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input
#curves = 2233 (100%)

chamfer error: 0

our lossless 
#curves = 1961 (87.82%)

chamfer error: 7.493e-10 

our lossy
#curves = 687 (30.77%)
chamfer error: 2.478e-4

Adobe Illustrator
#curves = 687 (30.77%)
chamfer error: 8.927e-4

[Schneider 1990]
#curves = 687 (30.77%)
chamfer error: 5.143e-3

Figure 1: Left to right: Our method accepts as input collections of Bézier curves (left) and simplifies them losslessly to remove
redundant control points. Our lossy extension produces much more simplified result without sacrificing visual quality.
Simplifying using Adobe Illustrator and the method of Schneider [1990] (in Inkscape) produce worse results for the same
number of curves. Input image by Olga Bikmullina (CC0).

ABSTRACT
Inspired by surface mesh simplification methods, we present a

technique for reducing the number of Bézier curves in a vector

graphics while maintaining high fidelity. We propose a curve-to-

curve distance metric to repeatedly conduct local segment removal

operations. By construction, we identify all possible lossless removal

operations ensuring the smallest possible zero-error representation

of a given design. Subsequent lossy operations are computed via

local Gauss-Newton optimization and processed in a priority queue.
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We tested our method on the OpenClipArts dataset of 20,000 real-
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1 INTRODUCTION
Simplification is a core sub-routine found in any popular vector

graphics editing tool (e.g., Inkscape, Adobe Illustrator, CorelDRAW).

There are many ways that a design could end up with too many or

too detailed curves: densely upsampling before applying a point-

wise filter, adding anchors along curves but forgetting to delete

them if they’re never moved, scaling down a detailed design relative

to its final display resolution, vectorizing raster art inefficiently,

etc. With increasingly popular vector graphics animation formats

(e.g., Lottie), dense vector graphics designed for static display or

print may now expect to be served up to mobile devices at high

framerates. Furthermore, vector graphics also function as path

descriptions for CNC machines such as laser cutters, routers, and

plotters. Overly dense designs cause fabrication defects or firmware

failure.

In this paper, we demonstrate that existing simplification meth-

ods leave significant room for improvement. We are particularly

interested at the high end of the simplification-accuracy curve: sim-

plifying as much as possible while remaining exceptionally accurate

to preserve the artist’s intention. A critical unit test is recovering

lossless simplification. For example, take a coarse spline, subdivide

it repeatedly, and then try to simplify back to the original number

of curves (see Fig. 2). Existing methods found in the literature and

in commercial software fail this seemingly simple test.

We propose a Bézier spline simplification technique inspired

by progressive surface mesh simplification methods. We conduct

local segment removal operations in a priority queue. These op-

erations are based on a measure of curve-curve distance which

is carefully constructed to efficiently identify lossless removals as

zero-cost operations. Once lossless removals are exhausted, subse-

quent lossy operations based on local Gauss-Newton optimization

are conducted in a greedy manner (see Fig. 3).

To evaluate our method, we conduct a large-scale — first of its

kind — benchmark comparison on a large dataset of vector graphics

images. Our method consistently outperforms representative state-

of-the-art methods. Our method is agnostic to the dimension of the

input curves’ embedding space: we show results appending varying

Original = Ours (lossless)
Adobe Illustrator (lossy)

Figure 2: As a stress test, the blue curve is upsampled in place
from 19 to 304 segments. Our method losslessly simplifies
back to the original 19 segments. Adobe Illustrator’s propri-
etary simplification to 19 segments produces noticeable error.

our lossy (#segments: 300)

our lossless (#segments: 1164)

densely upsampled  DESIGN + brushwork (#segments: 7224)

Figure 3: Simplification is a core subroutine in an editing set-
ting. Densely upsampling this input allows an artist’s Warp
brushwork in Illustrator to apply a pointwise deformation
over the design. Our lossless simplification removes geomet-
rically unnecessary segments, and further lossy simplifica-
tion produces a coarse, yet visually accurate design.

stroke thickness as a 3rd coordinate. We also demonstrate simpli-

fying across an entire animation, implicitly ensuring temporally

coherent control point distribution and movement.

2 RELATEDWORK
The literature on simplification for polylines is vast beginning with

the error-bound method of Douglas and Peucker [1973], which still

enjoys practical use. We focus our attention on methods for Bézier

curve simplification and related problems on smooth curves.

Sampling-and-refitting. Schneider [1990] proposes a thorough

and widely-used 𝐺1
-continuous solution to the general problem

of fitting a cubic Bézier spline to a digitized curve, which can also

be applied to Bézier curve simplification, as is used in the Path

Simplify tool of Inkscape. Similar algorithms include [Chang and

Yan 1998; Masood and Sarfraz 2009; Sarfraz and Masood 2007; Sar-

fraz and Razzak 2002] based on recursive segment subdivision,

characteristic points detection, and least-square fitting or other

curve approximation approaches. Kolesnikov [2010] introduces the

inflection points with relaxed constraints of tangent continuity.

Shao and Zhou [1996] proposes a global least-squares optimization

fitting method with critical points identification to fit the input

data points using block coordinate descend to do non-linear op-

timization. This global optimization technique struggles to find

a global minimum for long complicated chains. Mokhtarian et al.

