cases. In the main algorithm, the number of branches of S,, (excluding the one
with the tentative path) of size greater than f(n) can only be 0, 1, or 2. If there were 3,
then there are at least 3(f(n) + 1) +1 = 3f(n) + 4 rooms, where we have also included
S in the count, which is bogus. Similarly, in the subroutine, the number of branches of
R, (excluding the one with the tentative path) of size greater than f(n) can only be 0 or
1, as if there were 2, then the branch on which we call the subroutine would have at least
2(f(n)+1)+1=2f(n)+ 3 rooms, which is not the case.
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This algorithm proves the essential result, which we shall now use to compute a lower
bound on f(6). It is not hard to see that f(1) = 3. It follows that

o f(2)23(3+1) =12,

e f(3)>3(12+1) = 39,

o f(4)>3(39+1) =120,

e £(5)>3(120 + 1) = 363, and

o f(6) > 3(363+1) = 1092.

In particular, f(6) > 1000, which is what we wanted to show.
Necessity of 6 soldiers

We will construct a tree-shaped palace of size at most 1000, inside of which a lucky
criminal could evade 5 soldiers.

First, if four rooms are arranged in a “Y” shape, then one soldier is clearly insufficient
for capturing a criminal hiding in such an arrangement of rooms. Let us call this structure
Y7, and call the room in the middle the “central room” of Y;.

Recursively, for each positive integer n, we build the structure Y,,;; as follows: Place a
room R, which we take to be the central room of Y, ;1. Then, we place three copies of Y,
and attach their central rooms Ry, Ry, R3 to R.

Assume that n soldiers are insufficient to guarantee capture of a criminal inside a palace
in the shape Y,,. We claim that n + 1 soldiers are insufficient to guarantee capture of a
criminal inside a palace of shape Y, 1.

Indeed, this is not too difficult to reason out. Let the branches of R that contain R;, Rs,
and R3 be Ty, Ts, and T3, respectively. The criminal, who knows how to dodge n soldiers in
a Y,-shaped palace with positive probability, employs the following “strategy”:

e Pick a branch of R to hide in (7}, T, or T3) at random.
e With sufficient luck, dodge any search of the branch that uses at most n soldiers.
e If n + 1 soldiers are all present in a common branch, then with sufficient luck, this

branch is not the same branch that the criminal is in. So the criminal can decide to
switch to the third unoccupied branch with 50% odds.
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We claim that with sufficient luck, the criminal can dodge any search of Y, ,; that uses n+1
soldiers.

Since the criminal could be hiding in 77, any search that is guaranteed to work must still
be guaranteed to work if the criminal promises to stay in 77. That is, the search of Y,
must include an exhaustive search of T,,, and for this, n soldiers is insufficient. Hence, the
search pattern must at some point involve all n + 1 soldiers inside T} simultaneously. The
same is true for T, and T3.

Take the first time that all soldiers are within some 7T} for some i, and assume for ease
that ¢ = 1. Then, the criminal will not be in 7} with sufficient luck, and by the criminal’s
strategy, they could now be hiding in either T or T3. It is impossible to verify which one the
criminal is in without taking all n + 1 soldiers and putting them all in one of these branches
at some point — say, T5. Then, with sufficient luck, the criminal will actually have been in
T3, and at this point in time, they have the opportunity to switch to 7. The soldiers cannot
ascertain whether the criminal is in 7} or T3, and this cycle may continue forever.

Inductively, we have shown that n soldiers is insufficient for searching a Y,,-shaped palace.
In remains to compute the size of Ys. Since |Y1| = 4 and |Y,,41| = 3|Y,|+ 1, we may compute
[Ya| = 13, |Y3| = 40, |Yy| = 121, and |Y5| = 364. Since 364 < 1000, we have proven the
necessity of 6 soldiers.

[ |
Source: Leningrad Math Olympiad

[Back to Problem|]
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Solution 91

Part (a)

It is unlikely that you had trouble with this part, but I will spell it out anyways. If the
radius of Gloria’s house is R, then the fence is a circle of radius R 4 1. Their perimeters are
27 R and 27(R + 1), respectively, so the difference is 27, no matter the value of R.

Part (b)

This part is much more interesting. It turns out that the fence is obtained by pushing
each side of the polygon one foot “outwards”, and then connecting the obtained segments
via circular arcs.

The sum of the length of those “outwards” segments (marked in blue) is evidently the
perimeter of the house. Hence the length of the fence is longer by exactly the sum of the
lengths of the arcs, and it can be seen that they may combine to form a circle of unit radius.
Thus the difference must still be 27.

Part (c)

For appropriate sets £ C R? we denote by P(F) its perimeter. For a line L and a set or
point A, let us write proj; (A) for the orthogonal projection of A unto L. We will make use
of the following incredibly useful theorem.
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Let K C R? be a convex set and let (U, V) be a random unit vector whose angle is
uniformly distributed. If L is the line through (0,0) and (U, V'), then

E length(proj, (K)) = C - P(K)

for some universal constant C.

Proof.  Let ¢ = (¢1,p2) : [0,T] — R? be a parametrization of the boundary K. Then
the perimeter of K may be expressed as

T
P) = [0l ar
Our goal is to massage the expected length into the right hand side.

Note that the point proj; () stays on line L as ¢ varies from 0 to 7', and in doing so
traces out an interval on L, visiting each point on that interval twice!/ (This is because it
has to go back and forth.) This technically induces a parametrization of the projection of
K, and so if we associate L with the real line then we can find the “length” of this curve to

be:

4y, so'(t)] i

T
2length(proj, (K)) :/
o |dt
To reiterate, we need to include the factor of 2 on the left hand side since we’re double-
counting the interval length when we view it as the length of the “curve traced out by the
projection”.

Anyways this is pretty nice because we can now mess with the right side to obtain

T
- / UG() + V()] db.
0

Taking the expectation gives

T
2E length(proj, (K)) = ]E/ (U (t) + Viy(t)] dt.
0

And hey, expectations are just integrals, and the integrand is non-negative, so we can swap
the expectation and integral by Tonelli’s Theorem to arrive at

T
- / E|Ug, () + Vih(t)| dt.
0

This expectation is actually quite nice to compute! In order to evaluate it, we switch gears
to geometry: The expectation is the expected distance from the origin of the projection of
¢'(t) unto the line L. We can instead view this as taking a random point on a circle centered
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at (0,0) and radius ||¢/(¢)|| and computing the expected absolute value of its z-coordinate. I
don’t actually need to compute this to prove the theorem, but I'll do it anyway. By four-fold

symmetry this is just 2 fOW/Q ¢/ ()] cos @ df = 2|/ (t)]|. So our nasty integral is really just:

- [ 21t =2peo
o7 7 T
Thus the theorem has been proven, and we have shown that C' = 1/. O

This beautiful result has many applications, and demolishing this problem is just one of
them. Here is the argument: The projection of the fence unto a line L will always be 2
feet greater in length than the projection of the house unto L. Thus, when L is selected
at random, then the expected lengths will differ by exactly 2 as well. By the Theorem, we

conclude that the perimeters differ by exactly 2 - %, where % = T.

Remarks: How can we be assured that the perimeter can be computed as fOT |’ (t)]| dt for an
appropriate parametrization ¢, which may not even be differentiable? In the unlikely event
that you’ve bothered to ponder such a question, I shall answer it because I feel obligated
to put my masters degree in mathematics to good use. Let K be a convex bounded set. It
is clear that its boundary, 0K, can be parametrized (i.e. “traced in a continuous way”, by
e.g. taking a ray emanating from inside K, marking its intersection with the boundary and
“spinning” the ray), and roughly speaking, this means that 0K is a curve.

Curves always have a notion of length, which is computed by using an increasingly large
number of segments that approximate the curve. There is a theorem which states that
basically every curve can be traced out with a careful selection of a parametrization ¢ :
[0, 7] — R? such that the length of the curve can be found by integrating the “speed” of the

parametrization over time, i.e. fOT I’ ()|| dt.

It’s possible for the “speed” to not exist at some points. For example, a square has sharp
corners, and since a parametrization isn’t traveling in any certain “direction” at such corners,
we cannot define its “speed”. But this is alright, since as long as there aren’t too many such
“corners”, the integral can still be computed.

If you're wondering, we can also define perimeters for (most) arbitrary sets! For any
(measurable) E C R?, we can define its perimeter as

sup{/ divgdr : ¢ € C°(R*;R?) and [|¢]|o < 1} :
E

For sufficiently nice sets F, it can be shown that this definition is consistent with simpler
definitions of perimeter via the divergence theorem.

[Back to Problem]
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Solution 92

Part (a)

This is a classic Pigeonhole Principle argument. Partition the rectangle into six 1 x 2
dominoes. Then two of the 7 points must lie in the same domino. Since such dominoes have
a diameter of \/3, these two points must be at most V5 apart.

Part (b): Solution 1

The problem is still true if there were only 6 points in the rectangle.

Subdivide the 4 x 3 rectangle into 1 x 1 cells, and color the cells like a checkerboard. Clearly
the six points must lie in different cells, and the cells in which they lie cannot be orthogonally
adjacent to one another. From some inspection, it follows that the six cells in which the six
points lie must be all the same color — either all white or all black.

Without loss of generality we may assume that they lie in the black cells. Draw five red
squares of side length % as above. These squares cover the black cells, thus they contain the
six points. By the Pigeonhole Principle, two of the points lie in a common red square. Since
each red square has diameter %\/5 < \/3, we are done.
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Part (b): Solution 2 (From “asbodke”)

The Pigeonhole Principle can be applied directly by using the clever partition shown
below.

[Back to Problem]
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Solution 93

As suggested by the hints, we view the piles of stones as stacks of boxes, sorted from
largest to smallest. For example, if n = 4 and the pile sizes are 3, 2, and 5, then we represent
this configuration with the following diagram.

Each column represents a different pile, and the number of boxes in each column is the
number of stones in the corresponding pile.

As the process described in the problem statement progresses, we will update the diagram
in such a way that the columns will always be in decreasing order. If we do this, then a
monovariant will appear, which is more easily seen if we rotate the diagram 45°!

How does this diagram change when we take one stone from each pile to form a new one?
One way to represent this process is via two steps. For the first step, we take the red boxes
shown below (which represents one stone from each pile) and “rotate them over” to the other
side (to form the new pile),
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and then we take all the other boxes (what remains of the other piles) and shift them “one
slot” to the right.

A4

In sum, the first step of the process can be viewed as a set of simultaneous “cycles”.

N

For the second step, we simply sort the piles’ sizes to be in decreasing order. In terms of
the diagram, this would entail rearranging the columns to be in order of decreasing height.
However, it’s more revealing to view the sorting process as letting all bozes slide down!

A4

This hence completes the visual representation of the process. Our goal is to show that upon
repeating these two steps, the arrangement of boxes eventually forms the pattern shown
above: a “perfect staircase”.

With this visual representation in hand, the proof is incredibly slick. We make two
observations:
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1. Under the first step of the process, every box’s altitude remains the same. For fancy
points, we can say that this implies that the total gravitational potential energy
of the boxes does not change.

2. Under the second step, the altitudes of boxes can only decrease. In other words: Since
we let gravity act on the boxes, the total gravitational potential energy energy
can only decrease (though it could stay the same).

Hence the total gravitational potential energy is a decreasing monovariant. The desired
“perfect staircase” arrangement is clearly the arrangement with the minimum total gravita-
tional potential energy. Hence, it remains to prove that if the arrangement is not a “perfect
staircase”, then the total gravitational energy must eventually decrease.

If not, then boxes never slide down, so the second step does not move any boxes. Hence
only the first step moves boxes around, in the “cycles” shown on the previous page. Find
the first such “cycle” of boxes from the bottom that isn’t full, i.e. has a space not occupied
by a box.

Since the diagram isn’t a “perfect staircase” by assumption, the cycle above this one must
have a box, which we shall color red.

These two cycles have lengths r and r+ 1 for some integer r, so in particular their lengths are
relatively prime. Thus, with enough iterations of the cycling, the red box must eventually
hover over the empty space which we know to exist in the cycle below it. When this happens,
gravity will pull it down to decrease the potential energy of the system, contradicting the
assumption that this never occurs.
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Remarks: 1 stole the beautiful idea behind this proof from the expository paper https:
//arxiv.org/pdf/1503.00885.pdf of V. Drensky, which contains more results.

Source: This is called Bulgarian Solitaire.

[Back to Problem]
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Solution 94

The side lengths of the rectangle are irrelevant. Let the vertices of the rectangle be A, B,
C and D. Let the center be P. Then the set of points inside the rectangle that are closer to
P than A is given by cutting the rectangle along the perpendicular bisector of AP.

A B

D C

Arguing in the same way for B, C, and D, we find that the set of points inside the rectangle
that are closer to P than any of A, B, C, or D is given by the shaded region below.

A B

D C

The desired probability is given by the fraction of the rectangle’s area that is taken up by
the shaded region. To determine this fraction, divide the rectangle into quarter rectangles
as shown.
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A B

D C

Exactly half of each of these quarter rectangles are shaded! This is because each of the four
dashed lines are perpendicular bisectors. We conclude that the whole rectangle is exactly

1
half-shaded. Thus the probability is .

[Back to Problem|]
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Solution 95

Part (a)
Let E={x€[0,1]: 2 < f(x)} and o = sup E.
Claim 1: zy < f(zo)

This follows from writing x < f(z) < f(xy) for € E, and then taking the sup on the
LHS to get zo < f(zo).

Claim 2: zy > f(xo)

From 2y < f(xy) we have by the increasing condition that f(zo) < f(f(x0)), so f(xg) € E
by definition of E, hence f(zq) < x¢ by definition of z.

From the two claims, we have f(zg) = ¢, so xg is a fixed point.

Part (b)
Let F ={E € P(X): EC f(E)} and Ey = U, E.
Claim 1: E() Q f(Eo)

This follows from writing £ C f(FE) C f(Ep) for E € F, and then taking the union on

Claim 2: EO 2 f(E())

From Ey C f(Ep) we have by the increasing condition that f(Ey) C f(f(Ep)), so f(Ep) €
F by definition of F, hence f(Ey) C Ey by definition of Ej.

From the two claims, we have f(FEy) = Ey, so Ejy is a fixed point.

Remarks: These two solutions are basically the same.
Source: Probably a classic exercise

[Back to Problem|]



CHAPTER 4. SOLUTIONS Solution to Problem 96 391

Solution 96

Let f(n) be the number of digits of n that are at least 5. By the hint, we have that the

oo f(27)

neo T is. Now note that we may express f(m) as

desired sum is rational exactly when )
the sum

0o
f(m> = Z 1the 10% place is 25(777/),
k=0

so the desired sum is

o >© g .
Z Z Q_n ’ 1the 10k place is 25(2 )

k=0 n=0
But
. - 2" mod 10* — 2" mod 5 - 10F~!
The 10" place of 2" is > 5 <= T =1
27 mod 10F — ontl n;od 10k _
51081 o
Hence
=1 " 1 =2"mod 10* 2"*! mod 10
;% 2_71 ’ 1the 10k place is 25(2 ) = 5 . 10]4;71 HZ:O 27'L - 2n+1
B 1
© 5101

and this is clearly rational once we sum over k.

Remarks: I'm too lazy to perturb these computations to get the actual answer, but suppos-
edly the sum comes out to %.

(n)

o0
0
One person misread the problem as determining whether Z on is rational, and appar-
n=0
ently the solution to this is also nice.

[Back to Problem]
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Solution 97

Imagine connecting the tops of everyone’s heads with line segments, as shown. This
creates a periodic “line graph”.

—_ - _——

Then each occurrence of “taller” coincides with a “peak” along the line graph, whereas each
occurrence of “shorter” coincides with a “valley”. The key insight from this visualization
is that between any two consecutive valleys, there exists exactly one peak! This
proves that the number of valleys and peaks are equal.

We deduce that exactly 5 people said “shorter”, because 5 people said “taller”. Hence,
the number of people who say “in-between” is 25 —5 — 5 =|15].
[ |

Remarks: Did you spot the joke in the problem statement?
Source: Math Hour Olympiad

[Back to Problem]
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Solution 98

The answer is 10 inches.
The turtle cannot crawl more than 10 inches

Model the turtle’s crawling time via the interval [0, 6]. Since the turtle is watched at all
times, there exists an enthusiast watching during [0, 1] and another during [5,6]. We claim
that we may select 8 other enthusiasts whose watching intervals cover the rest of [0, 6]. To
see this, select the latest enthusiast that starts watching at a time in (0, 1]. If their interval
is [a,a + 1], then 0 < @ < 1 and @ is maximal (in the sense that there is no enthusiast that
watches [a’,a’ + 1] with 0 < a’ <1 and @' > a).

