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1 Real Axioms, Natural Numbers, Induction, and AM-

GM

1.1 Warm-Up

I have two ropes. The first burns up in one minute when lit from one end, and the second
similarly burns up in two minutes. Burning rate is not necessarily uniform over the lengths
of these ropes.

Determine a method to measure 75 seconds.

Hint: Gel yvtugvat obgu fvqrf bs n ebcr ng bapr.

1.2 Messing Around With Axioms

We defined the real numbers, R, as an ordered field satisfying the supremum property.
We’ll tackle supremums later, but here are the takeaways from “ordered field”:

• That R is a field just means that it’s a nice place where we can add, subtract, multiply,
and even divide (but not by zero). Multiplication and addition are related via the
distributive property.

• It’s an ordered field, meaning that in addition to this nice stuff, there is an ordering
relation called ≤. The following are the axioms that construct such a relation.

• (Anything can be compared) For any x, y ∈ R, we have either x ≤ y or y ≤ x.

• (Transitivity) If x ≤ y ≤ z then x ≤ z.

• (Anti-Symmetry) If x ≤ y and y ≤ x then x = y.

• (Reflexivity) x ≤ x always.

• (Additive Preservation) If x ≤ y then x+ z ≤ y + z.

• (Multiplicative Preservation) If x ≥ 0 and y ≥ 0, then xy ≥ 0.

• If x ≥ y but x ̸= y, we say that x > y.

Let’s show that 1 > 0. First we need a lemma:

6
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Lemma 1.1

(−1)(−1) = 1

Proof. We have (1+(−1)) = 0. So (1+(−1))(1+(−1)) = (0)(0) = 0. Expanding, we get:

1 + (−1) + (−1) + (−1)(−1) = 0

Where we have used 1 ·x = x. Now, using again 1−1 = 0, we deduce that (−1)(−1) = 1. □

Exercise 1.1: Prove that 1 > 0.

Proof. Well, 1 ̸= 0. So either 1 > 0 or 1 < 0.

Case 1: 1 > 0

Then we are done lol.

Case 2: 1 < 0

Then 1+ (−1) < 0+ (−1), hence 0 < −1. Also, 0 < −1. Since both 0 < −1 and 0 < −1,
we get that 0 < (−1)(−1). By the previous lemma, this is equivalent to 0 < 1.

In both cases we got 1 > 0 so we are done. □

1.3 The Natural Numbers

What are natural numbers?

• Are they N := {1, 2, 3, 4, · · · }? Well no, what the heck is 3?

• Are they N := {1, 1+1, 1+1+1, · · · }? Well no, the · · · is an implicit use of induction.
Induction requires natural numbers in the first place! nooooo

Well, naturals numbers should be like, “if x is in there, then x+1, and also 1 is in there,
and nothing else should be there”. We can formalize the first two conditions we want like
this:

Definition 1.1 (Inductive Set)

A subset E ⊆ R is inductive if:

• 1 ∈ E

• n ∈ E =⇒ n+ 1 ∈ E

7
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Also yes, 0 is not natural. Fight me.

Example 1.2: Verify that the following sets are inductive:

• E = R

• E = Q (Pretend you know what Q is lol)

• E = The Half-Integers (Pretend you know what integers are lol)

• E = {1, 2} ∪ [3,∞)

Ok, now how do we formalize that “nothing else should be in there”? The way you do it
is say that N is just the “smallest set” satisfying these conditions. You can do this by just
intersecting all such sets.

Definition 1.2 (Natural Numbers)

N :=
⋂

E⊆R,E is inductive

E

Example 1.3: Is 3 ∈ N?

Solution. We want to show that 3 is in every inductive set. So let E be inductive. Then:

• 1 ∈ E

• 1 ∈ E =⇒ 1 + 1 = 2 ∈ E

• 2 ∈ E =⇒ 2 + 1 = 3 ∈ E

So 3 is in every inductive set, hence it is certainly in the intersection of all inductive sets,
which is N. ■

Example 1.4: Is 3.14 ∈ N?

Solution. If it were, then it is in every inductive set. But {1, 2, 3}∪ [4,∞) is inductive, and
3.14 isn’t in it. ■

1.4 Induction

I love induction! You love induction! Everyone loves induction! Let’s get induction.

8
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Theorem 1.1

Let {pn : n ∈ N} be a family a propositions such that:

• p1 is true

• If pn is true then pn+1 is true, for all n ∈ N

Then pn is true for all n ∈ N.

Proof. Define E = {n ∈ N : pn is true}. We WTS E = N.

(⊆) Obviously E ⊆ N.

(⊇) Note that E is an inductive set! Since N is the intersection of all inductive sets, we
must have N ⊆ E. □

Here are some examples on induction.

Example 1.5: Let x > −1, n ∈ N. Prove that (1 + x)n ≥ 1 + nx.

Proof. Base Case: (1 + x)1 ≥ 1 + 1 · x. Yay.

Hypothesis: Assume that (1 + x)n ≥ 1 + nx.

Want To Show: (1 + x)n+1 ≥ 1 + (n+ 1)x.

We know (1 + x)n ≥ 1 + nx. Since x + 1 > 0, we may multiply both sides by it to get:
(1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x Yay! □

Example 1.6 (Binomial Theorem): Prove that for all x, y ∈ R and n ∈ N, we
have:

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k

Proof. It is clear for n = 1. Now assume that (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k. We have:

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)
n∑

k=0

(
n

k

)
xkyn−k

Distribute:

= x
n∑

k=0

(
n

k

)
xkyn−k + y

n∑
k=0

(
n

k

)
xkyn−k

Shove x and y into the sums:

=
n∑

k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xkyn+1−k

9
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Shift the index on the left:

=
n+1∑
k=1

(
n

k − 1

)
xkyn+1−k +

n∑
k=0

(
n

k

)
xkyn+1−k

Get the sum indices to match again:

= xn+1 + yn+1 +
n∑

k=1

(
n

k − 1

)
xkyn+1−k +

n∑
k=1

(
n

k

)
xkyn+1−k

Combine sums:

= xn+1 + yn+1 +
n∑

k=1

[(
n

k − 1

)
+

(
n

k

)]
xkyn+1−k

Use Pascal’s Identity:

= xn+1 + yn+1 +
n∑

k=1

(
n+ 1

k

)
xkyn+1−k

Let the first and last terms back in:

=
n+1∑
k=0

(
n+ 1

k

)
xkyn+1−k

□

Remark: Technically we need to assume that 00 = 1. I am very adamant this is true. If
you disagree then fight me c:

1.5 AM-GM

This might be important so I’m covering it. Assume that we’ve defined nth root.

Theorem 1.2

Let a1, · · · , an ≥ 0. Then:

a1 + · · ·+ an
n

≥ n
√
a1 . . . an

With equality if and only if a1 = a2 = · · · = an.

Proof. We use “backward induction”. As an exercise, see if you can show that proving
these clauses is sufficient:

• It is true for n = 1.

10
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• If it is true for some n, then it is true for 2n.

• If it is true for some n, then it is true for n− 1.

n = 1 is obvious. That’s the base case. Also for n = 2, you can get it by expanding
(a1 − a2)

2 ≥ 0 to get a21 + 2a1a2 + a22 ≥ 4a1a2. Then square root. We need n = 2 because
we’ll use it later.

Now let’s do the “inductive steps”.

(n =⇒ 2n) Consider 2n variables a1, · · · , a2n. Apply AM-GM for n variables on each
“half”:

a1 + · · ·+ an
n

≥ n
√
a1 . . . an

an+1 + · · ·+ a2n
n

≥ n
√
an+1 . . . a2n

Now average these equations:

a1 + · · ·+ a2n
2n

≥
n
√
a1 . . . an + n

√
an+1 . . . a2n

2

Now use AM-GM for 2 variables on the right!

≥ 2n
√
a1 . . . a2n

This concludes this step.

(n =⇒ n − 1) The key is that intuitively, AM-GM for n variables should be somehow
“stronger” than n− 1 because it uses more variables, hence it handles more “information”.
We somehow need to “waste information”.

Suppose we have a1, · · · , an−1 and we want to plug this into the AM-GM for n variables.
What should the nth variable be? A “wasteful” idea is to let the nth variable be the
arithmetic mean µ of a1, · · · , an−1. This gives:

a1 + · · ·+ an−1 + µ

n
≥ n

√
a1 . . . an−1µ

Notice that the left side is just µ.

µ ≥ n
√
a1 . . . an−1µ

µn ≥ a1 . . . an−1µ

µn−1 ≥ a1 . . . an−1

µ ≥ n−1
√
a1 . . . an−1

Hence we have proven the AM-GM inequality.
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Showing the claim about when equality occurs is left as an exercise. □

Ok I didn’t talk about this in recitation but I want to write about it anyway because I
feel like it and it gets me paid. So here we go, examples!

Example 1.7: What is the largest possible area of a rectangle with perimeter 4?

Solution. If sides are x, y then x+ y = 2. By AM-GM:

x+ y

2
≥ √

xy

This gives xy ≤ 1. Hence the maximum area is 1...

...no! This is a RUSHED CONCLUSION. I have only showed that 1 is an upper bound.
I need to show that it can be obtained. To do this, study the equality case. If xy = 1 then
we must have had x+y

2
≥ √

xy, meaning x = y. Combine this with x+ y = 2 to deduce that
x = 1, y = 1 should obtain the equality case. This is enough to verify that 2 is obtainable,
but if you really care to do so you could always just plug in x = 1, y = 1 to verify it, or even
“guess” that is works and verify it. ■

Example 1.8: Minimize x+ 7/x over x > 0.

Solution. By AM-GM:

x+
7

x
≥ 2

√
x · 7

x
= 2

√
7

So theoretical minimum is 2
√
7. Can we get it? Yes, with x =

√
7. Done. ■

I have more examples, will update this maybe.
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2 Supremums

2.1 Warm-Up

Find a way to hang a painting around two nails such that the painting will fall when
either nail is taken away.

Hint: Nofgenpgyl, erzbir gur jnyy sebz gur cvpgher naq guvax bs rnpu anvy nf na vas-
vavgryl ybat cbyr va 3Q fcnpr.

Hint: Ebgngr bar bs gur cbyrf 90 qrterrf. Guvf qbrf abg punatr gur ceboyrz, naq guvf
znl fhttrfg n irel, irel pbby jnl gb gvr n ybbc bs ebcr nebhaq gurz.

2.2 One More Induction Example

Exercise 2.1: Suppose x ∈ R such that x + 1
x
= 42. Prove that xn + 1

xn is an
integer, for all n ∈ N.

Proof. This is an example of induction where we want two base cases (or, alternatively,
strong induction). Here specifically, we need two base cases because the inductive step will
need to the two previous assumptions. That is, we’re going to need “n − 1 and n imply
n+ 1” instead of just “n implies n+ 1”.

Base Case 0: It is obvious for n = 0. I know n isn’t natural but it’s totally chill to take
it as a base case.

Base Case 1: It is obvious for n = 1 because 42 is an integer.

Inductive Assumption: Let us assume that xn+ 1
xn and xn−1+ 1

xn−1 are integers. Let’s
give these integers names:

OwO := xn +
1

xn

uwu := xn−1 +
1

xn−1

Inductive Step: We want to show that xn+1 + 1
xn+1 is an integer. One natural way to

go about this is to expand (xn + 1/xn)(x+ 1/x). So:

(xn + 1/xn)(x+ 1/x) = 42 ·OwO

xn+1 +
1

xn+1
+ xn−1 +

1

xn−1
= 42 ·OwO

13
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xn+1 +
1

xn+1
+ uwu = 42 ·OwO

xn+1 +
1

xn+1
= 42 ·OwO− uwu

Since 42,OwO, and uwu are integers, we have that 42 · OwO − uwu is an integer, hence
xn+1 + 1

xn+1 is an integer as needed. □

2.3 Supremums

I like to think of sups as “kinda like maximums”. It’s like what you’d like the maximum
to be, if there was no maximum.

Example 2.2: Let S = {1, 1 + 1/2, 1 + 1/2 + 1/4, · · · }. Find supS.

Solution. Because of Zeno, it’s intuitively 2. Let’s prove it.

Step 1 (Upper Bound): We need to show that 2 is ≥ everyone in S.

So pick an arbitrary element 2− 1
2n

in S (I leave it as an exercise to show that all numbers
in S take this form).

We need to show that 2 ≥ 2− 1
2n
. Fortunately this is very true, so indeed 2 is an upper

bound.

Step 2 (Least such upper bound): Suppose M were another upper bound. That is:

M ≥ 2− 1

2n
∀n ∈ N

We need to show that 2 ≤ M .

Assume for contradiction that actually M < 2. By the Archimedean Property, let us find
some n ∈ N so large that:

n(2−M) > 1

Since 2n > n (exercise), we have in fact that:

2n(2−M) > 1

This rearranges to M < 2− 1
2n
. This contradicts the assumption that M ≥ 2− 1

2n
for all n.

■

14
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2.4 Another Way To Think About Supremums

In lecture, you learned that M = supS iff:

1. M is an upper bound for S.

2. If M ′ is also an upper bound, then M ≤ M ′.

Here, I provide you an alternate way to think about this. I claim that M = supS iff:

1. M is an upper bound for S.

2. S contains an element of (M − ε,M ] for all ε > 0.

Let’s prove this.

Theorem 2.1

Suppose M is an upper bound for S. Then M ≤ M ′ for all upper bounds M ′ if and
only if S ∩ (M − ε,M ] ̸= ∅ for all ε > 0.

Proof. ( =⇒ ) Suppose M ≤ M ′ for every upper bound M ′ for S. Fix ε > 0. I claim that
S contains an element of (M − ε,M ].

If not, then let M ′ = M − ε. Notice that M ′ is an upper bound! In fact, it is an upper
bound strictly smaller than M . Contradiction.

( ⇐= ) Suppose that S contains someone in (M − ε,M ] for all ε > 0.

Let M ′ be an upper bound for S. We need to show that M ≤ M ′. To do this, we suppose
otherwise. Then M > M ′, and so M −M ′ > 0. Taking ε = M −M ′, we must have that S
contains someone in (M − ε,M ], or (M ′,M ]. But this is really bad! This means that there
is some x ∈ S satisfying M ′ < x ≤ M . Since M ′ is not ≥ x, and x ∈ S, we see that actually
M ′ was not an upper bound, contradiction. □

How should we think about this new condition? I think of it like this: “If M is the sup,
then M is ≥ everyone in S, AND MOREOVER you can get as close to M as you want,
while staying in S”.

Let’s use this intuition to prove an important theorem.

Definition 2.1

For S, T ⊆ R we define S + T := {x+ y : x ∈ S, y ∈ T}.

15
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Theorem 2.2

sup(S + T ) = supS + supT

Proof. Let M = supS + supT .

Step 1 (Upper Bound): We need to show that M is ≥ everyone in S+T . So let’s pick
an arbitrary element x+ y ∈ S+T , where x ∈ S and y ∈ T . Is M = supS+supT ≥ x+ y?
Well I’d sure hope so! Since x ≤ supS and y ≤ supT , we win here.

Step 2 (Can Get Very Close To M): Fix an arbitrary ε > 0. We want to show that
some element x+ y of S + T is less than ε away from M . That is, we need to find x and y
such that:

M − ε < x+ y ≤ M

Can we do it? The trick is to choose x and y really close to supS and supT . In theory this
should work!

Since supS is the supremum of S, we must be able to choose an element x ∈ S such that:

supS − ε

2
< x ≤ supS

Since supT is the supremum of T , we must be able to choose an element y ∈ T such that:

supT − ε

2
< y ≤ supT

Now let’s add these equations together for fun.

supS + supT − ε < x+ y ≤ supS + supT

M − ε < x+ y ≤ M

This is exactly what we wanted! Since we found an x+ y ∈ S + T satisfying the above, for
any choice of ε > 0, we have proven the second condition. Thus indeed M = sup(S+T ). □

16
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3 Normed Spaces and Inner Product Spaces

3.1 Warm-up

There are 5 apples for sale with 5 different sizes and 5 different positive integer prices
from $1 to $5. In dollars, what is the price of the apple that’s bigger than the apple that
costs more than the apple that’s smaller than the apple that’s cheaper than the apple that’s
green, given that it is red?

3.2 Review of Space!

Definition 3.1 (Vector Space)

A vector space is a nice place where you can add things and the things can stretch!
A vector space is a module over a field!
A vector space (over R) is a set endowed with a commutative, associative vector
addition and scalar multiplication, closed under these operations, such that blah blah
blah help

Definition 3.2 (Normed Space)

A normed space is a vector space where you can judge the size of things.
A normed space is a vector space endowed with a norm ∥ · ∥ satisfying the following:

1. ∥x∥ ≥ 0 always, and equality occurs iff x = 0

2. ∥λx∥ = |λ| · ∥x∥

3. ∥x∥+ ∥y∥ ≥ ∥x+ y∥

Definition 3.3 (Inner Product Space)

An inner product space is a vector space endowed with a binary operation ⟨·, ·⟩ :
X ×X → R, sometimes denoted ·, satisfying the following:

1. ⟨x, y⟩ = ⟨y, x⟩

2. ⟨λ1x1 + λ2x2, y⟩ = λ1⟨x1, y⟩+ λ2⟨x2, y⟩

3. ⟨x, λ1y1 + λ2y2⟩ = λ1⟨x, y1⟩+ λ2⟨x, y2⟩ (“Bilinearity”)

4. ⟨x, x⟩ ≥ 0 with equality exactly when x = 0

17
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Theorem 3.1

All inner product spaces are normed spaces by taking ∥x∥ :=
√

⟨x, x⟩.

Proof. Exercise. □

Vector Spaces

Normed Spaces

Inner Product Spaces

3.3 In RN

Some norms for RN :

• Standard (Euclidean): ∥x∥ =
√∑

x2
i

• Taxicab: ∥x∥1 =
∑

|xi|

• Lp norm: ∥x∥p = (
∑

|xi|p)1/p (One-liner proof: “Google Minkowski”)

• Max norm: ∥x∥∞ = max |xi|

• Weird norm I just made up: ∥x∥ := |x1|+max(|x2|, |x3|) +
√

x2
4 + x2

5

• Non-Example:
∑

x2
i (Issue: Scaling)
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Some inner products for RN :

• Standard one: ⟨x⃗, y⃗⟩ :=
∑N

i=1 xiyi

• Some others: ⟨x⃗, y⃗⟩ := xTAy for symmetric, positive-definite N ×N matrix A

• NOTHING ELSE!!! (Proof: Sacrifice your soul to the eternal Cummings)

• Non-Example: (a, b) · (c, d) :=
∣∣∣∣a c
b d

∣∣∣∣ (Issue: (1, 1) · (1, 1) = 0 but (1, 1) ̸= 0⃗X

3.4 More Exotic Stuff

Definition 3.4

For 1 ≤ p < ∞, lp is the set of all infinite sequences {xi} for which
∑∞

i=1 |xi|p < ∞.
We call this the sequence space.

Definition 3.5

Let I be an interval. Then Cb(I) is the set of all continuous and bounded functions
on I.

Examples of exotic normed spaces:

• l1 with ∥{xi}∥1 :=
∑∞

i=1 |xi|

• l2 with ∥{xi}∥2 :=
√∑

|xi|2

• Cb[0, 1] with ∥f∥∞ := sup[0,1] |f | (What is the dimension of this space?)