[2005] fits the digitized contours through curvature scale space

techniques. van Goethem et al. [2013] takes polygon as input and
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allows topology-preserving Bézier curves fitting with Voronoi dia-

grams. The software Potrace can also transform bitmaps into vector

graphics but takes a faster and simpler approach that only generates

a subset of all possible Bézier curves. These methods are mostly

aimed at fitting digitized curves or boundaries of bitmap images.

However, in our setting, sampling and refitting the input introduces

errors, cannot guarantee consistent tangents at endpoints, and can-

not provide a lossless solution. Besides, the method has to pick a

point on the closed loop to serve as the overlapping start and end

points of the chain, which cannot be moved, and the selection is

not optimized. These papers experimented on a small set of repre-

sentative examples but were not tested on a large dataset. From the

comparison of the latest paper [Masood and Sarfraz 2009] among

them, the out-performance over [Schneider 1990] is insignificant.

Thus, we use the widely-implemented method [Schneider 1990] as

a representative comparison in our benchmark.

Cubic Bézier fitting. De Boor et al. [1987] describes an interpo-

lation scheme that matches position, tangents, and curvature at

the endpoints and proves convexity preservation and 𝑂 (𝑛6) error
scaling; but the solution is not guaranteed to exist for all input

data. Penner [2019] presents three criteria – fitting curvature at

endpoints, least squares orthogonal distance fitting, and the fitting

center of mass, with the former two relevant to our problem. How-

ever, the presented method for orthogonal distance fitting requires

an initial setting of the parameters and is very slow. Levien [2009]

provides a highly efficient and accurate solution to cubic Bézier

curve fitting by building an error metric to match the signed area of

a cubic Bézier curve, which involves solving a quartic-polynomial

system, and making careful decisions in the subdivision. However,

this method sometimes generates cusps as one of the solutions. We

included a comparison of the reference implementation of [Levien

2009] (Kurbo) with our method in Section 4.

B-spline knot removal. Lyche and Mørken [1987] proposes a knot

removal algorithm for parametric B-spline curves, which aims to

reduce the number of polynomial segments in a curve without

exceeding a given error bound. Jupp [1978] and Loach and Wa-

then [1991] keep the number of knots fixed but optimize their

positions. Kang et al. [2015] solves a sparse optimization problem

followed by additional fitting to determine the number and po-

sitions of knots. Dierckx [1995] reviews a variety of methods for

fitting curves, including variable knots, choosing number and initial

knot placement, adding smoothing terms, and convexity preser-

vation constraints. Some of these methods use a Gauss-Newton

optimization akin to ours to minimize their respective distance

metrics. Dung and Tjahjowidodo [2017] presents a new strategy for

fitting any forms of the curve by B-spline functions via a local algo-

rithm by first splitting the data with bisection and then optimizing

via the non-linear least-squares technique.

Vector graphics animation. Dalstein et al. [2015] allows features

of a connected drawing to have topological changes via keyframes.

Liu et al. [2014] provides a solution to animate an SVG with linear

blend skinning interactively via least-squares fitting the control

points of the input splines (whose density is defined by the user).

Some 2D animation software, such as Cartoon Animation 5, sup-

ports the vector graphics format, but none pays attention to sim-

plifying the SVG time series and keeping temporal coherency. In

the animation software that has the functionality of adding spring

bones and Free-Form Deformation (FFD), our work can also act as

an adjoint tool to remove the redundant control points, add control

points in the necessary regions, and export a smooth and clean

SVG sequence. To maintain temporal coherency, a lot of work in

mesh animation uses principle component analysis (PCA) or clus-

tered principal component analysis (CPCA) to achieve animation

compression, e.g. [Alexa and Müller 2000; Karni and Gotsman 2004;

Lengyel 1999; Sattler et al. 2005; Váša and Skala 2009]. None of

these methods can export a simplified sequence of vector graphic

frames.

3 METHOD
Our method takes as input a vector graphics image and outputs

a simplified vector graphics image. We operate directly on the

underlying cubic Bézier splines representing the paths of standard

vector graphics formats (e.g., .svg or .ai files). Consistent with

common practice of vector graphics software (Inkscape, Illustrator,

CorelDRAW) during editing, we homogenize all paths (e.g., circles,

arcs, ellipses, quadratic Béziers) into cubic Bézier splines. These

pathsmay define strokes, fill boundaries, clip-mask path boundaries,

and other stylings. Our method is agnostic to stylings, which are

reassociated with the simplified output paths to render the final

image. We’ll use the following terminology in this paper:

• segment: a single cubic Bézier curve,
• chain: 𝐺1

continuous sequence of one or more segments,

• component: 𝐶0
continuous sequence of one or more chains,

and unless context demands, Bézier always refers to cubic Bézier.

Thus, the input to our method is a collection of 𝑁 segments

in R𝑑 and a target number of output segments 𝐾 . The output is a

collection of 𝐾 segments in R𝑑 whose components closely match

corresponding input components.