Now select another enthusiast that watches the interval [b,b + 1] where 1 < b < a +1
(which exists by maximality of a; indeed, if there were no such enthusiast, then a small
moment of time after a would be left unwatched). These two watchers, together, cover the
interval [1,2]. By repeating this reasoning, we may find 2 x 3 = 6 more enthusiasts that
cover the three intervals [2, 3], [3,4], and [4, 5].

We have hence found 10 enthusiasts that watch the whole interval. During each of their
watching intervals, the turtle can move at most one inch. Thus a seemingly rough bound on
the most the turtle can move is 10 inches.

The turtle could crawl 10 inches

In fact, 10 inches can be obtained. See the diagram below. The red and blue rectangles
represent the watching-intervals of ten enthusiasts. During each of the 10 marked orange
periods of time, let the turtle move 1 inch forward, and otherwise let the turtle stay still.

0 6/5 12/5 18/5 24/5 6

r : + + + |

Remarks: The solution does not change if we interpret time intervals as being open rather
than closed. A possible concern is that the solution breaks if there are infinitely many
turtle enthusiasts observing the turtle (in which case we are not guaranteed a maximum).
In this case, we can modify the solution as follows. Fix ¢ > 0. Then, since the turtle’s
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movement is continuous on a compact interval, it is in particular uniformly continuous, so
there exists 6 > 0 such that the turtle never moves more than ¢ within a time interval
of length 0. Now extend all enthusiasts’ watching intervals by ¢ in each direction to form
open intervals of length 1 + 20. By compactness of [0,6] we may select a finite number
subcollection of enthusiasts whose extended watching intervals cover [0,6]. Rerunning the
logic of the solution, we find 10 of these enthusiasts whose watching intervals cover [0, 6]. It
follows that the turtle cannot crawl more than 10 + 20¢ inches. Sending € — 0 gives the
expected conclusion.

Source: Mathematical Circles (Russian Experience)

[Back to Problem|]
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Solution 99

The possible values for ¢ are t =0 and ¢t = 1/n for n € N.

Let the continuous and increasing function f : [0,1] — [0, 1] with f(0) =0 and f(1) =1
represent the turtle’s movement. Observe that a value of ¢ works if and only if for every such
function f, we can find x such that f(x +1t) = f(x) + t.

The claimed values of ¢ work

Clearly t = 0 works. As for t = 1/n, let us suppose that for some f, there does not exist
x € [0,1— 2] for which f(z+1/n) = f(x)+1/n. Then the continuous functions f(z +1/n)
and f(z) + 1/n never intersect in [0,1 — X], hence one of these functions is strictly greater
than the other for all z in [0,1 — 1].

The first case is that f(z +1/n) > f(x) + 1/n for all z € [0,1 — L]. If so, then

n

1=f(1)>f<n;1)+%>f<n;2>+%>f<n;3>+%>_”>Jc(0>+ﬁ:1,

3

contradiction. If instead f(z +1/n) < f(z) + 1/n for all z € [0,1 — 1], then we accordingly
obtain

1:f(1)<f<n;1>+%<f<n;2)+%<f(n_3>+%<...<f(0)+

again a contradiction.
All other possible values of t fail

Suppose t # 0 and ¢t # 1/n for any n € N. We wish to construct an f for which
flx+1t) # f(x)+t for all x € [0,1 — t]. Equivalently, we want f(z) # f(z —t) + ¢ for all
x € [t,1], so we want the graphs of f(x) and f(z —t) + ¢ to never intersect. The graph of
f(xz —t) +tis that of f(z), except it is shifted horizontally to the right by ¢ and vertically
upwards by ¢. We can hence think of this problem as the following “game”: We start at (0, 0)
and a doppelganger at (,t) mimics our movements. The goal is the reach (1, 1) without ever
crossing the doppelganger’s path.
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(0,0)

To achieve this, begin by drawing gridlines at all multiples of ¢, subdividing the square into
t x t cells and some residual rectangles along the upper and right edges.

(0,0)

(1,1)

If we wish to dodge the doppelganger, we must always stay above it or always stay below it.
The choice does not matter by symmetry, so let us choose to stay above it. To “make room”
above the doppelganger, the idea is to stay low for as long as possible before rising above
(t,t). Repeating this idea for getting above (2t,2t), (3t, 3t), etc. will successfully get us to
the last gridline, at which point we’ll be able to make an unobstructed beeline for (1,1),
provided that we've made a sufficient amount of room for ourselves.
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(1,1)
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(0,0)

Note that the importance of ¢t not “dividing 1 evenly” is so that the last segment can be
drawn. Intuitively, since the last “square” in the upper-right corner is smaller than the
others, we can plan the path so that the doppelganger is forced to go under (1,1).

A more explicit construction is given by Edward Hou: We can take

flz) =2+ ;l (sin2 (7;_90) — zsin® (%)) .

See https://www.desmos.com/calculator/ijwpbvbmyq for an interactive plot.

Source: Stolen from AoPS

[Back to Problem]
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Solution 100

Let’s label the trains with the following letters.

Let’s make space for N to move all the way to the left via the following sequence:

1. Aup 2
2. X right 1
3. Cup 1
4. F up 3
5. B left 2

6. V right 1, up 2

Once we move N to the left, we can move O and P down so that X is free.

7. N left 3
8. O down 1
9. P down 1
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10. X out!

Source: Scott Kim, ThinkFun Railroad Rush Hour

[Back to Problem]
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Solution 101

Let the squares at “odd coordinates” be the vertices of a graph, and connect two adjacent

such squares with an edge if and only if there is some train running between them.

©

This forms a graph with 10112 vertices and 10112 — 1 edges. This is because there is a 1-to-1
correspondence formed by taking any of the 10112 — 1 vertices whose square is occupied (i.e.
all except the one with the empty cell — hence why it is important that a corner is empty!)
and corresponding it to the train running through it.

Suppose we can prove that the graph is a tree. Then there is a unique path from the
empty cell to the top-right cell where the red block is. By construction of the graph we must
be able to push each train along the edges of the path until we free up the square in front of

the red train, solving the puzzle.

To show that the graph is a tree, note that since we’ve already shown that the number
of vertices exceeds the number of edges by exactly 1, it remains to prove that the graph has

no loops.

A loop would look something like this.
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The inside of the loop must be filled with 1 x 2 trains, and since the single empty cell lies in
a corner cell, that empty cell won’t be in this interior. So the area enclosed within the loop
must be even. We claim that this cannot be the case.

Consider the lattice grid formed by the centers of all cells. The lattice points that lie on
the trains connect to form a polygon whose sides lengths are all even. By Pick’s Theorem
applied to this polygon, we have

where A is the area enclosed by the polygon, I is the number of lattice points strictly inside
the polygon (colored red), and B is the number of lattice points on the boundary of the
polygon (colored blue). Our goal is to show that [ is odd.

To that end, we simply must argue that A is even and B is divisible by 4. That A is even
follows quickly from the fact that all side lengths of the polygon are even (which entails that
it can be subdivided into 2 x 2 squares). To show that B is divisible by 4, start by scaling
down the polygon by a factor of 2.
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A
A

A
\

A

\
\
\

We're done if we can prove that the scaled-down polygon’s perimeter is divisible by 2. At
last, we can show this without further reduction. As suggested by the arrows, we see that if
we were to traverse the boundary of the polygon, then the number of times we move upwards
is the same as the number of times we move downwards, so the total vertical length must

be even. Similarly, the total horizontal length must be even. This concludes the proof.
[ |
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Remarks: A similar problem that uses the same key claim (that a loop of dominoes must
enclose a region of odd area) appeared in the Math Hour Olympiad. Thanks to Dr. Jonah
Ostroff for kindly providing a snippet of the official solution that proves this crucial result
without Pick’s Theorem.

The interior is built from 2 x 2 squares and so its area is a multiple of 4. The
original interior area is smaller, because it does not include the “inner half” of the
cycle dominoes. Assuming a clockwise cycle, if the cycle contains N dominoes, has
T CCW turns and 7'+ 4 CW turns, then each of the N line segments contributes
area 1 to this “inner half” (half the area of a 2 x 1 domino), except when a CW turn
double-counts area 1/4 or CCW turn under-counts area 1/4. Thus, the total “inner

half” area is T4 T
M — ——— 4+ — =2M — 1.
4 + 4

Therefore, the original interior area is 4K — (2M — 1), which is odd.

-,

[Back to Problem]
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Solution 102

Label the trains as follows.

The X, A, B, and C trains form a “cycle”. The difference between this problem and Problem
100 is that the cycle is “oriented” the other way. The key insight is that the orientation
of the cycle determines whether U or V can be moved out easily. In Problem
100, when the cycle was oriented the other way, V' could easily move upwards. Thus, by
symmetry, it must be the case that U can easily be moved downwards in the current problem.
With this observation, we are motivated to try moving U out of the way so that we have
room to shuffle the X, A, B, and C' trains around and reverse the cycle.

Let’s start by getting U deeper down.

1. U right 1 2. Cup 2 3. X left 2 4. B left 1
5. A down 2 6. U right 1 down 3
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Now, notice that we can drive U into the bottom-right corner.

7. X right 2 8. C' down 2 9. M left 3 10. O up 2
11. Pup 2 12. U right 3

SEEENEN
| | o
Hl Sl

1 o
s ] 0
B RHNEE
([ [

13. Aup 2 14. B right 1 15. E up 2 16. V left 1
17. N left 2 18. U down 2 19. O down 2 20. P down 2
21. M right 3
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We’ve successfully made room to reverse the cycle!

22. C'up 2 23. X left 1 24. Aup 3 25. X right 1
26. B right 1 27. C' down 3 28. X left 1 29. A down 2

From the intuition outlined at the start, we now hope that V' can be moved around more
easily. This is indeed true — we can move V' upwards enough to let it join U in the bottom-
right corner.

30. M left 3 31. Oup 2 32. Pup 2 33. U up 2
34. N right 2 35. V right 2
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36. E down 2 37. C down 2 38. B left 2 39. D down 2
40. M left 1 41. A up 2 42. V up 2

o |

1|
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N
|
|
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||
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43. N left 2 44. U down 2 45. V right 3 46. A down 2
47. B right 2 48. C' up 2 49. O down 2 50. M right 3
51. D up 2 52. Fup 2 53. N left 2 54. U left 2

55. V down 2 56. P down 2 57. M right 1
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We arrive at what seems to be a dead end. Amazingly, the key to making more progress is
to reverse the cycle again!

58. A up 2
62. B left 1

59. X right 1 60. C up 3 61. X left 1
63. A down 3 64. X right 1 65. C' down 2

o Il

B
||
| [
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- HEE =

__ .
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This allows us to move V' to new places.

66. M left 3
69. U right 2
73. A down 2

67. O up 2 67. P up 2 68. V up 2
70. N right 2 71. Eup 1 72. N left 2
74. B left 1 75. V left 3
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SEEENES
| | o

76. O down 4 77. P down 2 78. X right 2
80. V up 3 81. B right 2 82. E down 1
84. X left 4 85. V down 2 86. M left 3
87. V right 2 up 2 right 1

ENREN
BRY
HESS

79. M right 3
83. C down 1

At this point, we can conclude that a solution exists as follows: If we were to move O
up 2, X right 2, C up 1, B left 1, A up 2, N right 1, and F down 2, then we reach a
symmetrical position except for the cycle. However, it’s easy to reverse the cycle without
changing anything. So by an argument of symmetry, we can reduce to Problem 100. The
solution this generates is quite long, but fortunately there is a short finish from the current

position.
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88. O up 4 89. X right 2 90. Fup 1 91. Cup 1
92. B left 2 93. U left 1 up 2 left 2 94. O down 3
95. P down 1 96. X out!

Remarks: 1 was lucky enough to have encountered this puzzle as a toddler. Today, I still
think this is the best sliding puzzle to ever exist. Who could possibly expect that the subtle
difference between Problem 100 and Problem 102 could make such a devilish disparity in
difficulty?

Sadly, the product in which these puzzles appear is no longer in stores. Thus, even though
this isn’t a math problem, I wanted to include this beautiful creation in the POTD collection
to help give it the attention and renown that it deserves. I hope you’ll forgive me.

Video Solution: https://youtu.be/UrJShUaJvp(
Source: Scott Kim, ThinkFun Railroad Rush Hour

[Back to Problem]
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Solution 103

The answer is 150. One can arrive at this easily by focusing on just two bottles of beer.
We claim that we can get exactly three drinks from these bottles. Indeed, we can drink these
two bottles of beer, take an empty glass from our friend, trade the three empty bottles in for
a full beer, drink it (that’s the 3rd drink!), and then return that empty bottle to our friend.
We're left with nothing! Doing this for every pair, we end up with

g x 100 = 150

drinks that have been drunk.

To see that we cannot do better, let’s begin by making a small simplification: View our
friend as a mechanism for allowing us to have a negative number of empty bottles, as long
as in the end the number of empty bottles is non-negative.

Suppose that over the course of the alcohol-fueled night, we drink A beers and execute
the trading operation B times. Every time we drink a beer, the number of empty bottles
increases by 1, and every time we do the trading operation we lose 3 empty bottles. So we
have A — 3B empty bottles. To pay back the friend, this must be a non-negative quantity,
so A > 3B.

On the other hand, we cannot drink more beers than 100 plus the number of beers
obtained from trading, so A < 100 + B. Hence

3B < A <100+ B,

which gives B < 50. Hence A < 100+ B < 150.

[Back to Problem]
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Solution 104

The procedure can be done if and only if n is even.
It is possible when n is even

It suffices to prove that we can take any two pancakes and have them flipped in-place
without changing anything else. Consider two pancakes A and B. Then, ignoring all other
pancakes, we can notate the configuration as

AB

where _ denotes an empty pan. Specifically it is currently my friend’s empty pan. We first
flip A into the 3rd pan (use overhead bars to denote the flipped state).

_BA

Then we flip B into the first pan.

B_A
Then we flip A back into the second pan. And, well, you kinda just keep going since there’s
only one move at each step that makes any progress.

B A _

_AB
A_B
AB .
Done! Repeating this procedure, we can flip two pancakes in-place at a time.

n must be even for the procedure to be possible

The key observation is that the number of flipped pancakes has the same parity as the
executed permutation, where we view a pancake flip as a swapping of two “pancakes”: one
actual pancake and one “phantom pancake” that always resides on the empty pan. Indeed,
with every move, the number of (not-phantom) flipped pancakes changes by 1, and the parity
of the permutation changes from even to odd and vice versa.

If we are able to reach the goal, then since the permutation of the pancakes in the goal
situation is the identity, which is even, it must follow that the number of flipped pancakes

needs to be even by the observation. All pancakes are flipped, so n needs to be even.
[ |

Remarks: The original problem’s setting consisted of a tape-recorder, n+1 reels and n tapes.
Unfortunately I'm not quite ancient enough to make sense of this. I hope you agree that
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pancakes are a much more fun and tastier context for the mathematics at hand.
Source: Mathematical Circles (Russian Ezperience)

[Back to Problem|]
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Solution 105

Part (a)
The naive “square packing” works just fine.
Part (b)

As ludicrous as it sounds, you can fit 401 coins in the box. The scheme involves alternating
between “upright” and “upside-down” triangles of three coins, as shown.

N

Computing the number of coins this scheme allows us to fit is an instructive exercise in
elementary geometry. First, we determine the period of the packing, i.e. how long it takes
for the pattern of coins to repeat. The following diagram shows half a repeating segment.

~

Connecting centers with points of tangency and labelling various lengths gives us the follow-
ing diagram.
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xXr
1 1
2 2
A B
C
V3
2
1
2
1 1
2 2

We have that AB = x and BC = % + % =1, so AC' = v/1 — x2. Using the fact that the
height of the box is 2, we can write the equation

1 3 1
225*“‘“%*5

Solving for the value of x gives x = %\/ 44/3 — 3. So the length of one period of the packing

isZ(z—k%),or VA4V3 -3+ 1.

It turns out that 6 coins every v/4v/3 — 3+ 1 is every so slightly denser than 2 coins every

1. Indeed, a quick calculator computation shows that ﬁ exceeds % by about 0.0121.
-3+

It remains to do some housekeeping to prove that exactly 401 coins can be fit in the box

with this scheme, but I'll spare you the details.
[ |

Remarks: See https://www.desmos.com/calculator/eujaifhsmd for a Desmos visualiza-
tion.

As far as [ am aware, nobody knows whether or not 401 is the most number of coins we
can fit. If it is, a proof of this seems quite hard.