• Cb[0, 1] with ∥f∥Lp =
(∫ 1

0
|f |p
)1/p

• RN×N with ∥A∥X∗ := sup{∥Av∥ : ∥v∥ = 1}

• Non-Example: Let X be the space of sequences of real numbers, and endow it with
the “sup norm” ∥{xi}∥∞ := sup1≤i≤∞ |xi|. (Issue: Not actually a norm because norms
must always be finite!)

• Non-Example: Space of “integrable” functions on [0, 1] with ∥f∥ =
∫ 1

0
|f | dx. (Issue:

There are many functions that have “norm” 0, which is bad. Only the zero element is
allowed to have zero norm, hence this integral thing is NOT a norm on this space.)
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Examples of exotic inner product spaces:

• l2 with
∑

|xiyi|

• Cb[0, 1] with ⟨f, g⟩ :=
∫ 1

0
f(x)g(x) dx

3.5 Ok but why do I care???

Lots of analysis is done using just the standard stuff on RN . But if you open your mind,
you’ll see that a lot of the stuff we will do (topologies, continuity, directional derivatives,
minimization, Lagrange multipliers, etc.) will extend to a bunch of really exotic spaces, and
this lets us do some insanely powerful stuff.

Example:

• We all know that in the normed space R, we can minimize a differentiable function
f : R → R by setting its derivative to 0 (and arguing that it works via e.g. convexity).

• Some of you know that in the normed space RN , we can minimize a differentiable
function f : RN → R by setting its gradient to 0⃗ (and arguing that it works via e.g.
the Hessian matrix).

• But these methods actually extend to infinite dimensions, in a way! For example,
F (f) :=

∫ 1

0
f ′(x)2+(f(x)−x)2 dx is a function F : C1(0, 1) → R. That is, it’s a function

that takes in continuously differentiable functions and spits out a real number. The
vector space here is an infinite-dimensional function space, and it turns out that you
can minimize F (f) because we can take directional derivatives in infinite dimensions
and set them to 0. Google “Calculus of Variations” if you’re interested.
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4 Metric Spaces and Open Sets

4.1 Warm-up

Consider the empty topological space, which is the empty set endowed with the unique
topology on the empty set.

How many open covers are there of {} in this space?

Answer & Reason: Gur nafjre vfa’g mreb be bar, vg vf npghnyyl gjb. Guvf vf orpnhfr
hfvat ab bcra frgf ng nyy jvyy pbire gur rzcgl frg, naq gnxvat gur fvatyr bcra frg - gur rzcgl
frg - jvyy nyfb pbire gur rzcgl frg.

4.2 Definition Recall

I forgot to say this in recitation but in analysis-y math stuff, the two most important
types of sets/domains are the open sets and the compact sets. Open sets give you really
good wiggle room which let you figure out changes near things without abrupt trouble.
Compact sets are the opposite - they are really abrupt, and prevent things from changing
too much.

Today we focus more on the open sets and related things.

Definition 4.1 (Open)

A set is open if it never ends abruptly.
A set is open if there’s always wiggle room inside.
Let (X, d) be a metric space. A set E ⊆ X is open if for all x ∈ E, there exists r > 0
such that B(x, r) ⊆ E.

Definition 4.2 (Closed)

E ⊆ X is closed if X \ E is open.

Definition 4.3 (Interior)

x ∈ E is an interior point if it can freely wiggle around. That is, you can find a ball
B(x, r) ⊆ E.
E◦ is the set of all interior points of E.
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Exercise 4.1: Do we have E◦ ∪ F ◦ = (E ∪ F )◦?

Solution. No. Take E = Q and F = R \Q. ■

Exercise 4.2: Do we have E◦ ∩ F ◦ = (E ∩ F )◦?

Solution. Yes. Suppose x ∈ E◦ ∩ F ◦. Then x ∈ E◦ so there is B(x, r1) ⊆ E, and x ∈ F ◦

so there is B(x, r2) ⊆ F . Taking r = min(r1, r2) we get B(x, r) ⊆ E and B(x, r) ⊆ F so
B(x, r) ⊆ E ∩ F , so x ∈ (E ∩ F )◦.

For the other direction, note that if x ∈ (E ∩ F )◦ then we can find B(x, r) ⊆ E ∩ F .
Particularly B(x, r) ⊆ E and B(x, r) ⊆ F so both x ∈ E◦ and x ∈ F ◦. ■

Definition 4.4 (Accumulation)

A point x ∈ X is an accumulation point of a set E if you can get really close to x
while staying in E (without ever reaching x itself). That is, for all r > 0 there exists
y ∈ E with y ̸= x such that d(y, x) < r. Or, alternatively, E ∩ (B(x, r) \ {x}) ̸= ∅ for
all r > 0.

Finding the closure E can be very annoying. But finding accE might be easier on the
mind, if you’re anything like me. The next theorem helps with determining E.
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Theorem 4.1

For (X, d) and E ⊆ X, we have:

E = E ∪ accE

Moreover, we may deduce that C ⊆ X is closed iff C contains all its accumulation
points.

Proof. (Draw a picture to follow along!)

(⊆) Take x ∈ E. Then x ∈ C for every closed C ⊇ E. Equivalently, x ̸∈ U for every
open U ⊆ X \ E.

If x ∈ E then this direction is done, so assume that x ̸∈ E. We want to prove that
x ∈ accE. To wit, fix r > 0. We must prove that there exists y ∈ E with 0 < d(x, y) < r,
i.e. y ∈ E ∩B(x, r) \ {x}.

Suppose not. Then no such y exists, which means E ∩ (B(x, r) \ {x}) = ∅. In fact, since
x ̸∈ E, we can get more strongly that E ∩ B(x, r) = ∅. This means that B(x, r) is an open
set satisfying B(x, r) ⊆ X \ E, so from the first paragraph we obtain x ̸∈ B(x, r), a clear
contradiction.

(⊇) For the other direction, suppose x ∈ E ∪ accE. There are two cases. If x ∈ E, then
clearly x is in every closed set that contains E, so x ∈ E. Else, if x ∈ accE, then it suffices
to show that if C ⊇ X is closed then x ∈ C.

Assume otherwise. Then x ∈ X \ C, and this is open. So we may find B(x, r) ⊆ X \ C.
But now B(x, r) \ {x} contains no points in E, contradicting x ∈ accE. Hence x ∈ C, and
the theorem is proven by double containment.

To show the last remark, note that if C is closed then C = C = C ∪ accC, or accC ⊆ C.
Conversely if accC ⊆ C then C ⊆ C = C ∪ accC ⊆ C, so C = C and C is closed. □
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4.3 Some Examples

Example 4.3: Let E = R \ {1/n : n ∈ N} ⊆ R2. Take the standard metric.

• Is E open? Is E closed?

• What is E◦?

• What is E?

• What is accE?

• What is ∂E?

Solution.

• E is NOT open. (Look at 0 ∈ E) E is not closed either. (Look at 1 ∈ R \ E)

• E◦ = R \ ({0} ∪ {1/n : n ∈ N}) (To prove: First argue that all points inside this
proposed sets are indeed interior points. For instance, if 1/3 < x < 1/2 you can pick
r = min(1/2 − x, x − 1/3), so that B(x, r) ⊆ (1/3, 1/2) ⊆ E. Then, argue that all
other points of E cannot be interior points... and, well, the only other point is 0.)

• E = R (Use E = E ∪ accE and use the next line)

• accE = R (All interior points are accumulation points, so just need to check 0 and
1/n∀n ∈ N.)

• ∂E = {0} ∪ {1/n : n ∈ N} (Just compute E \ E◦)

■
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Example 4.4: Let E = (1, 2)× (1, 2) ⊆ R2. Take the standard metric.

• Is E open?

• What is E◦?

• What is E?

• What is accE?

• What is ∂E?

Solution.

• E is open. (For (x, y) ∈ E pick r = min(x− 1, 2− x, y − 1, 2− y) and argue that this
works)

• E◦ = E (The interior of any open set is itself.)

• E = [1, 2]× [1, 2] (Union E with its accumulation, which we find in the next line.)

• accE = [1, 2] × [1, 2] (First use casework to argue that if (x, y) is outside of [1, 2] ×
[1, 2], then you can draw a small ball around (x, y) that does not intersect E, which
implies that (x, y) ̸∈ accE. Next, every (x, y) ∈ E is clearly in accE because E is
open. It remains to handle the “border points”, and this is handled by casework. For
example, to show (1, 1) ∈ accE, we need to find some point in E that is less than r
away from (1, 1), no matter how small r is. Fortunately we can pick something like
(1 + r/50, 1 + r/50) and you can argue that this must be close enough.)

• ∂E = {1, 2} × [1, 2] ∪ [1, 2]× {1, 2} (Just compute E \ E◦.)

■
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Definition 4.5

The French Railway metric is a metric d on R2 defined as follows:

d(x, y) :=

{
∥x− y∥, x, y, 0 are collinear

∥x∥+ ∥y∥, Otherwise

Example 4.5: Let E = (1, 2)× (1, 2) ⊆ R2. Take the French Railway metric.

• Is E open?

• What is E◦?

• What is E?

• What is accE?

• What is ∂E?

Solution. Yeah I don’t want to prove any of these formally, this example is best for capturing
intuition for reasoning about weird metrics.

• E is open. (There is wiggle room along every ray/railroad intersecting E)

• E◦ = E (Again, the interior of any open set is itself)

• E = [1, 2]× [1, 2] \ {(1, 2), (2, 1)} (See next line)

• accE = [1, 2]× [1, 2] \ {(1, 2), (2, 1)} (You can approach every point on the boundary
along the railways... EXCEPT those two darn corners!)

• ∂E = {1, 2} × [1, 2] ∪ [1, 2]× {1, 2} \ {(1, 2), (2, 1)}

■ k
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Example 4.6: Consider the normed space (C[0, 1], ∥ · ∥∞) and take

E = {f ∈ C[0, 1] : ∥f∥∞ < 1}

• Is E open?

• What is E◦?

• What is E?

• What is accE?

• What is ∂E?

Solution. Exercise. (Not as hard as it looks!) ■
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5 Limits

This recitation will be a bit more practical rather than rigorous at some points.

5.1 Warm-up

I made a really special wordsearch made up of only two letters! But I spilled my orange
juice all over it. Too bad. Solve it.

1. Words are found in any of the 8 standard compass directions (in particular, a word
may appear backwards).

2. The word you need to find appears once and exactly once.

3. Again, the wordsearch contains only two distinct letters.

Hint: Bapr n orr unf orra sbezrq, ab zber orrf pna or sbezrq, naq guvf vf n cbjreshy
pbaqvgvba. Bar jnl gb fgneg vf nf sbyybjf: Hfvat “purffobneq abgngvba” jvgu obggbz-yrsg
orvat n1, pbafvqre jung jbhyq unccra vs s7 jrer n o. Jung yrggref ner sbeprq gb or r? Nf lbh
xrrc tbvat, jvyy lbh eha vagb n pbagenqvpgvba va gung zhygvcyr orrf nccrne? Vs fb, gura
s7 vf abg n o. Guvf zvtug gnxr n juvyr gubhtu, fb frr vs lbh pna fcbg gur tenaq fpurzr bs
gur chmmyr.
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5.2 Some Starting Limits

Example 5.1:
lim
x→3

x3

Solution. Key idea: Can always assume ε < 1.

We claim the limit is 27.

Fix ε > 0, assume for ease that ε < 1. We choose δ = ε/1000. To see that this works,
note first that if 0 < |x− 3| < δ then in particular, x < 3+ δ < 3.001 < 4. This helps us get
the following inequality for all x with 0 < |x− 3| < δ:

|x3 − 27| = |x− 3| · |x2 + 3x+ 9| ≤ ε

1000
· (|x2|+ |3x|+ 9)

≤ ε

1000
· (16 + 12 + 9) < ε

■

Example 5.2:
lim
x→42

1Q(x)

Solution. We claim that the limit does not exist.

Suppose the limit were L. Take ε = 1/4 or something. We want to show that for any
δ > 0, there is some x with 0 < |x− 9001| < δ such that |1Q(x)− L| ≥ ε.

To wit, take any δ > 0. There are two cases.

• If L ≥ 1/2, we use density of irrationals to pick x ∈ (9001, 9001 + δ) irrational. This
gives 1Q(x) = 0 so |1Q(x)− L| ≥ 1/2 ≥ ε.

• If L < 1/2, use density of rationals instead.

So the limit does not exist. ■
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Example 5.3: lim
x→1

f(f(x)), where

f(x) :=


−(x+ 1)2, x < 0

0, x = 0

(x− 1)2, x > 0

Solution. We claim the limit exists (!), and is equal to 1.

As usual, fix ε > 0. We want to find δ such that

|f(f(x))− 1| < ε

for all x with 0 < |x− 1| < δ.

At this point you should tell the reader your choice of δ and then show that it works. I
will not do that in order to make the choice of δ more intuitive.

Let us plan to take a δ that is less than 1, in order to guarantee that x > 0 (why does
this work?). Then for all x within δ of 1, we have f(f(x)) = f((x− 1)2).

But |x− 1| > 0 so particularly (x− 1)2 > 0 (strictly!), so we can further write

f((x− 1)2) = ((x− 1)2 − 1)2.

(Remember, this is for all x with 0 < |x− 1| < δ.)

At this point you can probably just “plug 1 in”, but if you want to be really super duper
rigorous, we can continue as follows: Write, for all 0 < |x− 1| < δ:

|f(f(x))− 1| = |((x− 1)2 − 1)2 − 1| = |(x− 1)2| · |(x− 1)2 − 2|

= (x− 1)2 · |x2 − 2x− 2|

Let’s use our forcing of δ < 1 to deduce x < 2, giving:

≤ δ2(|x2|+ | − 2x|+ | − 2|) ≤ δ2(4 + 4 + 2) = 10δ2

Hence we see that we can choose δ = min(
√

ε/10, 1). So we’re done.

(If we impose the assumption ε < 1 like before, we don’t need the min; we can just do
δ =

√
ε/10 and this already guarantees δ < 1 from ε < 1.)

■
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5.3 To Infinity and Beyond

1. What is lim
x→+∞

1

x
???

2. What is lim
x→0

1

x2
???

We need new definitions.

Definition 5.1 (Infinity Limits)

We say that limx→∞ f(x) = L if for all ε > 0 there exists Nε such that |f(x)− L| < ε
for all x ≥ Nε.
We say that limx→x0 f(x) = ∞ if for all N > 0 there exists δ > 0 such that f(x) ≥ N
for all x with 0 < |x− x0| < δ.
Analogously you can define limits such as limx→−∞ f(x) = L, limx→∞ f(x) = ∞, etc.

Limits to infinity can also be defined using this sort of “extended real” metric, i.e. as-
signing this really niche metric on R := R ∪ {±∞}, but I don’t think it’s really that useful.

5.4 Beware of L’Hopital

Theorem 5.1

Suppose f, g : R → R, x0 ∈ R. Assume that f, g are differentiable in B(x0, r) \ {x0}
for some r, and the limits lim

x→x0

f(x) and lim
x→x0

g(x) exist and are equal to 0. Then, if

the limit

L := lim
x→x0

f ′(x)

g′(x)

exists, then lim
x→x0

f(x)

g(x)
exists and is equal to L.

Example 5.4 (Stolen from Gan): Compute:

lim
x→+∞

x

2x+ sinx

An incorrect solution would take the derivative of numerator and denominator to conclude
that the limit is the limit of 1

2+cosx
, which does not exist.

This does NOT mean that the original limit does not exist! This is because L’Hopital is
inconclusive if the limit of the expression you get after differentiation does not exist. Read
the statement of the theorem carefully!
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Solution. We claim that the limit is 1
2
. To see this, fix ε > 0. We choose Nε =

1
2
+ 1

4ε
. Then

for all x ≥ Nε we have: ∣∣∣∣ x

2x+ sinx
− 1

2

∣∣∣∣ = ∣∣∣∣ sinx

4x+ 2 sinx

∣∣∣∣
≤ 1

|4x+ 2 sinx|
≤ 1

|4x| − |2 sinx|
≤ 1

4x− 2
< ε

(Do you see where each of these inequalities come from?) ■

5.5 Using Standard Limits

You are basically allowed to assume all of these guys unless otherwise specified:

• lim
x→0

sinx

x
= 1

• lim
x→0

1− cosx

x2
=

1

2

• lim
x→0

log(1 + x)

x
= 1

• lim
x→0

ex − 1

x
= 1

• lim
x→∞

(
1 +

1

x

)x

= e

Example 5.5:

lim
x→0

sin(1− cos
√

|x|)
| log(1 + x)|

Solution. For all x ̸= 0, note that we have the following:

sin(1− cos
√

|x|)
| log(1 + x)|

=
sin(1− cos

√
|x|)

1− cos
√

|x|
·
1− cos

√
|x|

|x|
· |x|
| log(1 + x)|

Now look at the right side as we send x → 0.

• As x → 0 we have 1− cos
√

|x| → 0, so we may apply the standard sin y
y

→ 1 limit to
deduce that the first term goes to 1.

• As x → 0 we have that
√

|x| → 0, so we may apply the standard 1−cos y
y2

→ 1
2
limit to

deduce that the second limit goes to 1
2
.
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• Directly, the third limit goes to 1 by a standard limit.

• Since each of these three limits exist, we have that the limit of their product exists,
and is equal to the product of the respective limits.

• Therefore the limit is 1 · 1
2
· 1 =

1

2
.

■

5.6 Limits in more dimensions!

Question: If limit exists and = L along every line y = mx, must the limit be L?

Answer: No, consider f(x, y) =

{
x2/y, y ̸= 0

0, y = 0
, and consider the limit lim

(x,y)→(0,0)
f(x, y).

Along y = mx the limit as we approach (0, 0) is lim
x→0

x2

mx
= 0. But the original 2D

limit does not exist! Consider approaching (0, 0) along the curve y = x2. Then f(x, y) will
approach 1...

Now let’s find other limits. Solutions at the end.

Example 5.6:

lim
(x,y)→0

xy

x2 + y2

Example 5.7:

lim
(x,y)→0

√
|x| · y

x2 + y2

Example 5.8:

lim
(x,y)→0

x2y3

|x|3 + y4

Example 5.9 (HARD):

lim
(x,y)→0

x2y2

|x|3 + y4

Example 5.10:

lim
(x,y)→(0,0)

log(1 + sin(x2 + y4))

x2 + y2
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Solution. (5.6) The limit does not exist. Approach (0, 0) along y = mx. The value
approaches along this path is

lim
x→0

x ·mx

x2 +m2x2
= lim

x→0

m

1 +m2

Choosing like m = 1 and m = 2 we see that we can get tons of different limits depending on
m, so the limit does not exist. ■

Solution. (5.7) The limit does not exist.

First approach along y = 0. Then the limit we get is... 0. So if the limit exists then it
must be 0.

On the other hand, we can approach (0, 0) along the curve y = x3/2 (specifically, along
the positive part of it). Then the value approached is

lim
x→0+

√
|x| · x3/2

x2 + x3
= lim

x→0+

x2

x2 + x3
= lim

x→0+

1

1 + x
= 1.