Overview. Our method works in a greedy manner analogous

to edge-collapse decimators for triangle mesh simplification in

computer graphics [Garland and Heckbert 1997; Hoppe 1996]. We

define local “collapse” operations which remove a single segment

and adjust neighboring control points on the component. We define

a non-negative (and sometimes zero) cost function to measure the

loss incurred by each operation. All possible operations are placed

into a priority queue and processed in a greedy manner. When a

collapse operation is conducted, operations involving neighboring

segments become out of date and are replaced in the queue with

operations referencing the newly repositioned control points. All

local operations are constructed to have 𝑂 (1) complexity so that

total processing is asymptotically efficient:𝑂 (𝑁 log𝑁 ). Let us now
consider the definitions of operations and cost functions.

3.1 Distance between two segments
A fundamental expression in the following section will be a measure

of distance between parametric spans of two Bézier segments.

There are many ways to measure distance between two curves.

Hausdorff distance is difficult to compute precisely and sensitive

to outliers [Agarwal 2007]. Chamfer distance or integrated closest

point is a good choice perceptually, but does not have a closed form

expression and is sensitive to (near) overlaps and self-intersections.
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Figure 4: We measure the distance between partial paramet-
ric spans of two Bézier segments as an integral over a shared
parametric domain that is linearly warped into each seg-
ment’s Bézier parameter space.

Meanwhile, Fréchet distance leverages that both curves may be

parameterized over the real line segment [0,1]. Fréchet distance

considers all possible re-parameterizations of the two curves. Imag-

ine taking the max distance between your left fingertip as it runs

over one curve and your right fingertip as it runs over the other.

Fréchet distance takes the minimum across all possible parameteri-

zations of each curve, or all possible speeds that our fingertips move

relative to each other. Precise computation of Fréchet distance is

somewhat tractable [Rote 2007] but has similar outlier issues as

Hausdorff: ultimately the measure is determined by a single pair of

points [Agarwal 2007].

Similar to Fréchet, we propose considering all possible pairs of

piecewise-linear reparametrizations of each curve with parameter

locations co-located at each segment boundary, but unlike Haus-

dorff or Fréchet we take the integrated squared distance along the

curves. That is, the Bézier parameterization of each segment is only

affected by a linear mapping. We will show this is both friendly to

computation and a good model of perceived distance, as indicated

by our qualitative results. Additionally, the distance is zero if and

only if a lossless merge is possible and smoothly increases away

from this case, enabling gradient-based minimization.

Consider a Bézier segment A : [0, 1] → R𝑑 defined
1
by con-

trol points a1, a2, a3, a4 ∈ R𝑑 . Similarly, define another curve B :

[0, 1] → R𝑑 with control points b1, b2, b3, b4 ∈ R𝑑 . The parametric

domains of A and B are both [0,1], but we will integrate distance

over an arbitrary parametric subdomain:∫ 𝑦

𝑥

∥A(𝑔𝐴𝑤 + ℎ𝐴) − B(𝑔𝐵𝑤 + ℎ𝐵)∥2 𝑑𝑤, (1)

where various parameters appear to control the measure: 𝑥,𝑦 con-

trol the stretch of a shared parametric domain from which the

variable of integration𝑤 spans, 𝑔𝐴, ℎ𝐴 and 𝑔𝐵, ℎ𝐵 are parameters

which define an affine map from this shared domain to the Bézier

parameter domains of curves A and B, respectively.

3.2 Distance between two chains
Building on segment-segment distance, we now consider distance

between two chains. Consider a chain of 𝑛 segments: A : [0, 1] →
R𝑑 defined by control points P = {p1, . . . , p3𝑛+1} and a set of 𝑛 + 1

parameter locations 𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ [0, 1] where 𝑠0 = 0 and 𝑠𝑛 = 1:

1A(𝑢 ) = (1 − 𝑢 )3 a1 + (1 − 𝑢 )2𝑢 a2 + (1 − 𝑢 )𝑢2 a3 +𝑢3 a4 .

A(𝑥) =



A1

(
𝑥−𝑠0
𝑠1−𝑠0

)
if 𝑥 ≤ 𝑠1

A2

(
𝑥−𝑠1
𝑠2−𝑠1

)
else if 𝑥 ≤ 𝑠2
.
.
.

A𝑖
(
𝑥−𝑠𝑖−1
𝑠𝑖−𝑠𝑖−1

)
else if 𝑥 ≤ 𝑠𝑖
.
.
.

A𝑛
(
𝑥−𝑠𝑛−1
𝑠𝑛−𝑠𝑛−1

)
else if 𝑥 ≤ 𝑠𝑛,

(2)

where points p3𝑖−2, p3𝑖−1, p3𝑖 , p3𝑖+1 control each segment A𝑖
.

x₁
=s
₁

x₃
=s
₂

x₅
=s
₃

x₂
=t
₁

x₄
=t
₂

x₀
=0

x₆
=1

j(x)
i(x)

x

Similarly, define a chain B :

[0, 1] → R𝑑 with 𝑛 − 1 seg-

ments with control pointsQ =

{q1, . . . , q3𝑛−2} and parame-

ter locations 𝑡 𝑗 .