Source: I saw this on Puzzling Stack Exchange

[Back to Problem]
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Solution 106

Beth wins.

In general, for an m x n bar, Beth wins if and only if m and n are both odd. Beth’s
winning strategy is to do whatever the **** she wants. This is because the game always
ends in mn — 1 moves. Indeed, this is due to the fact that the number of pieces goes up by
1 with every move.

Remarks: 1t’s very common to use induction, but this very clearly isn’t necessary. Another
form of this problem is as follows: Prove that a jigsaw takes the same number of moves to
complete no matter what you do, where a move consists of joining two pieces together.

Source: Folklore

[Back to Problem]
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Solution 107

Every positive integer either starts with 1 or will gain a digit when multiplied by 5.
Starting with 5° = 1, we will perform 2023 multiplications by 5. 1414 of these multiplications
gain a digit, so 1414 of the obtained powers of 5 will not start with 1. Thus 2023—1414 =
of them do start with 1.

[ |

Source: I stole the idea from a Mildorf Mock AIME

[Back to Problem|]
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Solution 108

We'll instead prove that

1 99
(nzll_of(n/lo) (me n/lO)) 00"

This is proven pictorially with the following diagram.

The black curved line is the graph of f. The red rectangles each have width 1 10, so the sum of

their areasis S0, % f(n/10). Likewise, the blue rectangles’ areas sum to S = f71(n/10).
Their total area is bounded by the area of the square minus the uncovered gray square in

the bottom-left corner. This gives the upper bound 1 — 100 = 19090, as needed.

Remarks: The bound cannot be attained, but it is tight.
Source: Leningrad Math Olympiad

[Back to Problem]
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Solution 109

Clearly true for n = 1. Now let n be the first integer for which the tens digit of 3" is odd.
Since the tens digit of 3”71 is even, it follows that the ones digit of 3"~! must be a digit d
for which 10 < 3d < 19. Thus d = 4, 5,6. However it is not hard to find that the ones digit
of a power of 3 can only be 1, 3, 7, or 9, contradiction.

[ |

Source: I saw this on Brilliant back in the stone age

[Back to Problem]
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Solution 110

I present the proof by Burns and Hasselblatt (https://www.math.arizona.edu/~dwang/
BurnsHasselblattRevised-1.pdf). Denote by f® the i-fold composition of f and assume
that n > 2 (the case n = 1 is not so interesting). We begin with the following lemma.

Suppose [y, I1,---,1,—1 are subintervals of I such that f(I;) covers [;;; for i =
0,1,2,--- ,n —2, and f(I,_;) covers I,. Then we can find x € I such that f@(x) € I,
for all i and f™(2) = .

Proof.  Essentially, you just start with I, and pull it back n times via f to get a smaller
interval.

We have that f(I,,_1) 2 I, so f~'(Iy) C I,_1. f~'(lp) is a subset of I, ; that gets
mapped onto Iy, but before we pull back further, we want to make this subset an interval.
f7(Iy) is not necessarily an interval, but it’s certainly a union of intervals! Pick one such
interval that gets mapped onto Iy, and call it J,,_1. (Why does J,,_1 exist?)

We now have a subinterval J,,_y C I,,, with f(J,_1) = Iy. Pull back J,_; to get a subset
f‘l(Jn,l) C I, 5. Again, f‘l(Jn,l) is a union of intervals, and we can pick one of them
that gets mapped onto J,_; and call it .J,, 5.

This gives a subinterval J, o C I,, o with f(J,_2) = J,_1, and we can repeat this to get
a subinterval J,,_3 C [, 3 with f(J,_3) = J,_2, and so on! In the end, we find Jy C Iy,
J1 C Jy, -+, and J,_1 C I,,_1 such that the restrictions

fZJO—>J1

fZJ1—>J2
fIJ2—>J3

f : Jn—Q — Jn—l
fidna— 1o

are all surjective! Hence the n-fold composition f™ : Jy — I, is also surjective. Recalling
that Jy C Iy and that Jy and I are both intervals, a simple application of the Intermediate
Value Theorem gives the existence of some z € J, for which f(®(x) = x. Due to how we
chose the J; intervals, this point x satisfies all the desired properties. U

The way we use this lemma to solve the problem is extremely cool. Let’s suppose that
the point a € I has period 3. Let b = f(a) and ¢ = f(b). Without loss of generality, we can
assume that a < b < ¢. Then:


https://www.math.arizona.edu/~dwang/BurnsHasselblattRevised-1.pdf
https://www.math.arizona.edu/~dwang/BurnsHasselblattRevised-1.pdf
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e f((a,b)) covers (b, c), and

e f((b,c)) covers (a,c).
In particular, it is both true that f((b,c)) covers (a,b) and f((b,c)) covers (b, c). Thus, if we
make the following choices for Iy, -+, I, 1:

[ IO = (

° Il = (
L] _[2 = (

(

=
o
~ ~ ~

o [3:=(b,c

o ...

o I, 5:=(bc)
o Iy :=(b,c)

then f(I;) covers I;41 for all 0 <i <n —2 and f(I,,—1) covers I.

So by the lemma, f™ has a fixed point x in Iy with f(x) € I;. But Iy = (a,b) and
I = (b, ¢) are disjoint, so clearly = and f(z) cannot be the same. In fact, f@)(z) € I, = (b, ¢)
forall 1 <i<mn—1,s0x # f@(z) for any such i! So n is the first time that = gets sent
back to itself. That is, we found a point of period n.

[
Source: This is a special case of Sharkovsky’s Theorem

[Back to Problem]
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Solution 111

Thanks to Alan Abraham for the following approach. Begin with the following dissection.

The dissection also works when n is even, and would look something like this.

The utility of this dissection is that the blue triangles can be joined to form a copy of P.
Both the odd and even cases are shown below.

What remains is n — 1 red isosceles triangles. We aim to show that the sum of their areas is
twice that of P.

Scale the diagram so that the radius of P (the distance from the center of P to a vertex
of P)is 1. Then the area of P is given by n - %sin (%’T)
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As for the n — 1 red isosceles triangles, they are all similar. The lengths of their legs are
given by {|z — 1| : 2" = 1,z # 1}, and the angle formed by the legs is 2Z. So the sum of
their areas is

n/) .

1 . 2T 9
= 5sin (;) Z |z — 1]

zn=1

1 . (27
= 5 sin (;) ;l(z ~1)(z-1)

1 . (27
= 5 sin (;) ;12—,2—2'

1 2
=3 sin (%) an_l 2 (Roots of unity sum to zero)
=2x n sin (Z—W) )

2 n

which is indeed twice the area of P.

Remarks: A purely dissective proof can be found on this page.

[Back to Problem|]
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Solution 112

As a consequence of the looping condition, we see that the amount of money gained or
lost between any two rooms is independent of the path taken.

Suppose I start from the northwest room with no money. Note that any room that is not
the southeast room can be reached in 7 steps, so I could not possibly have more than $7 in
any of these rooms since my money can go up by at most $1 with each step. Thus I could
only have observed having $8 in the southeast room.

Considering the 8-step path EESSSSEE, I must end up with $8 via this path, since any
path that reaches the southeast room must do so. So on each step of this 8-step path, I must

gain a dollar. It follows that I would lose a dollar if I exit the center room via its north door.
|

Remarks: The ideas in this problem bear a resemblance to the arguments used with conser-
vative vector fields.

Source: Math Hour Olympiad

[Back to Problem|]
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Solution 113

I pick a degree-(k — 1) polynomial P(z) such that P(0) is my favorite number. For each
integer = with 1 < z < n, I give friend z the ordered pair (x, P(x)). Any k of these points
is enough to uniquely identify P, and hence let my friends deduce P(0). But knowing k — 1
of the points is never enough. In fact, it won’t give any information regarding P(0).

[Back to Problem|]
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Solution 114

Part (a)

As mentioned in the hint, the key insight is that if you start moving in the direction
perpendicular to the segment connecting you and the center of the circle, then the lion can
never catch you. In fact, you could change directions as much as you want, as long as
when you change direction, you begin moving in the direction perpendicular to the segment
connecting you and the center.

This motivates the following strategy:

e Orient yourself so that you're perpendicular to the segment connecting you and the
center.

e Run r; units forwards.

e Orient yourself so that you’re perpendicular to the segment connecting you and the
center.

e Run ry units forwards.

e Orient yourself so that you’re perpendicular to the segment connecting you and the
center.

e Run r3 units forwards.

e ctc.

Provided that we can keep running in this way forever, this strategy will work. To ensure
that this strategy works forever, the numbers r{, 79, - - - must be chosen so that we never exit
the cage and that we run indefinitely. Assume for convenience that the radius of the cage is
10.

e To ensure that we never exit the cage, note that by iteratively applying the Pythagorean
Theorem, our squared distance to the center of the cage is given by > °° rZ. So we

i=17i
require that > 7> r? < 10%

e To ensure that we run indefinitely, we must plan to run an infinite distance. That is,
we require that >~ r; = +00.

From these conditions, we choose r; = %, which works!
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Part (b)

Impose coordinate axes centered at the center of cage. The first lion chases your projection
unto the x axis, and the second lion chases your projection unto the y axis. Once each lion has
caught up with these projections, they move towards you in such a way that the first lion’s
x-coordinate always the matches yours, and the second lion’s y-coordinate always matches
yours.

I'll leave it to you to convince yourself that this works.

[Back to Problem]
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Solution 115

If we change the frame of reference so that the rain is stationary, then our velocity has a
component of 10 in a 60° direction, and our goal position moves along a 60°-sloped line at
the same speed of 10. We see that, provided these restrictions, reaching the goal is equivalent
to reaching the line. Minimizing the rain encountered is equivalent to finding the shortest
path to this line. This is given by orthogonal projection, and some vector arithmetic shows
that we should run at a speed of 20.

10

Source: Someone posted this in a Discord server and I stole it.

[Back to Problem]
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Solution 116

We begin by working under the assumption that an even number of servers are on.

1. Press all four buttons. (If not successful, we now know exactly two servers are on.)
2. Press two diagonally-opposite buttons.

3. Press all four buttons. (If not successful at this point, we now know that there are
exactly two servers on, and that they are adjacent.)

4. Press two adjacent buttons.

5. Press all four buttons. (If not successful at this point, we now know that there are
exactly two servers on, and that they are diagonally opposite.)

6. Press two diagonally-opposite buttons.

7. Press all four buttons.

If not successful at this point, then our assumption that there were an even number of
servers was wrong. Thus we may win in 8 more steps as follows:

8. Press any button. (We now know that there are an even number of servers that are
on.)

9. Repeat steps 1-7.

Hence we may guarantee success within 15 steps.
[ |

Remark: Apparently you can still win if there instead are 2™ servers for positive integer n.

[Back to Problem|]
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Solution 117

We claim that everyone is equally likely to try the grape juice last (!).

Imagine a frog at the integer 0. It repeatedly hops left and right until it either reaches

—a, where it wins, or reaches b, where it loses. Then the probability that the frog wins

is —0

a+b’

Proof.  There are a good number of ways to approach this. Here is a short one. Let p be
the desired probability. Let M, be the martingale representing the frog’s location after n
steps (and it is indeed a martingale because the expectation of its change at each step is 0).
We endow it with the stopping time 7 := inf{k € N : M} € {—a,b}}. It is now easy to justify
the application of Doob’s Optional Stopping Theorem, which entails that EM, = EM,. But
EMy =0, and EM, = p(—a) + (1 — p)b. Solving for p gives p = ﬁ). O

We can now solve the original problem. Let us index my friends and I via the integers from
0 to 2023, where I am labelled with 0, and we will consider the friend at some 1 < n < 2023.
We will show that friend n tries the grape juice last with probability 1/2023.

There are exactly two ways in which friend n could try the grape juice last. Either

e the grape juice reaches friend n — 1, then goes around the other way to friend n + 1,
without ever reaching friend n, or

e the grape juice reaches friend n + 1, and then goes around the other way to friend
n — 1, without ever reaching friend 0.

We compute the probability of the first case. For convenience, allow negative indices,
taking all indices mod 2024. The probability that the grape juice reaches friend n — 1 before
it reaches friend n + 1 = —(2023 — n) is given by 22" by the lemma. From here, the
probability of the grape juice reaching friend n + 1 = —(2023 — n) before reaching friend n

is ﬁ, by the lemma again. Thus the probability of the first case occurring is %.

Analogously, the probability of the second case occurring is given by m. Summing

the cases, we conclude that the probability that friend n tries the grape juice last is

2028-n  n-1 _ 1
(2022)(2023)  (2022)(2023) ~ 2023

as claimed.
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Remarks: See https://math.stackexchange.com/a/2390627/372663 for what appears to
be a clean, computation-less solution.

[Back to Problem]
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Solution 118

From classical right triangle geometry, the length of the segment connecting the corner
of the wall and the ladder’s midpoint is always half the ladder’s length. So it’s constant.
Hence the shape traced is a circle. Specifically, it is a quarter circle centered at the corner
of the wall.

[Back to Problem|]
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Solution 119

We claim that such a regular n-gon exists only for n = 4. Obviously squares exist, so
n = 4 certainly works. Now let us rule out n > 5.

Suppose that n > 5 and that there is a regular n-gon with lattice vertices. Rotating each
vertex 90° inwards about the previous vertex, we form a smaller regular n-gon with lattice
vertices, which is a contradiction since we may descend in this way infinitely.

Finally, we rule out n = 3. Suppose there were an equilateral triangle AABC' where
A, B, C are lattice points. Multiply all the coordinates of A, B, and C' by 3. Then, take the
two trisection points on each of the three sides of AABC'. These are lattice points and they

form a regular hexagon. But we ruled out n = 6 from the previous analysis, contradiction.
[ |

[Back to Problem]



CHAPTER 4. SOLUTIONS Solution to Problem 120 434

Solution 120

This approach seems novel enough to justify crediting myself for it. We claim that 6 is
the best we can do.

To see that it is obtainable, take the 6 lines that pass through two opposite vertices of a
given icosahedron.

We now show that 7 is impossible. First we prove the following weird lemma that does
not seem to have any relevance to the problem whatsoever.

Lemma 1

Color the edges of K7 graph red and blue. Consider a “Lights Out”’-type game in
which we may “press” any vertex to toggle the color of all edges emanating from that
vertex (from red to blue and vice versa).

Then there exists a sequence of moves that will result in there existing a monochromatic

subgraph.

Proof.  Pick any vertex v. Press some of the other vertices so that all edges from v are red.

Pick another vertex w. Since there 5 other vertices, there exist 3 of them, z, y and z,
such that edges wz, wy, and wz are the same color.

If this common color is red, then w, x, y, z, and v form the desired monochromatic
subgraph, which will be all red. If otherwise the common color is blue, then these vertices
will form a blue such monochromatic subgraph after we press v. O

With this totally irrelevant lemma proven, we may proceed to solve the original problem.

Suppose there exist 7 distinct lines through the origin that form the same angles with
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each other. Pick unit vectors vy, vg, - -+ , v, one in the direction of each of these 7 lines (there
will be two legal choices for each). By the equal angle condition, the quantity |v; - v;| is the
same constant ¢ for all distinct ¢ and j.

Form a graph on these 7 vectors, coloring the edge between v; and v; red if v; - v; = ¢,
and coloring it blue if otherwise v; - v; = —c.

Note that if we were to replace v; with —wv;, then all the edges emanating from v; in
this graph will toggle colors. By the irrelevant lemma, we may make a sequence of such
replacements such that among the vectors {vy, v, - - - , v7}, there will exist five distinct vectors
v, T, ¥y, z, and w for which

V=0 Yy=0-2=w-T=w-Yy=w-2==c

Note that from v-x =v -y = v - z, we have that v is perpendicular to the plane formed
by z, y, and z. Indeed, this is because v - (z —y) = v - (z — z) = 0. Similarly, w is also
perpendicular to the plane formed by z, y, and z. This can only happen if v and w lie on
the same line through the origin (because the space of vectors orthogonal to both  —y and
x — 2z has dimension 1), contradicting how we chose the vectors.

[Back to Problem|]
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Solution 121

Whenever the question mentions “the apple that’s X...” this implies that there is exactly
one apple that satisfies the condition X. From this, we can work backwards to get some
information on the apples, starting from the green apple.

e “..the apple that’s cheaper than the apple that’s green” implies that there is only one
apple that is cheaper than the green apple, so the green apple is $2 and “the” apple in
question is $1.

e “..the apple that’s smaller than [the $1 apple]” implies that the $1 apple is the second-
smallest, and “the” apple in question is the smallest.

e “the apple that that costs more than [the smallest apple|” implies that the smallest
apple is $4 and “the” apple in question is $5.

e “the apple that’s bigger than [the $5 apple]” implies that the $5 apple is the second-
largest (i.e. fourth-smallest) and “the” apple in question is the largest apple. Moreover,
the “it” in “given that it is red” refers to this apple so the largest apple is red.

