1] We have, by definition, for $i=1,\ldots,n$,
\[p_{X_i\leq t} = \begin{cases} 1 & \text{if } X_i \leq t \\ 0 & \text{if } X_i > t \end{cases} \text{ proba } P(X_i \leq t) = F(t) \]
so they are Bernoulli r.v. with parameter $F(t)$.
They are independent because the X_i's are independent.

2] Apply Hoeffding's inequality, we get, for every $\varepsilon > 0$
\[
P\left(\left| \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{X_i \leq t} - F(t) \right| \geq \varepsilon \right) \leq 2 \exp\left(-2\varepsilon^2 n\right)
\]
\[
= \mathbb{P}_{n}(t)
\]
Since the right-hand side does not depend on t, we may write
\[
\sup_{t \in \mathbb{R}} P\left(\left| \frac{1}{n} F_n(t) - F(t) \right| \geq \varepsilon \right) \leq \sup_{t \in \mathbb{R}} 2 \exp\left(-2\varepsilon^2 n\right)
\]
\[
= 2 \exp\left(-2\varepsilon^2 n\right).
\]

3] We always have
\[
\left| \frac{1}{n} F_n(t) - F(t) \right| \leq \sup_{t \in \mathbb{R}} \left| \frac{1}{n} F_n(t) - F(t) \right|,
\]
so
\[
P\left(\left| \frac{1}{n} F_n(t) - F(t) \right| \geq \varepsilon \right) \leq P\left(\sup_{t \in \mathbb{R}} \left| \frac{1}{n} F_n(t) - F(t) \right| \geq \varepsilon \right).
\]
We can take the supremum on t in the left-hand side, the right-hand side does not depend on t! (I know, it's surprising, but observe that for any quantity A, $\sup_{t} A(t)$ can also be written $\sup_{s} A(s)$ or whatever letter you want.)
So
\[
\sup_{t \in \mathbb{R}} P\left(\left| \frac{1}{n} F_n(t) - F(t) \right| \geq \varepsilon \right) \leq P\left(\sup_{t \in \mathbb{R}} \left| \frac{1}{n} F_n(t) - F(t) \right| \geq \varepsilon \right),
\]
and thus inequality (3) implies inequality (e).
4] No and no. Proof:

- We can compute

\[
\mathbb{E}[\hat{F}_n(t)] = \frac{1}{\varepsilon} \left(\mathbb{E}[\hat{F}_n(t+\varepsilon)] - \mathbb{E}[\hat{F}_n(t)] \right)
\]

\[
= \frac{1}{\varepsilon} \left(F(t+\varepsilon) - F(t) \right)
\]

Because \(\hat{F}_n(\varepsilon) \) is an unbiased estimator of \(F(\varepsilon) \) for all \(\varepsilon \).

This is "close to" \(F(t) \) for \(\varepsilon \) small, but not equal to it (in general).

So, \(\lim_{n \to \infty} \mathbb{E}[\hat{P}_n(t)] \neq F'(t) = \rho(t) \). Asymptotically biased.

- We know \(\hat{F}_n(a) \) is a consistent estimator of \(F(a) \), so

\[
\hat{F}_n(t+\varepsilon) \xrightarrow{\text{IP}} \frac{1}{\varepsilon} \left(F(t+\varepsilon) - F(t) \right)
\]

and thus

\[
\hat{P}_n(t) \xrightarrow{\text{IP}} \frac{1}{\varepsilon} \left(F(t+\varepsilon) - F(t) \right)
\]

For the same reason, this is not \(= F'(t) \). (So \(\hat{P}_n(t) \) is not consistent.)

5] We can still write, for any \(n, \varepsilon_n \)

\[
\mathbb{E}[\hat{F}_n(t+\varepsilon_n)] = F(t+\varepsilon_n)
\]

Because \(\hat{F}_n \) is unbiased.

We also have \(\mathbb{E}[\hat{F}_n(t)] = F(t) \).

So for any fixed \(t \), for any \(n \), we have

\[
\mathbb{E}[\hat{P}_n(t)] = \frac{1}{\varepsilon_n} \left(F(t+\varepsilon_n) - F(t) \right)
\]

Then, sending \(n \to \infty \), since \(\varepsilon_n \to 0 \), we have

\[
\lim_{n \to \infty} \mathbb{E}[\hat{P}_n(t)] = \lim_{n \to \infty} \left(\frac{1}{\varepsilon_n} \left(F(t+\varepsilon_n) - F(t) \right) \right) = F'(t) = \rho(t)
\]

So \(\hat{P}_n(t) \) is asymptotically unbiased.
Suppose we are sampling the uniform distribution on \([0, 1]\). Typically we will get \(n\) data points that are (approximately) uniformly spread on \([0, 1]\), so \(\hat{F}_n(t)\) looks like

\[
\frac{1}{n} \uparrow \quad \frac{1}{k} \quad \frac{1}{n} \quad \frac{2}{k} \quad \frac{2}{n} \quad \cdots \quad \frac{k}{n} \quad \frac{k}{n} \quad \cdots \quad \frac{n-1}{n} \quad 1
\]

\(0 \quad 1/n \quad 2/n \quad 3/n \quad \cdots \quad n-1/n \quad n\)

Data points \(\sim \frac{k}{n}\) for \(k = 1, \ldots, n\).