For each of these, let us de-

fine piecewise-constant index-

ing functions:

i : [0, 1] → {1, . . . , 𝑛}, where i(𝑥) = 𝑖 if 𝑠𝑖−1 < 𝑥 ≤ 𝑠𝑖 , and (3)

j : [0, 1] → {1, . . . , 𝑛 − 1}, where j(𝑥) = 𝑗 if 𝑡 𝑗−1 < 𝑥 ≤ 𝑡 𝑗 . (4)

Without loss of generality, assume the parameter locations 𝑠𝑖 and

𝑡 𝑗 are disjoint (outside of endpoints) so they cut up the domain [0,1]

into 2𝑛 − 2 intervals. Since 𝑠𝑖 and 𝑡 𝑗 may be in any order relative to

each other, we introduce a joint sequence notation:

{𝑥0, 𝑥1, . . . , 𝑥2𝑛−2} = {0, sort(𝑠1, . . . , 𝑠𝑛−1, 𝑡1, . . . , 𝑡𝑛−2), 1}, (5)

while this simplifies notation, it obscures that each parameter lo-

cation 𝑥𝑘 depends (when it comes to derivatives) on some 𝑠𝑖 or 𝑡 𝑗 ;

this will be essential for correct gradient computation later.

Equipped with a way to refer to these intervals in order, we may

define a distance between these chains as a sum over intervals:

E(P, {𝑠𝑖 },Q, {𝑡 𝑗 }) =
2𝑛−2∑︁
𝑘=1

𝜔𝑘

𝑥𝑘∫
𝑥𝑘−1

Ai(𝑥 )
(

𝑥−𝑠i(𝑥 )−1
𝑠i(𝑥 ) −𝑠i(𝑥 )−1

)
− B j(𝑥 )

(
𝑥−𝑡j(𝑥 )−1

𝑡j(𝑥 ) −𝑡j(𝑥 )−1

)2 𝑑𝑥, (6)

where — despite the indexing hellscape —we observe that each term

in the summation is an integral of the form in Eq. 1. The 𝜔𝑘 term

weighs the impact of the 𝑘th integral on the total. One choice would

be to use the arc-length of the corresponding pieces of the segments

ofA andB. This will be problematic in our setting because only the

longer curveA is known in advance and approximating arc-lengths

of Bézier curves relies on computationally expensive operations.

Instead, we propose to use 𝜔𝑘 = 1/(𝑠𝑖 − 𝑠𝑖−1) + 1/(𝑡 𝑗 − 𝑡 𝑗−1),
which can be seen as a first-order approximation of arc-length

(i.e., assumes segments are straight) and discourages intervals from

disappearing by inversely proportionally growing in scale. We draw

special attention that𝜔𝑘 therefore depends on some 𝑠𝑖 and 𝑡 𝑗 values.

3.3 Segment removal operation
Analogous to an edge-collapse operation for triangle meshes, we

now define a local segment remove operation for a chain of length𝑛,
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4→3
segment removal

defined by control points P =

{p1, . . . , p3𝑛+1}. For now, let

us assume the input to this

subroutine are 𝑛 segments

forming a chain within a possi-

bly longer chain continuing at

either end. The output are𝑛−1
segments defined by control

points Q = {q1, . . . , q3𝑛−2}
and a measured cost of accept-

ing this solution:

cost = min

{𝑠𝑖 },Q,{𝑡 𝑗 }
𝐸 (P, {𝑠𝑖 },Q, {𝑡 𝑗 }) . (7)

3.3.1 General case (𝑛 ≥ 2). The cost in Eq. 7 is a minimization

of a continuous function of the unknowns {𝑠𝑖 }, Q, {𝑡 𝑗 }. We will

optimize this via a modified Gauss-Newton method.

By appending constraints to this opimization, we ensure 𝐶0
and

𝐺1
continuity at the endpoints (where the chain joins neighboring

segments) and at internal interpolated control points in the output

(for 𝑛 > 2). Namely, we maintain 𝐶0
continuity with:

q1 = p1 and q3𝑛−2 = p3𝑛+1 (8)

and 𝐺1
continuity with:

∃ 𝛼 > 0 | q2 − q1 = 𝛼 (p2 − p1) , (9)

∃ 𝛽 > 0 | q3𝑛−3 − q3𝑛−2 = 𝛽 (p3𝑛 − p3𝑛+1) , (10)

∃ 𝛾 𝑗 > 0 | q3𝑗 − q3𝑗+1 = 𝛾 𝑗
(
q3𝑗+1 − q3𝑗+2

)
∀ 𝑗 = 1, . . . , 𝑛 − 2.

(11)

The constraints in Eq. 8 can be substituted into Eqs. 9 & 10, reveal-

ing they are linear in 𝛼, q2 and 𝛽, q3𝑛−3, respectively. These are

easily enforced via the null-space method: introducing 𝛼 and 𝛽 as

variables.

That is, we build a matrix N ∈ R𝑑 (3𝑛−2)×(3𝑑 (𝑛−2)+2)
from rele-

vant entries of P so that:

Q = Ny + Q̃ such that Eqs. 8-10 hold for any y ∈ R3𝑑 (𝑛−2)+2
(12)

where y collects remaining free variables in Q and 𝛼, 𝛽 .