We may collate this information into the following “logic grid”.

$1 %2 |93 |%4 %5

smallest X[ X[ X |0 | X
2nd-smallest | O | X | X | X | X
3rd-smallest | X X | X
4th-smallest | X | X | X | X | O
H5th-smallest | X X | X

To resolve the ambiguity, we use the colors of the apples! The largest apple is given to
be red whereas the green apple is $2, so the largest apple and the $2 apple are different
apples. This lets us place one more X in the grid, and we conclude that the red apple (i.e.

the largest apple) is .
|

Source: Jack Lance

[Back to Problem]
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Solution 122

Here is one possible argument: Suppose that the cube is 1 x 1 x 1. We can tilt the cube
45° (any less is also perfectly fine) so that its shadow looks like a 1 x v/2 rectangle, as shown
below.

Rotating the cube very slightly in the direction of either of the pictured arrows, the shadow
becomes slightly vertically elongated. Any amount of vertical elongation will be enough to
be able to fit a 1 x 1 square with room to spare.

/\

Since there is room to spare, the 1 X 1 square can be enlarged to some (1 + &) x (1 + ¢)
square (still with room to spare), and drilling a hole through this square gives the desired
hole, through which we can pass through a cube of side length 1 + €.
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For a more constructive/explicit approach, let’s tilt the cube so that one vertex lies directly
above the opposite vertex. Then the cube’s shadow will be a regular hexagon ABCDEF'.
But what is the side length of this hexagon? You can find that the segment AC (and ditto
for BD, CF, etc.) lies directly under a face diagonal of the cube, which is actually parallel
to the shadow’s plane. So AC' = v/2 and using 30-60-90 triangles will tell us that the side

length is AB = \/g

Now to geometrically represent the hole we plan to drill, let us inscribe a square W XY Z
into ABCDFEF. To maximize the area of this square, a good guess is to inscribe it so that
W Z is parallel to a side of the hexagon. See the diagram.

B A
w Z

X Y
D E

If the side length of the square is z, then CW = \/ig So BW = \/g — \/ig But now

2
v =WZ = AB+ BW cos60° + AZ cos 60° = AB + BW = 2\/;— %

So (1+ \/§)x = 24/2 which solves as 7 = v6 — /2 ~ 1.035, which is very slightly larger than
1, so it is indeed barely possible to drill a square hole into a unit cube that will fit a larger

cube.
[ |

Remark: We can actually do better than V6 —+/2. You can think about how to achieve this
or look it up.

Remark 2: Tt is known that the problem still holds for any other platonic solid! Mathemati-
cians have no idea if this extends to all convex polyhedra.

Source: Classic, known as Prince Rupert’s Cube

[Back to Problem|]
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Solution 123

Let the positive integer be n, and suppose it has k digits. Assume for contradiction that
all digits of n are at least 6, and all digits of n? are at most 4.

A natural inequality to write is n > 666 .. .66, but it will be helpful for later if we can
improve this bound. Indeed, we can do better by examining the units digit: If n ends in a
6, then n? will end in a 6 as well, which is not less than 5, so this cannot be. Similarly, n
could not end in 7 since otherwise n? will end in 9. So n > 666 .. .. 68.

More mathematically, this entails that

10F — 1 9 4

10" >n>6- +2=2.10"+ -,

3 3

SO ok
4 16 16 102 — 1
10 >np2> .10+ —.10F+ — >4. ———

=" =9 9 9 9

The number 4 - %’C_l is simply the 2k-digit number 444...4. So n is somehow strictly
greater than this, and cannot exceed the (2k 4 1)-digit number 100...0, while also having
all of its digits between 0 and 4. This is evidently impossible.

[ |

[Back to Problem|]
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Solution 124

I present two solutions.

Solution 1

Let’s say the width of the bottle is 1. Then the bottle on the left shows that the amount
of wine in the bottle is 1 x % = % Now, instead of finding the total area of the bottle, notice
that the amount of empty space must be the same on the left and on the right, and in the

bottle on the right, the empty space is a 1 X % rectangle whose area is %

2
Thus, the total area of the bottle is % + % = %, and so the bottle is % = full.

Solution 2

wi= n\-

Source: I saw this on the MindYourDecisions channel.

[Back to Problem]
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Solution 125

Consider the permutation which maps each student to the student that holds their
midterm exam. Since each permutation can be decomposed into disjoint cycles, it suffices
to solve the problem under the assumption that this permutation is just a cycle. That is,
we may assume that the students are Si,55,...,S,, and that Sy holds Si.1’s exam (where
we identify S, 1 1= S1).

The procedure for resolving this case is best described graphically. There are two cases
depending on the parity of the number of students in the cycle, n. In either case (depicted
as n = 10 and n = 11 below), we first swap along the solid red lines and then swap along
the dashed blue lines.

Source: Leningrad Olympiad

[Back to Problem|]
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Solution 126

Solution 1

This proof follows one of the official solutions from the contest in which this problem
appeared. We will use the notation [XY Z] to denote the area of AXY Z. First we prove
the following lemma.

Lemma 1

Let AX'Y'Z’ be a congruent copy of AXY Z which is rotated by 180° and then
translated. Then

Area(AXYZNAX'Y'Z') < ;Area(AXYZ).

More succinctly, any centrally symmetric subset of a triangle takes up at most % of the
triangle’s area.

Proof. ~ Without loss of generality we may assume AXY Z is equilateral with side length
1. There are two cases.

First Case: NXYZ N AX'Y'Z' is a parallelogram, two of whose vertices are X and X’
(without loss of generality). In the interest of maximizing the area of intersection we may
assume that X’ lies on side YZ. Let a = |[YX’| and b = |X'Z|, so that a + b = 1. The area
of the parallelogram is now

(XYZ] - |[YX'PXYZ] - | X' ZPIXYZ] = (1 —a® - b)) [XY Z],

and from a? + b* > $(a + b)? = 5 we obtain an upper bound of $[XY Z], which is certainly
< 2[XYZ).

Second Case: AXYZ N AX'Y'Z" is a hexagon. If this hexagon is removed from AXY Z,
then we are left with three equilateral triangles of side lengths a,b, and c. Using the fact
that the hexagon is centrally symmetric, it can be seen that a + b+ ¢ = 1. The area of the
hexagon is thus

XY Z] - a®[XYZ] - XY Z] - AXYZ] = (1—ad®— b — A) XY

From the QM-AM inequality, a® 4 b* + ¢? is minimized subject to a +b+ ¢ = 1 exactly when
a="b=c=%. So the area of the hexagon is at most (1 — &) [XY Z] = 2[XY Z]. O

Now we return to the original problem. Let the triangle be 7T, and let the ellipse be £
with center O. Rotate T 180° about O to obtain a triangle 7.

Consider the regions R := 7T NE and R’ := T’ N E. These regions are shown below.
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Note that R and R’ are congruent, and each have area A. Moreover R U R’ is a subset of
the ellipse, hence

Area(RUR') < E.

The area of the union may be expressed as

Area(RUTR') = Area(R) + Area(R') — Area(RN'R’)
=2A — Area(RNTR).

But by the lemma, Area(R NR’) < 27. We conclude that

2A—§T§E,

which rearranges to % + % > A, as needed.

We present an alternate solution starting on the next page.
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Solution 2 (Sketch)

This solution is on the lengthy side, but it showcases a nice technique known as wvisual
calculus.

To set up, let us first assume without loss of generality that the ellipse is a circle. We will
show that the minimum value for % + % — A is 0. To avoid technicalities we will take the
following facts for granted:

e There exists a minimum value for % + % — A
e In a configuration which achieves this minimum value, the circle intersects the triangle

6 times — twice per side.

Take a configuration which achieves the minimum value of % + % — A. Then it follows that
any perturbation to the configuration cannot decrease the value of %+ % — A. This principle
is the basis for the following deductions.

Call the triangle AXY Z. One way to perturb the configuration is to expand the triangle
slightly by a dilation centered at a vertex (say, X), as depicted below.

X

Let’s start with a slightly informal argument using Calculus. Label two of the intersections
as I and J as shown.

If we perturb the triangle in this way continuously in time so that the perturbation in

height Ah increases with rate ddA—th = 1, then by the Fundamental Theorem of Calculus (seen
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more easily by rotating the above diagram 90°), we have =Y Z and dA = 1J, and so
d (T FE YZ
—+=——A)=— —1J.
dt (3 3 ) g 1017

But % (% + % — A) = 0 because % + % — A is minimized, so we conclude that % —1J=0.

If the reader finds this argument suspicious, we can obtain the same result with elementary
arguments: Suppose it were the case that IJ > YZ. As shown in the diagram from before,
we expand side Y Z slightly to Y'Z’, increasing the triangle’s height by a small Ah. Ah
should be chosen to be so small that it is negligible compared to the difference I.J — %
Then:

e The quantity T increases by the area of trapezoid Y ZZ'Y”, which is essentially Y Z-Ah
for small Ah.

e [ does not change.

e A increases by just the area of the striped blue region, which is essential I.J - Ah.

So the quantlty + = — A changes by ( —1J ) Ah. But since % —i— = —Ais mlmmlzed
this can be pos&ble only if YZ ] J >0, Contradlctlng the assumptlon that IJ > YZ We
similarly can show that I.J < is impossible, so IJ = Ygz

Running the same logic for the other sides, we conclude that exactly a third of each of
the triangle’s sides must lie inside the circle.

A second way to perturb the configuration is to take a side and rotate it slightly around
the center of the circle. We can think of this as moving the chord I.J around the circle, as
shown below.
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It is clear that F doesn’t change. It turns out that A doesn’t change either (why?), thus
only T' changes. The change in T is depicted below.

X

Wy, 7777 /7,

Denote the intersection of I.J and I’.J’ as K, and let the midpoint of segment I.J be M. In
the perturbation, the area is increased by the area of AYY'K (in red, shaded) and decreased
by the area of AZZ'K (in blue, striped).

If the angle of rotation Af for the perturbation is negligibly small, then M and K are
basically the same point, and so the lengths YK, YK, Y M are morally indistinguishable.
Hence

1 1
Area(AYY'M) = 5(YK)(Y’K) sin(Af) ~ 5|YM|2 sin(Af)
and, similarly,

Area(AYY'M) = %(ZK)(Z’K) sin(Af) ~ | ZM|?sin(A).

— N~

(The estimate sin(A#) ~ Af is applicable but unnecessary.) It follows that 7" changes by

1
A §(|YM\2 — |ZM?) sin(A9),

which must be non-negative by the hypothesis that §+ % — A is minimized, thus Y M > ZM.
By a completely symmetrical argument, Y M < ZM. Hence M is the midpoint of side Y Z.
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By applying this argument to the other two sides, we conclude that the center of the
circle, O, is the circumcenter of AXY Z (!). Moreover, in view of the deduction from the
first perturbation, we see that the circle must divide each side of AXY Z into thirds.

To finish, consider the below quadrilateral QRST.

Y A

Since the circle divides each side into thirds, we have X(@) = QR and XT = TS. Thus
QRST is a trapezoid. But the only cyclic trapezoids are isosceles trapezoids, so QR = ST
and thus XY = XZ. Analogously, Y X =Y Z, so AXY Z is equilateral.

The below diagram is hence the minimal configuration.

Computing T', E, and A, we find that % + % — A = 0, thus 0 is the minimum value, as
desired.

Remark: In the official solution, the ellipse (scaled to be a circle) was perturbed instead, but
making this work is trickier.

Source: HMIC
[Back to Problem]
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Solution 127

Move a pencil along the edges of the star in the manner described by the diagram on the
next page.



CHAPTER 4. SOLUTIONS Solution to Problem 127

449

%
Kk

ik



CHAPTER 4. SOLUTIONS Solution to Problem 127 450

Note that the pencil’s orientation captures the sum of the angles of the star that the
pencil has rotated through. At the end of the procedure, we see that the pencil’s orientation
has reversed, completing exactly half a rotation. Thus the sum of the angles is .

[ |

Remark: This result holds for any “thin” star, no matter how many vertices it has. For
“thicker” stars, like the one shown below, the same methodology can be applied to quickly
compute the sum of the angles.

There is also a similar (and possibly more well-known) procedure for showing that, in any
convex polygon, the sum of the external angles is 360°.

Source: Classic

[Back to Problem]
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Solution 128

Suppose we found such a partition into n sequences, n > 1. Let their initial terms be
ai,- -+ ,a, and their common differences be dy,--- ,d,. Since the progressions partition the
positive integers, we have for all complex |z| < 1 that

o0 n o

kE a;+kd;
Dah= D at,
k=1

=1 k=1

or

T - x%
1—3:'_.21—1'%"
——  J=1

LHS N——
RHS

Assume without loss of generality that d,, is the largest common difference. Then, by the

condition that all common differences are distinct, we have in particular that lf‘;dn is the only

term in RHS with a pole at o = e2™/4_ (All other terms will be continuous at x = €7/ )
So RHS has a pole at © = >/ In other words,

lim |RHS| = +o0.

r—ye27i/dn

However, the only pole of LHS is at x =1, so

lim |LHS|# +oo0.

r—se2mi/dn

The two limits are in contradiction.

Source: This is an exercise in Stein and Shakarchi’s complex analysis textbook.

[Back to Problem]
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Solution 129

The key property of centroids that we require is as follows: For distinct points xy, x9, -+, ,
in the plane, the minimum value for the sum of squared distances

n
o=l
=1

occurs exactly when z is the centroid of {z1,xs,- - ,2,}. We will prove this afterwards.

Let » > 0 be Yohane’s visual radius. Let the footprints be located at the points
T1,To, - ,T,. Assume for contradiction that Yohane never stops moving. We claim that
the quantity

f(z) = Zmin (]x — z;)?, 7"2)

is a strictly decreasing monovariant.

To see this, suppose that Yohane is currently at the point z = a, and that the footprints
in Yohane’s visual radius at this point are xqy,--- ,x, relabeling the indices as necessary.
We'll split the sum for f(z) into two parts,

n

k
flz) = Zmin (]:c — xi|2,r2) + Z min (|x — xi\z,TQ) ,
i=1

i1=k+1

and analyze the change in each part separately as Yohane moves from = = a to the centroid
of {x1,- -+, x}, which we will call g.

For the first part, we use the aforementioned key property of centroids to find that

k k
dla—al > g -l (1)
i=1 i=1

where the inequality is strict because ¢ is the unique minimizer of the sum of squared
distances to the points in {x1, 25+, x;}. Now, on one hand, it is plain to see that

k k
Z lg — x| > Zmin (|g — $i|2,r2) . (2)
i=1 i=1

On the other hand, since all the points in {1, xs,- - , 2} are in Yohane’s visual radius at
r = a, we have |a — z;|> < r for all 1 <i < k. Hence

k k
Zmin (Ja = z]?,r?) :Z|a—xi|2. (3)
i=1 i=1
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Combining (1), (2), and (3), we deduce that

k k
Zmin (Ja — 2], r?) > Zmin(|g—$i|2,7“2)7 (%)
i=1 i=1

which shows that the first part must (strictly) decrease.

As for the other part of the sum, we see that x = a maximizes
> i=k+1"min (jz — z;[*, )

since all terms are exactly 72, which is as large as possible, so Yohane’s movement cannot
increase this part of the sum. That is,

n n
Z min (ja — 2%, r?) > Z min (|g — =%, r?) . (xx)
i=k+1 i=k+1

Summing (x) and (k%) gives f(a) > f(g). This proves that f(x) is a strictly decreasing
monovariant, as claimed.

To finish, note since f(x) is strictly decreasing, it follows that it takes on infinitely many
values while Yohane moves, which in turn implies that Yohane visits infinitely many points
(as opposed to revisiting certain points). But there are only finitely many centroids of subsets
of {zy,x9, -+ ,x,}, which are the only possible locations that Yohane can move to. This is
a contradiction.

For completeness we now prove the key property of centroids that we’ve used. In fact, we
will prove the following more general statement.

Let zq,x9,- -+ ,x, be points in an inner product space. Let g be the centroid of these
points,
1 n
=1
Then the value of .
>l -l
i=1

depends only on |z — ¢|, and in particular it is a strictly increasing function of |x — g|.