Since we got two different limits, the limit does not exist.

(I just used 0+ to be careful regarding signs.) ■

Solution. (5.8) The limit DOES exist, and we claim that the limit is 0. The key observa-
tions to deduce this are as follows:

• For all (x, y) sufficiently close to (0, 0), we have that |x|3 ≥ x4. Rigorously, we can
ensure this inequality occurs (which will help us compute the limit) by forcing our
δ > 0 to be smaller than 1.

• By the AM-GM inequality, x4 + y4 ≥ 2x2y2.

Thus for all (x, y) close enough to (0, 0), we are able to write:

0 ≤
∣∣∣∣ x2y3

|x|3 + y4

∣∣∣∣ = |y| · x2y2

|x|3 + y4

≤ |y| · x2y2

x4 + y4

≤ |y| · x
2y2

x2y2
= |y|

Since |y| → 0 as (x, y) → (0, 0), we may conclude by the squeeze rule.

Note: It is intuitive to guess that the limit should be 0 because the degree of the
numerator is larger than the degree of the denominator, so the numerator should tend more
rapidly to 0. This is no proof, though... you must show it! ■
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Solution. (5.9 - Thomas Lam) With apologies to everyone that reads this.

Fix ε > 0. We choose

δ = min

((
7

4

)2

ε2,

(
7

3

)3/2

ε3/2

)
We show that this works. First observe via AM-GM that:

|x|7/2 + |x|7/2 + |x|7/2 + |x|7/2 + |y|14/3 + |y|14/3 + |y|14/3

7
≥ x2y2

From which it follows that:

x2y2 ≤ 4
7
|x|7/2 + 3

7
|y|14/3 = 4

7
|x|3|x|1/2 + 3

7
|y|4|y|2/3 (∗)

But for all (x, y) with ∥(x, y)∥ =
√
x2 + y2 < δ, we have that:

• |x| ≤
√

x2 + y2 < δ ≤
(
7
4

)2
ε2, so 4

7
|x|1/2 < ε.

• |y| ≤
√

x2 + y2 < δ ≤
(
7
3

)3/2
ε3/2, so 3

7
|y|2/3 < ε.

Applying these inequality to (∗) gets us:

x2y2 ≤ ε|x|3 + ε|y|4

Or:
x2y2

|x|3 + y4
< ε

And this holds for all 0 < ∥(x, y)∥ < δ, so the limit is 0 . ■

Solution. (5.9 - David Altizio) By AM-GM:

1

|x|

(
x

y

)2

+
(y
x

)2
≥ 2√

|x|

Thus

0 ≤ x2y2

|x|3 + y4
=

1
1
|x|(x/y)

2 + (y/x)2
≤ 1

2/
√

|x|
=

√
|x|
2

Now apply the squeeze rule. (Exercise for you: Is x = 0 a problem? How can you reason
with it?) ■

Solution. (5.9 - Edward Hou) Substitute (|x|3/2, y2) = (r cos θ, r sin θ) so that |x|3 =
r2 cos2 θ and y4 = r2 sin2 θ. Now we need to prove that:

r4/3| cos θ|4/3r| sin θ|
r2

→ 0
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“As r → 0+ no matter how θ misbehaves”. That is, for all ε > 0 there is δ > 0 such that
the above expression is < ε for all (r, θ) with 0 < r < δ.

But, this is clear, since we can upper bound via r1/3 which tends to zero with no depen-
dence on θ. Tada.

...

If you have doubts about the polar substitution, we can pretend to do the substitution
without actually doing it: Write

x2y2

|x|3 + y4
=

√
|x|3 + y4

4/3 · x2

√
|x|3+y4

4/3 ·
√
|x|3 + y4 · y2√

|x|3+y4√
|x|3 + y4

2

and go up via
√

|x|3 + y4
4/3 ≥

√
|x|34/3 = x2 and

√
|x|3 + y4 ≥

√
y4 = y2:

≤
√

|x|3 + y4
4/3 ·

√
|x|3 + y4√

|x|3 + y4
2

=
√

|x|+ y4
1/3

And this → 0 as (x, y) → (0, 0). ■

Solution. (5.10) (I’m writing this proof “properly” but remember that this is motivated
by trying to use the “unfolding” trick from Example 5.5, and then seeing that it doesn’t
work.)

We claim that the limit does NOT exist.

Assume for contradiction that it did exist. Then the limit lim
(x,y)→(0,0)

x2 + y4

x2 + y2
must exist,

because we may write

x2 + y4

x2 + y2
=

x2 + y4

sin(x2 + y4)
· sin(x2 + y4)

log(1 + sin(x2 + y4))
· log(1 + sin(x2 + y4))

x2 + y2

and each of the three terms on the right side have limits as (x, y) → (0, 0) (the first two by
“Standard Limits”, the third by assumption).

But this is a contradiction: lim
(x,y)→(0,0)

x2 + y4

x2 + y2
does not exist, and this can be seen by

taking the path y = 0 (approaches 1) and taking the path x = 0 (approaches 0). Thus the
original limit does not exist. ■
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5.7 Some More Practice If You Want Idk Help Aaa

Exercise 5.11: Compute lim
x→0

sin sin sin sin sin sin sinx

x
.

Exercise 5.12: Find all α > 0 for which

lim
(x,y)→(0,0)

(x2 + y2)α

(|x|+ |y|)3

exists.
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6 Midterm Review!

Do not do all the problems! Put more focus on any areas you want to review more.

6.1 Warm-up

Find the last digit of 1110 − 1011.

Hint: vg’f artngvir yzsnb

6.2 True or False

1. The exam is tomorrow at 5 PM.

2. The exam will be held in Baker Hall A36.

3. The exam will have four problems.

4. I am going to do very well on the exam because I’ve been studying.

5. 0 is natural.

6. S has an upper bound, so supS exists.

7. If M := supS exists for some S ⊆ R, then M ∈ S.

8. No open subset of R contains its supremum.

9. Every closed subset of R contains its supremum.

10. If there exist supS and inf T , then supS − inf T = sup{x− y : x ∈ S, y ∈ T}

11. If U is open and C is closed then U \ C is open.

12. In a normed space, any closed and bounded set is compact.

13. In RN , the finite union of compact sets is compact.

14. The finite union of compact sets is compact.

15. Fix R > 0. In a metric space, any E ⊆ B(0, R) with an infinite number of points has
non-empty accumulation.

16. accE ⊆ E

17. E = accE ∪ E
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18. ∂E = E \ E◦

19. ∂E = Ec ∩ E

20. ∂E must be closed.

21. (X, dX), (Y, dY ) metric spaces, E ⊂ X, and f : E → Y . If x0 ∈ X \ E then lim
x→x0

f(x)

can never be defined.

22. E = (−42, π) ∪ {1337}, f : E → R with f(x) =

{
1, −42 < x < π

2, x = 1337
. Then

lim
x→1337

f(x) = 2.

23. (X, dX), (Y, dY ) metric spaces, E ⊂ X, x0 ∈ accE, and f : E → Y . If there exists
lim
x→x0

f(x), then this limit is unique.

24. f, g, h : E → R, f(x) = g(x)h(x) for all x ∈ E, and x0 ∈ accE. Then

lim
x→x0

f(x) =

(
lim
x→x0

g(x)

)(
lim
x→x0

h(x)

)
.

25. I will get plenty of sleep the night before the exam, because it is a very good idea and
Thomas said so.

6.3 Geometry

Consider the metric space R2 under the Euclidean metric. Let E = B((0, 0), 1) and
F = B((4, 0), 2). Define:

S := {d(x, y) : x ∈ E, y ∈ F}

1. Does there exist supS and inf S?

2. Compute, with proof, inf S and supS.

3. Are either the inf or sup obtained?
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6.4 Topologist’s Sine Curve

Let:

E :=

{
(x, y) ∈ R2 : x ̸= 0, y = sin

(
1

x

)}
∪ {(0, 0)}

1. Is E open?

2. Is E closed?

3. Compute E◦.

4. Compute accE.

5. Deduce what E and ∂E are.

6.5 Random Limits

1. Compute, with proof, lim
x→0

1x+ 2 sinx

3x+ 4 sinx
.

2. Compute, with proof, lim
x→+∞

1x+ 2 sinx

3x+ 4 sinx
.

3. Compute lim
x→0

sin sin sin sin sin sin sinx

x
.

4. Find all α > 0 for which lim
x→0

1− cos(sinx2)

xα
exists in R. Is there an α for which the

limit is non-zero?

5. Find lim
(x,y)→(0,0)

x2 − y2

|x|+ |y|
.

6. Find lim
(x,y)→(0,0)

xy4

x2 + y8
.

7. Find lim
(x,y)→(0,0)

x log(1 + x)(1− cos y)

x4 + y4

8. Find all α > 0 for which lim
(x,y)→(0,0)

(x2 + y2)α

(|x|+ |y|)3
exists in R.

9. Find lim
(x,y)→(0,0)

x+ y

ex − e−y
.

10. Solve 2021 Putnam A2 if you haven’t already.
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6.6 Theorem Roulette

I play this game with my classmates before every exam. There are several ways to
formulate it. To start, let X be the set of all possible theorems and lemmas that Leoni could
test for Problem 1.

• (Measure Theory / Probability Method) Bet a probability measure µ on the space X.
Your score is µ({Theorem Tested}).

• (The Eternal Cummings Method) Bet a formal linear combination
∑n

i=1 λixi ∈ RX
with non-negative coefficients summing to 1. That is, xi ∈ X and λi ∈ R, λi ≥
0,
∑

i λi = 1. Here, the “multiplication” λixi doesn’t mean anything, it’s basically
just attaching a coefficient onto an object. That’s why it’s called a “formal linear
combination”. Anyways, your score is the coefficient of the xi that appears on the
exam, or if you really want, “(

∑
i λixi)(Theorem Tested) where we “view”

∑
i λixi as

a map X → R in the “natural way””, if you’re some kind of sucker for abstraction.
I know this sounds like complete abstract nonsense but it does have the practical
benefit of being able to communicate bets so much more easily. For instance, I bet
.3(Radon Nikodym)+.3(Riesz Representation)+.2(Extension of measures)+.2(Fubini)
for the 21-720 final last semester, and it’s crystal clear what this bet represents in
relatively few extra characters.

• (The Boring Sane Method) Bet f ∈ RX satisfying f ≥ 0 and
∑

x∈X f(x) = 1, your
score being f(Theorem Tested).

Anyways, your exercise is to play some Theorem Roulette.

JUSTIFY ALL YOUR ANSWERS
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6.7 (Basically) All Warm-up Solutions

Burning Ropes: Yvtug obgu raqf bs gur bar zvahgr ebcr, NAQ bar raq bs gur gjb zvahgr
ebcr, nyy ng gur fnzr gvzr. Gur bar zvahgr ebcr jvyy arprffnevyl ohea hc va guvegl frpbaqf.
Ol guvf gvzr, gur gjb zvahgr ebcr unf avargl frpbaqf erznvavat. Ol yvtugvat gur frpbaq raq
bs guvf ebcr, vg jvyy ohea hc va sbegl svir frpbaqf. Gbgny gvzr ryncfrq vf guvegl cyhf sbegl
svir.

Hanging a Painting: Ynl qbja pvepyr bs ebcr ba gur sybbe. Gnxr n ybat zrgny cbyr naq
ynl vg ba gbc, ubevmbagnyyl. Gnxr n frpbaq zrgny cbyr naq cynpr vg iregvpnyyl ba gbc
bs gur svefg zrgny cbyr gb znxr n cyhf fvta, naq jrnir vg haqre gur pvepyr bs ebcr. Fb guvf
cbyr fubhyq tb haqre gur ebcr, bire gur svefg cbyr, naq haqre gur ebcr ntnva. Gurfr cbyrf
ner lbhe cvaf, naq gur ebcr vf lbhe cnvagvat. Gel vg lbhefrys: Pebff lbhe nezf gb znxr na
K funcr, naq jrnir n chefr guebhtu lbhe nezf va gur jnl V unir qrfpevorq nobir. Bapr qbar,
hapebff lbhe nezf.

Apples for Sale: Ernfba onpxjneqf. Gur terra nccyr zhfg or gjb qbyynef, fvapr vg vf
vzcyvrq gung gurer rkvfgf n havdhr nccyr purncre guna vg. Guvf vf gur bar qbyyne nccyr,
naq vg zhfg or frpbaq fznyyrfg orpnhfr gurer vf n havdhr nccyr fznyyre guna vg. Gur fznyyrfg
nccyr, va ghea, zhfg or gur frpbaq zbfg rkcrafvir, naq gur zbfg rkcrafvir nccyr zhfg or gur
frpbaq ynetrfg. Gur nccyr jr jnag, juvpu vf erq, vf gur ynetrfg nccyr. Ol rkunhfgvba bs nyy
cbffvoyr cevprf, gur nafjre vf rvgure gjb be guerr qbyynef, naq vg pnaabg or gjb qbyynef
orpnhfr gung vf gur cevpr bs gur terra nccyr! Gur nafjre vf guerr.

OneWordWordsearch: See https://puzzling.stackexchange.com/questions/50832/
mystery-of-the-one-word-wordsearch.

6.8 True or False Solutions

1. True

2. True

3. True

4. This better be true >:c

5. False, N starts at 1.

6. False, consider S = {}. EDIT: Apparently you guys did not define “upper bound” for
empty sets? If we’re going with that definition then this is true, but this distinction
isn’t important. Point is, don’t take the sup of sets that might be empty!

7. False, consider S = [0, 1)
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8. True. Suppose M = supU ∈ U for U open. Then since U open, there exists r > 0
such that B(M, r) ⊆ U . But now M < M + r/2 ∈ U , contradicting that M is an
upper bound.

9. False. Consider R. (What if we changed it to compact?) EDIT: Some people have a
good point, it seems implied that a supremum exists in the first place. If the supremum
exists in R then the answer would be true.

10. True. Use sup(−S) = − inf S and apply supS + supT = sup(S + T ).

11. True. U \ C = U ∩ (Cc), an intersection of open sets, which is open.

12. False. Heine-Borel holds specifically in RN (or finite dimensional vector spaces). This
statement happens to always break in infinite dimensions. I won’t prove it.

13. True. Use Heine-Borel for an easy argument: Finite union of closed sets is closed, finite
union of bounded sets is easily bounded.

14. True, still. SupposeK1, · · · , Kn compact and let
⋃

α∈Λ Uα ⊇
⋃n

i=1Ki. Then
⋃

α∈Λ Uα ⊇
Ki for each i. Thus for each i we may find a finite subcollection of indices Ai ⊆ Λ
for which

⋃
α∈Ai

Uα ⊇ Ki. Now B =
⋃n

i=1 Ai is also a finite collection of indices with⋃
α∈B Uα ⊆

⋃n
i=1 Ki.

15. False. Bolzano-Weierstrass holds specifically in RN endowed with the Euclidean met-
ric (or anything “equivalent”). Some counterexamples: R endowed with the discrete
metric and taking N ⊆ B(0, 2). The vector space of infinite sequences of real numbers
that are eventually constant at 0 with the metric d(x, y) =

∑
|xi − yi| and taking

(1, 0, 0, · · · ), (0, 1, 0, · · · ), (0, 0, 1, · · · ) ∈ B(0, 2).

16. False. Accumulations points of a set do not need to be in the set.

17. True

18. True

19. True

20. True (use any of the two previous statements!)

21. False. Limits can be defined at accumulation points, even if the accumulation points
is not in the domain.

22. False. The limit is not defined because 1337 is not an accumulation point of E.

23. True (why?)
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24. False. Consider x0 = 1, f(x) = x2, g(x) =

{
π, x ∈ Q
42, x ̸∈ Q

, h(x) = x2/g(x). The issue

is that for this to be true, you need to assert that the limits lim
x→x0

g(x) and lim
x→x0

h(x)

exist in the first place.

25. Go to sleep.

6.9 Geometry Solutions

1. Yes. S is non-empty, and a sort of triangle inequality, like I will soon show, gives an
upper and lower bound.

2. We claim that supS = 7 and inf S = 1.

For ease, let P = (0, 0) and Q = (4, 0). To see that 7 is an upper bound, write:

d(x, y) ≤ d(x, P ) + d(P,Q) + d(Q, y) ≤ 1 + 4 + 2 = 7

To see that it is the least upper bound, fix ε > 0. We may assume that ε < 1. Choosing
x = (−1 + ε/4, 0) and y = (6− ε/4, 0), we see that d(x, y) = 7− ε/2, so:

7− ε < d(x, y) ≤ 7

Thus (7− ε, 7]∩S is non-empty for all ε > 0 (or equivalently, all 0 < ε < 1, which was
what we did), so supS = 7.

To see that 1 is a lower bound, write instead:

d(P,Q) ≤ d(P, x) + d(x, y) + d(y,Q)

And I’ll let you work out the details. It’s basically isomorphic to the above work.

3. No. You can show this by strengthening some of the above inequalities to be strict by
definition of a ball.

6.10 Topologist’s Sine Curve Solutions

1. E is not open. Take pretty much any point (x, y) on the curve. Then for contradiction,
if B((x, y), r) ⊆ E then surely (x, y+r/2) ∈ E, which is impossible since E is the graph
of a function.

2. E is not closed. Take (0, 1) ̸∈ E. Suppose B((0, 1), r) ⊆ Ec. Note that (x, 1) ∈ E for
all x with x = (2π+ kπ/2)−1, k ∈ N. Using the Archimedean Property you can choose
k large enough so that x < r, so that (x, 1) ∈ E and (x, 1) ∈ B((0, 1), r), contradiction.
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3. E◦ = ∅. This follows from the logic in (1), which implies that no point is an interior
point.

4. accE = E ∪ ({0} × [−1, 1]). Use some kind of continuity argument to argue that
every point of E is an accumulation point. Then everything in ({0} × [−1, 1]) is
an accumulation point by an argument akin to that used in (2). Nothing else is an
accumulation point, and you can argue this by casing on whether you’re on the y-axis
or not.

5. Use E = E∪accE to deduce that E = E∪ ({0}× [−1, 1]). Use ∂E = E \E◦ to deduce
that ∂E = E ∪ ({0} × [−1, 1]).

6.11 Random Limits Solutions

1. L’Hopital is chill to use here, and this gives 1/3. Alternatively, trying dividing numer-
ator and denominator by x.

2. L’Hopital is NOT chill to use here! Easiest way is to divide numerator and denominator
by x. Then numerator tends to 1 and denominator tends to 3, giving 1/3.

3. Let’s just pretend there are three sines for sake of my fingers. Then you can write

sin sin sinx

x
=

sin sin sinx

sin sinx
· sin sinx

sinx
· sinx

x

and apply the standard limits on each term to get 1.

4. Claim α ≤ 4. Write:

1− cos(sinx2)

xα
=

1− cos(sinx2)

(sinx2)2
· (sinx

2)2

(x2)2
· x

4

xα

By standard limits it suffices to ensure limit of x4

xα exists.

Limit = 1
2
> 0 when α = 4.

5. Write:

0 ≤ |x2 − y2|
|x|+ |y|

= |x− y| · |x+ y|
|x|+ |y|

≤ |x− y| · |x|+ |y|
|x|+ |y|

= |x− y| ≤ |x|+ |y| → 0

So limit is 0.