Meanwhile, the constraints in Eq. 11 are bi-linear in the 𝛾𝑖s and

Q, respectively. Treating the 𝑠, 𝛾 , and 𝑡 variables as known, then

the cost function is a quadratic function in Q. This implies it has a

closed-form solution Q★
, which can be expressed as a non-linear

function 𝑓 : R3𝑛−5 → R𝑑 (3𝑛−2) of 𝛾 , 𝑠 , and 𝑡 variables:

Q★ = 𝑓 ({𝑠𝑖 }, {𝛾 𝑗 }, {𝑡 𝑗 }) . (13)

We can now substitute Q★
from Eq. 13 into the optimization

problem in Eq. 7 to get a non-linear optimization problem over

{𝑠𝑖 }, {𝛾 𝑗 }, {𝑡 𝑗 }:

min

{𝑠𝑖 },{𝛾 𝑗 },{𝑡 𝑗 }
𝐸 (P, {𝑠𝑖 }, 𝑓 ({𝑠𝑖 }, {𝛾 𝑗 }, {𝑡 𝑗 }), {𝑡 𝑗 }) . (14)

While we could apply simple gradient descent, we see significant

improvements leveraging the sum-of-squares nature of the distance

in Eq. 6 to use Gauss-Newton method.

Because the integrands in Eq. 1 are sixth-order polynomials over

the integration variable (squared norm of a cubic polynomial), we

may immediately apply sixth-order accurate quadrature rules to

exactly evaluate these integrals for any input parameters.∑︁∫
∥ . . . ∥2

exact quadrature

−−−−−−−−−−−−−−−→
∑︁∑︁

∥ . . . ∥2 =
∑︁

∥ . . . ∥2

Our sum of integrals is now a simple sum of squared function

evaluations: suitable for discrete Gauss-Newton method.

All that remains is to apply chain-rule and differentiate each

term with respect to the free variables. Our implementation uses

complex-step numerical differentiation [Lyness and Moler 1967]

to easily (without hand-coding any derivatives), accurately (up to

machine precision), and efficiently (with little more cost than a

few forward evaluations) compute necessary Jacobian matrices. For

small 𝑛 (in our cases 𝑛 ≤ 4), this choice is appropriate. For much

larger 𝑛 (e.g., 𝑛 = 𝑂 (𝑁 )), sophisticated automatic-differentiation

tools such as [Agarwal et al. 2022] may start to see performance

improvements.

Given a Gauss-Newton search direction we conduct a back-

tracking line-search [Boyd and Vandenberghe 2006] to find a suit-

able step length, while constraining 𝛼, 𝛽,𝛾 parameters to stay posi-

tive. For our most common case of 𝑛 = 4, we observe convergence

typically in ≈10 iterations. For fixed 𝑛, this entire local optimization

is 𝑂 (1) with respect to the complete input vector graphics image

of 𝑁 segments.

To initialize our optimization, we set 𝑠𝑖 =
∑𝑖
𝑘=1

ℓ𝑘/
∑𝑛
𝑘=1

ℓ𝑘 , where

ℓ𝑖 is the arc-length of the 𝑖th segment (approximated numerically).

Then we pick the best {𝑡 𝑗 } initial values among all 𝑛 − 1 subse-

quences of {𝑠𝑖 } and an additional uniform setting of 𝑠𝑖 = 1/(𝑛 − 1).
For small 𝑛, we observe that trying a few initial values often helps

speed up convergence. Our specific heuristic ensures that we imme-

diately identify input chains of 𝑛 − 1 straight segments where one

segment can always be losslessly removed. Tangent length ratios

𝛼, 𝛽,𝛾 are initialized to relative arc-lengths: again agreeing with

constant speed straight segments.

3.3.2 Special lossless case 𝑛 = 2. If 𝑛 = 2 and we know that we are

only interested in accepting the segment removal for numerically

zero cost, then we can avoid the continuous optimization of the

previous section and jump directly to the solution of the low-order

polynomial root finding problem.

Key Observation: A lossless segment removal on a two-segment

chain defined by control points c1, c2, c3, c4 ∈ R𝑑 and d1, d2, d3, d4 ∈
R𝑑 exists if and only if there exists a single curve with control

points q1, q2, q3, q4 ∈ R𝑑 and a parameter value 𝑡 ∈ (0, 1) such that

subdividing the q at 𝑡 produces the segments c and d.
The output segment q has constant third derivative, so to admit

a lossless removal the inputs must have equal third derivatives that

must be equal up to a scale factor. That scale factor can be written

in terms of a parameter 𝑡 ∈ (0, 1) such that c and d segments are

the result of splitting the output segment q at 𝑡 :

−6q1 + 18q2 − 18q3 + 6q4 = (15)

−6c1 + 18c2 − 18c3 + 6c4
𝑡3

=
−6d1 + 18d2 − 18d3 + 6d4

(1 − 𝑡)3
, (16)

c̈
𝑡3

=
d̈

(1 − 𝑡)3
, (17)
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where we further assume that third-derivatives c̈, d̈ ∈ R𝑑 are non-

degenerate (if they both are, then the segments could be merged as

quadratic or linear Bézier curves).