Proof.  This can be proven by a direct computation, but we’ll avoid the mess that comes
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with this via a more refined approach. Write

Z‘x_xi’222|x_g+g_xil2
=1 =1
=Y (w—g+g—mz—g+g—)
=1

=> (lz—gP+2{&—g,9— ) + g — )

=1

:n|x—g\2+z<x—g,zg—xi>+z|g—xm

i=1 i=1

and note that Y, g — x; = 0. It follows that

n n
e =z’ = g - =nlz — g’
i=1 i=1
which proves the lemma. 0]

As a remark, the same computation shows that

/Elfv—y|2du(y)—/E|g—y\2du(y)=u(E)\x—gl2

for any measure p on RY and any measurable set £ C R™, where the centroid g of y is

defined as )
9= —/ ydp(y).
w(B) /0w

When p is “mass”, this is the parallel axis theorem from physics.

Source: I stole this from someone, but I do not know of an original source.

[Back to Problem|]
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Solution 130

Let the triangle be AABC and let the unique lattice point in its interior be P. By Pick’s
Theorem, the triangles AABP, ABCP, and ACAP all have an area of % In particular,

their areas are all equal. This is a defining property of the centroid, so P is the centroid.
[ |

[Back to Problem|]
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Solution 131

Solution 1

Solution 2

Thanks to “InductionEnjoyer” for the following hilarious construction.

K
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Remark: The original problem can be solved without making any triangles, and can also be
solved without any rods intersecting. See https://mathworld.wolfram.com/BracedPolygon.
html for the constructions.

[Back to Problem]
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Solution 132

The first series diverges for § = 27 /3. For this value of 0, we have that

0 =0 d3
sin n?6 cosnh = {—’Lg " (mod 3) ;

+>, otherwise

3 2
so that ) o sinn-feosnd — g

cos n26 sin nd

The second series converges. Consider the partial sum ZnNzl and apply the

product-to-sum formula to see that

iv: cos n?6 sin nf ﬁ: sin(n 1)0) — sin((n — 1)nd)

n
n=1 n=1

Now split into two sums and do an index shift:

i sin(n(n +1)0) NZ_I sin(n(n + 1)0)
n=1 n=0 n+l1
sin(N(N + 1)0) = sin(n(n + 1)0)
- + .
N — ns+n

Sending N — +o00 we find that

i cosn*fsinnd i sin(n(n + 1)0)
n B n?+n

n=1 n=1

Y

which converges uniformly by using the bound |sin(n(n +1)6)| < 1.

Source: AMM, C.E. Stanaitis

[Back to Problem|]
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Solution 133

If the smaller square has area 16, then the shaded red triangle has area 8. The red
triangle, together with the gray triangle, takes up half the area of the larger square (!), thus
the larger square has area 2(1 4 8) =[18].

Source: Math Kangaroo

[Back to Problem]
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Solution 134

No (finite) number of pirates is sufficient!

Say there are n pirates. My strategy is as follows:

1. Move towards the shore until I am e away from the edge of the lake. (Here, e > 0 is a
very small distance that will depend on n.)

2. Pick n + 1 disjoint arcs each satisfying the following property: If the interval has
no pirate in it, then I am guaranteed to escape by moving straight to the interval’s
midpoint.

3. Since n + 1 > n, one of these intervals must be empty. This is the only time I need to
check where the pirates are.

4. Move towards that interval’s midpoint to escape!
All we need to do is pick € > 0 so that Step 2 is possible. This entails selecting n disjoint

arcs Ay, Ag, ..., Anqq such that for all j, my distance to the midpoint of A; is at most the
length of A;.
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A procedure for choosing € and constructing these arcs is as follows. For ease, take the
convention that arcs include their endpoints (and are thus closed).

Step 1

The idea here is to “take ¢ = 0”. Take a point P on the boundary of the circle, and we
call an arc A safe if
dist(P, midpoint(A)) < length(A).

We claim that safe arcs can be disjoint from P and contained in an arbitrarily small neigh-
borhood of P. (To be more precise: Any arc with endpoint P, no matter how small, will
contain a safe arc.)

To see that this claim is true, choose a point M on the circle that is as close to P as you
desire. Then, since any chord is shorter than the minor arc that it subtends, the
arc with midpoint M and length M P will not contain P.

This arc is safe. Moreover it is evident that this arc “shrinks” to P as we move M towards
P, which shows that the safe arcs can indeed be arbitrarily small and arbitrarily close to P.
This entails the claim.

Step 2

From Step 1, we can pick a safe arc A; disjoint from P. But by the claim from Step 1,
we can fit another safe arc Ay in the gap between P and A;. We can do this as much as we
want, thus we can generate n + 1 safe arcs Ay, Ao, ..., A,i1, all of which are disjoint!
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Step 3

Now we move P a very small distance ¢ > 0 away from the boundary. The danger in
doing so is that the condition we desire on the arcs,

dist(P, midpoint(A4;)) < length(A,),
may no longer be satisfied.

However, by taking e to be sufficiently small, the amount that each of the distances
dist(P, midpoint(A;)) change by, over all j, can be made to be arbitrarily small! Thanks to
this, the condition will be satisfied if we simply expand each arc A; ever so slightly, to become
a new arc A; centered at the same midpoint. If these arc expansions are small enough, then
the new arcs A, A5, ..., A] , will still be disjoint. This completes the proof.

n

Remark: We have shown that no finite number of pirates is sufficient. What about a
countably infinite number of pirates? Shockingly, this is still not sufficient!

Showing this requires a more technical argument. Let the radius of the lake be 1. Let
O be the center of the lake. Enumerate the pirates via the sequence {p1, p2,ps,...}. Then
follow this procedure:

1. Move towards the edge of the lake until you are x; away from the edge of the lake,
where x1 > 0 is to be chosen later. Let your current location be the point A;. Set
n=1.

2. We will now “dodge pirate p,”. To do so, draw the chord through A, which is per-
pendicular to OA,,, and move in the direction along this chord which faces away from
pirate p,.

Move in this direction until you are x,, 1 > 0 away from the boundary, where x, ;1 > 0
is to be chosen later. Let the point you arrive at be A, ;.
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3. Increment n and loop back to the previous step, repeating infinitely.

This procedure constructs a continuous path. To verify that it has finite length, observe,
using power of a point, that

|ApAni1? < (2 — z0)T, < 27, (%)

Then we have the upper bound
OA+ 3 [AuAusa] < (L =) + Y V2a,
n=1 n=1

on the length of the path. For this to converge, we can impose that z,, < 4%.

With this, the path must converge to a point, and since x,, — 0, the limit point lies on
the boundary of the lake. In other words, the path will reach the edge of the lake at a point
A Fixing n, we claim that pirate p, cannot have reached A, at this time.

To show this, note that when we reach A,, the “worst case” position for p, will be the
point M, defined as the point on the boundary such that O, A,, and M, are collinear in
that order. Now:

e Since the remainder of our path has length Y 7~ | AAj41], the set of points that p, can
reach before we reach the shore is the arc with length 2% |A;Agy1| and midpoint
M,,.

e Once we reach A, i, the remainder of our path has length ZZOZHH |AgAg11], so a
superset of the set of points that the path can end at is given by the disk with center
Apiq and radius Y007 L [ApAg].

oy

Now rotate the diagram so that ray A, A,.1 points in the direction of the positive z-axis.
For the two sets described in the above two bullet points to be disjoint, it is sufficient to
require that their sets of z-coordinates are disjoint.

e When we are at A,,, the z-coordinate of p,, is exactly 0. Hence, the maximum pos-
sible z-coordinate that can be reached by p, by the time we reach A, is given by
sin (|A,An11]). After that, a loose upper bound on the maximum possible z-coordinate
reached by p, when we reach A, is

o

sin (| ApAp1]) + Z | ApAp1.

k=n+1
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e When we are at A, 1, our z-coordinate is exactly |A, A, +1|. Hence a loose lower bound
on the minimum possible z-coordinate that we could end up at is given by

|AnAn+1|_ Z |AkAk+1|

k=n-+1
Hence it suffices to achieve the inequality
sin ([ AnAnaa) + D [Aedial < [Andnal = D [ArAknl,
k=n+1 k=n+1
or -
2 Z ’AkAkJrl‘ < ’AnAn+1’ — sin (’AnAn+1D> (**)

k=n+1

for all n. The next goal is to convert this to another sufficient inequality that is written in
terms of the sequence {x,},.

First we tame the left hand side of (#x). Thanks to the earlier observation (x), we have

that - -
2 Z |ApA] < 2V2 Z V.

k=n+1 k=n+1

Now we tame the right hand side of (xx). From Taylor expansion it is not too hard to
verify the bound

T —sinx >

~| 7,

for all 0 < x < 1. It follows that

. 1
|AnAn+1| - Sln<|AnAn+1|) > ?’AHATWIP'

To continue, observe by n — 1 applications of the Pythagorean Theorem that

n—1

OALP + ) [ AxApsa | = [OA) = (1 = 2,)°,

k=1
and similarly

’OAJQ + Z |AkAk+1‘2 = ‘OAn+1|2 = (1 - l’n+1)2-

k=1

Subtracting these two equations and some factoring gives

|AnAn+1|2 = xn(z - wn) — Tp+1 (2 - anrl)-
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Since x,, x,41 € (0,1), it follows that
‘AnAnJrl‘Z > Tp — 2$n+1-

Hence

1
?’AnAn+1’3 > (xn - 2$n+1>3/2'

| =

Gathering the pieces, we finally arrive at the sufficient inequality
- 1
22 Z Vap < =(z, — 291:,”1)3/2.
7
k=n+1
I leave it to the reader to verify that taking

1
~ 10072

Tp
works.

So we have proven that for this choice of {x,},, p, could not reach A, by the time we
do. But n was arbitrary, so the constructed path will successfully avoid the infinitely many
pirates and escape.

This leads to a rather uncomfortable conclusion! On one hand, |N| pirates is insufficient.
On the other hand, |R| pirates is clearly enough. So the minimum number of pirates is either
IR| or some cardinality strictly between |N| and |R|. I shall let you discover which is true.

Source: Puzzling Stack Exchange

[Back to Problem]
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Solution 135

We prove the contrapositive. Suppose that all subset sums of S = {ay,a,--- ,a,} are
distinct. Then

for all 0 < < 1. Thus .
Zlog(l + %) < —log(1 — x).

Dividing by x and integrating, we find that

"L Ylog(1 + z% T log(1 —
Z/ —og( + %) dr < / —og( ?) dz.
i=1 70 T 0 v

The RHS evaluates to %2 (Sketch: Taylor expand!), so we focus on the LHS. Using the

. . . o 1—L
substitution u = 2% we have du = a;2% ' dx = a;u % dz, so

1 as 1 1
/ log(1 + %) dp — / log(1+w) du 1 [ log(l+u) .
0 0

X

1 1—L .
wai auw 4iJo u

This evaluates to - - 7{—; (Sketch: Taylor expand!). All in all we have

"1 72 2
_<€’

a; 12

i=1

hence Y 7" | L < 2 as needed.
|

Remark: The 2 in the problem is tight, by taking S to be {1,
large values of n.

V5 4, 8, ce 2%} for increasingly

[Back to Problem|]
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Solution 136

Let the disk have radius 1 and have center O. If the disk is partitioned into two congruent
sets A and B, then O lies in one of these sets, say A. Let O" be the point in the other set,
B, that corresponds to O under the congruency.

Consider the diameter perpendicular to OO’. The endpoints of this diameter cannot
belong to B because they lie outside the unit circle centered at O, so they instead belong to

A. That is, there exists a segment of length 2 whose endpoints are in A and whose midpoint
is O.

By the congruency, it follows that there must be a segment of length 2 whose endpoints
are in B and whose midpoint is O'. But every segment of length 2 is a diameter, and the
midpoint of every diameter is O, so certainly it could never be O'.

[ |

Source: Putnam

[Back to Problem|]
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Solution 137

Let us call the required condition on the cake slices the fairness condition.

We start by cutting the cake into a 2:3 ratio. This ratio is far from tight — it just needs
to be somewhere strictly in-between 1:2 and 1:1.

For every next cut, we always bisect the largest piece, but miss slightly so that (1) all
piece sizes are distinct, and (2) the fairness condition holds. (Ensuring that all piece sizes
are distinct is the key ideal)

Our very first cut satisfied these two criteria, so it remains to show that this condition
keeps holding inductively. Suppose that at a certain point, the sizes of the smallest and
largest pieces are m and M, respectively. By inductive hypothesis, we know two crucial
facts:

(a) The largest piece is the only piece with size M (because all sizes are distinct!).

(b) M/2<m

If we were to bisect the piece of size M, then we get two new pieces of sizes M /2. By (b),
these are the two new smallest pieces. It remains to transfer a small amount of mass from
one of these pieces to the other to get sizes of M/2 — ¢ and M/2 + €, while satisfying the
required properties.

We must first ensure that double the size of the smallest piece, which is 2(M/2 — ¢) or
M — 2¢, is greater than the size of the new largest piece. By (a), the new largest piece’s size
cannot be M, so it is strictly smaller than M. Hence we can choose € small enough so that
M — 2¢ is larger. Thus we can satisfy the fairness condition for all € small enough.

Now it remains to ensure all piece sizes are distinct. Since all piece sizes were distinct
before the cut, I need only ensure that M /2 + € is not equal to the size of any existing piece.
Indeed, since I have finitely many pieces, I can always ensure this by a careful choice of e.

This completes the induction.
|

Remarks: 1 found this problem on Math Stack Exchange (https://math.stackexchange.
com/questions/2882265/optimal-strategy-for-cutting-a-sausage). The link contains
some more interesting discussion on the problem.

For example, the above solution shows that the ratio r between the sizes of the largest
and smallest pieces can be ensured to always satisfy r < 2. But can we do better than 27
That is, can we find a different strategy so that the ratio r can be ensured to always satisfy


https://math.stackexchange.com/questions/2882265/optimal-strategy-for-cutting-a-sausage
https://math.stackexchange.com/questions/2882265/optimal-strategy-for-cutting-a-sausage
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r < « where « is a constant number that’s even smaller than 27 The answer is no — 2 is
the best you can do.

The accepted answer in the link also provides an interesting explicit construction for the
cuts: If we view the cake as the interval [0, 1], then you can make the nth cut at {log,(2n+1)},
where the curly brackets denote the fractional part, {z} := = — |z].

Source: Math Stack Exchange

[Back to Problem]
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Solution 138

Call my friends Emily and Sydney, number the gold pieces from 1 to 101, and for each
piece ¢ pick a distribution of pieces so that Emily and Sydney get the same weight of gold.
Now construct a 101 x 101 matrix M as follows:

0, i=7

M;; =141, Emily gets piece j if I take piece ¢
—1, Sydney gets piece j if I take piece ¢

Visually, row ¢ depicts the pieces that would be in Emily’s share with 1’s if I choose piece 1.

Let v be the 101 x 1 column vector that stores the weights of the gold pieces. Then by
construction of M, Mv = 0. We would like to show that v is a scalar multiple of 1, the
column vector consisting only of ones. Since M1 = 0, we have that 1 is in the null space of
M, so it is sufficient to prove that the null space of M has dimension 1. This will force v,
which is also in the null space, to be in the space spanned by 1, which is what we need.

By rank-nullity, we need only show that M has rank 100. To do this, take the upper
100 x 100 submatrix of M, and call it M’. We are done if M’ has full rank. We show this
by proving that det M’ # 0. Since det M’ is an integer, it is further sufficient to show that
det M’ is odd. In the pursuit of this, we may view the elements of M’ as elements of Fy,
so that we hence need to show that det M’ = 1. Over Fy, M’ is a matrix with 0’s on the
diagonal and 1’s everywhere else. By a standard formula for determinant, we see that det M’

is equivalent to the number of derangements in Sy, which is odd because 100 is even.
[ |

Source: I forgot where I stole this from but it does seem to be relatively well-known.

[Back to Problem|]
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Solution 139

No matter the strategy, the odds will be 1/13. One way to convince yourself of this is
to observe that if we stop at any time, then the probability that the top is an ace is always
equal to the probability that the bottom card is an ace. So we may reformulate the game to
an equivalent one as follows: Deal cards until you say stop, and then you win if the bottom
card is an ace.

Well, the bottom card never changes, so the probability of victory will always be the
same.

[Back to Problem]
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Solution 140

It suffices to prove that AB L CD, for if so, then a completely symmetrical argument
shows that AC' L BD and AD 1 BC, which will entail that any one of the four points will
be the orthocenter of the triangle formed by the other three.

Let K and L be two perpendicular lines in the plane, and rotate them counter-clockwise
by 6. Let f(6) be the length of the orthogonal projection of AB unto the rotated K, and let
g(0) be the length of the orthogonal projection of C'D unto the rotated L.