For \(t\) arbitrary in \([0, 1]\), \(\hat{F}_n(t + n^{-100})\) and \(\hat{F}_n(t)\) are equal, except if \(t\) is near a data point (more precisely, except if \(t\) is at distance \(\leq n^{-100}\) on the left of a data point).

\(\hat{F}_n\) jumps when we reach a data point

If \(t\) is in this zone,

\[
\hat{F}_n(t + n^{-100}) - \hat{F}_n(t) = \text{jump} = \frac{1}{n}
\]

So "most of the time", \(\frac{\hat{F}_n(t + n^{-100}) - \hat{F}_n(t)}{n^{-100}} = 0\).

At some "exceptional" times,

\[
\frac{\hat{F}_n(t + n^{-100}) - \hat{F}_n(t)}{n^{-100}} = \frac{1}{n} \underbrace{n^{-100}}_{\text{very large}} \rightarrow \frac{89}{n}
\]

In expectation, things work because

Often \(\rightarrow 0\) + Rarely \(\rightarrow \infty\) + Very large \(\rightarrow \frac{89}{n}\).

However, "in probability", we only see the "often" part, and choosing \(\varepsilon_n\) too small leads to an estimation \(\hat{F}_n \frac{1}{n + \varepsilon_n} \rightarrow 0\). Not consistent!
We want to prove that \(\hat{P}_n(t) \) is a consistent estimator of \(P(t) \), which means \(\hat{P}_n(t) \xrightarrow{n \to \infty} P(t) \).

So we fix \(\delta > 0 \), and we want to prove

\[
P \left(\left| \hat{P}_n(t) - P(t) \right| > \delta \right) \xrightarrow{n \to \infty} 0.
\]

Let us write the definition of \(\hat{P}_n(t) \):

\[
\hat{P}_n(t) = \frac{\hat{F}_n(t+n^{-1/4}) - \hat{F}_n(t)}{n^{-1/4}}.
\]

We also have, since \(P(t) = \frac{F(t+n^{-1/4}) - F(t)}{n^{-1/4}} + h(n) \), with \(h(n) \xrightarrow{n \to \infty} 0 \),

by definition of a derivative.

So

\[
\left| \hat{P}_n(t) - P(t) \right| \leq \frac{|\hat{F}_n(t+n^{-1/4}) - F(t+n^{-1/4})|}{n^{-1/4}} + \frac{|\hat{F}_n(t) - F(t)|}{n^{-1/4}} + |h(n)|
\]

by triangular inequality.

By inequality (2), we have, choosing \(\epsilon = \frac{\delta}{10} n^{-1/4} \):

\[
P \left(\left| \hat{F}_n(t) - F(t) \right| \geq \frac{\delta}{10} n^{-1/4} \right) \xrightarrow{n \to \infty} 0
\]

\[
\leq 2 \exp \left(-2 \frac{\delta^2}{100} n^{-1/2}. n \right) = 2 \exp \left(-\frac{\delta^2}{50} n^{1/2} \right)
\]

Similarly, we have

\[
P \left(\left| \hat{F}_n(t+n^{-1/4}) - F(t+n^{-1/4}) \right| \geq \frac{\delta}{10} n^{-1/4} \right) \leq 2 \exp \left(-\frac{\delta^2}{50} n^{1/2} \right).
\]

So

\[
P \left(\left| \frac{\hat{F}_n(t+n^{-1/4}) - F(t+n^{-1/4})}{n^{-1/4}} + \frac{|\hat{F}_n(t) - F(t)|}{n^{-1/4}} \geq \frac{\delta}{5} \right) \xrightarrow{\text{Union bound}} 2 \cdot \exp \left(-\frac{\delta^2}{50} n^{1/2} \right).
\]

Since \(h(n) \to 0 \), it is less than \(\frac{\delta}{5} \) for \(n \) large enough.
In conclusion,
\[
\frac{1}{n^{1/4}} \left| F_n(t + n^{-1/4}) - F(t + n^{-1/4}) \right| + \frac{1}{n^{-1/4}} \left| F_n(t) - F(t) \right| + h(n)
\]

is less than \(\frac{\delta}{5} + \frac{\delta}{5} = \frac{2\delta}{5} \leq \delta \), for \(n \) large enough, with probability \(\geq 1 - 4 \exp\left(\frac{-\delta^2}{50} n^{1/2}\right) \) \(\rightarrow 0 \) as \(n \to \infty \).

and thus \(\Pr\left(|F_n(t) - F(t)| > \delta \right) \rightarrow 0 \) as \(n \to \infty \).