6. Doesn’t exist. Go along x = y4.

7. Write:
x log(1 + x)(1− cos y)

x4 + y4
=

log(1 + x)(1− cos y)

x · y2
· x2 · y2

x4 + y4

From here you can conclude that the limit does not exist by showing that the limit of
x2·y2
x4+y4

does not exist.
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8. I claim α > 3/2. You won’t get anything this hard on the exam, probably. I mean if
you do then everyone fails which is ok. [TBD]

9. uh its 3 am and i need to do my probability homework and grade your psets

10. apply the Google Theorem
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7 Series

7.1 Warm-up

(Stanford Math Tournament) Compute:

∞∑
n=0

(−2
5

)⌊√n⌋

√
n+

√
n+ 1

Hint 1: Guvf vf n ceboyrz gung V guvax qrzbafgengrf jryy gur neg bs zngurzngvpny ce-
boyrz fbyivat. Vg ybbxf fpnel, ohg vg pna or fbyirq vs lbh gnpxyr rnpu fpnel cneg vaqvivqh-
nyyl. Fgneg ol erzbivat gur qrabzvangbe ol zhygvcylvat ol n pregnva enqvpny pbawhtngr.

Hint 2: Arkg, fgneg erneenatvat gur grezf n ovg. Gur tbny abj vf gb hfr gur njshy
rkcbarag gb lbhe nqinagntr. Pregnva grezf fubhyq pnapry bhg.

7.2 Bunch of Convergence Tests

Theorem 7.1 (Stupid Test)

If lim
n→∞

|an| ≠ 0 then
∞∑
n=1

an does not converge.

Theorem 7.2 (p-Test et. al.)

∞∑
n=1

1

np
converges for p > 1 and diverges for p ≤ 1.

∞∑
n=1

an converges for |a| < 1 and diverges for |a| ≥ 1.
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Theorem 7.3 (Direct Comparison Test)

Let an ≥ 0 be a sequence. If you can find a bn that eventually dominates an (i.e. there

is N such that bn ≥ an for all n ≥ N), such that
∞∑
n=1

bn < ∞, then
∞∑
n=1

an < ∞ i.e.

converges.
Similarly, if instead you found a bn for which eventually 0 ≤ bn ≤ an forever, with
∞∑
n=1

bn = +∞, then
∞∑
n=1

an = +∞ i.e. diverges.

We’re going to be invoking this implicitly quite a lot.

Also this is a thing:

Theorem 7.4 (Limit Comparison Test)

If two sequences are close together, they behave the same way. That is, if an ≥ 0 and

b > 0 are two sequences for which there exists the limit lim
n→∞

an
bn

= L ∈ (0,∞), then

∞∑
n=1

an converges iff
∞∑
n=1

bn converges (so if either converges then the other converges,

and if either diverges then the other diverges!).

Next are some tests inspired by “geometric series”.

Theorem 7.5 (Ratio Test)

Consider the limit of the ratio between successive terms, L = lim
n→∞

|an+1|
|an|

, if it exists.

• If L < 1, then
∞∑
n=1

an converges.

• If L > 1, then
∞∑
n=1

an diverges.

• If L = 1, you know nothing.

Remark: The hyper-analysis-savvy reader would be delighted to know that there is a
version of this theorem that can be used if the limit does not exist, by using instead the
lim sup and lim inf.
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Theorem 7.6 (Root Test)

Consider L = lim
n→∞

n
√

|an|, if it exists.

• If L < 1, then
∞∑
n=1

an converges.

• If L > 1, then
∞∑
n=1

an diverges.

• If L = 1, you know nothing. *

Remark 1: (*) I’m lying slightly for the case L = 1 for simplicity. If you know that n
√
an

converges to L strictly from above, then you can conclude divergence.

Remark 2: The hyper-analysis-savvy reader would be delighted to know that you can
replace lim with lim sup.

Remark 3: You can use the root test to prove the ratio test. I leave this as an exercise
if you haven’t done it.

For dealing with series that have positive and negative terms:

Theorem 7.7 (Alternating Series Test)

If an ≥ 0 is monotone decreasing and tends to 0, then
∞∑
n=1

(−1)nan converges.

Theorem 7.8 (Absolute Convergence)

If
∞∑
n=1

|an| < ∞ then
∞∑
n=1

an converges.
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7.3 Examples Using Tests

Example 7.1:
∞∑
n=1

log

(
1 +

1

n3

)

Solution. We use the fancy inequality log(1 + x) ≤ x (comes from 1 + x ≤ ex) to get that
this converges. ■

Example 7.2:
∞∑
n=1

1

(n!)1/n

Solution. We use the very fancy inequality (see appendix) n! ≤ (n+ 1)n+1e−n to go down:
∞∑
n=1

1

(n!)1/n
≥

∞∑
n=1

1

(n+ 1)
n+1
n e

We claim this new series diverges. We do this by limit comparison with the series
∑∞

n=1
1

n+1
,

which diverges. For the comparison to work, it suffices to prove that:

lim
n→∞

n+ 1

(n+ 1)
n+1
n

= L ∈ (0,∞)

A sketch: Show that (n+ 1)1/n is decreasing and ≥ 1, so the limit of this exists. ■

Example 7.3:
∞∑
n=1

1

2
√
n

Solution. We claim convergence. It suffices to show that 1
2
√
n ≤ 1

n2 for all large enough n.

This rearranges to n2 ≤ 2
√
n or 2 log n ≤

√
n log 2. Since

√
n grows faster than log n (why?),

the claim is true. ■

Solution. (Alternate) You can try writing
∞∑
n=1

1

2
√
n
≤

∞∑
n=1

1

2⌊
√
n⌋ . Then this new series is

exactly equal to like
∞∑
k=1

2k + 1

2k
, and this converges by your favorite test. ■

Example 7.4: Find all x for which
∞∑
n=1

xn

2 + xn
converges.

Solution. Resolve |x| ≥ 1 using the stupid test. For |x| < 1, note that:
∞∑
n=1

|xn|
|2 + xn|

≤
∞∑
n=1

|x|n < ∞
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■

Example 7.5: Find all x for which
∞∑
n=1

n!xn

nn
converges.

Solution. For |x| < e, apply ratio test:

(n+ 1)!|x|n+1/(n+ 1)n+1

n!|x|n/nn
=

(n+ 1)|x|nn

(n+ 1)n+1
= |x|

(
n

n+ 1

)n

=
|x|

(1 + 1/n)n
→ |x|

e
< 1

So we have convergence for all such x. For |x| ≥ e, note that:

(n+ 1)!|x|n+1/(n+ 1)n+1

n!|x|n/nn
=

|x|
(1 + 1/n)n

≥ 1

So the sequence is actually non-decreasing (in fact it is strictly increasing)! Since the first
term is > 0, the terms don’t go to 0, so we apply the stupid test. ■

Example 7.6: Find all x for which
∞∑
n=1

log(1 + 2n)

n2 + x2n
converges.

Solution. Claim |x| < 1. Essentially use the bounds n log 2 ≤ log(1 + 2n) ≤ 1 + n log 2. ■

7.4 Bonus Round

We didn’t get to this in recitation.

Theorem 7.9 (Integral Test)

In the series
∞∑
n=1

f(n), You can replace the sum with an integral and nothing changes

convergence-wise (as long as f is non-negative and monotone decreasing).

Theorem 7.10 (Cauchy Condensation)

For a decreasing and non-negative sequence an, we have that
∞∑
n=1

an converges iff

∞∑
n=1

2na2n converges!

Example 7.7:
∞∑
n=1

1

n log2 n
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Solution. (Integral Test) u-sub u = log x. ■

Solution. (Condensation)
∞∑
n=1

2n

2n log2(2n)
=

∞∑
n=1

1

n2 log2(2)
< ∞ ■

7.5 Appendix: Hella Lit Inequalities To Keep In Mind

Lemma 7.1

1 + x ≤ ex for ALL x ∈ R.

Proof. This is essentially a statement of how the tangent line to ex at x = 0 lies under the
curve forever. So, show that ex is strictly convex and that should do the trick.

Alternatively, show that the minimum value of ex − x is 1 by using some calculus. □

Lemma 7.2

log(1 + x) ≤ x for x > −1.

Proof. log both sides of the previous inequality :p □

Who knows if the next one is useful :shrug: I’ll include it in case Leoni puts a factorial
somewhere, and the odds of that are kinda low but eh whatever it’s interesting math why
not include it here yay learning

Lemma 7.3

nne−n ≤ n! ≤ (n+ 1)n+1e−n

Proof. So uh you do this by integration. First note that:∫ k

k−1

log x dx ≤ log k ≤
∫ k+1

k

log x dx

We essentially got that by using the fact that log is increasing (so like,
∫ b

a
log a dx ≤∫ b

a
log x dx ≤

∫ b

a
log b dx). Now sum each side from k = 2 to n.∫ n

1

log x dx ≤ log(n!) ≤
∫ n+1

2

log x dx

In fact I’m just going to increase the bounds on the right side to make the integral cleaner:∫ n

1

log x dx ≤ log(n!) ≤
∫ n+1

1

log x dx
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Now evaluate!
(x log x− x) |nx=1 ≤ log(n!) ≤ (x log x− x) |n+1

x=1

n log n− n+ 1 ≤ log(n!) ≤ (n+ 1) log(n+ 1)− n

Yeet the log:
en logn−n+1 ≤ n! ≤ e(n+1) log(n+1)−n

nne−n+1 ≤ n! ≤ (n+ 1)n+1e−n

This proves the lemma, and in fact we have an extra factor of e if you want it. □
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8 Pointwise & Uniform Convergence, Liminf & Limsup

8.1 Warm-up

Must every totally-ordered subset of P (N) be countable?

P (N) is the power set of N. A totally-ordered set of sets F is such that for any S, T ∈ F ,
we either have S ⊆ T or S ⊇ T . For example, {{1}, {1, 2}, {1, 2, 3, 4}, {1, 2, · · · , 7, 8}, · · · }
is totally-ordered.

(Hint 1: Nafjre vf ab.)

(Hint 2: Vafgrnq bs angheny ahzoref, pbafvqre fbzr bgure pbhagnoyr frg gb znxr guvatf
rnfvre.)

(Hint 3: Pbafgehpgvba bs gur ernyf.)

(Hint 4: Tbbtyr “Qrqrxvaq Phgf”.)

8.2 Pointwise Convergence

A sequence of functions fn tends to f pointwise if, point by point, we have fn(x) → f(x).

Definition 8.1 (Pointwise Convergence)

Let fn, f : E → R. Then fn → f pointwise if for every x ∈ E we have:

lim
n→∞

fn(x) = f(x)

Example 8.1: The sequence of functions fn(x) := sin(x)+ e−x2

n
converges pointwise

to sin(x). This is because if we fix any x ∈ R, then e−x2

n
→ 0.

Example 8.2: The sequence of functions fn(x) := xn on [0, 1] converges pointwise
to:

f(x) :=

{
0, 0 ≤ x < 1

1, x = 1

This is because 1n = 1 for all n, whereas if 0 ≤ x < 1 then xn exponentially decays
toward 0 as n grows big.
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8.3 Uniform Convergence

A sequence of functions fn tends to f uniformly if, roughly speaking, the “entirety of fn”
tends to f , all at once, at the same time.

Definition 8.2 (Uniform Convergence)

fn → f uniformly if:
lim
n→∞

sup
E

|fn − f | = 0

An alternate way to view it that demonstrates the power of uniform convergence is this:
fn → f uniformly if for every ε > 0 you can find Nε such that |fn(x) − f(x)| < ε for all
n ≥ Nε. Oh whoops I forgot to specify for which x that holds. But that’s the thing! I don’t
need to; when n ≥ Nε we get |fn(x)− f(x)| for ALL x. For big enough n, EVERYONE
is close to f . ALL POINTS are getting close to f at the same time.

Example 8.3: The sequence of functions fn(x) := sin(x)+ e−x2

n
converges uniformly

to f(x) = sin(x). This is because:

|fn(x)− f(x)| = e−x2

n
≤ 1

n
→ 0

Notice how I didn’t care about what x is. Heuristically, I’m not allowed to, I have
to prove that this difference |fn(x)− f(x)| is upper-bounded by something in terms
of ONLY n, such that this upper bound goes to 0.

Explicitly, I’ve managed to argue that, since |fn(x)− f(x)| ≤ 1
n
for ALL x, we have

that supE |fn − f | ≤ 1
n
.

Example 8.4: The sequence of functions fn(x) := xn on [0, 1] converges pointwise
to:

f(x) :=

{
0, 0 ≤ x < 1

1, x = 1

As we saw. But it does NOT converge uniformly! This is because
sup[0,1] |fn − f | = 1 always, no matter how big n is. There’s always some stubborn
point that refuses to get close to f .

Explicitly, one can e.g. choose x = 1
n√2

. Then |fn(x)− f(x)| = 1/2, so sup[0,1] |fn −
f | ≥ 1

2
for all n. This shows that sup[0,1] |fn − f | can never go to 0.

See https://www.desmos.com/calculator/uxrkf0zmbj for a visualization of these ex-
amples.
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8.4 Determining Pointwise and Uniform Convergence: Examples

Example 8.5: Consider fn : R \ {0} → R defined by fn(x) =
sin(nx)

nx
. Prove that

fn converges pointwise to a function f . Does fn → f uniformly? Does fn → f
uniformly over E = (−∞,−0.1) ∪ (0.1,∞)?

Solution. For any x ̸= 0 we have that:

| sin(nx)|
|nx|

≤ 1

n|x|

And this → 0 as n → +∞. Thus the pointwise limit is f(x) = 0.

We do not have uniform convergence. This is because for any n, we can find x near 0
such that sin(nx)/(nx) is close to 1 (and therefore, above e.g. 1/2, and thus not close to 0).

Such an x can be found by using the standard limit lim
x→0

sinx

x
= 1.

However we do have uniform convergence over E, because for all x ∈ E:

| sin(nx)|
|nx|

≤ 1

n|x|
≤ 1

n · 0.1
This holds for ALL x, so in fact:

sup
x∈E

| sin(nx)|
|nx|

≤ 1

n · 0.1

And the RHS goes to 0. ■

Example 8.6: Consider
∞∑
k=0

x2(1 − x)k over E = [0, 1]. What is the pointwise

limit? Do we have uniform convergence to the pointwise limit?

Solution. Remember that when we’re discussing pointwise/uniform convergence of a series
of functions, we’re just talking about the pointwise/uniform convergence of the partial sums.

I’ll leave it to you to check that the pointwise limit is x. For uniform convergence, note
that the nth partial sum is given by:

x2(1− (1− x)n+1)

1− (1− x)
= x(1− (1− x)n−1)

And so the difference between this partial sum and the pointwise limit is:

|x− x(1− (1− x)n−1)| = x(1− x)n−1

One can now compute the maximum of this over [0, 1] using Calculus and show that this
maximum tends to 0 to conclude. Alternatively, use AM-GM! ■
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8.5 liminf and limsup: WHY???

I’ll tell you why we like them!

• Limits don’t always exist. limsup and liminf ALWAYS exist. So you can “take
limits of things” even if you don’t know that a limit exists a priori.

Example 8.7: lim
x→∞

sin(x) does not exist. However, lim sup
x→+∞

sin(x) = 1 and

lim inf
x→+∞

sin(x) = −1.

• ...but how does that help find limits? Well basically if the liminf equals the limsup,
then the limit exists and is equal to both of them! (Likewise if the limit exists
then it is equal to the limsup and liminf)

• limsup and liminf have a bunch of cool properties that can help you.

8.6 liminf and limsup: WHEN???

I’ll tell you when we use them!

• Many of the convergence tests we talked about can be improved (i.e. work for more
cases) by sliding in a limsup or liminf. Or both.

• Complexity theory! We write f(n) = O(g(n)) iff lim sup
n→∞

∣∣∣∣f(n)g(n)

∣∣∣∣ < ∞.

• Measure theory! The liminf in particular will have its 15 minutes of fame while we’re
on the road towards the Lebesgue Dominated Convergence theorem.

• Calculus of Variations! Something something Gamma convergence! Something some-
thing research with Leoni!

• To reiterate, we can spam limsups and liminfs when we want to talk about a limit that
we’re not quite sure exists yet.

8.7 liminf and limsup: WHO???

I will now tell you who these creatures are. I will define them five different times. These
definitions are all equivalent!
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(I define lim sup but the definition for lim inf is analogous.)

Definition 8.3 (Very Layman)

The lim sup is a lim that’s very biased to look at big values of f .

Definition 8.4 (Layman)

If you drape a curtain over the top of the graph of f , and the curtain gets closer and
closer to L, then lim sup

x→+∞
f(x) = L.

The next definition is the first “real” definition, and it’s also the one we’ll be using most
often. Er, in fact, basically always. All the other definitions are there to just help your
intuition.

Definition 8.5 (Decreasing Sups)

lim sup
x→+∞

f(x) := inf
a∈R

sup
x>a

f(x)

Note that the limsup is (at the top level) an infimum, not a supremum!

See https://www.desmos.com/calculator/tiwrgpoa0x for a visualization.

What the a controls in the definition is “how we we can look at” for the sup. As a gets
bigger, we are allowed to look at less and less of the domain, and hence the sup gets smaller
and smaller, approaching the limsup.

Compare with normal limits: lim really cares that every f(x) with x > a is controlled,
both from above and from below. lim sup, on the other hand, only seems to care about some
control from above.

Definition 8.6 (Best Bound on the Tail)

Let U be the set of all “eventual upper bounds” on f . That is, if y ∈ U , then that
means that eventually we’ll get f(x) < y for all x large enough (rigorously, there exists
Ay such that f(x) < y for all x ≥ Ay).
Think of these as “upper bounds” on the “tail” or “end behavior” of f .
The lim sup

x→+∞
f(x) is the “best” such upper bound, i.e. inf U . (But note that inf U

might not actually itself be an eventual upper bound!)

Compare with normal limits: The tail is the limit. If the tail behaves badly, then
there is no limit. But surely you can upper bound the bad behavior, and that’s where lim sup
is born.
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Definition 8.7 (Best Subsequence)

lim sup
x→+∞

f(x) = sup
{
lim
n→∞

f(xn) : xn → +∞ and lim
n→∞

f(xn) exists
}

Intuitively, we’re examining the “end behavior” of f by being picky and only choosing
points xn where it’s big, and taking the limit.

Compare with normal limits: If the normal limit exists, then actually all subse-
quences xn → +∞ will have f(xn) tending to this limit.

Exercise 8.8: Prove that all these definitions are equivalent.

Exercise 8.9: Prove that in the “Best Subsequence” definition, the sup is actually
a max.

8.8 Definitions in other contexts

You should be able to guess these definitions, but here they are just in case.

Definition 8.8 (Limsup to a point)

lim sup
x→x0

f(x) = inf
r>0

sup
0<|x−x0|<r

f(x)

See https://www.desmos.com/calculator/va3cdionyv for a visualization.

As an exercise, reformulate the “alternative definitions” into this context.

Definition 8.9 (Limsup of a sequence)

lim sup
n→+∞

an = inf
N∈N

sup
n≥N

an

Viewing sequences as functions N → R, this isn’t very surprising.