'K

Notice that if there exists an angle 6 for which f(6) = ¢g(0), then there will exist a square
whose sides will pass through the four points A, B, C, and D. (This is not quite an equivalent
condition as it only accounts for one possible assignment of the four points to the square’s
four sides.) Since the hypothesis asserts the contrary, we have f(0) # g(0) for all 6.

If we let o be the angle at which AB intersects K, and 8 be the angle at which C'D
intersects L, then it is not hard to discover that

f(0) =|AB| - |cos(a + 0)|

and
g(0) = |CD|-|cos(5+0)|.
Since these two quantities are never equal, we may write

cos(f5 +6)
cos(a + 6) ’

|AB|
|CD|

cos(8+0)
cos(a+0)

over the domain on which it is defined. If the zeroes of 6 — cos(5+6) and 6 — cos(a+6) do

for all #, which in turn implies that the function 6 —

cannot have full range (image)
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not coincide, then this function will have zeroes and attain the limits +o00 at singularities,
which will give it full range by continuity. Thus cos(a + 6) and cos(5 4+ 6) must have the
same zeroes, which can occur only when o and § differ by a multiple of .

This implies that the angle formed between AB and C'D will be 5 plus some multiple of
7, thus they are perpendicular, as needed.

[Back to Problem]
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Solution 141

Solution 1

For each 1 <i < n, let v; € R" be the vector whose kth component is \/¢(k) if k | 4, and
0 otherwise. Let A be the matrix whose ith column is v;. For example, when n = 5,

Ve Ve VeB) Vel el)]

©
0 2 0 p4) 0
A=1 0 0 Ve(B) 0 0
0 0 0 o) 0

0 0 0 0 0(5)]

Then
v; - V) zzl(kuandk\j) -V p(k)
k=1

=) Lkjgeati) - (k)
k=1

= > (k) =ged(i,)),

klged(i,5)
where in the last line we applied the identity m = 3, (k) with ged(i, j) in place of m.

It follows that the matrix in the original question, whose (i,7j) entry was ged(z,j), is
given by AT A. Its determinant is thus the square of the determinant of A. But A is upper

triangular with diagonal entries v/¢(1), \/¢(2),...,1/®(n), so

det A = /o(1)¢(2) ... p(n)

and the desired determinant is the square of the right hand side, which was what was sought.
[ |

Solution 2

Here I present the proof given in the original paper by Smith which proved this determi-
nant identity.

Let n =[], pf". Then
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- 1
Let as :=n]];cq 5y SO

p(n) =Y (=1)as. (%)

SClk]

Now, for each set ) C S C [k] we add (—1)!*! times column ag to the last column. Focus on
what happens to the last row. From this column operation, we see from (x) that the (n,n)

entry will become
2 (1) ged(mag) = ) (=1)"las = o(n).
SCk] SClk]

It remains to prove that (m,n) entry is 0 for each 1 < m < n, so that we may conclude by
argument of induction.

The (m,n) entry is given by

> (—1)¥ ged(m, ag).

SCIk]

We must show that this sum is 0. Since m < n, there exists a prime p; such that v, (m) <
vp,(n). This prime is the catalyst for causing cancellations in the sum: We claim that

(=D ged(m, ag) + (=115 ged(m, asugyy) =0
for each S C [k] with j ¢ S. This will complete the proof.

We need only show that ged(m, ag) = ged(m, asugy), or

1Y\ » 1 1
gcd(m,nH;>:gcd <m,n-;H—>. (7)
ies T ies

If p; t m, evidently they are equal, since removing a factor of p; from n will not change the
ged. If p; | m, then we need only check that the exponent of p; is the same on both sides of

(7). Indeed, note that
vy, (M) < vy, (n) = vy, (nH l) (xx)

vp, (M) < vy, (nl_‘[l%> — 1=y, (npljnp%) (#x)

From both (x*) and (***) we conclude that there are v, (m) factors of p; on both sides of
(7), as needed.

and thus

[Back to Problem]
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Solution 142

Call the gloves Glove A and Glove B. To mix all the three bowls, I can use the following
procedure. All gloves are to be put on my dominant hand, which shall do all the mixing.

1. Wear Glove A, and then wear Glove B on top of that. Then I'll mix the the first bowl
with this.

2. T'll take off Glove B and then mix the second bowl using only Glove A.

3. Lastly, I turn Glove B inside-out and wear it on top of Glove A. I mix the third bowl
with this.

Tadal!
[ |

Remark: Those who recognize the problem’s premise have likely inferred that I've deemed
its original context quite unsavory for a general audience. This is true, and rewriting the
problem has proven to be quite bothersome. Indeed, it took me more than a year to come
up with a more family-friendly setting!

Here are two highly mathematical problems relying on the same premise, for your perusal.

e m employees from company A are meeting with n companies from company B for a
company merger. Every employee from A must shake hands with every employee from
company B. Assuming that all employees are germaphobes, what is the least number
of gloves needed to accomplish this?

e n germaphobic graduate students are getting to know each other. Every pair of grad-
uate students must shake hands. What is the least number of gloves needed to accom-
plish this?

Source: Classic

[Back to Problem]
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Solution 143

Let Leilani be the first guard to complete their loop around the museum (or, any such
guard that completes their loop at the first time in which a guard’s loop is completed).
Consider a point 7" in time at which Leilani is in the final room in her tour of the museum
before she returns to her assigned room.

We claim that at time 7', no guard is watching their assigned room. Indeed, Leilani is not
watching her assigned room. Now consider any other guard, and suppose for contradiction
that this guard is watching their assigned room. Then there are two possibilities: Either

(1) the guard has not yet started their tour, or
(2) the guard has finished their tour.
Since Leilani was the first guard to complete their tour, (2) is impossible. So (1) must be
the case. That is, the guard has stayed put up to time 7. But Leilani visited this guard’s

assigned room without encountering them, a contradiction.
|

Remark: You can also consider the last guard to start their tour, and then study a point in
time when this guard has just exited their assigned room.

Source: Leningrad Mathematical Olympiad, abridged slightly by me

[Back to Problem|]
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Solution 144

Part (a)

The answer is yes. Take T to be the following triangle formed by three vertices of a
regular heptagon H.

To win with this triangle, Amber only needs to choose 7 points that form a regular heptagon
congruent to H. This works because any 2-coloring of the vertices of H must contain a
congruent copy of 7.

One way to reason this is as follows: Since 7 is odd, two adjacent vertices must have
the same color. Without loss of generality we may assume that these vertices are D and F
(following the labels in the diagram) and that they are red. If B is red then ABDE is a red
triangle congruent to 7', so we may assume that B is blue. Similarly we may assume G is
blue. Now if C' is blue then ABGC' is a blue triangle congruent to 7', so we may assume C
(and, symmetrically, F') are red. With this, ACFD is a red triangle congruent to 7.
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Part (b)

I thank “wen” for finding this construction. The answer is yes. Take T to be an equilateral
triangle with height 1 (hence a side length of \%) Then, to prevent Amber from winning,

Beth employs the following simple strategy: If Amber chooses the point (z,y), then Beth
colors (z,y) red if |z| is even, and otherwise colors (x,y) blue if [z] is odd.

In this way, Beth essentially colors the zy-plane in alternating “stripes” of red and blue.

> N

N

Beth’s strategy, with some sample copies of T’

/

Amber can never win because T' is “too wide” to fit inside one stripe, but “too thin” for
its vertices to land in two different same-color stripes.

More concretely, a copy of T' can fit inside a red stripe if and only if there exists a line
such that the orthogonal projection of T unto this line has length less than 1. It is not too
hard to see that the minimum possible value for the length of this projection (the “minimum
width” of T) is given by the length of the shortest height of 7', which is 1. So this case is
not possible.

On the other hand, for a copy of T" to have vertices across two different red stripes, say,
A in one stripe and B, C' in the other, we have that the height from A to BC crosses the
width of a blue stripe. So this height has length greater than 1, which is impossible since
the heights of AABC have lengths exactly 1.
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The same reasoning holds for the blue stripes, exhausting all reasonable possibilities for
a monochromatic copy of T to exist, completing the proof. In fact, this argument shows
that any triangle for which such a coloring will result in a win for Beth must have all of its
heights to have length both > 1 and < 1, and it is easy to see that the equilateral triangle

of height 1 is the only such triangle.
|

[Back to Problem|]
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Solution 145

Since each side is 2m-periodic and is invariant under a reflection about x = m, it is
sufficient to consider 0 < 2 < 7. In fact, since a reflection over x = 7/2 negates sin(cosz)
but does nothing to cos(sinx), it is sufficient to consider 0 < z < 7/2, where sin(cosx) is
non-negative.

For such z, we may write
sin(cos z) < cosx < cos(sinx), (%)

where we have applied the inequality siny < y for y > 0, twice, and have used the fact that
cos is decreasing over [0, 7/2].

Since the equality case of siny < y occurs only when y = 0, we could only have equality
in (%) if cosz = 0 and « = 0 hold simultaneously, which cannot be the case, so it is strict.
|

[Back to Problem]
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Solution 146

There are six points of tangency, distributed symmetrically over the surface of the sphere,
and so they form the vertices of a regular octahedron with edge length /2. The answer is

the circumradius of one of its sides, which is %

[ |
Source: Me, for CMIMC

[Back to Problem|]



CHAPTER 4. SOLUTIONS Solution to Problem 147 483

Solution 147

This video by polylog (https://www.youtube.com/watch?v=-64UT8yikng) does a very
nice job at showcasing a construction for the dice. Give it a watch if you’d prefer a more
visual explanation.

It suffices to construct a finite sequence of elements in {1,2,...,n} such that the subse-

quence (1), 7(2),...,m(n) appears equally many times over all permutations 7 : {1,--- ,n} —
1,---,nh.
We go by induction. Obviously, by taking the sequence 1,2,--- ,n, we can construct a

sequence such that the one-element subsequence (i) appears equally many times over all i.

Now assume that for some 1 < k < n, we have constructed a sequence A for which the

sequence ap, as, - -+ ,ag appears as a subsequence of A equally many times over all possible
selection of k distinct elements a1, a9, - ,ar € {1,2,--- ;n}.
Let 7y, g, + -+ , Ty be the n! permutations on {1,2,---  n}. Denote by m;(A) the sequence

whose jth element is m;(A;). That is, it is simply the sequence A but with its elements
relabeled according to m;. Now we take the sequence

B :=m(A)"m(A)” T ma(A),

where — denotes concatenation of sequences. We claim that the sequence by, by, - -, briq
appears as a subsequence of B equally many times over all possible selection of k+ 1 distinct
elements by, by, -+ ,bpy € {1,2,--- ,n}.

It is easier to see this by reverting back to the probabilistic view: Let us select a random
subsequence b of B which consists of k£ 4+ 1 distinct integers. Then we claim that every
selection and ordering of these k + 1 integers is equally likely.

There are two ways to pick such a subsequence b.

e The first way is that all elements of b fall into the same 7;(A) sequence for some i. If
we must choose b in this way, then it is equally likely to fall into any m;(A) for any
1 <4 <nl. Since 7y, --- , m, runs through all permutations, this forces every selection
and ordering of b to be equally likely.

e The second way is that the first way does not occur. That is, each m;(A) contains at
most k elements of b. Suppose we restrict the probability space to a specific way to
distribute the elements in this way (e.g. consider only subsequences b with 3 elements
in m7(A), 2 elements in 7g(A), and k — 4 elements in m9(A)). By definition of A, every
possible selection and ordering of the elements of b within some m;(A) is equally likely.
This holds for all i, so every selection and ordering of b is equally likely.


https://www.youtube.com/watch?v=-64UT8yikng
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This completes the induction.

[Back to Problem]
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Solution 148

Consider a gridline segment. If it’s on the border, then it can be claimed and counted
towards the perimeter by claiming the square that it borders. Otherwise, the segment will
either not count towards either player’s perimeter (when both adjacent squares are claimed
by the same player) or it will count equally towards both player’s perimeters (when the
adjacent squares are claimed by different players).

Thus, no interior gridline segment will help either player win. The only factor that
contributes to the difference in the players’ perimeters is the number of segments claimed on
the boundary of the grid. Thus the best strategy entails claiming as many such segments as
possible.

The corner squares are worth the most since they each contain two boundary segments.
Ashley and Beth must first rush to claim as many of these as possible, and they will be tied
in doing so because four is even. Then, since there are an even number of non-corner squares
along the boundary (4 x 2021, to be exact), they will also be tied in claiming the number
of such squares. So they will tie in the end. This fully decides the game since, as discussed,
nothing that occurs in the interior of the board actually matters. So they will tie.

[ |
Source: Math Hour Olympiad

[Back to Problem|]
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Solution 149

Part (a)

We take the (72‘) points that have exactly two components equal to 1, with all other

components equal to 0.

For any two distinct such points, their “1-components” either “overlap” at one component,
resulting in one possible distance (\/5), or they do not “overlap”, resulting in a second
possible distance (v/4).

Part (b)

We use the construction for Part (a) for the next dimension, R"*!! The key observation is
that the (";1) points in the constructed set are coplanar (i.e. lie in a common n-dimensional
subspace), and this is because they all lie in the hyperplane xy + 9 + -+ - + 2,41 = 2. This
hyperplane is a copy of R", thus this corresponds to a two-distance set of size ("+1) in R™.

2
|

[Back to Problem]
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Solution 150

Part (a)
The answer is neither!

We will biject each way that Ai could go broke first to a way that Beth can go broke that
has the same probability of occurring. This will prove that Ai and Beth are equally likely to
have gone broke first.

The bijection is simple: For a sequence of coin flips where Ai goes broke first, flip every
heads to a tails and vice versa, then switch Ai’s and Beth’s sequences of coinflips.

v QOO
. DOOOO®

v @OOOO®
516100,

It is easy to see that this results in a game where Beth goes bankrupt first instead of Ai,
and that this is a bijection.

To see that they have the same probability of occurring, observe that when Ai and Beth
go bankrupt, the difference between the tails flipped and heads flipped by Ai is equal to the
difference between the heads flipped and tails flipped by Beth, because they start with the
same amount of money. Thus the total number of heads flipped is equal to the total number
of tails flipped. Ergo, switching all heads to tails and vice versa does not change the total
number of heads and tails.

Part (b)

We use the same bijection in which we flip every heads to a tails and vice versa. However,
we now note that in the new sequence, the probability decreases.
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Ai goes broke Beth goes broke

OOOOBHE®®E)
Vv

Beth goes broke Ai goes broke

HOHEOOO®

This is because in the original sequence, Beth goes broke last, meaning there were more
heads than tails. The transformed sequence will then have more tails than heads. Since
heads are more likely, the original sequence will always be more likely than the transformed
sequence.

We deduce that Beth is more likely to go broke last. So Ai is more likely to go broke first.
[

Source: Peter Winkler

[Back to Problem|]
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Solution 151

Beth needs to only spend two dollars.

Beth first obtains an upper bound on the largest coefficient by asking for P(1). Let k be
the number of digits of P(1). Beth now knows that every coefficient has at most &k digits.
So, Beth now asks Angela to hand over the value of P(10%), and this forces Angela to quite
literally write down all the coefficients plainly.

For example, if P(z) = 312% 4+ 41x + 59, then Angela will end up giving Beth the value
of P(1000), which is 31041059. The selection of k ensures that no two coefficients “collide”
upon computing P(10%).

|

Remarks: Beth could have used any base in place of 10. If Beth were allowed to request
P(a) for a a real number, then in theory one dollar would be enough by simply asking or
P(7). Though, this would require infinitely precise computation to ensure victory.

Source: Classic

[Back to Problem|]
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Solution 152

A clean approach is as follows. To tie a rope around two nails consists of a sequence of
the following four actions:

e (L) Wrap it once counter-clockwise around the left nail.

e (L7') Wrap it once clockwise around the left nail.

(
(

e (R) Wrap it once counter-clockwise around the right nail.
(

e (R™1) Wrap it once clockwise around the right nail.

A sequence of such actions can be simplified if inverse operations are adjacent. For example,
LR™'RR simplifies to LR, and this represents the weight of the painting untying some of
its loops. If a sequence can fully simplify into an empty sequence, such as LRR™'L~!, then
this represents the knot failing and the painting falling.

We aim to generate such a sequence of these actions that cannot be simplified to an empty
sequence, but would collapse to an empty sequence if either all “left” actions (L, L™!) are
removed or all “right” actions (R, R™!) are removed, as this corresponds to removal of the
left nail or right nail.

Indeed, the commutator LR™'L~'R works! This corresponds to the following picture.
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You can verify visually that this painting will indeed fall if either nail is removed.