Now, we can solve this third-order polynomial equation for 𝑡 :

d̈ · c̈d̈2︸︷︷︸
𝑟

(1 − 𝑡)3 = 𝑡3 (18)

−(1 + 𝑟 )𝑡3 + 3𝑟𝑡2 − 3𝑟𝑡 + 𝑟 = 0. (19)

For 𝑟 > 0 (implying c̈ and d̈ point in the same direction), this

equation has a single real root:

𝑡 =

(
1 + 𝑟−1/3

)−1
. (20)

Finally, if this lossless removal is possible, then we can recover

the corresponding control points from our continuity assumptions:

q1 = c1 (21)

q4 = c4 (22)

q2 − q1 =
c2 − c1
𝑡

(23)

q4 − q3 =
d4 − d3
1 − 𝑡 . (24)

To determine if a lossless removal is actually possible, a practical

approach is to compute 𝑡 and q𝑖 as above and then check if the

integrated error between the original two segments and the new

single segment (using Eq. 6) is (numerically close enough to) zero.

Assuming an infinite precision machine, a straightforward algo-

rithm for lossless simplification of a sequence of 𝑛 segments is to

process all consecutive pairs of segments in a queue or stack. Upon

each pop, if the pair is still valid and can be losslessly merged, then

conduct it and insert any new consecutive pairs into the queue. The

2 → 1merge operation is local and𝑂 (1) cost, and the full algorithm
is𝑂 (𝑛). The algorithm is also guaranteed to find all possible lossless

mergers, resulting in the most compact lossless representation.

In practice, floating point operations introduce errors and these

errors may accumulate. In the worst case, we could merge pairs in

order along a chain of 𝑁 segments all stemming from a single (𝐾 =

1) curve, accumulating error 𝑁 times over before the final merge.

Instead, we can process operations in a queue, which accumulates

the worst case error at a rate of log𝑁 .

Our cubic root finding relies on floating point operations which

are not error-free. We observe that in the range 𝑡 ∈ [10−3, 1−10
−3]

the numeric loss for theoretically losslessmerges is very low<10−16.
However, this numeric loss grows toward larger values ≈10−5 as
the solution 𝑡 gets closer to 0 or 1. We apply one iteration of the

Gauss-Newton descent on 𝐸 , initialized at our c and 𝑡 values to
“brush off” the last bit of numerical error.

3.4 Greedy Priority Queue Processing
Equipped with our local operations, we split the input into chains

at corners, determined by a threshold on incident tangents. Every

pair of consecutive segments is initially placed in a priority queue

based on its lossless 2 → 1 operation (see Section 3.3.2). These are

processed — pushing neighboring lossless 2 → 1 operations onto

Table 1: Runtime performance across the examples in this
paper.

Example #segments before #segments after Runtime (s)

Fig. 1 2,233 687 558

Fig. 2 304 19 1

Fig. 3 7,224 300 367

Fig. 7 2,280 400 432

Fig. 8 1,000 300 125

Fig. 9 1,130 × 100 (avg.) 89 × 100 1,349

Fig. 10 (1) 2,916 1,458 779

Fig. 10 (2) 5,001 1,500 1,595

Fig. 10 (3) 20,293 6,087 1,822

Fig. 10 (4) 16,628 6,651 2,094

the queue any time an operation is accepted — until the queue is

empty or only 𝐾 segments remain.

If more than 𝐾 segments remain, then for every consecutive four

segments we push a (potentially lossy) 4 → 3 operation on the

queue. For chains of length 𝑛 < 4, we also push an appropriate

𝑛 → (𝑛 − 1) operation. These are processed — again pushing ap-

propriately updated neighboring operations upon each acceptance

— until 𝐾 segments remain.

We use a priority queue with pop-min, update-key, and insert

operations with cost 𝑂 (log𝑛), keyed on the cost of each possible

4 → 3 or 2 → 1 operation. Computing each cost is 𝑂 (1) and there

are 𝑂 (𝑛) operations: filling the queue has thus a 𝑂 (𝑛 log𝑛) cost.
Finding the cheapest operation is 𝑂 (log𝑛), executing it 𝑂 (1), and
updating the cost of the neighboring elements is 𝑂 (log𝑛) (note
that the number of neighbors is constant): overall, it is 𝑂 (log𝑛)
total work per pop. Since we have 𝐾 ≤ 𝑛 operations to pop, the

final time complexity is 𝑂 (𝐾 log𝑛 + 𝑛 log𝑛) = 𝑂 (𝑛 log𝑛).
Finally, our algorithm assumes all corners are preidentified. We

can also simplify across corners (cost permitting) by relaxing the

𝐺1
constraints in Eq. 11 based on a user-provided threshold. To

support loops: during the local segment removal optimization for

closed loop chains of length ≤ 𝑛, 𝐺1
continuity constraints are

appropriately modified so that the choice of endpoints is unbiased.

4 EXPERIMENTS & DISCUSSION
We implemented our algorithm in Matlab, using gptoolbox [Ja-

cobson et al. 2021] for vector graphic support and basic geometry

processing. We implemented our Gauss-Newton solver with back-

tracking line search (𝛼 = 0.3, 𝛽 = 0.5) [Boyd and Vandenberghe

2004], with stopping criteria: relative energy < 10
−15

, relative gradi-

ent < 10
−5

, or max 30 iterations. Our algorithm and implementation

is by construction 𝑂 (𝑁 log𝑁 ), but beyond ensuring correct asymp-

totic performance, we did not optimize our method and leave a

high-performance implementation as incremental future work. We

report the runtime of our implementation for the examples in the

paper in Table 1, measured on an Intel i7 processor clocked at 2.6

GHz. Instead, we focus on the superior quality of our results in

terms of error and the generality of our approach with respect to

input. Fig. 10 contains a gallery and our supplemental data contains

a more thorough .html explorer of results.
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Chamfer Error (median + quartile intervals)
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OpenClipArts .svg files
Chamfer Error