Also, try reformulating the “Best Subsequence” alternate definition into this context.
Then you’ll see why I’m calling it “Best Subsequence”.
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8.9 liminf and limsup: WHAT???

Now I will tell you the properties that make these nice. I’ll be using the standard
definition for x → x0 but they work for the other contexts.

• The lim sup is indeed the limit of a sup. That is, you can write:

lim sup
x→x0

f(x) = lim
r→0+

sup
0<|x−x0|<r

f(x)

This is because the function r 7→ sup
0<|x−x0|<r

f(x) is decreasing as r decreases, so its

infimum coincides with its limit.

• lim sup
x→x0

f(x) = lim inf
x→x0

f(x) if and only if lim
x→x0

f(x) exists. And in this case all of the

“three limits” are equal.

• We always have lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x)

• If f(x) ≤ g(x) then lim sup
x→x0

f(x) ≤ lim sup
x→x0

g(x) and lim inf
x→x0

f(x) ≤ lim inf
x→x0

g(x)

• We have lim sup
x→x0

−f(x) = − lim inf
x→x0

f(x). That is, if you pull a negative out then you

must flip from sup to inf and vice versa.

• (Subadditivity) We have:

lim sup
x→x0

(f(x) + g(x)) ≤ lim sup
x→x0

f(x) + lim sup
x→x0

g(x)

And:
lim inf
x→x0

(f(x) + g(x)) ≥ lim inf
x→x0

f(x) + lim inf
x→x0

g(x)

8.10 liminf and limsup: HOW???

Ok here’s a stupid example to show how one can use limsup and liminf to be happy.

Example 8.10: Prove the squeeze rule lol. That is, if g1(x) ≤ f(x) ≤ g2(x), and
both lim

x→x0

g1(x) and lim
x→x0

g2(x) exist and are equal to L, then lim
x→x0

f(x) = L.

Proof. [WRONG PROOF] Just take g1(x) ≤ f(x) ≤ g2(x) and take the limit of all three
parts, to get L ≤ lim

x→x0

f(x) ≤ L, so lim
x→x0

f(x) = L. Tada? □
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This is very very very very very very very very wrong because I don’t actually
know that lim

x→x0

f(x) exists in the first place! So this is very bad and horrible and terrible.

...

But I do know that lim sup
x→x0

f(x) and lim inf
x→x0

f(x) exist. Because they always exist.

Proof. [Actual Proof] Taking limsup on both sides of the right inequality and liminf on
both side of the left inequality, we get the following for free:

lim inf
x→x0

g1(x) ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ lim sup
x→x0

g2(x)

Ok but, lim
x→x0

g1(x) exists, so lim inf
x→x0

g1(x) = lim
x→x0

g1(x) = L... and similarly, we know that

lim sup
x→x0

g2(x) = lim
x→x0

g2(x) = L. So actually this is just saying that:

L ≤ lim inf
x→x0

f(x) ≤ lim sup
x→x0

f(x) ≤ L

So the liminf and limsup of f were equal, and in fact both are equal to L, so the limit exists
and is L. Uwu. □
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9 MVT and L’Hôpital

9.1 Warm-up

I have a wooden cube. Drill a hole through it such that a larger cube can be passed
through the hole.

(Clarification because I know at least one person is gonna nitpick: “Drill a hole” means
take the set difference between the cube and some infinitely long prism with some a base of
some shape, such that the resulting set is non-empty and homeomorphic to a torus.)

(Hint 1: Jybt gur fvqr yratgu vf 1. Svefg pbafvqre ebgngvat gur phor fb gung vgf
cebwrpgvba hagb gur kl cynar vf n erthyne urkntba (...bs jung fvqr yratgu?). Hfvat ”jvfushy
guvaxvat” jr ubcr gung gur ynetrfg fdhner vafpevonoyr vagb guvf urkntba vf ynetre guna 1,
naq vs fb gura jr pna qevyy gung ubyr. Guvf vf abj n pynffvpny trbzrgel ceboyrz.)

(Hint 2: Gb svaq gur fvqr yratgu bs gur fdhner gung lbh ner vafpevovat, hfr fvzvyne
gevnatyrf (cnegvphyneyl gur guvegl fvkgl avargl gevnatyrf) naq nytroen. Qb abg or nsenvq
gb qenj fbzr nhkvyynel yvarf.)

9.2 Does differentiable imply that the derivative is continuous?

Nononononononononononononononoononononononononononononono!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
It does not!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

I know it’s hard to imagine how that’s possible but here’s an example.

Let:

f(x) =

{
x2 sin(1/x), x ̸= 0

0, x = 0

Graphing it in Desmos... it sure does look troublesome!

CLAIM: f is differentiable everywhere.

It is not hard to show that x2 and sin(1/x) are differentiable at all x ̸= 0, so the product
is also differentiable at all such points by the product rule. So what happens at x = 0? We
claim that in fact f ′(0) exists and = 0.

We just need to show that:

lim
x→0

x2 sin(1/x)− 0

x− 0
= 0
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But it is, because this is just lim
x→0

x sin(1/x) and this tends to 0 (because sin is bounded).

CLAIM: f ′ is NOT continuous.

By the product rule, and what we computed above, we have:

f ′(x) =

{
2x sin(1/x)− cos(1/x), x ̸= 0

0, x = 0

So if f ′ were continuous, we would have lim
x→0

2x sin(1/x)− cos(1/x)
?
= 0. But this limit does

not exist! (Reason: If it did exist, then since 2x sin(1/x) → 0, we must have lim
x→0

cos(1/x)

existing. But it doesn’t.) So no continuity. Sad!

9.3 Rolle’s Theorem and MVT

Theorem 9.1 (Rolle)

Suppose f is continuous on [a, b] and differentiable on (a, b) with f(a) = f(b). Then
there exists c ∈ (a, b) such that f ′(c) = 0.

The reason why we don’t just say “differentiable on [a, b]” is because this is a stronger
condition than what we need. That is, the theorem still works for functions that go nyoom
near the endpoints, like

√
1− x2 over [−1, 1].

Proof. The idea is simple: Just use the fact that f ′(c) = 0 where c is where the maximum
is obtained. We just have to make sure c ̸= a, b.

So let’s start like this: If f is a constant function then clearly any c ∈ (a, b) will do. So
we may assume it’s not constant.

[a, b] is compact and f is continuous (by virtue of being differentiable), so f must obtain
a maximum at some c1 ∈ [a, b] and a minimum at some c2 ∈ [a, b].

Can c1 and c2 both be endpoints of the interval (either = a or = b)? No! This is because
if they were, then f(c1) = f(c2) from the assumption that f(a) = f(b). But f(c1) is the
maximum and f(c2) is the minimum, and since we’re assuming that f is NOT constant, they
cannot be equal, contradiction!

So one of c1 or c2 is in the open interval (a, b), from which we conclude by a theorem that
the derivative of f at such a point is 0. □

A direct application of Rolle’s it the Lagrange Mean Value Theorem.
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Theorem 9.2 (Lagrange / MVT)

Suppose f is continuous on [a, b] and differentiable on (a, b). Then there exists c ∈ (a, b)
such that:

f ′(c) =
f(b)− f(a)

b− a

Proof. Since this is just a “rotated” version of Rolle’s, surely it can be proven by rotating
f and then applying Rolle’s... so let’s just follow our nose!

To “rotate” f , let’s like add a line or something. Let g : [a, b] → R with:

g(x) := f(x)− f(b)− f(a)

b− a
· x

Since x 7→ f(b)−f(a)
b−a

· x is differentiable, we have that g is differentiable. Next, note that:

g(a) = f(a)− f(b)a− f(a)a

b− a
=

f(a)b− f(b)a

b− a

g(b) = f(b)− f(b)b− f(a)b

b− a
=

f(a)b− f(b)a

b− a

So g(a) = g(b). Now we may apply Rolle’s!

We find c ∈ (a, b) such that g′(c) = 0. In fact:

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a

Or, f ′(c) =
f(b)− f(a)

b− a
. Tada! □

Remark: The calculations are easier if you instead subtract f(b)−f(a)
b−a

· (x− a).

9.4 Cauchy Mean Value Theorem

There is, in fact, another MVT! Here it is:

Theorem 9.3 (Cauchy MVT)

Suppose f and g are continuous on [a, b] and differentiable on (a, b), with g′(x) ̸= 0
for all x ∈ (a, b). Then there exists c ∈ (a, b) such that:

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
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Before we prove this, I need to describe what the hell this means.

Key Point 1: Cauchy MVT generalizes the Lagrange MVT.

To see this, take g(x) := x.

Key Point 2: Cauchy MVT is like a 2D version of MVT.

(g(a), f(a))

(g(b), f(b))

(g(c), f(c))

Essentially, if you plot the point (g(t), f(t)) as t runs from a to b, then this traces out
a curve going from (g(a), f(a)) to (g(b), f(b)). The Cauchy MVT just states that at some
point in time, the curve is running “parallel” to the line segment between those endpoints.

Now we turn to the proof. The motivation is just to work backwards. If we have
f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
, then this rearranges to:

(f(b)− f(a))g′(c)− (g(b)− g(a))f ′(c) = 0

So by “wishful thinking” we hope that we can apply Rolle’s to (f(b) − f(a))g(x) − (g(b) −
g(a))f(x). Hm.

Proof. Define h : [a, b] → R as:

h(x) := (f(b)− f(a))g(x)− (g(b)− g(a))f(x)

Whoa, h(a) = f(b)g(a)− g(b)f(a) = h(b). Moreover h is the linear combination of differen-
tiable functions, so it is differentiable. Thus by Rolle’s there is c ∈ (a, b) such that:

(f(b)− f(a))g′(c)− (g(b)− g(a))f ′(c) = 0

So:
(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c)
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It remains to prove that we can divide stuff.

Since g′(c) ̸= 0 by assumption, we can divide each side by g′(c). But can we divide each
side by g(b)− g(a)?

Suppose for contradiction that g(a) = g(b). Then by Rolle’s again (!), there exists x such
that g′(x) = 0, which contradicts the assumption. So in fact g(a) ̸= g(b), and we may indeed
divide by g(b)− g(a). In conclusion:

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)

Vóıla. □

Remark: Indeed, the condition g′(x) ̸= 0 ∀x ∈ (a, b) is only needed at the very end.
So if we were to state the Cauchy MVT as “there exists c such that [f(b) − f(a)] · g′(c) =
[g(b)− g(a)] · f ′(c)”, then there is no need for that condition.

9.5 Le Théorème de L’Hôpital

The Cauchy MVT can prove L’Hopital’s Rule!

Uh, I think I told several lies last time I stated L’Hopital, so we’re going to do it correctly
now.

Theorem 9.4 (L’Hopital)

Let [a, b] be an interval, let x0 ∈ (a, b).
Suppose f and g are continuous in [a, b] and differentiable in (a, b)\{x0}, with g(x) ̸= 0
and g′(x) ̸= 0 for all x ∈ (a, b)\{x0}. Assume moreover that f(x0) = g(x0) = 0. Then
if the limit

L := lim
x→x0

f ′(x)

g′(x)

exists in R (we can have L = ±∞), then we may conclude that:

lim
x→x0

f(x)

g(x)
= L

Proof. Consider some x ∈ (a, b) \ {x0}. Apply the Cauchy MVT to the interval between
x and x0 to find cx between x and x0 such that:

f(x)− f(x0)

g(x)− g(x0)
=

f ′(cx)

g′(cx)
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Wait but f(x0) = g(x0) = 0, so actually this just says:

f(x)

g(x)
=

f ′(cx)

g′(cx)

Now if we send x → x0, we have that cx approaches x0 (because it’s in between x and x0),
so f ′(cx)/g

′(cx) approaches the limit L. Thus f(x)/g(x) approaches the limit L. Done. □

Remark: The next example shows how you’d deal with functions that are “essentially
continuous” but aren’t technically defined at x0, even though they continuously extend to
x0. In short, we can just continuously extend in that way.

Example 9.1: Compute:

lim
x→0

(
sinx

x

)1/x

Solution. Since log is continuous, let us instead find:

lim
x→0

log(sin(x)/x)

x

We plan to use L’Hopital. To wit, we study the limit:

lim
x→0

d
dx

log(sin(x)/x)
d
dx
x

= lim
x→0

x

sinx

(
cos(x)x− sin(x)

x2

)
= lim

x→0

x cosx− sinx

x sinx

This still is not good. Let us plan to use L’Hopital a second time. So we study the limit:

lim
x→0

d
dx
x cosx− sinx

d
dx
x sinx

= lim
x→0

cosx− x sinx− cosx

sinx+ x cosx
= lim

x→0

−x sinx

sinx+ x cosx
= lim

x→0

− sinx
sinx
x

+ cosx

Aha! THIS limit exists and = 0. That’s because the top goes to 0 whereas the bottom goes
to 2 (use standard sin(x)/x → 1). Now, rigorously, we argue as follows:

• Since lim
x→0

d
dx
x cosx− sinx

d
dx
x sinx

= 0, d
dx
x sinx ̸= 0 near (but not necessarily at) x = 0,

and both the numerator and denominator of
x cosx− sinx

x sinx
are continuous and equal

0 when x = 0, we conclude by L’Hopital that:

lim
x→0

x cosx− sinx

x sinx
= 0

• It follows that lim
x→0

d
dx

log(sin(x)/x)
d
dx
x

= 0. Since d
dx
x ̸= 0, and the numerator and

denominator of log(sin(x)/x)
x

are “continuous” (can extend the numerator to be continuous
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at x = 0 since sin(x)/x → 1; see remark!) and equal 0 when x = 0, we conclude by
L’Hopital that:

lim
x→0

log(sin(x)/x)

x
= 0

• Since log is continuous, we conclude that:

lim
x→0

(
sinx

x

)1/x

= e0 = 1

■
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10 Taylor and Various Modes of Differentiating

10.1 Warm-up

Baka the Bunny has a carrot. In one bite, Baka eats some random amount of it (from no
carrot to entire carrot). Baka continues taking bites, with each bite eating the same amount
of carrot as the first bite, until there is no longer enough carrot to take a full bite. What is
the expected fraction of the carrot eaten by Baka?

Hint: Vs gur svefg ovgr vf bs fvmr k, gura gur ohaal jvyy gnxr sybbe bs bar bire k ovgrf.
Fb gung vf k gvzrf sybbe bs bar bire k pneebg-senpgvba rngra.

Hint 2: Gurersber, lbh ner pbzchgvat gur vagrteny bs k gvzrf sybbe bs bar bire k bire
gur vagreiny sebz mreb gb bar. Rinyhngr guvf ol fcyvggvat vg bire n ohapu bs vagreinyf,
rnpu qrgrezvarq ol n inyhr gnxra ol sybbe bs bar bire k. Lbh jvyy or yrsg jvgu na vasvavgr
fhz.

Hint 3: Lbhe vasvavgr fhz fubhyq or or gur fhz bs fbzrguvat zvahf n fbzrguvat. V jbhyq
abg pbzovar gur fbzrguvatf. Ohg gel jevgvat bhg fbzr grezf bs guvf frevrf naq frr jung unccraf.

10.2 Remarks on Differentiability

In lecture, you learned about this notion of differentiability, called “Frechét Differentia-
bility”, which generalizes differentiability to arbitrary normed spaces (not just RN).

In these points, we assume f : E → Y is some function, and x0 is an interior point of E,
just so that things are nice (otherwise you have to account for weird things that I personally
don’t really care about :/).

Key Point #0: If f is differentiable at x0, then all partial/directional deriva-
tives exist at x0.

This is because if there exists a linear df(x0) for which

lim
x→x0

f(x)− f(x0)− df(x0)(x− x0)

∥x− x0∥X
= 0

then surely

lim
t→0

f(x0 + tv)− f(x0)− df(x0)(x0 + tv − x0)

∥x0 + tv − x0∥X
= 0

or

lim
t→0

f(x0 + tv)− f(x0)− t · df(x0)(v)

|t|
= 0
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and you can massage this (in one way or another) to:

lim
t→0

f(x0 + tv)− f(x0)

t
= df(x0)(v)

Key Point #1: Therefore, df(x0)(v) =
∂f
∂v
(x0).

This follows from what we just computed! The motto is “df(x0) stores information on
all partial derivatives”.

Key Point #2: Therefore, we can determine what df(x0) is by computing the
directional derivative ∂f

∂v
(x0) for each direction v.

Of course, this doesn’t mean that a function is differentiable if all the partial derivatives
exist. I’m just saying that if you knew all the partial derivatives, then you know what the
differential df(x0) would have to be, if it exists from differentiability. Trying to evaluating
the actual “differentiability limit” for your proposed continuous and linear df(x0) will either
confirm or reject the hypothesis that df(x0) exists, i.e. that f is differentiable at x0... which
is often very much of interest!!!

Key Point #3: In fact, when in RN , we have that df(x0)(v) = ∇f(x0) · v.

To reason this out, first let v = (λ1, λ2 · · · , λN) ∈ RN be your favorite vector. Define
x1, · · · , xN to be the basis vectors in RN (as will be the usual notation) and note that:

df(x0)(x1) =
∂f

∂x1

(x0)

df(x0)(x2) =
∂f

∂x2

(x0)

...

df(x0)(xN) =
∂f

∂xN

(x0)

If we take a linear combination of these N equations, with coefficients λ1, λ2, · · · , λN , then
we get:

N∑
i=1

λidf(x0)(xi) =
N∑
i=1

λi
∂f

∂xi

(x0)

But remember, df(x0) is a linear map! So we can shove stuff inside on the left:

df(x0)

(
N∑
i=1

λixi

)
=

N∑
i=1

λi
∂f

∂xi

(x0)

But hey, isn’t
∑N

i=1 λixi = v? Also, isn’t
∑N

i=1 λi
∂f
∂xi

(x0) = v · ∇f(x0)? This means that
df(x0)(v) = ∇f(x0) · v, as I claimed.

70



Thomas Lam 21-269 Recitation 10 3/31/2022

Remark: We tend to view/associate vectors as/with column matrices. That includes
∇f(x0).

Extra Point: What happens for f : RN → RM?

Then df(x0)(v) = Jf (x0)v where Jf (x0) is the Jacobian Matrix of f evaluated at x0. You
will learn this soon.

10.3 Is df(x0) unique?

Recall: If there exists a linear and continuous L satisfying the differentiability limit thing,
then we say df(x0) = L. But is it the only linear and continuous L that works?

As usual suppose x0 is an interior point of the domain, otherwise it gets stupid (and I
believe you can construct a weird domain in which df(x0) is not unique). In this case, the
answer is absolutely yes, L = df(x0) is unique.

I’m actually just going to assume further that f : X → Y (that is, the domain is
everything) so that my head doesn’t hurt.

Proof. Suppose there were two such linear and continuous maps L and K that both satisfy
the differentiability definition. That is:

lim
x→x0

f(x)− f(x0)− L(x− x0)

∥x− x0∥X
= 0

lim
x→x0

f(x)− f(x0)−K(x− x0)

∥x− x0∥X
= 0

Subtract them to get:

lim
x→x0

(L−K)(x− x0)

∥x− x0∥X
= 0

We want to show that the linear map L−K is the 0 map.