Remarks: See the paper http://arxiv.org/pdf/1203.3602.pdf for more problems of this
flavor. (It comes with nice pictures!)

[Back to Problem]
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Solution 153

We claim BEE is located here:

w

Suppose for contradiction that BEE is located elsewhere. If the location of BEE is known,
then for any sequence of cells of the form EE_or EE, we may deduce that the blank square
is an E, since we are guaranteed that BEE cannot appear more than once. Call this principle
“tripling”.

Consider the two “chains” of squares:
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(The chain of shaded squares leading out left of the diagonally-adjacent pair of E’s is
colored red. The chain of shaded squares on the right is colored blue. The square above the
bottom-most E is colored purple.)

We claim that the purple square is E. Suppose not. The BEE must be somewhere, and the
BEE’s B cannot be on both the red and blue chains at once. So one of the chains does not
contain the BEE’s B. Without loss of generality, suppose it is the red chain. Then by tripling,
starting from the two diagonally-adjacent E’s, we must keep placing E’s along the red chain
until we reach the purple square, which is a B, thus forming a second BEE, contradiction.

Using the same idea, it is not hard to deduce also that one of the red or blue squares
diagonally adjacent to the purple square is also an E. Without much harm to the generality
of the argument, let us place the E on the blue square.
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Since we have assumed for contradiction that the BEE we're looking for is not where
we claimed it is, we know that the pink square is an E. From here we need to do a bit of
gruntwork to expand to a more workable structure. First, observe by a simple inspection
that none of the three purples squares shown below can be a B, otherwise two BEEs will be
created among these squares.
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Next, the below purple square must be an E, otherwise by three triplings we see that the
orange squares are E and then the yellow square must be an E, creating two BEESs.

ElE|E

(The colors of the shaded squares, in “book order”, are: orange, purple, orange, yellow)

At this point, we see that if any of the four below purple squares are B, then the other three
must be E, creating two BEEs. So in fact, all of them are E.
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What we have accomplished with this work is the creation of a ”"square” of E’s. The
major claim is that we can always expand any square of E’s in any direction. Note that in
general it is safe to assume that the empty squares above exist.

Indeed, we have for free that the three below purple squares are E,
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and that, as before, all of the four purple squares below must simultaneously be E.

We have thus proven the major claim. By iteratively applying the major claim, we may fill
the following squares with E’s.



CHAPTER 4. SOLUTIONS Solution to Problem 153 498

E{EJE(EJE|E|JE|E|E|E]JE|E|E|E|E|E|E
E E E E E E E E E
EJEE|E|E|EJEJEJE|E|E[EJEJEJE|E]E
E E E E E E E E E
EJIEJE|E|E|E|JEJE|E|E|E|[E|JE|EJE|E]E
E E E E E E E E E
EJEJE|E|JE|EJEJEJEJEJE[EJEJEJE|E]E
E E E E E E E E E
EJEIE|E|E|EJEJEJE|E|E|[EJEJE]E|E]E
E E E E E E E E E
EIE|E|E|E|E|JEJE|E|E|E|[EJEJE]E|E]|E
E E E E E E E E E
EJEJE|E|JE|EJEJEJEJEJE[EJEJEJE|E]E
E E E E E E E E E
EJEJE|E|E|EJEJEJE|E|E[EJEJEJE|E]E
E E E E E E E E E
EJE|EJE|JE]JEE|EJE|E|EJE]JEJE|E|E|E

From here, it is now not difficult to argue that all of the remaining blank squares must be
the same letter, i.e. either all B’s or all E’s. It follows that BEE does not appear in the grid,
contradiction.

[ ]
Source: Me!

[Back to Problem|]
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Solution 154

Let the quartic be P(x) = az* + ba® + cz® + dx + e.

e Adding a linear function to P(x) corresponds to an affine transformation of the plane,
which preserves ratios along lines. Thus we may add —dxz — e to assume WLOG that
P(x) takes the form az* + ba® + ca?.

e By vertical scaling, which also preserves ratios along lines, we may divide by a to
assume that P(zx) takes the form x* + bz® + ca?.

e —) is the sum of the roots of P, and by translation we can assume that this sum is
zero. So we may assume that P(z) takes the form z* + cz?.

e By a horizontal scaling by a factor of ﬁ, followed by another vertical scaling, we may

assume that P(z) is either 2% + 22 or 2* — 2.

The second derivatives of these two candidates are 1222 + 2 and 1222 — 2. Since there are
two inflection points, we may eliminate the first candidate. The inflection points then occur
at the roots of 2 — 1/6. Now write

' —2* +5/36 = (2° — 1/6)(z* — 5/6).

This shows that the line connecting these inflection points is given by y = —5/36, and that
the other intersections of this line with the graph of z* — 22 occur at z = +/5/6. The

desired ratio is then
\V/5/ V/1/6 —\/BH—@

6~ (—/1/0)
VIG— (—/16) 2

as needed.

Source: This is called “Lin McMullin’s Theorem”.

[Back to Problem]
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Solution 155

Part (a)

We guess that f(z) takes the form ax®. If f'(x) = f~1(z), then

Gb{lﬁbil — afl/ba:l/b‘

ab = aq~1/°
b—1=1/b

The second equation immediately gives b = ¢. So it remains to solve for a in pa = a=/%.

So we wish to solve the system

Dividing by a gives a /¢ ' =pora ¥ =¢. Soa = g0_71. We conclude that

flx) = g eu?

is a solution.

Part (b)
Step 0

Since x € (0, 00), we must have f~'(z) > 0, and so f/(z) > 0 for all z. Moreover we must
have f(07) =0 and f(co) = oo in order for f~! to be well-defined for all z > 0. In view of
this we may treat f to be of type f : [0, 00] — [0, 00].

Step 1

The key tool is that if we know that f(x) > az® for x € [0, T], then we have the following
deductions:

fx)>ax’ for 0 <z <T — f! <<z> for 0 <z < f(T)
x\ /b
@<(3)
</0(> dt for 0 <z < f(T)
b
+1

— /@) < Grpant

for 0 <z < f(T)

)al/bx v for 0 <a < f(T)

We similarly have that

flz)<ar® for 0< o <T = f(z) > ——7x b for 0 <a < f(T).
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For this to be of use, we need to select a T" so that [0,7] = [0, f(T")]. This motivates
locating a non-trivial fixed point of f.

Suppose for contradiction that f has no fixed point in (0,00). Then either f(x) > z or

flx) < aforall 0 <z < oo If f(z) >z = la' then f(z) < 5 (f)¥ = s for all

such z, and it is not too hard to see that this is contradictory with f(z) > x. Similarly the
hypothesis f(z) < z leads to a contradiction. So a fixed point z( € (0, c0) exists.
Step 2

xg is, in fact, the unique fixed point in (0, 00). To see this, write

" _i —1 ) = 1
PO =@l = 5@ ~°

to deduce that f is strictly convex for z > 0. Now, as f(0) = 0 and f(z¢) = zo, it must
follow that f(z) <z for 0 < x < x¢, and f(x) > x for zy < z < oco.

Step 3

We now repeatedly apply Step 1 to the inequality f(z) < x over the interval [0, zo]. Let
ag = 1, by = 1, and, recursively, define

and
b1 +1

b, :=
bn—l

for n > 1. Then f(x) < apz® for = € [0, 7], and so Step 1 tells us that f(x) > aya® for
x € [0, z9]. Proceeding inductively, we discover that

Ao 2P+ < f(2) < agpa®*, x € [0, zo)

for all k. In the next step we will see that as k — oo, the upper and lower bounds will
-1
squeeze f to the function ¢« x¥.

Step 4

We will now show that the sequences {a,}, and {b,}, converge. It is classical that {b,},
converges to ¢ and so I will omit the proof of this. As for {a,},, we will apply the following
lemma which I will prove later.
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Lemma 1

Suppose that the sequences {r,}, and {s,}, converge to r and s respectively, and that
|r| < 1. Then the sequence {u,}, recursively defined by

Up = Tp—1Up—1 + Sp—1

converges for any initial data wug.

To apply this lemma, apply the logarithm to the definition of a,, to find that

] —1 bna 1
og a, = log s+ 1) b 0g Ap_1.

We apply the lemma to the sequence {log a,, },,, noting that —ﬁ — —%0 and that ‘—%@‘ < 1.

This tells us that log a,, converges, hence so does a,,.

To find the value of the limit of a,,, we simply send n — oo in the definition of a,. This,
1
combined with some algebra, will give us that lim,, , a, = ¢ ¥, which is what we expected.

From the convergence of these sequences, we may conclude by the squeeze rule that
1
f(z) = ¢ va® for all x € [0, xg).

Step 5

Since xg is a fixed point,
1
zo = f(20) = ¢ 2§

and so we may now solve for xy. Working out the algebra, we find that xy = ¢.
Step 6

We know from strict convexity that f(z) > x over (xg,00) = (¢, 00). It follows that, for
any large T' > ¢ of our choice, we have that

1
f(z) > fﬁ
for all 0 < 2 < T'. Indeed, for 0 < 2 < ¢ you can verify that f(z) = ¢~ "/¢2% > Z2?, and for

¢ <z <T we have f(z) >z > a7

Hence, if we define the sequences {a, }, and {b, } as in Step 3, with initial data ay = 7 and
bo = 2, then by Step 1, we must have f(z) < a12® for 0 < z < f(T). But f(T) > £T% =T,

so f(z) < apx® holds for 0 <z < T

Inductively, as in Step 3, we thus obtain

a9’ < flz) < Aoy T2+ x€[0,7T)
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for all k. By Step 4, the upper and lower bounds converge and squeeze f(z) so that we get
f(z) = ¢~ Y%2¥ for all 0 < x < T. But T was arbitrary, so this conclusion holds for all
0 < x < co. This completes the main proof.

Step 7

Finally, we prove the lemma. The proof I present is a bit weird, and it turns out to be
slightly cleaner to re-index the sequences: Suppose r, — r and s, — s with |r| < 1, and
recursively define u,, = r,u,_1 + s,. Then we claim wu,, converges for any uy.

Sn

[ it is sufficient to show that

- S

Since =

We in fact claim that w, — .

_Sn__
1—rp

Uy, — — 0.

Before we begin to do this, it will be important for later to demonstrate that {u,}, is
bounded. First, pick some R > 0 strictly between |r| and 1. Then there is some N large
enough so that |r,| < R <1 for all n > N. For all such n we have

|un| < Rlup—1|+ S

where S is an upper bound on |s,|. By induction, we have that |u,| < A" (Juy|) where
h(z) := Rz + S, and since |R| < 1 the Banach Fixed Point theorem applied to h shows that
lim,, oo K"V (Juy|) exists, proving that u, is bounded.

Sn

We return to the proof that T

n > N., the following hold:

— 0. Fix ¢ > 0 and find N, such that for all

Up —

Sn _ S £ 3 Sn Sn—1
o |12 — % | < {5 (In particular we seek |*2- — Z=—| <¢)
e N. > N, so that |r,| < R < 1.
Then, for n > N., we have the following bound.
Sn Sn
Up — = |ThUp—1 + Sp —
1—r, 1—r,
/rnsn
= [TpUn—-1 —
1—7r,
Sn
= |Tn| | Up—1 —
1—7r,
Sn Sn Sn—1
S |Tn| | Up—1 — + |rn| : -
1—r, 1—7r, 1—7r,
Sn
S ‘Tnl C|Up—1 — + |Tn’€'
1—r,
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204

Inductively,

Sn SN,

1—

Up — S ‘ann—l cee TN5+1|' UN, —
1—r,

£

Sn
1—ry

Now, we will demonstrate that this is small. For the first term, both wu,, and

Sn

sequences, hence so is |u, — 7%
n
an upper bound on |u, — $2—|, then
n
SN, n—N,
|7”n7’n,1...7“]\[€+1‘ . ’l,LN€ — , SR EM
— A,

For the other terms, we again apply the bound |ri| < R to find that

n—Ng 00
€
ITnle + [rnrn1le + -+ |rarn_1 ... Tnqale < € ; RF < ekZ_ORk < &

In all, we have for all n > N, that

s €
Uy — ———| < RPN M 4 :
1—r,| — 1-R
Sending n — oo,
li on < S
imsup |u, — < .
But € was arbitrary, so |u, — == = 0.

+|rplet|rarn_1le+ A |rarn_1 ... Tn.41lE

are bounded

. Moreover |r| < R < 1foralln <k < N.yq. So,if M is

Remark: T've taken the time to write this argument in detail because most popular sources
which mention this problem do not seem to bother with proving the uniqueness of the
solution. This is perfectly understandable since any proof of uniqueness will likely be quite

technical.

[Back to Problem]
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Solution 156

The answer is é where ¢ is the golden ratio. Let > apx® be our polynomial, so that

ar € {0,1} for all k& and
0= Z apz”.
k=0

Since z # 0, we may divide by a power of z so that the constant term is 1. That is, we may
assume WLOG that ag = 1. Thus

0=1+ Z akzk.
k=1

There are now two cases.
Case 1: a; = 0, i.e. there is no 2! on the RHS.

Then

n

-1 = Z aiz”,

k=2
and so we may use the rough bound

- k = k |Z|2
1<) aplzff <) Jzff = e
k=2 k=2

So |z]* 4+ |z| — 1 > 0 which directly implies |z]| > 1/¢.

Case 2: a; =1

Then we have

Ozl—i-z—i-Zakzk.
k=2

Multiplying by 1 — z on each side gives

0:1—22+Zbkzk
k=3

where b, € {—1,0,1}. Now there is no z term, and the coefficients of —1 are not an issue
for the argument in Case 1, so we may repeat the argument in Case 1 to deduce again that

2| > 1/¢.

This shows that 1/¢ is a lower bound. To “obtain” 1/, note that z = —1/¢ is a solution
to
O=14+2+22+22+2"+....
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So we can expect that for large n, there is a root of 14 2z + 2% + 2% + 27 + ... + 22"*! that is
quite close to —1/¢.

If you want the murky details, here you go. Fix ¢ > 0. Let f,(2) = 14 > ;_, 2**™! and
gn(2) = > op i1 22 so that z = —1/¢ is a root of f,,+¢y,. Since | —1/¢| < 1, we have that
fn 4 gn is holomorphic around a neighborhood D,.(—1/¢) of —1/¢ by studying the radius of
convergence. For a choice of 0 < r < £ small enough we can guarantee that f, + g, does not
vanish on 0D,(—1/y), so |fn + gn| > 6 > 0 over 0D, (—1/¢). Moreover we see that g, — 0
uniformly on D, (—1/¢) so we may pick an n so large that 2|g,| < d on 0D, (—1/¢). For this
n we have

2lgn] <6 < |fu+ gul < |ful + |gnl

or |gn| < |ful, over 0D, (—1/p). Of course, both f,, and ¢, are holomorphic in D,(—1/¢),
so by Rouché’s theorem f, and f, + g, have the same number of roots in D,(—1/¢). We
conclude that f,, which is a polynomial, has at least one root in D,.(—1/¢) C D.(—1/p).

But € was arbitrary.
|

Source: Putnam, modified slightly

[Back to Problem]
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Solution 157

We first take v = 1 + x¥ to convert to

1 [ 1
I = —/ —— du
¥ J1 u‘P(U_ 1)7

In order to make the integrand’s structure more symmetrical, we now take v = 1/u to write

I as -
1 Y v e
]:_/ L
“Jo v (l—w) e

Miraculously, using, ? — ¢ — 1 = 0, this simplifies as

1 [t 1
® Jo (1—0)7

This evaluates to é . %, which is just 1, as needed.

|
Remark: We are quite confident that p = ¢ is the unique value of p that solves
o 1
/ S
0 (]. -+ 'Tp)p
This can be seen visually using Desmos by either graphing the function f(z) = 050 m dt

(which is computationally expensive) or using a few substitutions to discover that, for p > 1,

[ S0

L+ar)p "~ I'(1+ p) ’

e 1)r(1
and then graphing % (by implementing the Gamma function as (z — 1)!). This is
equal to the original integral only on (1,00) due to convergence issues on (0,1). I do not

know of an elegant way to rigorously demonstrate the uniqueness of p = .

[Back to Problem]
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Solution 158

Let n > 1 be the degree of P, and let z1, ..., z, be the roots of P.

Black Magic Claim: For all real x € [0, 3], we have
jz(z — 1)z = 2)(z - 3)| <1,
with equality iff x € {%g}

Proof.  Write
r(z—1)(z —2)(x —3) = (2? = 32)(2* =30 +2) = (2 — 32+ 1)* — 1.