[Schneider 1990]
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5800×
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our median is 
always less

lossless

Percentage of segments remainingPercentage of segments remaining

order of magnitude
error difference

{

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 5: We conducted a large-scale benchmark of vector graphics simplification — as far as we know — the first of its kind. We
compare our simplification method to [Schneider 1990] for a variety of target segment counts, recording the chamfer error to
the original (left). Around 75% experience at least some lossless removals. On the right, we bin collected samples in deciles and
report their medians and quartile intervals. Our method’s median is always smaller though best improvements are observed
for larger percentages. For visualization clarity, we snap extremely small errors of our lossless results to axis bounds.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%
10-16

10-12

10-8

10-4

100

5000 Chains of Length N≥20
Chamfer Error (median + quartile intervals)

Kurbo

[Schneider 1990]

Ours increased
#segments
(failure)

our median is smallest
until the very end

large error (failure)

lossless

Percentage of segments remaining

Figure 6: To includeKurbo [Levien 2009] in our comparisons,
we build a smaller dataset of long, smooth chains. When
Kurbo works, it works reasonably well: its median is similar
to ours. However, it often creates extreme error results or
even adds more segments instead of removing them.We snap
extremely large/small errors and increased segment counts to
axis bounds.

Large-Scale Evaluation. We conducted a large-scale quantitative

evaluation on 17,944 in-the-wild .svgs composed of 55 million

segments in total from OpenClipArts dataset [Hu et al. 2019] (≈2k
models were excluded because our .svg loader does not support es-
oteric path commands). Our lossless simplification benefited 74.2%

of the models. This suggests that most vector graphics found in

the wild could save on storage and bandwidth without any notice-

able change: motivating our lossless contributions. Our method

demonstrates favorable quality for the same simplification amount

compared to [Schneider 1990] (Fig. 5). For each model, we con-

sider a series of 𝐾 values: we run our lossless process until com-

pletion 𝐾 = 𝐾
lossless

, then applying our lossy process to reach

𝐾 = 90%, 80%, . . . , 10% of the original number of segments until

no lossy removal is possible without exceeding a very large error

value. We run [Schneider 1990] until achieving roughly the same 𝐾

values. We measure bi-directional chamfer error between the input

and output: densely, uniformly randomly sampling all curves of

the input and taking the mean squared 𝐿2 distance to the output

curves, then vice versa, and averaging the two errors. Our method

outperforms [Schneider 1990] across the entire range of the simpli-

fication amount: the median curve mostly staying around an order

of magnitude lower, with a much large difference improvement in

the 90-100% range.

We conducted a smaller quantitative comparison includingKurbo

[Levien 2009] on 5,000 especially numerically smooth chains of

length 𝑁 ≥ 20 from randomly sampled models of the OpenClipArts

dataset. We constructed this dataset out of fairness to Kurbo, as it is

more sensitive to slight tangent mismatches at perceptually smooth

control points than [Schneider 1990] and our algorithm. Kurbo

does not provide a direct way of controlling the output number of

segments, so we do a 13-value sweep over its simplifier’s tolerance

parameter. Fig. 6 visualizes the collected data and demonstrates

our method again consistently outperforming [Schneider 1990]. We

also observe that when Kurbo succeeds it works fairly well, but

it often fails in one of three different ways: (1) getting no results

after an extremely long time (>1 hour), (2) producing excessively

high error results due to explosion (curves far outside the input’s

bounding box), and (3) outputting more segments than the input

(see types (2) & (3) in Fig. 6). We ran Kurbo 65, 000 = 5, 000 · 13
times, of which Kurbo failed — in one of these three ways — 34.4%

of the time.

100%20%10-¹⁰

10-²

10-⁴

10-⁶

10-⁸

40% 80%60%

Ours

Ablation over operations
Chamfer error

4→3
2→1

3→2

Operation Type Ablation.

We conducted an ablation ex-

periment on the Night Horse-

woman poster in Fig. 10. We

compared performing only

a single operation indepen-

dently against our algorithm

that combines them. We ob-

serve that 4 → 3 only and
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3 → 2 only cannot simplify as much as our reference strategy,

leading to higher errors. The 2 → 1 only strategy is more flexible

and can simplify as much as our reference but with higher errors.

Overall, this experiment confirms that using all operations leads to

superior simplification results for the same quality.

Editing Software. Our method qualitatively out-performs stan-

dard software: Adobe Illustrator and Inkscape ([Schneider 1990]),

as shown in Fig. 1 and Fig. 2. Additionally, it supports lossless sim-

plification, which is not supported by these software. In Fig. 1, our

lossless simplification down to 87.82% of the original segments. We

further lossily simplify to 30.77% without perceptible visual change:

at the same simplification level, Adobe Illustrator introduces no-

ticeable visual differences over the entire image (especially on the

mushroom) and Schneider [1990] significantly alters the image.

Kurbo [Levien 2009] fails on this input.