To show this, let y ∈ X. We want to show (L − K)(y) = 0. If y = 0X then there is
nothing to show because T (0) = 0 for any linear T . So assume y ̸= 0. Letting x = x0 + ty,
we have:

lim
t→0+

(L−K)(ty)

∥ty∥X
= 0

lim
t→0+

(L−K)(y)

∥y∥X
= 0

...but there’s no t anymore, so actually:

(L−K)(y)

∥y∥X
= 0
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From which it follows that (L−K)(y) = 0. Done. □

10.4 Differentiability Examples

Example 10.1: Suppose we define a function f : R2 → R as:

f(x, y) :=

{
0, x2 ≤ y ≤ 2x2

sin(y), Otherwise

1. Where is f continuous?

2. Where do ∂f
∂x

and ∂f
∂y

exist?

3. Where is f differentiable?

Solution.

Continuity

Let E = {(x, y) : x2 ≤ y ≤ 2x2}. Also let P = ∂E = {(x, y) : y = x2 or y = 2x2}We
claim that f is continuous everywhere in this set:

(R2 \ P ) ∪
⋃
n∈N0

{
(±

√
πn, πn),

(
±
√

πn

2
, πn

)}
To see this, note that if z0 = (x0, y0) ̸∈ P , then z0 is either in the interior of E or its
complement F = R2 \ P . If z0 ∈ E0, then we may draw a ball around z0 for which f(z) = 0
for all z in the ball, implying continuity at z0. Similarly, if z0 ∈ F 0, then f(x, y) = sin y for
all z in some ball around z0, and we know that sin y is continuous so we have continuity at
all such z0.

As for the set
⋃
n∈N0

{
(±

√
πn, πn),

(
±
√

πn

2
, πn

)}
, note that this is just all points (x, y)

in P for which sin(y) = 0. One way to see that we have continuity at these points is as
follows: Let z0 = (x0, y0) be such a point. Then f(z0) = 0. By continuity of sin(y), we have
that for any ε > 0, there is δ > 0 such that | sin(y)| < ε for all z with 0 < ∥z− z0∥ < δ. But
for the same δ, we have |f(z)| < ε for all z with 0 < ∥z−z0∥ < δ (because either f(z) = sin y
or f(z) = 0, and |f(z)| < ε is true in both cases), so we have continuity of f at z0.

Now we show that f is not continuous at the points z0 in P for which sin(y0) ̸= 0. In
fact, we’ll show that for any z0 ∈ P , the limit lim

z→z0
f(z) does not exist. But this is obvious:

Consider an approach to z0 along a horizontal restriction, i.e. consider g(x) = f(x, y0). Then
if x is sufficiently close to x0, x is in E from one direction, and x is in F from the other.

72



Thomas Lam 21-269 Recitation 10 3/31/2022

From the direction from E, the limit is just 0. But from the direction from F , the limit is
sin(y0) ̸= 0, so the limit at z0 doesn’t exist, so continuity certainly cannot exist.

Partial Derivatives

We claim that the ∂f
∂x

exists exactly in E0, F 0, and those points on P for which sin y = 0

(essentially the same answer from the previous part). Whereas, ∂f
∂y

exists only in E0, F 0,

and at (0, 0). For E0 and F 0 it is obvious that those partials exist, so it remains to analyze
the partials in P .

Note that f(x, y) = sin(y) everywhere along the restrictions x = 0 and y = 0, so we have
that both partials exist at (0, 0) since sin(y) is differentiable everywhere. Now we handle the
four “branches” of P . Let z0 = (x0, x0)

2 ∈ P with z0 > 0. Define g(t) = f(x0, x
2
0 + t). Then

since x0 ̸= 0, we have for sufficiently small |t| that:

g(t) =

{
0, t ≥ 0

sin(x2
0 + t), t < 0

So:

lim
t→0−

g(t)− g(0)

t
= lim

t→0−

sin(x2
0 + t)

t

This diverges unless x2
0 is some integer multiple of π. If so, then it is well known that this

left limit is either −1 or +1, depending on whether x2
0 is an even or odd multiple. As for the

right limit:

lim
t→0+

g(t)− g(0)

t
= lim

t→0−

0

t
= 0

Since these limits are not equal, the partial with respect to y does not exist anywhere on
the positive branch of y = x2. A similar calculation shows that this partial doesn’t exist
anywhere on the other three branches.

As for the partial with respect to x, consider instead h(t) = f(x0 + t, x2
0). Then, for

sufficiently small |t|, we have:

h(t) =

{
0, t ≤ 0

sin(x2
0), t > 0

For x2
0 not a multiple of π, h is discontinuous at t = 0 so there is no limit with t → 0 and

hence no partial with respect to x. Otherwise if x2
0 is a multiple of π (so this is a point on

the boundary with sin y = 0), then h(t) is simple the zero function for sufficiently small t,
in which case we clearly have differentiability of h(t) at t = 0, and thus a partial derivative
with respect to 0 at z0. This logic follows for the other three “branches”. Hence our claims
are proven.

Differentiability
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We claim that differentiability exists inside E0, F 0, and at (0, 0). To see this, note that
if we have differentiability, the partials must exist, so we only need to consider E0, F 0, and

(0, 0). At (0, 0), the gradient is

(∂ sin y
∂x

(0, 0)
∂ sin y
∂y

(0, 0)

)
=

(
0
1

)
since we noted in the previous part

that the partials at the origin are just those partials of sin(y) at the origin, so differentiability
at (0, 0) holds iff:

lim
(x,y)→(0,0)

f(x, y)− 0− (0x+ 1y)√
x2 + y2

= lim
(x,y)→(0,0)

f(x, y)− y√
x2 + y2

= 0

To show this, let fE be the restriction of f to E. Then:

lim
(x,y)→(0,0)

fE(x, y)− y√
x2 + y2

= lim
(x,y)→(0,0)

−y√
x2 + y2

For all (x, y) ∈ E with (x, y) ̸= (0, 0), we have y > 0. So if we rewrite the expression as
−1√
x2

y2
+1

, this decreases as y increases. But for (x, y) ∈ E, we have the bounds x2 ≤ y ≤ 2x2,

hence:
−1√
1
x4 + 1

≤ −1√
x2

y2
+ 1

≤ −1√
1

4x4 + 1

So as (x, y) ∈ E tends to (0, 0), x tends to 0, and both the above upper bound and lower
bound clearly tend to 0, so by Squeeze theorem:

lim
(x,y)→(0,0)

fE(x, y)− y√
x2 + y2

= 0

Similarly, let fF be the restriction of f to F . Then:

lim
(x,y)→(0,0)

fF (x, y)− y√
x2 + y2

= lim
(x,y)→(0,0)

sin(y)− y√
x2 + y2

= 0

This limit is zero as well because sin(y) is differentiable at (0, 0).

Now let g(x, y) = f(x,y)−y√
x2+y2

. Let gE and gF be the restrictions of g over E and F , respec-

tively. Now note that for all ε > 0, there exists δ1, δ2 > 0 such that:

0 < ∥z∥ < δ1 =⇒ |gE(z)| < ε

0 < ∥z∥ < δ2 =⇒ |gF (z)| < ε

Now choose δ = min(δ1, δ2). Then for all z ∈ R2 satisfying 0 < ∥z∥ < δ, either z ∈ E or
z ∈ F . If z ∈ E, then |g(z)| = |gE(z)| < ε, and similarly if z ∈ F then |g(z)| < ε, so
|g(z)| < ε for all such z. This implies that lim

z→(0,0)
g(z) = 0, so we have differentiability at

(0, 0).
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Now we just show that there is differentiability within E0 and F 0. But the partials exist
everywhere, and are continuous everywhere, inside these sets, and these sets are open,
so by a theorem we have differentiability everywhere in both sets. ■

Example 10.2 (Evaluation Map): Let X be the normed space of all bounded
functions on R, endowed with the norm ∥f∥∞ := supR |f |. Define an operator
F : X → R via:

F (f) := f(0) ∀f ∈ X

Is F differentiable at f0?

Solution. We need to find a linear L such that:

lim
f→f0

F (f)− F (f0)− L(f − f0)

∥f − f0∥∞
= 0

How in the world can we possibly go about finding L... or even guessing L?

Let’s instead think about what it would have to be by considering some directional
derivatives. This is because for a direction v ∈ with ∥v∥∞ = 1, we must have L(v) = ∂F

∂v
(f0).

(Why?)

So let’s take a direction v and compute:

∂F

∂v
(f0) = lim

t→0

F (f0 + tv)− F (f0)

t

= lim
t→0

f0(0) + tv(0)− f0(0)

t
= lim

t→0
v(0) = v(0)

We conclude that for every direction v we must have L(v) = ∂F
∂v
(f0) = v(0). Hm, so what

must L be?

If we now instead look at any g ∈ X, we can compute L(g) using the linearity of L!:

L(g) = ∥g∥∞L

(
g

∥g∥∞

)
= ∥g∥∞ · g(0)

∥g∥∞
= g(0)

So L is just the evaluation map L : g 7→ g(0). This indeed is a continuous and linear map!
(Exercise: Why is it continuous?) Now we can verify the original limit (which ends up being
really stupid):

lim
f→f0

F (f)− F (f0)− L(f − f0)

∥f − f0∥∞
= lim

f→f0

f(0)− f0(0)− (f − f0)(0)

∥f − f0∥∞
= lim

f→f0
0 = 0

Thus f is differentiable at every f0 ∈ X. ■
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That was dumb. Let’s try a different one:

Example 10.3 (Evaluation Map v2): Let X be the normed space of all
bounded functions on R, endowed with the norm ∥f∥∞ := supR |f |. Define an
operator F : X → R via:

F (f) := f(0)f(1) ∀f ∈ X

Is F differentiable at f0?

Solution. Let’s again begin by finding partial derivatives. For a direction v:

∂F

∂v
(f0) = lim

t→0

F (f0 + tv)− F (f0)

t

= lim
t→0

(f0(0) + tv(0))(f0(1) + tv(1))− f0(0)f0(1)

t
= lim

t→0
f0(1)v(0) + f0(0)v(1) + tv(0)v(1) = f0(1)v(0) + f0(0)v(1)

We conclude that for every direction v we must have dF (v) = ∂F
∂v
(f0) = f0(1)v(0) +

f0(0)v(1) if dF were to exist, and we deduce that dF (g) = f0(1)g(0) + f0(0)g(1), which is
linear and continuous. We claim that this is the desired continuous and linear dF . Indeed:

lim
f→f0

F (f)− F (f0)− dF (f − f0)

∥f − f0∥∞

= lim
f→f0

f(0)f(1)− f0(0)f0(1)− (f0(1)(f − f0)(0) + f0(0)(f − f0)(1))

∥f − f0∥∞

= lim
f→f0

f(0)f(1)− f0(0)f0(1)− (f0(1)f(0)− f0(1)f0(0) + f0(0)f(1)− f0(0)f0(1))

∥f − f0∥∞

= lim
f→f0

(f(0)− f0(0))(f(1)− f0(1))

∥f − f0∥∞
= 0

Why is the last equality true? Two reasons:

1. |f(0)− f0(0)| ≤ sup
x∈R

|f(x)− f0(x)| = ∥f − f0∥∞, thus f(0)−f0(0)
∥f−f0∥∞ is bounded.

2. f(1) − f0(1) ≤ ∥f − f0∥∞ → 0 as f → f0. (Remember that the “f → f0” under the
lim means, literally, that f → 0 under ∥ · ∥∞, i.e. ∥f − f0∥∞ → 0.)

Thus f is differentiable at every f0 ∈ X. ■

The next example is left as an exercise for the bold.
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Example 10.4 (Higher Order Frechét Differentiation): Recall, in the def-
inition of differentiability, that df(x0) is a continuous linear function from X to Y .
That is, it is an element of L(X, Y ), the space of all continuous linear maps from X
to Y . In fact, if X and Y are normed spaces, then L(X, Y ) is a normed space with
the following norm:

∥T∥L(X,Y ) := sup{∥Tx∥Y : ∥x∥X = 1}

Since df(x0) ∈ L(X, Y ) for each x0 ∈ X, we can view df as a function that takes in
values in X and spits out continuous linear maps in L(X, Y ).
Your mission is this: Suppose we are to define f : RN → R via f(x⃗) := ∥x⃗∥2.
Observe that f is differentiable everywhere, so that df(x⃗) is well-defined for all
x⃗ ∈ RN . Is df differentiable at every x⃗0 ∈ RN? If so, compute ddf(x⃗)(y⃗)(z⃗) for all
x⃗, y⃗, z⃗ ∈ RN .

10.5 Taylor’s Theorem

We first introduce a new notion of “small asymptotics”, called little-o notation.

Definition 10.1

Fix some function g. We say that a function f is o(g(x)), as x → x0, if:

lim
x→x0

f(x)

g(x)
= 0

Essentially, we use o(g(x)) as a “placeholder” for some function/expression that van-
ishes when divided by g(x) (and sending x → x0).

Examples (as x → 0):

• x2 is o(x) as x → 0. That’s because x2

x
→ 0 as x → 0.

• x is NOT o(x).

• sin(x) is o(1). That’s because sin(x)/1 → 0.

• sin(x) is NOT o(x). Recall that sin(x)/x → 1, not 0.

• We can write o(x5)
x2 as o(x3). This is because

o(x5)/x2

x3
=

o(x5)

x5
→ 0

by definition of o(x5).
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• We can write o(o(x)) as o(x). This is because

o(o(x))

x
=

o(o(x))

o(x)
· o(x)

x

There is heavy notation abuse here: Not all of these o(x)’s represent the same expres-
sion being replaced. But some do, which is important. Particularly I’m multiplying
and dividing by the inside o(x). So in some sense I’m doing this:

o1(o2(x))

x
=

o1(o2(x))

o2(x)
· o2(x)

x

Anyways, this tends to 0 because...

– As x → 0 we have o2(x)/x → 0 by definition of o2(x).

– In particular, we must have that o2(x) → 0 as x → 0.

– Since o1(y)
y

→ 0 as y → 0, and o(x) → 0 as x → 0, we deduce that o1(o2(x))
o2(x)

→ 0 as

x → 0 (replace y with o2(x)...)

So we conclude that o(o(x))
x

→ 0, hence o(o(x)) is o(x) by definition of o(x).

Theorem 10.1 (Taylor)

Let f : [a, b] → R be n-times differentiable. Then:

f(x) = f(x0)+f ′(x0)(x−x0)+f ′′(x0)
(x− x0)

2

2
+ . . .+f (n)(x0)

(x− x0)
n

n!
+o((x−x0)

n)

Remember, by definition of little-o, this o((x−x0)
n) thing is a placeholder for an expres-

sion that satisfies the key property lim
x→x0

o((x− x0)
n)

(x− x0)n
= 0.

Proof. We use induction. Shocking.

For n = 1 (...the avid philosopher can toy with trying to use n = 0 instead), we want to
show if f is differentiable, then:

f(x)
?
= f(x0) + f ′(x0)(x− x0) + o(x− x0)

Moving things around using the power of algebra, what we really want to show is that:

f(x)− f(x0)

x− x0

− f ′(x0)
?
=

o(x− x0)

x− x0

By definition of o(x − x0), it remains to show that the left side tends to 0 as x → x0. And

indeed it does because lim
x→x0

f(x)− f(x0)

x− x0

= f ′(x0) by... uh, definition.
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Now assume that whenever f is n-times differentiable, we have

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2
+ . . .+ f (n)(x0)

(x− x0)
n

n!
+ o((x− x0)

n)

For the inductive step, we want to show that, for f (n+ 1)-times differentiable, we have:

f(x)
?
= f(x0)+f ′(x0)(x−x0)+f ′′(x0)

(x− x0)
2

2
+ . . .+f (n+1)(x0)

(x− x0)
n+1

(n+ 1)!
+o((x−x0)

n+1)

Again, by the power of algebra, we must show that:

f(x)− f(x0)− f ′(x0)(x− x0)− f ′′(x0)
(x−x0)2

2
− . . .− f (n+1)(x0)

(x−x0)n+1

(n+1)!

(x− x0)n+1

?
=

o((x− x0)
n+1)

(x− x0)n+1

In other words, by definition of little-o, we need to show that this left side goes to 0 as
x → x0.

Apply L’Hopital’s Rule (verify that the conditions for its use are met!), and so we
want to prove that:

lim
x→x0

f ′(x)− f ′(x0)− f ′′(x0)(x− x0)− . . .− f (n+1)(x0)
(x−x0)n

n!

(n+ 1)(x− x0)n
?
= 0

But f ′ is n-times differentiable, so by the inductive hypothesis applied to f ′, we
can rewrite the numerator, so that we want to show:

lim
x→x0

o((x− x0)
n)

(n+ 1)(x− x0)n
?
= 0

But this is true by definition of little-o. Thus Taylor has been proven. □
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10.6 Examples of Taylor

First a simple example.

Example 10.5: Compute lim
x→0

sinx− x

x3
.

Solution. Write sinx = x− x3/6 + o(x4). This is an EQUALITY. I can replace sinx with
this “approximation” and you can’t stop me.

lim
x→0

sinx− x

x3
= lim

x→0

x3/6 + o(x4)

x3
= lim

x→0

1

6
+

o(x4)

x3

But o(x4)
x3 → 0 because x → 0 and o(x4)

x4 → 0 so their product o(x4)
x4 goes to 0 too. So the limit

is 1/6 . ■

Example 10.6: Compute lim
x→0

(
sinx

x

)1/x

.

Solution. Write sinx = x+ o(x2) (that’s all we need). Then:

lim
x→0

(
sinx

x

)1/x

= exp

(
lim
x→0

log(sin(x)/x)

x

)

= exp

(
lim
x→0

log((x+ o(x2)/x)

x

)
Using o(x2)/x = o(x):

= exp

(
lim
x→0

log(1 + o(x))

x

)
Write log(1 + y) = y + o(y). Taking y = o(x):

= exp

(
lim
x→0

o(x) + o(o(x))

x

)
But as we remarked a while back, o(o(x)) = o(x). Moreover clearly we have o(x) + o(x) =
o(x). Thus this is:

= exp

(
lim
x→0

o(x)

x

)
Apply definition of little-o:

= exp(0) = 1

■
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11 Midterm Review II : The Two Towers

11.1 Warm-up

Can the average of two consecutive prime numbers be prime?

Hint 1: Vs lbh’er ernqvat guvf uvag gura lbh ner bireguvaxvat gur ceboyrz...

Hint 2: Frevbhfyl lbh fubhyq ernq gur dhrfgvba irel pnershyyl

Hint 3: V nz fb, fb fbeel gung lbh unira’g fbyirq vg lrg

Hint 4: Lbh ner tbvat gb xvpx lbhefrys jura lbh svanyyl ernyvmr gur rkgerzryl nagvpyvzngvp
fbyhgvba

Hint 5: Guvf unf abguvat gb qb jvgu cevzr ahzoref.

11.2 True or False

1. I’m going to do very well on the exam because I’ve been studying the proofs.

2. E ⊆ RN , f : E → R, x0 ∈ E◦, ∂f
∂xi

(x0 exists for all 1 ≤ i ≤ N . Then f is differentiable
at x0.