So the inequality is equivalent to showing that |22 — 3z + 1| € [0,+/2|. An analysis of the
extreme values of the quadratic % — 3z + 1 over [0, 3] reveal that, in fact, 0 < |22 —3z+1| <
V2, and the equality case |22 — 3z + 1| = 0 occurs exactly at the roots of the quadratic,

T = —312*/5. U

With the claim, the proof is amazingly short: note that by the claim applied to each x;,
[PO)P(1)PR)PB)| = [ ] (e — 1) — 2)(w: = 3)| < 1.
i=1

On the other hand, since P has no integer root, we know |P(0)P(1)P(2)P(3)| > 1.

Thus equality holds everywhere. In particular, equality holds in the black magic claim for
each z;, so z; € {%‘?’} for all 2. The end is simple: in order for P to have integer coefficients,

there must be an equal amount of 3+2‘/5 and 3_2\/5 among its roots, so in particular #5 i

a root. Thus P <#5) =0.

S

Remarks: To say that this problem is shrouded in mystery would be an understatement.
Back in my high school years, I put this in my personal collection of interesting problems,
but I didn’t mark its source. To this day, despite my best efforts to track down its origins,
I haven’t the slightest clue where it came from, much less who invented it.

Unfortunately, I also didn’t know how to solve it. In several layers of outsourcing, some
very dedicated solvers came up with a variety of convoluted but fascinating methodologies.
It was only after quite some time that someone on AoPS sent me the “”true” solution given
above: a completely elementary proof of the statement that was not more than half a page.
Yet, almost comically, they did not know the source of the proof — a black magic solution
from nowhere to a problem that came from nowhere.

Source: I have no idea.

[Back to Problem]
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Solution to the Grand Finale

After reading all the problems, it is evident that there is something funky going on. The
12 problems appear to be “positioned” in some way, with their answers labeled using the
letters A, B, C, D, E, F', G, H, I, J, K, and L. The biggest hint as to what is going on is
revealed in Problem 160:

e “Let B be the answer to the problem that is counter-clockwise adjacent to (and
at the same altitude as) this one...”

e “The ‘counter-clockwise’ direction is from the perspective of an observer looking
down from above...”
This suggests that the problems are positioned as points in 3D space, and connected to each
other in some way in order to determine which problems are “adjacent”.
The exact shape formed by these problems and their connections must be inferred from
some other details. These include:
e There are exactly 12 problems.

One problem is labeled the “abyss”, and one problem is labeled the “peak”.

Problems 162, 164, and 166 imply that there is only one problem below them.

Problems 161, 163, 165, 167, 169 all mention the “two adjacent problems below” them.

Problem 170, the “peak”, says there are exactly five problems adjacent to it.

The number five is a particularly damning piece of evidence: This is an icosahedron.
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(A is the bottom-most vertex. Above A is the reqular pentagon BCDEF', whose vertices are
written in counter-clockwise order from when looking from above. Above this is pentagon
GHIJK, also in counter-clockwise order. L is the top-most vertex.)

Using the relative positionings implied by the problem statements, we can match up letters
with problem numbers. The assignment is confirmed when one notices that the sequences
A B,...,K,L and 159,160, ...,169, 170 both correspond to paths connecting adjacent ver-
tices starting from the bottom and ending at the top. Note that the letters G, H, I, J, and
L are never mentioned in the problems, but their existence and locations can be inferred
from the previous points.

The arrows in the above diagram represent the dependencies required to solve each prob-
lem. However, none of the answers are given, and the only problem with no dependencies,
Problem 159 (A), has been corrupted and hence cannot be solved. Thus, we will need to get
creative.

Problem 159 (A)

There is no information here, so the value of A must be inferred from the problems that
reference it.
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Problem 160 (F)
We claim that WZ = B+/2.

For the sake of elegance, scale the diagram down by a factor of B so that WX = 1.

P

It is clear that AW XY is equilateral and AX PY is isosceles. Chasing angles, we find that
WY Z =90° and ZZYQ = 30°. If we let WZ = x and Y@QQ = y, then by the sine area

formula for triangles,

Wz _wyz) _

ZQ  [2YQ)
so xy = 2. By Law of Cosines on AY QW

(YW)(YZ)sin90° _ 2

(YZ)(YQ)sin30°  y’

b [ [N

(z+1)? =12 +4* +y,
or 2 + 2z = y* +y. Substituting y = 2/x gives
at+22° — 20 —4=0

which factors as (z° — 2)(z +2) = 0. Thus 2 = /2. After undoing the scaling by B from
the beginning of this solution, we get WZ = B+/2, as claimed.

Now logg(WZ) =1+ %logB 2. Since this is rational, loggz 2 must be rational. So B is a
rational power of 2. Since the answer to Problem 162 (B) is a positive integer, B must in
fact be 2* for a positive integer k (note that k # 0 because the base of a logarithm cannot
be 1). Given k, we can then write

I k+1 p
.

1
14 -logp2—14-—""2
+30g3 +l€ L

No matter the value of k, it must be the case that p = k and ¢g = k+ 1. So |p—¢q| =1,

giving [F = 1]
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Problem 161 (G)

This is actually quite subtle, and so we will come back to this later.
Problem 162 (B)

We claim that A = n!.

Assign each square a rank based on how far north-east they are, with the long diagonal
being rank 0.

(Ranks for n =6)

Observe that no snake can occupy more than two rank-0 squares. Now let us focus on the
squares of positive rank, from 1 to n — 1.

e One of the n snakes must reach the top-right-most square, i.e. the sole square of rank
n— 1.

e That snake will occupy one of the squares of rank n — 2, leaving just one more square
of rank n — 2 unoccupied by them. That square must be occupied by one of the other
n — 1 snakes.

e The two snakes from the previous two bullet points must occupy two squares of rank
n — 3, leaving just one more square of rank n — 3 unoccupied by them. That square
must be occupied by one of the other n — 2 snakes.

e The n — 1 snakes from the previous n — 1 bullet points must occupied n — 1 squares of
rank 1, leaving just one more square of rank 1 unoccupied by them. That square must
be occupied by the last remaining snake.
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From this reasoning, we deduce that for each 0 < k < n — 1, there is exactly one snake
that occupies k squares of positive rank. There are n! ways to assign these snakes to the n
squares of rank 0, and this uniquely determines how the snake covers the squares! This is
because the identity of the snake corresponding to k = 0, i.e. the snake that does not reach
rank 1, uniquely determines how the other n — 1 snakes must occupy rank 1.

ol
Il
i~

>~
Il
—

|| c——

Then, one of these n — 1 snakes corresponds to k& = 1, meaning that this snake does not
reach rank 2, and this uniquely determines how the other n — 2 snakes must occupy rank 2.

El

I

o
|| cm—
ot

Inductively we obtain the uniqueness of the covering for the positive rank squares, and by an
entirely symmetrical argument we get the uniqueness of the covering for the negative rank
squares as well. This completes the proof that there are exactly n! coverings.

Hence A = B!.
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Problem 163 (H)
We immediately get the information that B and C' are perfect squares greater than 1.

The lengths of the numbers {b"},>; in base v/B are

{llog 50" | + 1}n>1 = {|nlog, 50| + 1}n>1,

and their lengths in base v/C are

{llog & b"] + 1}n>1 = {[nlog zb] + 1}n>1.

So the sequences {|nlog 50b]}n>1 and {[nlog /&b]},>1 partition N. We can now rely on
asymptotics: the former sequence has density ﬁ in N, and the latter has density ﬁ,
B C

\/7 b
thus
1 1

log, /50 + log,/zb B
(See also Rayleigh’s Theorem: https://en.wikipedia.org/wiki/Beatty_sequence). Now,

1 = log, VB + log, V'C = log, V BC,
which entails that b = v/ BC. So H = v BC.

1.

Problem 164 (C)

P

By Ptolemy’s theorem on quadrilateral PX ZY,
PX-ZY +PY  -XZ=PZ-XY.

But XY =YZ=XZ so PX+ PY =PZ. Hence C = A+ K.


https://en.wikipedia.org/wiki/Beatty_sequence

CHAPTER 4. SOLUTIONS Solution to Problem 158 515

Problem 165 (1)

By the factorization a® + b+ ¢* — 3abc = (a + b+ ¢)(a® + b* + ¢ — ab — be — ca), we have
the implication a +b+c =0 = @+ b® + ¢® = 3abe. Applying this to x —y, y — 2, and
z — x, we find that p = (x —y)(y — 2)(z — z). So

C+D—F=(x-y)ly—2(z—2).
It is difficult to make progress with this without knowing C, D, and F', so we must move on.
Problem 166 (D)

We claim that A must be a multiple of 6, and that the answer is (4/6)!. A few example
tilings are shown below.

To argue that A must be a multiple of 6, first note that an angle of the A-gon can only
be partitioned by the angles of at most two rhombi, because all angles are strictly less than
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180° and 1680%0 = 3. It follows that, among the triangles and rhombi that share a side with the
A-gon (which can be thought of as the “first layer”), the consecutive sequences of rhombi
must be connected by a sequences of sides that are all mutually parallel. From this, it is not
hard to deduce that there exists at least one equilateral triangle in this “first layer”. Then,
via a computation or otherwise, it can be shown that the first layer must have exactly six

equilateral triangles, positioned symmetrically, which forces A to be divisible by 6.

More generally, if we let A = 6n, it can be seen that any such tiling of the 6n-gon must
consist of n layers of rhombi and triangles. Each layer, starting with the outermost one,
consists of exactly 6 equilateral triangles placed symmetrically, with the gaps in between
them filled rhombi. When this layer is removed, we are left with a (not necessarily regular)
polygon with 6 fewer sides.

Intuitively, you should view the first layer as “removing” those 6 sides marked by the
equilateral triangles, and all other sides are translated along the sides of these equilateral
triangles to form the boundary of the smaller polygon. This process can then be repeated
for the smaller polygon, again and again, until we are left with the “0O-sided polygon” at the
center.

For the first layer, there are n ways to choose the positions of the equilateral triangles.
For the next layer, since there are now 6(n — 1) sides, there will be (n — 1) ways to choose
the positions of the equilateral triangles. If we keep going, the conclusion is not too hard to
infer: There will be n! ways in total to choose the positions of the triangles, and therefore,
n! ways to tile the 6n-gon. Since n = A/6, we get D = (A/6)!.

Problem 167 (J)
This is a bit tricky without knowing D and E, so we will return later.
Problem 168 (£)

It is clear that E is a positive integer and that £ > 2. Unfortunately, we claim that no
more information can be deduced about E from this problem alone.

This is because if the sizes of the fish are X, X, ..., Xg_1, and Y is their minimum, then
for t € (0,1),
E-1
P(Y >t)=P(Xy >t,...,Xp1 > t) = [[P(X; > 1)
i=1

=P(X, >t =1 -t)F

SO

1 1
1
EY:/ P(th)dt:/(l—t)E_ldt:E.

0 0

So the answer, E, is given by (%)_1, reducing to F = E, telling us nothing.
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Problem 169 (K)

The key idea is that rearranging the sides of a cyclic polygon does not change its areal
We can therefore rearrange the sides into the following far more pleasing octagon.

Subdividing along the dashed lines, it becomes plain to see that the area is

E? + F? + 2V2EF.

When this is expressed as m + nyv/2, we have m + E? + F? and n = 2EF, so m +n =
E?+ F? =2FEF = (E+ F)? That is, K = (E + F)% Since E and F are integers, this tells
us that K is a perfect square! This will be crucial for later.

Problem 161 Revisited (G)

We know that F' = 1, so the only unknown dependency is B, which we know to be a
positive integer. From Problem 160, we know that B is a power of 2 that is greater than 1.
From Problem 163, we know that B is a perfect square greater than 1. Thus B is a power
of 4. Solving this problem will, at last, allow us to deduce the value of B.

By a reflection argument, the answer is essentially the length of the shortest path from
the X’ to Y, where X' is the reflection of X over Y Z and Y’ is the reflection of Y over X Z.
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At first glance, the answer appears to simply be the length of segment X’Y”, which can
be found by the Law of Cosines. However, if segment X'Y” exits the interior of pentagon
ZX'Y XY’ then after reflecting back, this segment will correspond to a path that exits the
triangle and fails to visit one of the segments ZX or ZY. This could occur if one segment
is too long compare to the other one.

(It’s a bit hard to see, but segment Y'X' lies slightly above segment Y X'.)

If this is the case, then the shortest path will instead be the union of the segments Y'Y and
Y X7, which has length 2sin40° + /1 + B2 — 2B cos 40°. It is inconceivable that this could
ever be written in the form /n for integer n (though I must confess that I have no rigorous
proof of this), so we must prevent this case from occurring.

Since F = 1 and B is an integer, X Z is the longer segment. We can now compute the
threshold that B would have to exceed for segment X'Y" to exit the pentagon. This threshold
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is exactly when Y'Y, and X are collinear. In which case, we may compute ZZY’' X’ = 50°
and ZZX'Y" = 10°, and now Law of Sines applied to AZX'Y” gives

B 1

sin50°  sin 10°

or B = % ~ 4.411. So B cannot exceed 4. But we know that B is a power of 4 that is

greater than 1, therefore .

We now obtain an explosion of information:

The answer to this problem, by the Law of Cosines, is given by

VG = /12 + 42 = 2(1)(4) cos 120° = V21,
so[G = 21].
From Problem 162, A = B! = 4! and so .
From Problem 166, D = (A/6)! = 4! and so .

From Problem 164, C' = A+ K = 24+ K. From Problem 169, K = (E+F)? = (E+1)2.
From Problem 163, C' is a perfect square. Thus we have the factorization

2U=C-K=V0 —(BE+1?=(C+E+1)(C—E—1).

These factors sum to 2v/C which is even, so they must have the same parity. This
gives two possible cases:

VO+E+1=12 o VO+E+1=6
VO—-—FE—-1=2 VO —FE—1=4

These cases solve to (vO,E) = (7,4) and (v/C,E) = (5,0) respectively. However,
from Problem 168, we know that £ > 2, which eliminates the second case and gives

us |E =4|and |C = 49|

e Since K = (E+1)2 = (4+1)2, we get | K = 25].
e From Problem 163, we know that H = v/BC = /449, so | H = 14|
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Problem 165 Revisited (/)

Now that we know that C' =49, D = 24, and F' = 1, we have
(2 — )y — )z —a) = 72

Up to cyclic symmetry there are two possible orderings for z, y and z: Either z < y < 2
or x >y > z. (Note that no two can be equal.) The latter is impossible since this then
(x —y)(y — 2)(z — x) would be negative, so x < y < z. Now write

(y—z)(z—y)(z —x) =172

so that all factors are positive. We see that the first two factors sum to the third. Studying
the divisors of 72 = 23.32, particularly the power of 2, a parity analysis gives two possibilities:
Either each of the three factors is even, or one of the factors is divisible by 23. The former
possibility can be ruled out easily, and so the factors are thus 1, 8,9 in some order. We are
left with two cases:

y—xr=1 y—x =28
2—y=28 or z—y=1
z—x =9 z2—x =29

Solving in terms of z, the first case gives (x,y,z) = (x,z + 1,2 + 9) and the second case
gives (x,y,2) = (x,z + 8,z +9). In either case, the maximum among {z,y, z} is z + 9 and
the minimum is x, and the difference between these extremes will always be 9. We conclude

that |1 = 9.
Problem 167 Revisited (/)

We now know that D + E? = 24 + 42 = 40. So we wish to determine the factorial n! that
should be removed from the product

(11)(21) ... (401)

so that what remains is a perfect square. We may rewrite this product into the form

(IN(11-2) - (31)(3!-4) ...~ (391)(39! - 40) = (1!-3!-...-39D)*(2-4 - ...-40)
= (1!-3!-...-39M2.2% . 20!
= (1!1-3!-...-39M2(21%)? . 20!,
which makes it clear that removing 20! will result in a perfect square, (1!-3!-...-39!)?(210)2

(The problem of investigating if this is the unique solution is left to the reader!) Thus

[J =20]
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Problem 170

We gather up the answers to the 5 adjacent problems:

o (=21
e H=14
e [ =9

o J=20
o K =25

Using the A1Z26 cipher, the numbers 21, 14,9, 20, and 25 correspond to the letters U, N, I,

T, and Y. The answer to the final problem is | UNITY |.
[ |

Indeed, the hidden purpose of the CMUMC POTD was to strengthen the sense of commu-
nity within the CMU Math Club and, therefore, unify its members. I'm overjoyed to know
that the countless fascinating problems that I've accumulated over the years have found
such a fulfilling purpose. Dear reader, whether you are from CMU or another place, whether
you've experienced the POTD during its lifespan or are solving from another time, I thank
you for your participation.

[Back to Problem|]
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