Lossless simplification workflow. In Fig. 3, we emulate an artist’s

workflowwith a black box pointwise brush tool. We densely upsam-

ple a graphic so the brush is applied directly to control points, then

simplify to preserve only the necessary control points. The editing

operation often leaves parts of the model with dense samples un-

moved or moved in a locally affine way: this presents a significant

opportunity for lossless simplification. We simplify down to 16.1%

in this example. The artist can continue to repeat this workflow of

upsampling, editing, lossless simplification for as many iterations

as desired because no information is lost in the procedure, unlike

in all previous methods. Once the artist is satisfied with the final

design, the image can be processed by our lossy simplification into

a much smaller file without a noticeable change to the design. This

opens the door to a workflow similar to traditional photo editing,

where lossless compression formats (.png) are used for editing, and
lossy formats (.jpg) are used for distribution.

Manufacturing. Our simplification can benefit manufacturing

methods (plotting, laser cutting) that take vector paths as input. We

drew the boundary of Norway using a robotic plotting machine

(Fig. 7) and observe that the vector path simplified by our algorithm

has less ink bleeding compared to the original one.

Higher dimensions. Simplification is a core subroutine for not

only 2D vector images but also vector data of higher dimensions.

We demonstrate that our method can be easily extended to higher-

dimension vector data, including vector images with stroke width

and vector animation. The “John Hancock” signature in Fig. 8 con-

sists of cubic Bézier curves whose control points contain an extra

stroke width dimension. Our method yields a more compact image

without losing noticeable accuracy. In Fig. 9, we densely upsampled

the input .svg and applied an embedded mesh animation based

on a full-space complementary dynamics [Zhang et al. 2020] and

barycentric coordinates interpolation: this procedure is necessary

to faithfully capture the deformation but introduces many redun-

dant control points. If the animation is applied directly on the .svg
without upsampling, the final animation is noticeably defective:

e.g., the dolphin’s blowhole is incorrectly appears outside of the

poorly animated silhouette. With our method, we can efficiently

simplify the upsampled sequence with temporal coherency by (1)

applying truncated principal component analysis (PCA) on the high

dimensional animation data similar to [Alexa and Müller 2000] and

then conducting lossy simplification on the PCA vectors and then

(2) applying lossless simplification on each frame individually as a

post process to remove redundant control points. Our simplification

result is qualitatively better than a baseline of simplifying every

frame independently, which leads to undesired temporal popping

artifacts (see supplemental video).

5 LIMITATIONS & FUTUREWORK
We focused exclusively on asymptotic performance and imple-

mented our prototype inMatlab where scripting overhead is high.

We expect that a high-performance implementation in C++ is a

straightforward extension, there are also advances in parallelism

for surface mesh simplification in parallel which could be adapted

to our analogous setting [Karis 2022].

Our method does not conduct topological simplification; most

notably, we simplify but never remove an entire input component.

Thus, a valid input 𝐾 should be greater than or equal to the number

of input components. We conjecture that topological simplification

requires more advanced perceptual metrics and leave for a future

work which may benefit from our method as a subroutine. We also

do not consider overdraw (we don’t flatten or remove hidden paths).

More perceptually accurate corner detection and persistence would

aid all smooth simplification methods, including ours. Finally, we

hope our emphasis on statistically meaningful large-scale testing

inspires chasing down the remaining gains in vector graphics sim-

plification.
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original
#segments: 2280

our lossy
#segments: 400, chamfer error: 3.002e-06

photo of
plotter
drawing

fuzzier
fjords

Figure 7: Attempting to draw a dense spline with a robotic
plotting machine results more ink bleeding than plotting its
simplification.

original
#segments: 1000

ours
#segments: 300

Figure 8: We are able to simplify a "3D" curve by treating the
stroke width as an extra dimension. The bottom row visual-
izes stroke radii (3rd dimension) as an orange circle at each
interpolated control point. We show that the hand-written
"John Hancock" with 1000 segments can be represented by
300 curves without losing noticeable accuracy. Original in-
put image sourced from John Hancock’s signature (public
domain).

…original

…densely 
then

simplified 
per-frame

ours

Frame 27 Frame 90 Frame 91

…densely 
upsampled

original

popping

animated…

Figure 9: Naively applying animations to vector graphics
either ends up with artifacts or too many segments. Simplify-
ing per-frame produces popping artifacts, while our method
is temporally coherent.
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chamfer error: 2.539e-09

our lossy
#curves = 10146 (50.00%)
chamfer error: 1.26e-08

our lossy
#curves = 6087 (30.00%)
chamfer error: 6.845e-07

input
#curves = 16628 (100%)

our lossless 
#curves = 14066 (84.59%)
chamfer error: 8.334e-10

our lossy
#curves = 13303 (80.00%)
chamfer error: 2.103e-09

our lossy
#curves = 9977 (60.00%)
chamfer error: 4.444e-07

our lossy
#curves = 6651 (40.00%)
chamfer error: 6.062e-06

Figure 10: Our simplification results on stock images from the Internet. Our algorithm losslessly simplified the images to
around 75-90% and managed to simplify the images further to 40% or less than 40% of its original number of segments without
noticeable visual difference. The top-row input image © Aleksey. The second-row input image © Rudzhan. The third-row input
image © studiostoks. The bottom-row input image © Irina.
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