3. The following logic is correct: Suppose 0 ≤ f(x) ≤ g(x) and lim
x→0

g(x) = 0. Let L =

lim
x→0

f(x). We claim that L = 0. To see this, note that 0 ≤ L = lim
x→0

f(x) ≤ lim
x→0

g(x) = 0.

So 0 ≤ L ≤ 0 and hence L = 0.

4. The negation of the proposition “ lim
x→x0

f(x) = 42” is “ lim
x→x0

f(x) ̸= 42”.

5. Suppose
∞∑
n=1

fn(x) converges pointwise for all x ∈ R. Take x0 ∈ R and assume that

lim
x→x0

fn(x) exists for each n. Then:

lim
x→x0

∞∑
n=1

fn(x) =
∞∑
n=1

lim
x→x0

fn(x)

6. The terms of a series tend to 0 so it must converge.

7. The series
∞∑
n=1

2n+ 1

4 + 3n+ 2n2 + n3
converges.
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11.3 Differentiability and Stuff

1. Define a function f : R2 → R as follows:

f(x, y) :=

{
1−cos(xy)

y
, y ̸= 0

0, y = 0

sTuDy ThE dIfFeReNtIaBiLiTy Of f .

2. Is the function g(x, y) :=

{
xy√
x2+y2

, (x, y) ̸= 0

0, (x, y) = 0
differentiable at (0, 0)?

11.4 Uniform Convergence and Stuff

Consider the series
∞∑
n=1

x

n2
· enx

1 + enx
.

1. Find all x ∈ R for which the series converges pointwise.

2. Sketch a graph of x
n2 · enx

1+enx if you want.

3. Find all sets E ⊆ R for which the series converges uniformly.

11.5 Theorem Roulette

Have fun ;)
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11.6 (Basically) All Warm-up Solutions

Last digit: Jr pynvz gung gur ynfg qvtvg vf avar. Gb frr guvf, abgr gung rivqragyl
gur rkcerffvba zhfg or rdhvinyrag gb bar zbq gra. Vg erznvaf gb fubj gung npghnyyl gur
rkcerffvba vf artngvir. Lbh pna cebonoyl trg guvf sebz gur zbabgbavpvgl bs ybt k bire k be
fbzrguvat.

Horrific Stanford Sum: Yeah recitation is in half an hour and I don’t have time to write
this lol... will update later

Uncountable (?) totally-ordered subset of P (N): Svefg ovwrpg gur anghenyf vagb gur
engvbanyf, fb gung jr pna whfg jbex jvgu engvbanyf vafgrnq. Gura jr pbafvqre gur Qrqrxvaq
phgf, juvpu ner va ovwrpgvba jvgu gur erny ahzoref (naq vaqrrq gurl freir nf n pbafgehpgvba
bs gur ernyf). Fvapr gur ernyf ner gbgnyyl beqrerq, jr unir gung gur snzvyl bs Qrqrxvaq
phgf vf gbgnyyl beqrerq haqre gur fhofrg cnegvny beqre, naq guvf snzvyl vf hapbhagnoyr
orpnhfr gur ernyf ner hapbhagnoyr.

Fitting a larger cube into a smaller cube: Please enjoy the solution in picture form:
https://i.imgur.com/b6KXbi9.png

Baka the Bunny:∫ 1

0

x

⌊
1

x

⌋
dx =

∞∑
n=1

∫ 1/n

1/(n+1)

nx dx =
∞∑
n=1

n

2

(
1

n2
− 1

(n+ 1)2

)

=
1

2

∞∑
n=1

1

n2
+

n− 1

n2
− n

(n+ 1)2
=

π2

12

11.7 True or False Solutions

1. This better be true!

2. False. You need partial derivatives to exist and be continuous everywhere in a ball
around x0. (Though as in the relevant theorem, you can let one partial derivative be
a little less nice.)

3. False. I assumed that L existed. A priori, I don’t know that. So I can’t play with
writing L = lim

x→0
f(x). To fix the logic, do not write this limit, and instead just directly

apply the squeeze rule. Either that or use a limsup, but you won’t be required to know
that.

4. False. There is a third possibility: The limit doesn’t exist. The correct negation is as
follows: “There exists ε > 0 such that for all δ > 0 you can find x ∈ B(x0, δ) with
x ̸= x0 such that |f(x)− f(x0)| ≥ ε.”
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5. False. You should always be suspicious about switching two limits! See this terrible
graph (https://www.desmos.com/calculator/rjhokztgnp) for a dumb counterex-
ample I came up with.

6. False. Consider the harmonic series.

7. True. Note that for all n large enough, we have:

2n+ 1

4 + 3n+ 2n2 + n3
≤ 3n

1
2
n3

This is because 3n will “beat” 2n + 1 in the long run, and 4 + 3n + 2n2 + n3 “beat”
1
2
n3 in the long run. Thus this inequality must hold for all n ≥ N where N is some

huge number that I couldn’t care less about. It follows that:

∞∑
n=N

2n+ 1

4 + 3n+ 2n2 + n3
≤

∞∑
n=N

3n
1
2
n3

= 6
∞∑

n=N

1

n2
< ∞

Which is enough to conclude that
∑∞

n=N
2n+1

4+3n+2n2+n3 < ∞. (Why?)

11.8 Differentiability and Stuff Solution

Problem 1

For all (x0, y0) with y0 ̸= 0, it is clear that f is differentiable. Just verify that the partial
derivatives are continuous everywhere in R2 \ {y = 0}.

Now consider a point (x0, 0). We claim that f is differentiable at (x0, 0) with df(x0, 0)(x, y) =
1
2
x2
0y. Indeed, this df(x0, 0) is linear and continuous, and so it remains to verify the limit

associated with differentiability. That is:

lim
(x,y)→(x0,0)

f(x, y)− f(x0, 0)− 1
2
x√

(x− x0)2 + y2
?
= 0

First let’s take the following upper bound, for all y ̸= 0:∣∣∣∣∣f(x, y)− f(x0, 0)− 1
2
x2
0y√

(x− x0)2 + y2

∣∣∣∣∣ =
∣∣∣∣∣

1−cos(xy)
y

− 1
2
x2
0y√

(x− x0)2 + y2

∣∣∣∣∣ ≤
∣∣∣∣∣
1−cos(xy)

y
− 1

2
x2
0y

y

∣∣∣∣∣
=

∣∣∣∣1− cos(xy)

y2
− 1

2
x2
0

∣∣∣∣
=

∣∣∣∣12x2 · 21− cos(xy)

x2y2
− 1

2
x2
0

∣∣∣∣
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As (x, y) → (x0, 0) we have xy → 0 (why?), so that 21−cos(xy)
x2y2

→ 1. Moreover, 1
2
x2 → 1

2
x2
0.

Thus the upper bound we have obtained tends to 0.

If otherwise y = 0 then:∣∣∣∣∣f(x, y)− f(x0, 0)− 1
2
x2
0y√

(x− x0)2 + y2

∣∣∣∣∣ =
∣∣∣∣∣ 0√

(x− x0)2

∣∣∣∣∣ = 0

Which is stupid. In all, we conclude that for all (x, y) ̸= (x0, 0) we have:∣∣∣∣∣f(x, y)− f(x0, 0)− 1
2
x2
0y√

(x− x0)2 + y2

∣∣∣∣∣ ≤ max

(∣∣∣∣12x2 · 21− cos(xy)

x2y2
− 1

2
x2
0

∣∣∣∣ , 0)
And we have shown that the RHS tends to 0 as (x, y) → (x0, 0) by the above casework. So
indeed we have the desired limit by the squeeze rule. □

Remark: The claimed df(x0, 0) was not pulled out of thin air! You can determine what
it would have to be by examining the partial derivatives. This is a very important point!

Problem 2

We claim that g is not differentiable at (0, 0). As in the above remark, we assume for
contradiction that g is differentiable. We then may compute what dg(0, 0) would have to be.
Indeed, note that:

∂g

∂x
(0, 0) = lim

x→0

g(x, 0)− g(0, 0)

x
= lim

x→0
0 = 0

And similarly ∂g
∂y
(0, 0) = 0. Thus we must have that dg(0, 0)(x, y) = 0 for all x, y. That is,

dg(0, 0) is the identically 0 linear map.

So if g were differentiable, we must have the following limit:

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− dg(0, 0)(x, y)√
x2 + y2

= 0

Or:
lim

(x,y)→(0,0)

xy

x2 + y2
= 0

But this is bogus by approaching (0, 0) along the curve y = x, over which a limit of 1/2 is
obtained, and this is enough to obtain a contradiction. □

11.9 Uniform Convergence and Stuff Solution

Pointwise Convergence
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Evidently:
∞∑
n=1

|x|
n2

· enx

1 + enx
≤

∞∑
n=1

|x|
n2

< ∞

So we have absolute convergence (thus pointwise convergence) everywhere.

Uniform Convergence

I claim that we have uniform convergence on every set E ⊆ R that is bounded from
above.

Sufficiency

Take such a set E. Since it is bounded from above, there is M such that x ≤ M for all
x ∈ E.

There are two cases: Either x < −M or |x| ≤ M . Each of these cases will be “small” for
a different reason.

If x < −M , then “the e term wins”.∣∣∣∣∣
∞∑

n=N

x

n2
· enx

1 + enx

∣∣∣∣∣ ≤
∞∑

n=N

|x|
n2

· enx

1 + enx
≤

∞∑
n=N

|x|enx

This is just a geometric series:

=
|x|eNx

1− ex

One way or another, argue that replacing x with −M will increase this expression. For
example, you can differentiate −xeNx

1−ex
and show that the derivative is positive over (−∞, 0),

and thus is increasing. Whatever you do, write:

=
Me−NM

1− e−M

This tends to 0 as N → +∞, and this is a bound that does not depend on x, so we have
uniform convergence over all x < −M .

Now suppose that |x| ≤ M . Then “the 1/n2 term wins”.∣∣∣∣∣
∞∑

n=N

x

n2
· enx

1 + enx

∣∣∣∣∣ ≤
∞∑

n=N

|x|
n2

· enx

1 + enx
≤

∞∑
n=N

M

n2

Since
∞∑
n=1

M

n2
< ∞, we have that

∞∑
n=N

M

n2
→ 0 as N → +∞, and once again this is a bound

that does not depend on x, hence we have uniform convergence in [−M,M ].

86



Thomas Lam 21-269 Recitation 11 4/14/2022

Therefore we have uniform convergence over (−∞,M ] and thus uniform convergence over
E. If you don’t buy that we can just “combine” these uniform convergences, note that we
can write, for all x ≤ M :∣∣∣∣∣

∞∑
n=N

x

n2
· enx

1 + enx

∣∣∣∣∣ ≤ max

(
Me−NM

1− e−M
,

∞∑
n=N

M

n2

)

And this weird bound is an upper bound that does not depend on x, and vanishes when we
send N → +∞, hence uniform convergence.

Necessity

Suppose E has no upper bound. Appealing to the negation of uniform convergence: Fix
ε = 1/4 or something (that probably will work). Suppose my “enemy” picks some large
N ∈ N. My job is to find n ≥ N and some x ∈ E such that:∣∣∣∣∣

∞∑
k=n

x

k2
· ekx

1 + ekx

∣∣∣∣∣ ≥ ε

In fact, I’ll do you one better: I’ll find x > 0, x ∈ E such that x
N2 · eNx

1+eNx ≥ ε. That will
definitely be good enough!

Indeed, observe that x
N2 · eNx

1+eNx → +∞ as x → +∞, so there is some very large K > 0

such that x
N2 · eNx

1+eNx ≥ 1/2 = ε for all x > K. Since K is not an upper bound of E, I can
find x ∈ E with x ∈ K and I choose that x (and, implicitly, I am choosing n = N). This
contradicts uniform convergence. □
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12 Taylor Abuse and Lagrange Multipliers

12.1 Warm-up

Thomas is trying to have a completely normal conversation with Wanlin. Fill in the
blank with the correct number.

Thomas: ”Did you know that your favorite number is the sum of the ages of my stuffed
animal turtles, and that my favorite number is their product?”

Wanlin: ”I wouldn’t know because I don’t know your favorite number. If you tell me
your favorite number and how many stuffed animal turtles you have, would I know the ages
of your stuffed animal turtles?”

Thomas: ”No.”

Wanlin: ”Oh, so your favorite number is !”

“Hint”: Guvf vf uneq naq n ovg jbex-vagrafvir. V qb abg xabj bs n dhvpx zrgubq. Vg
vf bayl urer orpnhfr gur ceboyrz unf n pbby ahzrevpny nafjre, qrfcvgr univat ab ahzoref va
gur fgngrzrag.

12.2 Taylor Abuse

Ok, please don’t panic:

Example 12.1: Compute:

lim
(x,y)→(0,0)

cos (x+ y) + sin (xy)− ex
2+y2

cos (x2 + y2)−
√
1 + x2 + y2

Solution. Alright let’s start:

• cos(x+ y) = 1− (x+y)2

2
+ o((x+ y)2)

• sin(xy) = xy + o(xy)

• ex
2+y2 = 1 + x2 + y2 + o(x2 + y2)

• cos(x2 + y2) = 1− (x2+y2)2

2
+ o((x2 + y2)2)

•
√
1 + x2 + y2 = (1 + x2 + y2)1/2 = 1 + 1

2
(x2 + y2) + o(x2 + y2)
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Therefore the expression we’re finding the limit of is exactly equal to:

1− (x+y)2

2
+ o((x+ y)2) + xy + o(xy)− (1 + x2 + y2 + o(x2 + y2))

1− (x2+y2)2

2
+ o((x2 + y2)2)−

(
1 + 1

2
(x2 + y2) + o(x2 + y2)

)
Let’s do some algebra:

=
−3

2
(x2 + y2) + o((x+ y)2) + o(xy) + o(x2 + y2)

−1
2
(x2 + y2)− 1

2
(x2 + y2)2 + o((x2 + y2)2) + o(x2 + y2)

Uh, wow this looks horrific. There are a bunch of o’s that are unwanted. In particular it’d
be great if we can write all the o’s in terms of some o((x2 + y2)k).

• We claim o((x+ y)2) = o(x2 + y2). This is because

o((x+ y)2)

x2 + y2
=

o((x+ y)2)

(x+ y)2
· (x+ y)2

x2 + y2

which vanishes as (x, y) → (0, 0) because o((x+y)2)
(x+y)2

→ 0 by definition and (x+y)2

x2+y2
is

bounded by 3/2 or something.

• We claim o(xy) = o(x2 + y2). This is because

o(xy)

x2 + y2
=

o(xy)

xy
· xy

x2 + y2
→ 0

• Note that o((x2 + y2)2) + o(x2 + y2) = o(x2 + y2) because “a pair of people walking
together will walk at the pace of the slower person”.

Thus our expression has become:

=
−3
2
(x2 + y2) + o(x2 + y2)

−1
2
(x2 + y2)− 1

2
(x2 + y2)2 + o(x2 + y2)

We have (x2 + y2)2 = o(x2 + y2), so we’ll let that be absorbed:

=
−3
2
(x2 + y2) + o(x2 + y2)

−1
2
(x2 + y2) + o(x2 + y2)

You might be wondering how in the world we can continue since the bottom is blegh. One
way to see what’s going on is to write it as this now:

=
−3
2
(x2 + y2) + o(x2 + y2)

x2 + y2
÷

−1
2
(x2 + y2) + o(x2 + y2)

x2 + y2

=

(
−3

2
+

o(x2 + y2)

x2 + y2

)
÷
(
−1

2
+

o(x2 + y2)

x2 + y2

)
→ 3

■
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12.3 Lagrange Multipliers

Example 12.2: Find the maximum possible value of x − y + 2z, given that
x2 + y2 + 2z2 ≤ 2.

Solution. To be precise, let f(x, y, z) = x − y + 2z. We wish to maximize f over the set
E = {(x, y, z) ∈ R3 : x2 + y2 + 2z2 ≤ 2}.

STEP 1: Maxima in the interior?

If a maximum occurs at some (x0, y0, z0) ∈ E◦, then we know that ∇f(x0, y0, z0) = 0⃗.
But we don’t necessarily have this if instead we had (x0, y0, z0) ∈ ∂E. That’s why there are
two cases to consider.

So let’s suppose that there was a maxima at some interior point (x0, y0, z0) ∈ E◦. Then
x0, y0, z0 would have to satisfy the equation

∇f(x0, y0, z0) = 0⃗

or  1
−1
2

 =

00
0


which... seems kinda hard to satisfy not gonna lie. We conclude that there are NO maxima
inside the interior. In particular, if there is a maxima then it must occur on the boundary
∂E = {(x, y, z) ∈ R2;x2 + y2 + 2z2 = 2}.

STEP 2: Maxima on the boundary?

Note that ∂E is closed and bounded (why?), so it is compact. Since f is continuous, we
have that it must obtain a maximum over ∂E at some (x0, y0, z0) ∈ ∂E. In fact, since we
argued that the absolute maximum does not occur in E◦, we have that this maximum at
(x0, y0, z0) must be the desired absolute maximum.

To find (x0, y0, z0), we use Lagrange Multipliers with the constraint function g(x, y, z) =
x2 + y2 + 2z2 − 2, because g(x, y, z) = 0 iff (x, y, z) ∈ ∂E. To justify the use of the theorem,
we need to verify that the set {∇g(x0, y0, z0)} is linearly independent. Is it? Well, as long
as ∇g(x0, y0, z0) ̸= 0, then yes, so that’s what we have to check. Indeed:

∇g(x0, y0, z0) =

2x0

2y0
4z0

 ̸= 0⃗

Note that we know this is ̸= 0⃗ because otherwise (x0, y0, z0) = 0, contradicting (x0, y0, z0) ∈
∂E.
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Ok, so since f and g are C1 blah blah blah, we have by the Lagrange Multipliers Theorem
that for some λ ∈ R:

∇f(x0, y0, z0) = λ∇g(x0, y0, z0)

Or:  1
−1
2

 = λ

2x0

2y0
4z0


This gives a system of three equations and four variables. The constraint g(x0, y0, z0) = 0
gives the fourth:

1 = λ2x0

−1 = λ2y0

2 = λ4z0

x2
0 + y20 + 2z20 = 2

This is now just an algebra problem. Evidently we have λ ̸= 0. So we have x0 =
1
2λ
, y0 =

−1
2λ
,

and z0 =
1
2λ
. Plugging this into the fourth equation, we can proceed to solve for λ:

1

4λ2
+

1

4λ2
+

1

2λ2
= 2

Therefore λ ∈ {1/
√
2,−1/

√
2}. This gives two possible locations for (x0, y0, z0): It is either

(
√
2/2,−

√
2/2,

√
2/2) or (−

√
2/2,

√
2/2,−

√
2/2).

By plugging these possibilities into f , we get the values 2
√
2 and −2

√
2. We know that

one of these guys is the absolute maximum. So, the absolute maximum would have to be

2
√
2 . (And in fact, the other is going to end up being the absolute minimum.) ■

Example 12.3: Consider the set:

E = {(x, y, z) ∈ R3 : x2 − xy + y2 − z2 = 1, x2 + y2 = 1}

What point(s) of E have minimal distance to the origin?

Solution. This will not be a complete solution, we’re just going to set it up (and honestly
if you can do just this step then I’m satisfied).

First we set things up. We want to minimize f(x, y, z) = x2+y2+z2 (this is the distance
squared, but it is equivalent to minimize this, and it’s nicer because there is no nasty square
root). The constraint function has multiple components:

g(x, y) = (g1(x, y), g2(x, y)) = (x2 − xy + y2 − z2 − 1, x2 + y2 − 1)

First we must justify that a minimum over E exists. Can we show that E is compact?
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Here is one method: Show that the set {x2 − xy + y2 − z2 = 1} is closed (e.g. it is the
union of continuous function graphs). Show that the set {x2 + y2 = 1} is closed (e.g. via
some manual casework to show that the complement is open). Conclude that the intersection
of these sets, which is E, is closed. For boundedness, note that both x2 and y2 are bounded
since x2 + y2 = 1, so see if you can get a bound on z2 using the first equation. If we’re in E,
the first equation simplifies to z2 = −xy, so in fact we just need to show that xy is bounded.
This can be done with e.g. AM-GM.

From these arguments, we may deduce that E is compact and hence f obtains an abso-
lute minimum somewhere in E by continuity. Specifically, we can say that it obtains this
minimum at some (x0, y0, z0) ∈ E. To find this minimum, we apply Lagrange Multipliers.
But we first must justify its use by showing that {∇g1(x0, y0, z0),∇g2(x0, y0, z0)} is linearly
independent. Is it? Well, this set is just:

 2x0 − y0
−x0 + 2y0

−2z0

 ,

2x0

2y0
0


To see that this is linearly independent, note first that since x2

0+y20 = 1, we have that one of
x0, y0 is non-zero. From here, if we have that z0 ̸= 0, then we have the linear independence
(why?).

Otherwise, if z0 = 0, then we must show that

{[
2x0 − y0
−x0 + 2y0

]
,

[
2x0

2y0

]}
is linearly indepen-

dent. But from 0 = z20 = −x0y0, we have that one of x0, y0 is 0 and the other is non-zero. In
both cases, you can verify that the above set will be independent!

By this independence (and by the fact that f, g are class C1 yadda yadda) we may apply
Lagrange Multipliers to deduce that there exist λ1, λ2 ∈ R such that:

∇f(x0, y0, z0) = λ1∇g1(x0, y0, z0) + λ2∇g2(x0, y0, z0)

Or: 2x0

2y0
2z0

 = λ1

 2x0 − y0
−x0 + 2y0

−2z0

+ λ2

2x0

2y0
0


This is a system of three equations and five variables. The constraint equalities g1(x0, y0, z0) =
0 and g2(x0, y0, z0) = 0 give the other two we need. Now we solve. Which I won’t do. Because
why would I. This is awful. Blegh. Finish the solution at your own risk. ■
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13 Implicit Function Theorem

13.1 Warm-up

Countably infinite prisoners p1, p2, · · · are standing in a line, facing in the same direction
such that pn can only see the heads of pn+1, pn+2, · · · .

The warden puts a hat on every prisoner, each one with a real number written on it. pn
cannot see the number written on their hat, but can see the numbers written on the hat of
pm for all m > n.

Starting at p1, the warden asks every prisoner for the number on their hat. If the prisoner
guesses correctly, they live. Otherwise, they are shot.

The prisoners may devise a plan beforehand. Can they come up with a strategy such
that they can guarantee that only finitely many prisoners die?

Oh also, the prisoners are all deaf, so they have no idea what happens behind them.

Hint 1: Gur cevfbaref jvyy arrq gur nkvbz bs pubvpr.

Hint 2: Pbafgehpg na rdhvinyrapr eryngvba ba gur frg bs nyy cbffvoyr frdhraprf bs ung
ahzoref. Vg fubhyq or fhpu gung rirel cevfbare xabjf juvpu rdhvinyrapr pynff gurl ner va.

Hint 3: Hfr gur rdhvinyrapr eryngvba “...vf riraghnyyl gur fnzr nf...”.

13.2 Implicit Function Theorem

Example 13.1: Let f : R4 → R2 with f(w, x, y, z) = (y2 + z2 − 2wx, y3 + z3 −
w3 + x3). Let x⃗0 = (1, 1, 1,−1).
Prove that near x⃗0, the equation f(w, x, y, z) = 0 induces an implicit function in
that (w, x) may be written as a function of (y, z). (Make this statement precise!)
Of what differentiability class is such a function? Compute the first order partial
derivatives of the function at (1,−1).

Solution. To be precise, we seek g = (g1, g2), g : B((1,−1), r1) → B((1, 1), r2) such that:

• y2 + z2 − 2g1(y, z)g2(y, z) = 0

• y3 + z3 − g1(y, z) + g2(y, z) = 0

First we check that f(x⃗0) = 0 otherwise we fail pretty badly. It is, so we’re doing well.
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Next, since (w, z) is the “output variable”, we need to show that the “change in this
variable isn’t 0” or else we “fail the vertical line test”. That is, to use the Implicit Function
Theorem, we must verify:

det
∂f

∂(w, z)
(x⃗0) ̸= 0

Indeed, we may compute:

∂f

∂(w, z)
(w, x, y, z) =

[
−2x −2w
−3w2 3x2

]
So that:

det
∂f

∂(w, z)
(1, 1, 1,−1) =

∣∣∣∣−2 −2
−3 3

∣∣∣∣ = −12 ̸= 0

So indeed we may apply the Implicit Function Theorem to conclude that the desired g exists.

Since f is of differentiability class C∞, we are guaranteed that g is of class C∞. In
particular, we are justified in taking its first order partial derivatives, which we will now
compute.

As y2 + z2 − 2g1(y, z)g2(y, z) = 0 for all (y, z) near (1,−1), we can take the partial
derivative with respect to y on both sides:

y − ∂g1
∂y

(y, z)g2(y, z)− g1(y, z)
∂g2
∂y

(y, z) = 0

Plugging in (y, z) = (1,−1) and using g(1,−1) = (1, 1), we get:

−1 =
∂g1
∂y

(1,−1) +
∂g2
∂y

(1,−1)

Doing the same thing with the equation y3 + z3 − g1(y, z) + g2(y, z) = 0, we obtain:

3 =
∂g1
∂y

(1,−1)− ∂g2
∂y

(1,−1)

Hence, we have a system of equations! Solving, we obtain the partials
∂g1
∂y

(1,−1) = 1 and

∂g2
∂y

(1,−1) = −2 .

Observe that by symmetry, the partial derivatives with respect to z at (1,−1) are exactly
the same. ■

Example 13.2: Let f : R3 → R with f(x, y, z) = x2 + 4y2 − 2yz − z2. Let
x⃗0 = (2, 1,−4).
Prove that near x⃗0, the equation f(x, y, z) = 0 induces an implicit function in that

z may be written as a function of (x, y). If this function is g, compute ∂2g
∂x∂y

(2, 1)

and ∂2g
∂y∂x

(2, 1).
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Solution. Since f(2, 1,−4) = 0 and ∂f
∂z
(2, 1,−4) = −2(1) − 2(−4) = 6 ̸= 0, we may apply

the Implicit Function Theorem to obtain the existence of g.

To compute partials, we rely on the equality

x2 + 4y2 − 2yg(x, y)− g(x, y)2 = 0 (∗)

for all (x, y) near (2, 1).

Differentiating (∗) with respect to y:

8y − 2g(x, y)− 2y
∂g

∂y
(x, y)− 2g(x, y)

∂g

∂y
(x, y) = 0 (∗∗)

Differentiating with respect to x:

−2
∂g

∂x
(x, y)− 2y

∂2g

∂x∂y
(x, y)− 2g(x, y)

∂2g

∂x∂y
(x, y)− 2

∂g

∂x
(x, y)

∂g

∂y
(x, y) = 0 (∗ ∗ ∗)

It appears that some work needs to be done. First we need ∂g
∂x
(2, 1). Let differentiate (∗)

with respect to x:

2x− 2y
∂g

∂x
(x, y)− 2g(x, y)

∂g

∂x
(x, y) = 0

Plugging in (2, 1) we get:

4− 2
∂g

∂x
(2, 1)− 2g(2, 1)

∂g

∂x
(2, 1) = 0

4− 2
∂g

∂x
(2, 1) + 8

∂g

∂x
(2, 1) = 0

∂g

∂x
(2, 1) = −2/3

Next, we need ∂g
∂y
(2, 1). Plugging in (2, 1) into (∗∗):

8− 2g(2, 1)− 2
∂g

∂y
(2, 1)− 2g(2, 1)

∂g

∂y
(2, 1) = 0

8 + 8− 2
∂g

∂y
(2, 1) + 8

∂g

∂y
(2, 1) = 0

∂g

∂y
(2, 1) = −8/3

Finally we stuff all that garbage into (∗ ∗ ∗):

−2
∂g

∂x
(2, 1)− 2

∂2g

∂x∂y
(2, 1)− 2g(2, 1)

∂2g

∂x∂y
(2, 1)− 2

∂g

∂x
(2, 1)

∂g

∂y
(2, 1) = 0
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−2(−2/3)− 2
∂2g

∂x∂y
(2, 1)− 2(−4)

∂2g

∂x∂y
(2, 1)− 2(−2/3)(−8/3) = 0

After three years of college I am literally incapable of doing this basic algebra, so by Math-

ematica this comes out to
∂2g

∂x∂y
(2, 1) = 10/27 .

Note that f is of class C∞, so in particular g is of class C∞ and so its second derivatives

exist and are continuous. So by Schwarz, we have
∂2g

∂y∂x
(2, 1) = 10/27 as well. ■

13.3 Chain Rule 101

We begin with a terrible example.

Example 13.3: Let f(x, y, z) = x+ 2y + 3z.

1. What is ∂
∂x
f(x, y, x)?

2. What is ∂f
∂x
(x, y, x)?

Solution.

1. f(x, y, x) = x+ 2y + 3x = 4x+ 2y, so ∂
∂x
f(x, y, x) = 4.

2. But ∂f
∂x
(x, y, z) = 1, so in particular ∂f

∂x
(x, y, x) = 1.

■

What the hell is the difference?

KEY POINT:

• When we speak of ∂f
∂x
, we are speaking of the partial derivative of f with respect to

the compnonent of f whose name is x.

• When we speak of ∂
∂x
f(· · · ), we are viewing the expression f(· · · ) as a function, one

of whose variables is x, and taking the partial derivative with respect to x. f need not
have a component named x for this to be well-defined.

In the previous example, when I wrote f(x, y, z) = x + 2y + 3z, I am implicitly giving
names to the first, second, and third components of f as x, y, z. So when I write ∂f

∂x
, this
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means the derivative with respect to the first component. Then ∂f
∂x
(x, y, x) means, I’m taking

∂f
∂x

and plugging in (x, y, x) for some variables x, y, x.

But, when I write ∂
∂x
f(x, y, x), I interpret f(x, y, x) as a function that sends (x, y) to

f(x, y, x). The “x” here has absolutely nothing to do with the first component of
f , which by coincidence has the same name.

If you find this awful and confusing, it may be helpful to absolutely never reuse component
names as variables, e.g. you could rewrite the example as finding ∂

∂s
f(s, t, s) and ∂f

∂x
(s, t, s).

Trying different notations such as fx or ∂f
∂x

∣∣
(x,y,z)

etc. could also help.

Whatever path you choose, keep this awkward difference in mind as we work through the
following example.

Example 13.4: Suppose f : R2 → R is C1 or something. Suppose that (x0, y0) is
a point for which f(x0, y0) = 0 and ∂f

∂y
(x0, y0) ̸= 0.

By the Implicit Function Theorem, there is g(x) such that f(x, g(x)) = 0 for all x
near x0. Find a formula for g′(x0) in terms of the partials of f at (x0, y0).

Solution. We have f(x, g(x)) = 0 for all x near x0. To avoid confusion, let’s change the
name of the variable. Ok, so f(t, g(t)) = 0 for all t near x0, and so we are permitted to take
the derivative with respect to t:

d

dt
f(t, g(t)) = 0

Now we just apply the chain rule! Easy right?

...

If you’re having trouble seeing it, don’t worry. I like to view this as defining an “argument
unpacking” function to help out.

Let h(t) = (t, g(t)). Then we’re trying to compute d
dt
f(h(t)). Now this is direct by the

chain rule:

0 =
d

dt
f(h(t)) = ∇f(h(t)) · dh

dt
(t)

Now let’s compute each of these things:

• ∇f is just the matrix

[∂f
∂x
∂f
∂y

]
. We’re just plugging in h(t) into it, so:

∇f(h(t)) =

[∂f
∂x
(h(t))

∂f
∂y
(h(t))

]
=

[∂f
∂x
(t, g(t))

∂f
∂y
(t, g(t))

]

• If h is a function with multiple components, then dh
dt

is just the derivative of each of
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its components, so:
dh

dt
(t) =

[
d
dt
t

d
dt
g(t)

]
=

[
1

g′(t)

]

Taking the dot product of these two things, we finally get:

0 = ∇f(h(t)) · dh
dt

(t) =
∂f

∂x
(t, g(t)) + g′(t)

∂f

∂y
(t, g(t))

Plug in t = x0:

0 =
∂f

∂x
(x0, y0) + g′(x0)

∂f

∂y
(x0, y0)

At last, since ∂f
∂y
(x0, y0) ̸= 0 (wow!), we can divide to obtain:

g′(x0) = −
∂f
∂y
(x0, y0)

∂f
∂x
(x0, y0)

■

13.4 Rest of the Warm-Up Soutions

Average of two consecutive primes: Vs gjb cevzrf ner pbafrphgvir gura gurer ner ab cevzrf
orgjrra gurz. Va cnegvphyne, gurve nirentr pnaabg or cevzr.

(Ab)Normal Conversation: https://puzzling.stackexchange.com/questions/84401/
a-mathematical-discussion-fill-in-the-blank

Infinite Deaf Prisoners and Real-Numbered Hats: Qrsvar na rdhvinyrapr eryngvba E ba
gur frg bs nyy cbffvoyr frdhraprf bs ernyf nf sbyybjf: N E O vss gur frdhraprf N naq O ner
riraghnyyl gur fnzr. Gung vf, gurl bayl qvssre va svavgryl znal cynprf. Ol Pbaprcgf, guvf
rdhvinyrag eryngvba cnegvgvbaf gur frg bs nyy erny frdhraprf vagb rdhvinyrapr pynffrf.

Gur cevfbaref’ fgengrtl vf gb ybbx ng gurfr rdhvinyrapr pynffrf naq nccyl gur Nkvbz bs
Pubvpr gb cvpx n ercerfragngvir frdhrapr sebz rnpu pynff. Gurl zrzbevmr gurfr ercerfrag-
ngvirf. Bapr gurl ner yvarq hc naq gur jneqra nffvtaf erny ahzoref gb nyy gur ungf, rirel
cevfbare xabjf juvpu rdhvinyrapr pynff gur vaqhprq frdhrapr bs erny ahzoref vf va orpnhfr
rirel cevfbare pna frr nyy gur ahzoref va sebag bs gurz (be, nygreangviryl, gurl pna frr nyy
ohg svavgryl znal ryrzragf bs gur frdhrapr, juvpu vfa’g vzcbegnag sbe qrgrezvavat lbhe rd-
hvinyrapr pynff). Rnpu cevfbare thrffrf gur erny ahzore gung gurve ung jbhyq or va va gur
zrzbevmrq ercerfragngvir frdhrapr gung gur cevfbaref nterrq ba.

Fvapr gur ercerfragngvir frdhrapr bayl qvssref sebz gur npghny frdhrapr va svavgryl znal
cynprf, bayl svavgryl znal cevfbaref qvr.
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A while back, I received some feedback from a student concerning
my recitation notes. I quote, my “recitation notes read like a Dr
Seuss book”, but in a “positive way”.

This honestly confused me a bit, and I wasn’t sure how to respond.
I mulled it over for a day or two before drafting my reply.

Here is that reply.

Dank Memes and Spam by Thomas Lam
I am Thomas Lam
Lam I am

That Lam-I-am! That Lam-I-am!
I do not like that Lam-I-am!

Do you like analysis?

I do not like it, Lam-I-am.
I do not like analysis.

Would you like it here or there?

I would not like it here or there.
I would not like it anywhere.
I do not like analysis.
I do not like it, Lam-I-am.

Would you like it in Wean?
Would you like it with caffeine?

I do not like it in Wean.
I do not like it with caffeine.
I do not like it here or there.
I do not like it anywhere.
I do not like analysis.
I do not like it, Lam-I-am.

*
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Would you learn it in Doherty?
Would you learn it with Leoni?

Not in Doherty. Not with Leoni.
Not in Wean. Not with caffeine.
I would not learn it here or there.
I would not learn it anywhere.
I would not learn analysis.
I do not like it, Lam-I-am.10

Would you? Could you? In Qatar?
Learn it! Learn it! Here are the axioms.

I would not, could not, in Qatar.

You may like it. You will see.
You may like it after department tea!

I would not, could not after deparent tea.
Not in Qatar! You let me be.
I do not like it in Doherty. I do not like it with Leoni.
I do not like it in Wean. I do not like it with caffeine.
I do not like it here or there. I do not like it anywhere.
I do not like analysis. I do not like it, Lam-I-am.

Infimums, supremums,
fixed point theorems!
Don’t you want to learn the theorem of Brouwer’s?

Not Brouwer’s! Not after tea!
Not in Qatar! Lam! Let me be!

I would not, could not, in Doherty.
I could not, would not, with Leoni.
I will not learn it in Wean.
I will not learn it with caffeine.
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I will not learn it here or there.
I will not learn it anywhere.
I do not like analysis.
I do not like it, Lam-I-am.

Say! At a math talk?
Here at this talk!
Would you, could you,
at a talk?

I would not, could not, at a talk.

Would you, could you, at office hours?20

I would not, could not, at office hours.
Not at a talk. Not with the theorem of Brouwer’s.
Not in Qatar. Not after tea
I do not like it, Lam, you see.
Not in Wean. Not in Doherty.
Not with caffeine. Not with Leoni.
I will not learn it here or there.
I do not like it anywhere!

You do not like analysis?

I do not like it, Lam-I-am.

Could you, would you, learn the lemma of Fatou?

I would not, could not, learn Fatou!

Would you, could you, at an REU?

I could not, would not, at an REU.
I will not, will not, learn Fatou.
I will not learn it at office hours.
I will not learn the theorem of Brouwer’s.
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Not at a talk! Not after tea!
Not in Qatar! You let me be!
I do not like it in Doherty.
I do not like it with Leoni.
I will not learn it in Wean.
I do not like it with caffeine.
I do not like it here or there.
I do not like it anywhere!
I do not like analysis!
I do not like it, Lam-I-am.

You do not like it. So you say.
Try it! Try it! And you may.
Try it and you may, I say.

Lam! If you will let me be, I will try it. You will see.

...30

Say! I like analysis! I do!
I like it, Lam-I-am!
And I would learn Fatou.
And I would learn it at an REU...
And I will learn it at office hours
And at a talk. And the theorem of Brouwer’s.
And in Qatar. And after tea.
It is so fun, so fun, you see!
So I will learn in Doherty.
And I will learn it with Leoni.
And I will learn it in Wean.
And I will learn it with caffeine.
And I will learn it here and there.
Say! I will learn it anywhere!
I do so like analysis!
Thank you! Thank you, Lam-I-am!


